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Idealized Baseband Amplifier with Nonlinearity and Noise
The example shows how to use the idealized baseband library Amplifier block to amplify a signal with
nonlinearity and noise. The Amplifier uses the Cubic Polynomial model with a Linear power
gain of 10 dB, an Input IP3 nonlinearity of 30 dBm, and a Noise figure of 3 dB.

System Architecture

The DSP Sine Wave block inputs two complex baseband tones with a power level of -20 dBm and -25
dBm at frequencies of -30 MHz and 20 MHz. In this block you can also:

• Increase the samples per frame to increase the simulation speed.
• Use output complexity and phase offset to control the I-Q relationship of each baseband signal
• Control the bandwidth of the scopes using the inverse of the sample time parameter.

The Amplifier block only accepts a vector input. The Sum block combines the two baseband signals
into a vector length equal to the samples per frame in the DSP Sine Wave block.

The Thermal Noise block creates a thermal noise floor input of -174 dBm/Hz.

Simulation Analysis

The Amplifier block with Linear power gain of 10 dB outputs tone with magnitude -10 dBm and
-15 dBm as seen in the Power plot. The Amplifier also increases the thermal noise floor to -161
dBm/Hz. You can calculate the output thermal noise using this equation:

The following plots illustrate the differences in the input and output noise floors. The spurs appear at
70 MHz (2*20 MHz + 30 MHz) and -80 MHz (2*(-30 MHz) - 20 MHz). This shows the third order
intercept nature of the spurs.
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Increasing the Slider value from 1 to 10, shows nonlinear effects in the plots. These are the Noise and
Power plots when the gain of the Slider is 10.

See Also
Amplifier

Related Examples
• “Impact of RF Effects on Communication System Performance” on page 8-32
• “Impact of Thermal Noise on Communication System Performance” on page 1-42
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Power Amplifier Characterization
This example shows how to characterize a power amplifier (PA) using measured input and output
signals of an NXP Airfast PA. Optionally, you can use a hardware test setup including an NI PXI
chassis with a vector signal transceiver (VST) to measure the signals at run time.

You can use the characterization results to simulate the PA using the
comm.MemorylessNonlinearity System object or Memoryless Nonlinearity block. For a PA model
with memory, you can use Power Amplifier (RF Blockset) block. You can use these models to design
digital predistortion (DPD) using comm.DPD and comm.DPDCoefficientEstimator System objects
or DPD and DPD Coefficient Estimator blocks. For more information, see “Digital Predistortion to
Compensate for Power Amplifier Nonlinearities” on page 1-31.

Optional Hardware and Software

This example can run on an NI PXI chassis with a VST to measure PA input and output signals during
run time. The VST is a high-bandwidth RF instrument that combines a Vector Signal Generator (VSG)
with a Vector Signal Analyzer (VSA). The following NI PXI chassis configuration was used to capture
the saved signal:

• NI PXIe-5840 Vector Signal Transceiver (VST)
• NI PXIe-4139 Source Measure Unit (SMU)
• NI PXIe-4145 SMU
• NI RFmx SpecAn software
• NI-RFSG software
• NI-RFSG Playback Library software

As the device under test (DUT), this example uses an NXP Airfast LDMOS Doherty PA with operating
frequency 3.6-3.8 GHz and 29 dB gain. This PA requires 29V, 5V, 3 V, 1.6V and 1.4V DC bias, which
are provided using PXIe-4139 and PXIe-4145 SMUs.

Install MATLAB® on the NI PXI controller to run this example with the hardware setup, which is
illustrated in the following figure. MATLAB, running on the PXI controller, generates test waveform
and downloads the waveform to the VSG. The VSG transmits this test waveform to the PA and the
VSA receives the impaired waveform at the PA output. MATLAB collects the PA output from the VSA
and performs PA characterization.

Set dataSource variable to "Hardware" to run a test signal though the PA using the hardware setup
described above. The test signal can be either a 5G-like OFDM waveform or two tones, as described
in the following section. Set dataSource variable to "From file" to use prerecorded data.
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dataSource = ;

Generate Test Signals

If testSignal is "OFDM", this example uses a 5G-like OFDM waveform with 64-QAM modulated
signals for each subcarrier. If testSignal is "Tones", this example uses two tones at 1.8 MHz and
2.6 MHz, to test the intermodulation caused by the PA.

testSignal = ;
switch testSignal
  case "OFDM"

    bw = ;
    [txWaveform,sampleRate,numFrames] = helperPACharGenerateOFDM(bw);
  case "Tones"
    bw = 3e6;
    [txWaveform,sampleRate,numFrames] = helperPACharGenerateTones();
end

To identify high order nonlinearities, the test signal must be oversampled at least by the amount of
expected order of nonlinearity. In this example, we run a grid search up to nonlinearity order of
seven. Upsample by seven to cover possible seventh order nonlinearities. Also, normalize the
waveform amplitude.

overSamplingRate = 7;
filterLength = 6*70;
lowpassfilter = firpm(filterLength, [0 8/70 10/70 1], [1 1 0 0]);
firInterp = dsp.FIRInterpolator(overSamplingRate, lowpassfilter);
txWaveform = firInterp([txWaveform; zeros(filterLength/overSamplingRate/2,1)]);
txWaveform = txWaveform((filterLength/2)+1:end,1);      % Remove transients
txWaveform = txWaveform/max(abs(txWaveform));   % Normalize the waveform
sampleRate = sampleRate * overSamplingRate;

Hardware Test

If the dataSource variable is set to "From file", load the prerecorded data. If the dataSource
variable is set to "Hardware", run the test signal through the PA using the VST. Create a
helperVSTDriver object to communicate with the VST device. Set the resource name to the resource
name assigned to the VST device. This example uses 'VST_01'. For NI devices, you can find the
resource name using the NI Measurement & Automation Explorer (MAX) application.

if strcmp(dataSource, "Hardware")
  VST = helperVSTDriver('VST_01');

Set the expected gain values of the DUT and the attenuator. Since PA output is connected to a 30 dB
attenuator, set VSA external attenuation to 30. Set the expected gain of the DUT to 29 dB and gain
accuracy to 1 dB. Set the acquisition time to a value that will result in about 40k samples. Set the
target input power to 8 dBm. You can increase this value to drive the PA more into the non-linear
region.

  VST.DUTExpectedGain     = 29;     % dB
  VST.ExternalAttenuation = 30;     % dB
  VST.AcquisitionTime     = 0.9e-3*(53.76e6/sampleRate); % seconds

  VST.DUTTargetInputPower = ;  % dBm
  VST.CenterFrequency     = 3.7e9   % Hz
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Download the test waveform to the VSG. Measure PA output.

  writeWaveform(VST,txWaveform,sampleRate,testSignal)
  results = runPAMeasurements(VST);
  release(VST)
else
  % Load the prerecorded results from VST
  switch testSignal
    case "OFDM"
      dataFileName = sprintf("helperPACharSavedData%dMHz",bw/1e6);
    case "Tones"
      dataFileName = "helperPACharSavedDataTones";
  end
  load(dataFileName,"results","sampleRate","overSamplingRate","testSignal","numFrames")
end

Map results into local variables.

referencePower = results.ReferencePower;
measuredAMToAM = results.MeasuredAMToAM;
paInput = results.InputWaveform;
paOutput = results.OutputWaveform;
linearGaindB = results.LinearGain;

Plot the spectrum of the test signal using dsp.SpectrumAnalyzer System object.

saInput = helperPACharPlotInput(paInput, sampleRate, testSignal, bw);
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Plot the AM/AM characteristics of the PA.

helperPACharPlotSpecAnAMAM(referencePower, measuredAMToAM)
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For a better view, focus on gain vs input power instead of output power vs input power and plot
again.

helperPACharPlotSpecAnGain(referencePower, measuredAMToAM)
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The PA is mostly linear of the input power range -1 to 17 dBm, with only about 1dB variation over that
range. The width of the gain curve is due to the memory effects of the PA.

PA Characterization

Use the measured PA input and output data to model the PA. Then, you can use this model to simulate
a system that contains this PA and fine tune the parameters. This example considers three models:
memoryless nonlinearity, memory polynomial and memory polynomial with cross terms.

Memoryless Nonlinearity Model

Memoryless nonlinear impairments distort the input signal amplitude and phase. The amplitude
distortion is amplitude-to-amplitude modulation (AM/AM) and the phase distortion is amplitude-to-
phase modulation (AM/PM). The comm.MemorylessNonlinearity System object and Memoryless
Nonlinearity block implements several such distortions. Use the PA input and output data to create a
lookup table to use with this object or block.

To characterize the AM/AM transfer function, calculate the average output power for a range of input
power values. Measurements are in volts over an overall 100 ohm impedance, split between the
transmitter and receiver. Convert the measured baseband samples to power values in dBm. The +30
dB term is for dBW to dBm conversion and the -20 dB term is for the 100 ohm impedance.

paInputdBm  = mag2db(abs(paInput)) + 30 - 20;
paOutputdBm  = mag2db(abs(paOutput)) + 30 - 20;

Partition the input power values into bins. The edges variable contains the bin edges, and the idx
variable contains the index of the bin values for each input power value.
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[N,edges,idx] = histcounts(paInputdBm, 'BinWidth', 0.5);

For each bin, calculate the midpoint of the bin, average output power and average phase shift. Do not
include any input power value that is less than 20 dB below the maximum input power. Store the
results in a three-column matrix where the first column is the input power in dBm, second column is
the output power in dBm and last column is the phase shift.

minInPowerdBm = max(paInputdBm) - 20;
minIdx = find(edges < minInPowerdBm, 1, 'last');
tableLen = length(edges)-minIdx-1;
inOutTable = zeros(tableLen,2);
for p = minIdx+1:length(edges)-1
  inOutTable(p-minIdx,1) = mean(paInputdBm(idx == p));   % Average input power for current bin
  inOutTable(p-minIdx,2) = mean(paOutputdBm(idx == p));  % Average output power for current bin
  inOutTable(p-minIdx,3) = mean(angle(paOutput(idx == p)./paInput(idx == p)));  % Average phase shift for current bin
end

Use the table in the comm.MemorylessNonlinearity System object to model the PA. Compare the
estimated output with the actual output.

pa = comm.MemorylessNonlinearity('Method','Lookup table','Table',inOutTable,'ReferenceImpedance',100)

pa = 
  comm.MemorylessNonlinearity with properties:

                Method: 'Lookup table'
                 Table: [40x3 double]
    ReferenceImpedance: 100

paOutputFitMemless = pa(paInput);
err = abs(paOutput - paOutputFitMemless)./abs(paOutput);
rmsErrorMemless = rms(err)*100;
disp(['Percent RMS error in time domain is ' num2str(rmsErrorMemless) '%'])

Percent RMS error in time domain is 12.1884%

To visualize both the measured output signal and the fitted output signal, plot the actual and fitted
time-domain output voltages.

helperPACharPlotTime(paOutput, paOutputFitMemless, sampleRate)
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Plot the magnitude of the gain.

helperPACharPlotGain(paInput, paOutput, paOutputFitMemless)
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Memory Polynomial Model

The memory polynomial model includes the memory effects of the PA in addition to the nonlinear
gain. Use the multipurpose helper function helperPACharMemPolyModel to determine the complex
coefficients of a memory polynomial model for the amplifier characteristics. Set the model type to
'Memory Polynomial'.

modType = ;

Perform a grid search as shown in Appendix Grid Search for Memory Length and Polynomial Order
on page 1-0 . Based on this grid search results, the best fit is obtained when memory length and
polynomial degree values are as follows:

memLen = 5;
degLen = 5;

Perform the fit and RMS error calculation for these values. Only half of the data is used to compute
the fitting coefficients, as the whole data set will be used to compute the relative error. The helper
function helperPACharMemPolyModel calculates the coefficients of the model.

numDataPts = length(paInput);
halfDataPts = round(numDataPts/2);

The helper function helperPACharMemPolyModel is editable for custom modifications, and to return
the desired matrix. The PA model has some zero valued coefficients, which results in a rank deficient
matrix.
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fitCoefMatMem = helperPACharMemPolyModel('coefficientFinder',             ...
  paInput(1:halfDataPts),paOutput(1:halfDataPts),memLen,degLen,modType);

Warning: Rank deficient, rank = 24, tol =  1.870573e-01.

disp(abs(fitCoefMatMem))

   23.1553    8.8536   17.8391   13.3033    3.2171
         0   11.7675   26.4648   23.1902    5.5469
   20.9748   16.8511   25.7274   22.1880    5.0680
   32.6202    8.4028    9.4851   10.6957    2.5609
   15.3879    2.3639    2.0886    2.9343    0.7370

To validate the fitting, use the helper function to compute percent RMS error with respect to the
measured signal.

rmsErrorTimeMem = helperPACharMemPolyModel('errorMeasure', ...
  paInput, paOutput, fitCoefMatMem, modType);
disp(['Percent RMS error in time domain is ' num2str(rmsErrorTimeMem) '%'])

Percent RMS error in time domain is 6.1057%

To visualize both the measured output signal and the fitted output signal, plot the actual and fitted
time-domain output voltages.

paOutputFitMem = helperPACharMemPolyModel('signalGenerator', ...
  paInput, fitCoefMatMem, modType);
helperPACharPlotTime(paOutput, paOutputFitMem, sampleRate)
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Plot the magnitude of the gain.

helperPACharPlotGain(paInput, paOutput, paOutputFitMem)

Discussions

The percent RMS estimation error in time domain for the memoryless nonlinearity model, which is
between 9% and 13%, is about 3 to 4 times more than the error for the memory polynomial model is,
which is between 2% and 6%, for the OFDM signals with different bandwidths.

Check the estimation error in frequency domain by plotting the spectrum of the actual PA output
together with the spectrum of the estimated PA output for all three models. The memoryless
nonlinearity table lookup model is not able to simulate the spectral growth seen in the measured PA
output. For this PA, memory polynomial model provides a good approximation of the PA
characteristics.

sa = helperPACharPlotSpectrum(...
  [paOutput paOutputFitMemless paOutputFitMem],...
  {'Actual PA Output','Memoryless Model Output', ...
  'Memory Polynomial Output'},...
  sampleRate,testSignal);
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The helper function helperPACharMemPolyModel can also use the memory polynomial with cross
terms model, which includes the leading and lagging memory cross terms in addition to the memory
effects of the PA and the nonlinear gain. Set the model type to 'Cross-Term Memory' to explore
this model.

For further exploration, try different memory length and polynomial degree combinations. Modify the
oversampling factor and explore its effect on the PA model performance. Modify the helper function
helperPACharMemPolyModel to try different PA models.

Using PA Model for DPD Testing

Save the coefficient matrix of the PA model to be used in the Power Amplifier (RF Blockset) block for
simulation at the system-level in the “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities” on page 1-31.

frameSize = floor(length(paInput)/numFrames);
paIn.signals.values = double(reshape(paInput(1:frameSize*numFrames,1),numFrames,frameSize));
paIn.signals.dimensions = frameSize;
paIn.time = [];
save('PAcoefficientsAndInput.mat','modType','fitCoefMatMem','memLen','degLen','paIn','linearGaindB')

Appendix: Grid Search for Memory Length and Polynomial Order

Uncomment following lines to perform the grid search when the cost function is the percent RMS
error in time. First choose the model type.
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modType = ;
% rmsErrorTime = helperPACharGridSearchTime(paInput,paOutput,modType,overSamplingRate)

Repeat the search when the cost function is the percent RMS error in frequency.

% rmsErrorFreq = helperPACharGridSearchFrequency(paInput,paOutput,modType,overSamplingRate)
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Top-Down Design of an RF Receiver
This example designs an RF receiver for a ZigBee®-like application using a top-down methodology. It
verifies the BER of an impairment-free design, then analyzes BER performance after the addition of
impairment models. The example uses the RF Budget Analyzer App to rank the elements
contributing to the noise and nonlinearity budget.

Design specifications:

• Data rate = 250 kbps
• OQPSK modulation with half sine pulse shaping, as specified in IEEE® 802.15.4 for the physical

layer of ZigBee
• Direct sequence spread spectrum with chip rate = 2 Mchips/s
• Sensitivity specification = -100 dBm
• Bit Error Rate (BER) specification = 1e-4
• Analog to digital converter (ADC) with 10 bits and 0 dBm saturation power

To create fully standard-compliant ZigBee waveforms, you can use the Communications Toolbox
Library for the ZigBee Protocol Add-on.

This example guides you through the following steps:

• Develop the baseband transmitter model for waveform generation
• Determine SNR specification to achieve the 1e-4 BER from a link-level idealized baseband model
• Derive RF subsystem specifications from equivalent-baseband model of RF receiver and ADC
• Derive direct conversion specifications from circuit envelope model of RF receiver
• Perform multi-carrier simulation including interfering signals and derive the specifications of the

DC offset compensation algorithm

Design and Verify Baseband Transmitter

To evaluate the performance of the RF receiver design, it is necessary and sufficient to use a signal
spectrally representative of an 802.15.4 waveform.

The baseband transmitter model creates and illustrates a spectrally representative ZigBee waveform
in the spectral and constellation domains. This model and all the subsequent models use callbacks to
create MATLAB workspace variables that parameterize the systems.

 Top-Down Design of an RF Receiver
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Determine Receiver SNR Requirement

To design the receiver, first determine the SNR needed to achieve the specified BER less than 1e-4.
calculated in the simulation bandwidth of 4 MHz. Run the link-level model to simulate the receiver
processing required to achieve the target BER.

Computing the BER accurately requires alignment of the transmit and receive signals. The simulation
must compensate for a two-sample delay of the received signal compared to the transmitted signal.
Also, to ensure correct chip-to-symbol-to-bit mapping, the simulation must align the chips to frame
boundaries at the input to the Chips to Symbol block on a frame boundary. Accounting for the receive
signal delay and the frame boundary alignment requires addition of a Delay block set to a 32-2=30
delay on the receiver branch before recovering the received symbols.
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The model achieves a 1e-4 BER at an SNR of -2.7 dB, which can be verified by collecting 100 bit
errors.

In the link-level model, the AWGN block accounts for the overall channel and RF receiver SNR
budget.

Add ADC and Determine Receiver Total Gain and Noise Figure (NF)

This section uses traditional heuristic derivations to determine the high-level specifications of the RF
receiver and ADC.

• B = 4 MHz = simulation bandwidth = simulation sampling frequency
• kT = 174 dBm/Hz = thermal noise floor power
• Sensitivity = -100 dBm = receiver sensitivity
• SNR = -2.7 dB
• Noise power in simulation bandwidth = Pn = sensitivity-SNR = -100 dBm - (-2.7 dB) = -97.3 dBm

Simulating an idealized baseband model of the RF Receiver, verify the preliminary RF receiver
specifications (NF = 10.7 dB and receiver gain = 53.4 dB). This can be done by collecting 100 errors.

The spectrum analyzer shows that the received spectrum with the ADC is roughly identical in shape
to the spectrum of the previous section, without the ADC.
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Refine Architectural Description of RF Receiver

In this section the RF receiver, and its noise figure and gain budget specifications, are modelled by
using four discrete subcomponents with these characteristics:

• SAW Filter: Noise Figure = 2.5 dB, Gain = -3 dB
• LNA: Noise Figure = 6 dB, Gain = 22 dB
• Passive Mixer: Noise Figure = 10 dB, Gain = -5 dB
• VGA: Noise Figure = 14 dB, Gain = 40 dB

The SAW filter performance is derived from a Touchstone file that specifies S-parameters
characteristics. You can verify the gain by visualizing the S21 parameter in the X-Y plane at the
operating frequency of 2.45 GHz. You can verify the noise figure by visualizing the NF parameter in
the X-Y plane at the operating frequency of 2.45 GHz. Typically, an LNA with low noise and high gain
follows the SAW filter, which greatly reduces the impact of the noise figure of the components after
the LNA. Also, the passive mixer is specified with a high IP2. Similar to the SAW filter, you can verify
the mixer gain by visualizing the S21 parameter in the X-Y plane over a user-specified frequency
range of [2e9 3e9].

An equivalent baseband model simulates the refined RF receiver.
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Run the simulation and verify the RF receiver link budget by using the output port visualization pane.
The total noise figure and gain across the four stages has been divided according to the following
budget:

• Component NF (dB) = [2.5, 6, 10, 14]
• Component noise factor F (linear) = 10^(NF/10) = [1.78 3.98 10.0 25.1]
• Power gain (dB) = [-3, 22, -5, 40] = 54 dB > 53.4 dB
• Voltage gain VG (linear) = 10^(Power gain/20) = [0.71 12.59 0.56 100.0]
• System noise factor Fsys (linear) =

• System noise figure NFsys (dB) = 10*log10(Fsys) = 10.7 dB

With this model you can verify that a BER < 1e-4 corresponds to a Chip Error Rate (ChER) around
7%. By computing ChER, you can run the subsequent models for less time and still collect accurate
BER statistics.
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Use Circuit Envelope to Simulate Additional RF Impairments

The equivalent baseband modeling technique used in the previous section cannot model a true direct
conversion receiver. That model used a mixer with an input frequency of 2.45 GHz and an LO
frequency of 2.4 GHz, which led to a spectrum analyzer center frequency of 50 MHz. This modeling
limitation motivates a change to the circuit envelope method.

Using the circuit envelope modeling approach, continue refining the RF receiver architecture by
adding more realistic impairments.

The circuit envelope model of the RF Receiver differs from the equivalent baseband model as it:

• Replaces the equivalent baseband mixer with a quadrature modulator, consisting of
parameterizable I and Q mixers and phase shifter block, and an LO with impairments

• Uses broadband impedances (50 ohm) to explicitly model the power transfer between blocks

Comparing spectra, power measurements, and ChER to the equivalent baseband model, there are no
significant performance differences. However, with the circuit envelope model, you can include even
order nonlinearity effects, I/Q imbalance, and specifications of colored noise distributions for each of
the components.
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You can manually build the circuit envelope model of the RF Receiver by using blocks from the Circuit
Envelope library, or it can be automatically generated using the RF Budget Analyzer App.

The RF Budget Analyzer App

• Uses Friis equations to determine the noise, gain, and nonlinearity budget of an RF chain
• Allows you to explore the receiver design space and determine how to break down the
specifications across the elements of the chain

• Helps you determine which element has the largest contribution to the noise and nonlinearity
budget

• Can generate an RF receiver model with which you can perform multi-carrier simulation and
further modify.

Add Wideband Interference, LO Leakage, and DC Offset Cancellation

This section modifies the circuit envelope model to create this circuit envelope with interferer model.
The circuit envelope with interferer model includes a wideband interfering signal and these
impairments:

• LO-RF isolation of 90 dB in the quadrature demodulator
• OIP2 equal to 70 dBm in the quadrature demodulator
• WCDMA-like blocker of -30 dBm at 2500 MHz

This simulation models a non-standard-compliant interfering signal that has power and spectral
distribution characteristics realistic for a WCDMA signal. The simulation of the wideband interfering
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signal requires a larger simulation bandwidth of 16MHz. Therefore the 1 MHz OQPSK signal is
oversampled by 16, and the Circuit Envelope simulation bandwidth is also increased to 16 MHz.

The design requires a DC offset compensation algorithm to achieve the desired ChER due to the DC
offset that results from the LO leakage and the nonlinearity in the demodulator caused by the high
out-of-band interfering signal power. In this case you include a very selective filter, that introduces a
long latency with corresponding computation delay increases in the ChER measurement block.

The spectrum centered at 0 Hz shows the DC offset compensation reducing the DC offset. As you run
the model, note that the DC offset is eventually completely removed.

 Top-Down Design of an RF Receiver

1-27



1 Shared comm_simrf Examples

1-28



Conclusion

Following a top-down design methodology, RF receiver components specifications were derived.
Impairment, interferer, and RF receiver subcomponent models were iteratively refined to increase
fidelity and validated at each stage to confirm overall system performance goals were achieved.
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Digital Predistortion to Compensate for Power Amplifier
Nonlinearities

This example shows how to use digital predistortion (DPD) in a transmitter to offset the effects of
nonlinearities in a power amplifier. We use models of a power amplifier that were obtained using the
“Power Amplifier Characterization” on page 1-4 example to simulate two cases. In the first
simulation, the RF transmitter sends two tones. In the second simulation, the RF transmitter sends a
5G-like OFDM waveform with 100 MHz bandwidth.

DPD with Two Sinusoidal Test Signals

Open the Simulink RF Blockset model: System-level model PA + DPD with two tones.

The model includes a two-tone signal generator that is used for testing the output-referred third-
order intercept point of the system. The model includes upconversion to RF frequency using an I-Q
modulator, the PA model, a coupler to sniff the output of the PA, and an S-parameter block
representing the antenna loading effect. The receiver chain performs downconversion to low
intermediate frequency. Notice that the simulation bandwidth of this system is 107.52 MHz.

The model can be simulated without DPD when the toggle switch is in the up position.

model = 'simrfV2_powamp_dpd';
open_system(model)
sim(model)
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The manual switch is toggled to enable the DPD algorithm. When toggled, the TOI (third-order
intercept point) is improved significantly. Inspect the distortion measurement in the Spectrum
Analyzer to validate these results and see how the power of the harmonics is reduced thanks to the
DPD linearization.

Before the two-tone signal enters the DPD block or the power amplifier, it goes through an FIR
interpolator, the same FIR interpolator used during PA characterization. This is necessary because
the power amplifier model was obtained for the sample rate after interpolation, not the original
sample rate of the two-tone signal, and oversampling the signal is required for modeling high order
nonlinearities introduced by the power amplifier.

The desired amplitude gain of the DPD Coefficient Estimator is set based on the expected gain of the
power amplifier (obtained during PA characterization), because in addition to linearization, the
overall goal is to make the combined gain from the DPD input to the power amplifier output as close
to the expected gain as possible. To estimate the DPD coefficients correctly, the input signals to the
DPD Coefficient Estimator block, PA In and PA Out, must be aligned in the time domain. This is
verified by the Find Delay block which shows that the delay introduced by the RF system is 0.
Moreover, PA In and PA Out must be accurate baseband representations of the power amplifier input
signal and output signal, i.e. no extra gain or phase shift. Otherwise, the DPD Coefficient Estimator
block would not observe the power amplifier correctly and would not produce the right DPD
coefficients. This is done by ensuring that both the upconversion and downconversion steps have a
gain of 1 and the loss and phase shift due to the coupler are properly compensated for before the
feedback signal reaches PA Out.

The purpose of the scale factor in front of the FIR interpolator is to help utilize the linearized power
amplifier effectively. Even with DPD enabled, two undesirable scenarios may occur. The two-tone
signal may be very small with respect to the input range of the linearized system, hence under-
utilizing the amplification capability of the linearized system. Or the two-tone signal may be so large
that the power amplifier model operates outside the range observed during PA characterization and
therefore the power amplifier model may not be an accurate model of the physical device. We use the
following heuristic approach to set the scale factor.

1 Shared comm_simrf Examples

1-32



Assuming that the DPD block perfectly linearizes the power amplifier to achieve the expected
amplitude gain, then the maximum input amplitude allowed by the DPD block should be the maximum
power amplifier output amplitude observed during PA characterization divided by the expected
amplitude gain. The scale factor before the DPD block should then be the maximum input amplitude
allowed by the DPD block divided by the maximum amplitude of the interpolated signal observed
during PA characterization.

The system model has a block that calculates the maximum normalized PA input amplitude. If it is
equal to 1, it means that the baseband signal entering the RF system has a maximum amplitude equal
to the maximum PA input amplitude observed during PA characterization. Therefore, if the maximum
normalized PA input amplitude is smaller than 1, the scale factor set by the heuristic approach above
may be increased. If the maximum normalized PA input amplitude is greater than 1, the scale factor
should be reduced.

set_param([model '/Manual Switch'], 'action', '1')
sim(model)

By changing the degree and the memory depth defined in the DPD Coefficient Estimator block, you
can find the most suitable tradeoff between performance and implementation cost.

close_system(model,0)
close all; clear

DPD with a 5G-like OFDM Waveform

Open the Simulink RF Blockset model: System-level model PA + DPD with a 5G-like OFDM waveform.

The structure of this Simulink model is the same as that of the previous Simulink model. The signal
being amplified is now a 5G-like OFDM waveform, rather than a two-tone signal. The spectrum
analyzer measures ACPR instead of TOI and we add a subsystem to measure the EVM and MER of the
amplified OFDM waveform.
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Without DPD linearization, the system achieves an average Modulation Error Ratio of 24.4 dB, as
seen from the constellation plot measurement.

model = 'simrfV2_powamp_dpd_comms';
open_system(model)
sim(model)
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The manual switch is toggled to enable the DPD algorithm. When toggled, the average MER is
improved significantly.

set_param([model '/Manual Switch'], 'action', '1')
sim(model)

1 Shared comm_simrf Examples

1-36



 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

1-37



close_system(model,0)
close all; clear
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RF Noise Modeling
This example shows how to use the RF Blockset™ Circuit Envelope library to simulate noise and
calculate noise power. Results are compared against theoretical calculations and a Communications
Toolbox™ reference model.

The model is shown below.

System Architecture

The RF system, shown in white, consists of:

• A Configuration block, which sets global simulation parameters for the RF Blockset system.
With the Simulate Noise option checked, noise is included in the simulation.

• An External Noise source with a power spectral density of  applied at the input. In this
equation,  is the Boltzmann constant,  is the temperature of the source, and  is the noise
reference impedance. The calculated noise level of -174 dBm/Hz is used in this example. The
External Noise source is an explicit signal.

• An Amplifier block with a specified power gain and noise figure.
• A Voltage Sensor (i.e. Outport) block, with the Source type parameter set to Voltage.
• Source and load resistors.

The Communications Toolbox reference system, shown in green, consists of:
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• Gain blocks that model amplifier gain and loading effects.
• Two Receiver Thermal Noise blocks that model the external noise and the amplifier noise,

respectively.

The Calculate Power block computes RMS noise power. Note that the Communications Toolbox
signal is referenced to 1 ohm, while RF Blockset power is computed for the actual load  .

The example model defines variables for block parameters using a callback function. To access model
callbacks, select MODELING > Model Settings > Model Properties and click the Callbacks tab in
the Model Properties window.

Running the Example

1 Type open_system('RFNoiseExample') at the Command Window prompt.
2 Select Simulation > Run.

The Noise Power Display block verifies that the RF Blockset and Communications Toolbox noise
models are equivalent.

Computing RF System Noise

To enable noise in the RF Blockset circuit envelope environment:

• In the Configuration block dialog, select Simulate noise.
• Specify a Temperature. RF Blockset uses this value to calculate the equivalent noise temperature

inside the amplifier.
• Specify the Noise figure (dB) parameter of any amplifiers or mixers in the system.

In the example, for a specified LNA gain of 4 dB and noise figure of 3 dB, the output noise is
calculated using the following equations:

The next equation converts the noise factor to an equivalent noise temperature.  is the
Temperature parameter of the RF Blockset Configuration block.

The final equation calculates the output noise power.  is the temperature of the SimRF™ External
Noise block and the Communications Toolbox External Noise Floor block.

The available noise power is the power that can be supplied by a resistive source when it is feeding a
noiseless resistive load equal to the source resistance. The green External Noise Floor block
generates an available power referenced to 50 ohms.

The Front End Gain block models the voltage divider due to the source resistance and the input
impedance of the amplifier.
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The green Reference Amplifier Noise and Amplifier Gain blocks model the noise added by
the amplifier and the amplifier gain, respectively.

The output of the Communications Toolbox Amplifier Gain block is equal to the voltage across the
RF Blockset R_load block.
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Impact of Thermal Noise on Communication System
Performance

This example shows how to use the RF Blockset™ Circuit Envelope library to model thermal noise in
a super-heterodyne RF receiver and measure its effects on a communications system noise figure
(NF) and bit error rate (BER). A Communications Toolbox™ reference model with parameters
computed using Friis equations and a RF Blockset Noise Testbench are used to verify the results.

RF Receiver System Architecture

The Modulator and Channel subsystems consist of Communications Toolbox blocks that model:

• A QPSK-modulated waveform of random bits
• A raised cosine pulse-shaping filter for spectral limiting
• free-space path loss

The RF receiver subsystem, shown in light purple, consists of RF Blockset blocks:

• An Inport block converts the complex input waveform to available power in the RF system with
reference impedance equal to the Source impedance and assigns the input modulation waveform
to a 2.1 GHz RF carrier.

• A noise source to set the RF system noise floor for all simulation carrier frequencies. The block
performs this action when White is selected for the mask Noise distribution option. To set the
Noise power spectral density level, a value of 4*K*T*50 is used (K is Boltzmann's constant, T is
set to a room temperature of 290 kelvin, and 50 ohms is the system reference impedance).

• Cascaded RF amplifier and RF demodulator blocks with specified noise figure and gain. These
blocks only enable noise impairments. The Demodulator block's image reject filter is enabled
using a mask checkbox and defines with other mask parameters a bandpass filter whose edges are
2.0 and 2.2 GHz. This filter prevents the down-conversion of thermal noise centered around 2.6
GHz or folding of other carrier frequencies with noise into the intermediate frequency (IF) defined
as the absolute difference of the RF and LO frequencies. If the image rejection filter is removed,
the noise contribution on the IF increases above the estimation provided by Friis equations and
the BER will deteriorate.

• An Outport block, with the parameter Sensor type is set to Power , Carrier frequencies set to
the IF frequency, and Output parameter is set to Complex baseband . These block settings
enable the RF system to supply a complex baseband communication signal to the ensuing
Communication Toolbox system blocks.

• A Configuration block to set model conditions for simulation. Since the model's RF Blockset
section has only included noise impairments, an accurate simulation can be achieved by setting
the Configuration block Fundamental tones to the Inport Carrier (RF), 5e8 Hz and Demodulator
Local oscillator (LO), 1.6e9 Hz frequencies and the Harmonic order 1 . Use the Configuration
blocks View button to explore simulation carrier frequencies.

• All blocks in the RF receiver are matched to 50 ohms. To understand the effects of impedance
mismatch on noise simulation see, “RF Noise Modeling” (RF Blockset).

The reference system, shown in red, consists of:

• A Communications Toolbox Receiver Thermal Noise block that includes both the thermal noise
floor along with the amplifier and demodulator block noise. The Friis Equation is used to correctly
combined noise contributed by the amplifier and demodulator blocks. You can find the calculation
in the model's pre-load callback function.
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• A Simulink Gain block that models the combined gain of the RF receiver.
• Baseband filters and demodulators process the received signal.

Circuit Envelope Simulation of RF Receiver

Select Simulation > Run .

Error Rate Calculation blocks compute the BER for the system and reference. To observe the BER as
it approaches steady state, increase the total simulation time. For this example, the steady-state bit
error rate is approximately 1e-4 .

Computing RF Receiver Noise Figure and Gain

To model noise and gain in the RF Blockset circuit envelope environment:

• In the Configuration block dialog, select Simulate noise .
• Specify the Noise figure (dB) parameter of RF Amplifier and RF Mixer blocks in your system.

The following specifications for the RF receiver in this example produce a combined noise figure
of 9.16 dB (as per the Friis Equation): LNA gain of 20 dB, LNA noise figure of 9 dB, Demodulator
gain of -5 dB and RF Demodulator noise figure of 15 dB.
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RF Blockset Noise Figure Testbench

The RF Blockset Noise Figure Testbench simplifies the measurement of system noise figure. To setup
a noise figure test system, insert an RF Noise Figure Testbench in a new model. Copy the settings
found in the Model Properties Callbacks PreLoadFcn to the new models Model Properties Callback
InitFcn .

For the system composed of RF Blockset blocks in the above model, copy the LNA and Demodulator
blocks with previously set parameters to the new model. The Testbench includes a Noise source that
sets the noise floor.

• Connect the Stimulus terminal of the testbench to the In terminal of the LNA and the Out terminal
of the Demodulator to testbench Response terminal. A Display block can be connected to the
testbench NF terminal to display the measured Noise figure.

• Set the Testbench mask parameters. The RF Input frequency (Hz) is 2.1 GHz and the IF
Output frequency (Hz) is .5 GHz as in the previous example. A 10e6 Hz Baseband bandwidth
(Hz) was chosen for this example. The mask instructions provide additional information for
configuring the testbench.

For the Communications Friis system in the above model, copy the Combined Noise and Gain blocks
with previously set parameters to the new model. The Combined Noise block's Add 290K antenna
noise checkbox needs to be deselected since the Testbench includes a Noise source that sets the
noise floor.

• Three RF Blockset blocks are included: an Outport, an Inport and a Configuration since the
testbench expects RF Blockset blocks at its connection points. The type setting for the Inport and
Outport blocks is Power. Since the Communication branch is agnostic to carrier frequencies, these
blocks Carrier frequencies and Fundamental tones need to be the same and are set to 2.1 GHz.
The Output parameter of the Outport is Complex Baseband. For accuracy, the configuration
block Step size needs an Envelope bandwidth ( Step size of 1/80e6 s) at least 8 times larger
than the 10 MHz Baseband bandwidth of the testbench.

Run Noise Figure Testbench

Select Simulation > Run .
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Exploring Example

You can include additional RF model impairments using RF block mask selections: Impedance
mismatch, nonlinearities or LO isolation.

See Also
Amplifier

Related Examples
• “Impact of RF Effects on Communication System Performance” on page 8-32
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Architectural Design of a Low IF Receiver System
This example shows how to use the RF Blockset™ Circuit Envelope library to simulate the
performance of a Low IF architecture with the following RF impairments:

• Component noise
• Interference from blocker signals
• LO phase noise
• Analog-to-digital converter (ADC) dynamic range
• Component mismatch

Design variables in the RF portion of the model include explicit specification of gain, noise figure,
IP3, input/output impedance, LO phase offset, and LO phase noise. Carrier frequencies for waveforms
entering RF Blockset subsystems are specified in the Inport blocks. Design variables for the
transmitter side of the RF interface include carrier frequency, modulation scheme, signal power, and
blocker power level. Baseband design variables are number of bits and full scale range of the ADC.

System Architecture:

This model illustrates the design and simulation of an ISM Band Receiver. Primary subsystems
include a digital transmitter, an RF receiver, an ADC, a phase noise block for noisy LO modeling, and
a digital receiver. The remaining blocks are used for analysis.
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The digital transmitter consists of three FSK modulated waveforms and a high power tone. The three
FSK waveform generators use a bandlimiting filter that suppresses the FSK sidebands below the
expected thermal noise level. The target waveform at 2450 MHz has a 1 ohm referenced passband
power level of approximately -70 dBm. Similarly defined image and intermodulation distortion (IMD)
blocker waveforms have passband powers of approximately -40 dBm and -33 dBm, respectively. The
IMD tone that couples with the IMD blocker to generate in-band IM3 products has a passband power
of -33 dBm. Since the baseband processing defines the complex envelope waveforms, computing
passband power requires the insertion of 1/sqrt(2) gain as shown in the design. An IF of 2 MHz can
be inferred by inspecting the demodulator input signal spectrum, where a 2 MHz offset is specified
for the display.

The Low IF receiver is comprised of a receive band SAW filter, a frequency conversion stage, an
image rejection stage, and two gain stages. Resistors are used to model input and output impedances.
Each nonlinear block has a noise figure specification. Power nonlinearities in the low noise amplifier
(LNA), IF amplifier and mixers are specified by IP3. Image rejection is accomplished with a Hartley
design, and single LO and phase shift blocks provide cosine and sine terms to mix with the I and Q
branches, respectively. The summation block recombines the signals on the I branch and the phase-
shifted Q branch. Image rejection quality can be controlled directly by setting a non-ideal phase offset
in the Phase Shift block. To capture the RF, Image, IMD Signal and IMD Tone waveforms/spectra,
choose the Fundamental tones to be 2450 MHz, 1 MHz and the Harmonic Order as 1 for the first
tone and 8 for the second tone within the Configuration block. To model a thermal noise floor in the
RF Blockset environment, the Temperature within the System Parameters section in the
Configuration block is set to a noise temperature of 290.0 K.
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The ADC is modeled using an a 12-bit quantizer. The quantizer takes into account the full-scale and
dynamic ranges of the ADC, properly modeling its quantization noise floor.

A digital receiver demodulates the waveform for bit error rate calculation. This noncoherent FSK
receiver assumes perfect timing synchronization, such that each FSK pulse is integrated over one and
only one symbol.

Running the Example

Running the example simulates a design that meets an uncoded BER spec of less than 1%.
Modifications to the signals and component specifications in the receiver and ADC have a direct
impact on the receiver performance. Manual switches enable you to:

1 Select a power level for the IMD blocker tone of -33 dBm or -45 dBm
2 Select an ideal or noisy LO.

Other possible changes to the design include:

• Image rejection ratio (IRR) of the Hartley design. The IRR of the present design (dPhi=0.01
degrees) is -40 dB. For more information on calculating IRR, see the example “Measuring Image
Rejection Ratio in Receivers” (RF Blockset) Measuring Image Rejection Ratio in
Receivers>.

• Modulation schemes
• Baseband filtering options
• Signal power levels
• Signal carrier frequencies
• Noise figures
• Non-linear gain parameters
• Interstage matching
• ADC bit length and full scale range
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See Also

Related Examples
• “RF Noise Modeling” on page 1-39
• “Top-Down Design of an RF Receiver” on page 1-17

More About
• “Circuit Envelope Simulation” (RF Blockset)
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RF Propagation and Visualization
RF propagation models describe the behavior of signals as they travel through the environment. You
can display transmitter sites, receiver sites, and RF propagation visualizations by using Site Viewer,
an interactive 3-D viewer. Site Viewer enables you to visualize propagation models in both outdoor
and indoor environments.

Visualize Outdoor Wireless Coverage
Display transmitter and receiver sites on a 3-D globe, calculate the distance and angles between the
sites, and analyze the signal strength of the transmitter at the receiver site. Display a communication
link, a coverage map, and a signal-to-interference-plus-noise ratio (SINR) map.

Display Sites

Create a transmitter site and a receiver site. Specify the position using geographic coordinates in
degrees.

tx = txsite("Latitude",42.3001,"Longitude",-71.3504);
rx = rxsite("Latitude",42.3021,"Longitude",-71.3764);

Display the sites in Site Viewer. Site Viewer displays geographic sites on an interactive 3-D globe. You
can customize the propagation environment of the 3-D globe by using DTED terrain and
OpenStreetMap® buildings.

show(tx)
show(rx)

Pan the map by clicking and dragging. Zoom out by using the scroll wheel.
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Find Distance and Angles

Calculate the distance between the sites in meters. By default, the distance function calculates the
distance along a straight line between the sites. This straight-line path is called the Euclidean path
and ignores all obstructions, including the Earth.

dm = distance(tx,rx)

dm = 2.1556e+03

You can also calculate distance using a great circle path, which considers the curvature of the Earth.

Calculate the azimuth and elevation angles between the sites. For geographic sites, the angle
function returns the azimuth angle in degrees, measured counterclockwise from the east. The angle
function returns the elevation angle in degrees from the horizontal plane.

[az,el] = angle(tx,rx)

az = 174.0753

el = -0.7267

Analyze Signal Strength

The signal strength of a transmitter at a receiver site is given by the following equation:

Prx = Ptx + Gtx + Grx− pathloss

where:

• Prx is the power available at the receiver.
• Ptx is the transmitter output power.
• Gtx is the transmitter gain.
• Grx = is the receiver gain.
• pathloss is the RF attenuation suffered by the transmitter signal when it arrives at the receiver.

Calculate the signal strength at the desk receiver site. By default, the sigstrength function
calculates signal strength in power units (dBm). You can also calculate the signal strength in electric
field strength units (dBμV/m).

ss = sigstrength(rx,tx)

ss = -67.0767

The link margin measures the robustness of the communication link. Calculate the link margin by
subtracting the required receiver sensitivity from the signal strength.

margin = abs(rx.ReceiverSensitivity - ss)

margin = 32.9233

Display Communication Link

Display the communication link status between the sites. The success of the link depends on the
power received by the receiver from the transmitter. By default, a green line indicates that the
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received power meets or exceeds the receiver sensitivity. A red line indicates unsuccessful
communication.

link(rx,tx)

Display Coverage Map

Display the coverage map of the transmitter. A coverage map visualizes the service area of the
transmitter, which is where the received signal strength for a reference receiver meets its sensitivity.
You can create coverage maps that depict signal strength as either a power quantity (typically dBm)
or a voltage quantity (typically dBμV/m).

coverage(tx,"SignalStrengths",-100:5:-60) 
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Find New Transmitter Site

Create and display a new transmitter site that is 1 km north of the existing transmitter site. Specify
the antenna height as 30 m.

[lat,lon] = location(tx,1000,90);
tx2 = txsite("Latitude",lat,"Longitude",lon,"AntennaHeight",30);
show(tx2)
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Calculate SINR

Calculate the SINR in decibels. The SINR of a receiver is given by the following equation:

SINR = S
I + N

where:

• S is the received power of the signal of interest.
• I is the received power of interfering signals in the network.
• N is the total received noise power.

When Site Viewer has terrain data, the sinr function incorporates the terrain into the calculations.

sinr([tx,tx2])
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Visualize Indoor Propagation Paths
Import a 3-D scene model of a conference room. Display sites and find propagation paths between the
sites.

Import Scene

Import and view an STL file. The file models an indoor office with a conference room and open space
separated by a partial wall. STL files contain geometry information and do not contain information
about colors, surfaces, or textures.

viewer = siteviewer("SceneModel","office.stl");
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Display Sites

Place one transmitter near the ceiling in the conference room. Place one receiver on a desk in the
open space and another receiver on a shelf. Specify the position using Cartesian coordinates in
meters.

tx = txsite("cartesian","AntennaPosition",[2; 1.3; 2.5]);
rx_desk = rxsite("cartesian","AntennaPosition",[3.6; 7.5; 1]);
rx_shelf = rxsite("cartesian","AntennaPosition",[0.4; 3.3; 1]);

Display the receivers and the line-of-sight paths.

los(tx,[rx_desk rx_shelf])

Pan the scene by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate by
clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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The path to the shelf receiver is clear and the path to the desk receiver is obstructed.

Display Propagation Paths

Create a ray tracing propagation model that uses the shooting and bouncing rays (SBR) method.
Specify the surface material as wood.

pm = propagationModel("raytracing", ...
    "CoordinateSystem","cartesian", ...
    "Method","sbr", ...
    "SurfaceMaterial","wood");

Display propagation paths that are within the line of sight by setting the MaxNumReflections
property to 0. Unlike the los function, the raytrace function does not show obstructed paths.

pm.MaxNumReflections = 0;
clearMap(viewer)
raytrace(tx,[rx_desk rx_shelf],pm)
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The raytrace function finds one line-of-sight path. You can view information about the path, such as
the received power, by clicking on the path.

Display propagation paths with up to one reflection.

pm.MaxNumReflections = 1;
raytrace(tx,[rx_desk rx_shelf],pm)
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The updated model calculates additional paths.

See Also
Functions
coverage | sigstrength | link | sinr | raytrace

Objects
siteviewer | txsite | rxsite

More About
• “Visualize Antenna Coverage Map and Communication Links” on page 2-12
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 2-21
• “Indoor MIMO-OFDM Communication Link Using Ray Tracing” on page 8-9
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Visualize Antenna Coverage Map and Communication Links
This example shows how to calculate and visualize signal strength between a transmitter and
multiple receivers. The visualizations include an area coverage map and colored communication links.
The example also shows selection of a directional antenna in order to achieve a communication link to
a specific location.

Define Transmitter Site

% Define transmitter site at MathWorks (3 Apple Hill Dr, Natick, MA)
fq = 6e9; % 6 GHz
tx = txsite("Name","MathWorks", ...
    "Latitude",42.3001, ...
    "Longitude",-71.3504, ...
    "Antenna",design(dipole,fq), ...
    "AntennaHeight",60, ...        % Units: meters
    "TransmitterFrequency",fq, ... % Units: Hz
    "TransmitterPower",15);        % Units: Watts

Define Receiver Sites

% Define receiver sites in several surrounding towns and cities
rxNames = [...
   "Boston, MA","Lexington, MA","Concord, MA","Marlborough, MA", ...
   "Hopkinton, MA","Holliston, MA","Foxborough, MA","Quincy, MA"];

rxLocations = [...
   42.3601 -71.0589; ... % Boston
   42.4430 -71.2290; ... % Lexington
   42.4604 -71.3489; ... % Concord
   42.3459 -71.5523; ... % Marlborough
   42.2287 -71.5226; ... % Hopkinton
   42.2001 -71.4245; ... % Holliston
   42.0654 -71.2478; ... % Foxborough
   42.2529 -71.0023];    % Quincy

% Define receiver sensitivity. Sensitivity is the minimum signal strength in
% power that is necessary for the receiver to accurately detect the signal.
rxSensitivity = -90; % Units: dBm

rxs = rxsite("Name",rxNames, ...
    "Latitude",rxLocations(:,1), ...
    "Longitude",rxLocations(:,2), ...
    "Antenna",design(dipole,tx.TransmitterFrequency), ...
    "ReceiverSensitivity",rxSensitivity); % Units: dBm

Show Sites on a Map

Show transmitter and receiver sites on a map. Site markers may be clicked to display site
information.

viewer = siteviewer;
show(tx)
show(rxs)
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Customize Site Viewer

Set the map imagery using the Basemap property. Alternatively, open the map imagery picker in Site
Viewer by clicking the second button from the right. Select "OpenStreetMap" to see streets and
labels on the map. Rotate the view to show an overhead perspective.

viewer.Basemap = "openstreetmap";
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Display Idealized Coverage Map using Dipole Antenna

Display coverage map. A coverage map shows the geographic area where a receiver will obtain good
reception, which is where transmitted signal strength meets or exceeds the receiver"s sensitivity.
Transmitted signal strength in power (dBm) is computed using a free-space propagation model, which
disregards terrain, obstacles, and atmospheric effects. As a result, the coverage map shows idealized
coverage area in the absence of any path loss impairments beyond free space loss.

coverage(tx,"freespace", ...
    "SignalStrengths",rxSensitivity)
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Plot Communication Links using Dipole Antenna

Plot communication links on the map. Red links appear where the receiver is outside of the coverage
zone, and green links appear where the receiver is within the coverage zone. Link lines may be
clicked to display link statistics. To contrast the colors of the coverage zone and successful links,
specify the color of successful links as dark green.

sc = [0 0.3 0];
link(rxs,tx,"freespace","SuccessColor",sc)
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Use Rain Propagation Model

Update the coverage map and links to include path loss due to rain. Note that Boston, MA is no
longer inside the coverage zone.

coverage(tx,"rain","SignalStrengths", rxSensitivity)
link(rxs,tx,"rain","SuccessColor",sc)
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Define Directional Antenna

The dipole antenna transmitter results in a few receiver sites outside of the coverage zone, including
the receiver in Boston, MA. Now assume a requirement of the transmitter is to achieve a
communication link with Boston. Define a directional antenna that can increase antenna gain in that
direction.

% Define Yagi-Uda antenna designed for transmitter frequency
yagiAnt = design(yagiUda,tx.TransmitterFrequency);

% Tilt antenna to direct radiation in XY-plane (i.e. geographic azimuth)
yagiAnt.Tilt = 90;
yagiAnt.TiltAxis = "y";

f = figure;

% Show directivity pattern
patternAzimuth(yagiAnt,tx.TransmitterFrequency)
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%Close the previous figure
if (isvalid(f))
    close(f);
end

Display Coverage Map using Yagi-Uda Antenna

Update the coverage map and links. Boston is now within the coverage zone, but communication links
with receivers in other directions are lost.

% Update transmitter antenna
tx.Antenna = yagiAnt;

% Point main beam toward Boston, MA by assigning azimuth angle between 
% transmitter location and Boston receiver location
tx.AntennaAngle = angle(tx, rxs(1));

% Update visualizations, using "rain" propagation model
coverage(tx,"rain","SignalStrengths",rxSensitivity)
link(rxs,tx,"rain","SuccessColor",sc)
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Display Contoured Coverage Map using Multiple Signal Strengths

When a single signal strength is specified, the coverage map is green for the coverage region. Specify
multiple signal strengths to generate a coverage map with contours for different signal levels.

% Define signal strengths from sensitivity to -60 dB
sigStrengths = rxSensitivity:5:-60;

% Update coverage map
coverage(tx,"rain","SignalStrengths",sigStrengths)
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See Also
Functions
coverage | link | design

Objects
txsite | rxsite | siteviewer

Related Examples
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 2-21
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Urban Link and Coverage Analysis Using Ray Tracing
This example shows how to use ray tracing to analyze communication links and coverage areas in an
urban environment. Within the example:

• Import and visualize 3-D buildings data into Site Viewer
• Define a transmitter site and ray tracing propagation model corresponding to a 5G urban scenario
• Analyze a link in non-line-of-sight conditions
• Visualize coverage using the shooting and bouncing rays (SBR) ray tracing method with different

numbers of reflections and launched rays
• Optimize a non-line-of-sight link using beam steering and Phased Array System Toolbox™

Import and Visualize Buildings Data

Import an OpenStreetMap (.osm) file corresponding to Canary Wharf in London, UK. The file was
downloaded from https://www.openstreetmap.org, which provides access to crowd-sourced map data
all over the world. The data is licensed under the Open Data Commons Open Database License
(ODbL), https://opendatacommons.org/licenses/odbl/. The buildings information contained within the
OpenStreetMap file is imported and visualized in Site Viewer.

viewer = siteviewer("Buildings","canarywharf.osm","Basemap","topographic");

Define Transmitter Site

Define a transmitter site to model a small cell scenario in a dense urban environment. The
transmitter site represents a base station that is placed on a pole servicing the surrounding area
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which includes a neighboring park. The transmitter uses the default isotropic antenna, and operates
at a carrier frequency of 28 GHz with a power level of 5 W.

tx = txsite("Name","Small cell transmitter", ...
    "Latitude",51.50375, ...
    "Longitude",-0.01843, ...
    "AntennaHeight",10, ...
    "TransmitterPower",5, ...
    "TransmitterFrequency",28e9);
show(tx)

View Coverage Map for Line-of-Sight Propagation

Create a ray tracing propagation model using the shooting and bouncing ray (SBR) method. The SBR
propagation model uses ray tracing analysis to compute propagation paths and their corresponding
path losses. Path loss is calculated from free-space loss and reflection loss due to material, and
antenna polarization loss.

Set the maximum number of reflections to 0 in order to limit the initial analysis to line-of-sight
propagation paths only. Set the building and terrain material types to model perfect reflection.

rtpm = propagationModel("raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",0, ...
    "BuildingsMaterial","perfect-reflector", ...
    "TerrainMaterial","perfect-reflector");
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View the corresponding coverage map for a maximum range of 250 meters from the base station. The
coverage map shows received power for a receiver at each ground location but is not computed for
building tops or sides.

coverage(tx,rtpm, ...
    "SignalStrengths",-120:-5, ...
    "MaxRange",250, ...
    "Resolution",3, ...
    "Transparency",0.6)

Define Receiver Site in Non-Line-of-Sight Location

The coverage map for line-of-sight propagation shows shadowing due to obstructions. Define a
receiver site to model a mobile receiver in an obstructed location. Plot the line-of-sight path to show
the obstructed path from the transmitter to the receiver.

rx = rxsite("Name","Small cell receiver", ...
    "Latitude",51.50216, ...
    "Longitude",-0.01769, ...
    "AntennaHeight",1);

los(tx,rx)
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Plot Propagation Path using Ray Tracing

Adjust the ray tracing propagation model to include single-reflection paths, and plot the rays. The
result shows signal propagation along a single-reflection path. The path does not end exactly at the
receiver site because the SBR ray tracing method computes approximate paths. Select the plotted
path to view the corresponding propagation characteristics, which include received power, phase
change, distance, and angles of departure and arrival.

rtpm.MaxNumReflections = 1;
clearMap(viewer)
raytrace(tx,rx,rtpm)
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Analyze Signal Strength and Effect of Materials

Compute the received power using the propagation model which was previously configured to model
perfect reflection. Then assign a more realistic material type and re-compute the received power.
Update the rays shown in Site Viewer. The use of realistic material reflection results in about 8 dB of
power loss compared to perfect reflection.

ss = sigstrength(rx,tx,rtpm);
disp("Received power using perfect reflection: " + ss + " dBm")

Received power using perfect reflection: -70.3924 dBm

rtpm.BuildingsMaterial = "concrete";
rtpm.TerrainMaterial = "concrete";

raytrace(tx,rx,rtpm)
ss = sigstrength(rx,tx,rtpm);
disp("Received power using concrete materials: " + ss + " dBm")

Received power using concrete materials: -78.9591 dBm

Include Weather Loss

Adding weather impairments to the propagation model and re-computing the received power results
in another 1.5 dB of loss.

rtPlusWeather = ...
    rtpm + propagationModel("gas") + propagationModel("rain");
raytrace(tx,rx,rtPlusWeather)
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ss = sigstrength(rx,tx,rtPlusWeather);
disp("Received power including weather loss: " + ss + " dBm")

Received power including weather loss: -80.4766 dBm

Plot Propagation Paths including Two Reflections

Expand the point-to-point analysis to include two-reflection paths and choose a smaller angular
separation between launched rays for the SBR method. The visualization shows two clusters of
propagation paths and the total received power increases by approximately 3 dB compared to the
single-reflection paths.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 2;
rtPlusWeather.PropagationModels(1).AngularSeparation = "low";

ss = sigstrength(rx, tx, rtPlusWeather);
disp("Received power with two-reflection paths: " + ss + " dBm")

Received power with two-reflection paths: -77.1445 dBm

clearMap(viewer)
raytrace(tx,rx,rtPlusWeather);

View Coverage Map with Single-Reflection Paths

Use the configured propagation model and re-generate a coverage map including single-reflection
paths and weather impairments. Code to re-generate the coverage results is included but commented
out. The results, producible by running the code, are loaded from file to save several minutes of
computation time in the example presentation. The resultant coverage map shows received power in
the area around the non-line-of-site receiver analyzed above.
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rtPlusWeather.PropagationModels(1).MaxNumReflections = 1;
clearMap(viewer)

Load coverage results and plot. Coverage results were generated using commented coverage call
below, which takes a few minutes to complete.

show(tx)

coverageResults = load("coverageResults.mat");
contour(coverageResults.propDataSingleRef, ...
    "Type","power", ...
    "Transparency",0.6)

% coverage(tx,rtPlusWeather, ...
%     "SignalStrengths",-120:-5, ...
%     "MaxRange", 250, ...
%     "Resolution",2, ...
%     "Transparency",0.6);

View Coverage Map with Four-Reflection

Account for more propagation paths and generate a more accurate coverage map by increasing the
maximum number of reflections for the ray tracing analysis to 4. Visualize a pre-computed coverage
map again which shows nearly full coverage for the area around the transmitter site.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 4;
clearMap(viewer)

Use pre-loaded coverage results to plot. Coverage results were generated using commented coverage
call below, which may take a few hours to complete depending on the computer hardware.
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show(tx)
contour(coverageResults.propDataFourRef, ...
    "Type","power", ...
    "Transparency",0.6)

% coverage(tx,rtPlusWeather, ...
%     "SignalStrengths",-120:-5, ...
%     "MaxRange", 250, ...
%     "Resolution",2, ...
%     "Transparency",0.6);

Use Beam Steering to Enhance Received Power

Many modern communications systems use techniques to steer the transmitter antenna to achieve
optimal link quality. This section uses Phased Array System Toolbox™ to optimally steer a beam to
maximize received power for a non-line-of-sight link.

Define a custom antenna from Report ITU-R M.2412 [1] on page 2-0  for evaluating 5G radio
technologies. Create an 8-by-8 uniform rectangular array from the element pattern defined in Section
8.5 of the report, point it south, and view the radiation pattern.

tx.Antenna = helperM2412PhasedArray(tx.TransmitterFrequency);
tx.AntennaAngle = -90;

clearMap(viewer)
show(rx)
pattern(tx,"Transparency",0.6)
hide(tx)
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Call raytrace with an output to access the rays that were computed. The returned comm.Ray
objects include both the geometric and propagation-related characteristics of each ray.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 1;
ray = raytrace(tx,rx,rtPlusWeather);
disp(ray{1})

  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×1 struct]
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 117.4546
             PhaseShift: 3.8170

   Read-only properties:
       PropagationDelay: 6.6489e-07
    PropagationDistance: 199.3293
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 1

Get the angle-of-departure for the single-reflection path and apply this angle to steer the antenna in
the optimal direction to achieve higher received power. The angle-of-departure azimuth is offset by
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the physical antenna angle azimuth to convert it to the steering vector azimuth defined in the local
coordinate system of the phased array antenna.

aod = ray{1}.AngleOfDeparture;
steeringaz = wrapTo180(aod(1)-tx.AntennaAngle(1));
steeringVector = phased.SteeringVector("SensorArray",tx.Antenna);
sv = steeringVector(tx.TransmitterFrequency,[steeringaz;aod(2)]);
tx.Antenna.Taper = conj(sv);

Plot the radiation pattern to show the antenna energy directed along the propagation path. The new
received power increases by about 20 dB. The increased received power corresponds to the peak gain
of the antenna.

pattern(tx,"Transparency",0.6)
raytrace(tx,rx,rtPlusWeather);
hide(tx)
    
ss = sigstrength(rx, tx, rtPlusWeather);
disp("Received power with beam steering: " + ss + " dBm")

Received power with beam steering: -57.5126 dBm

Conclusion

This example used ray tracing for link and coverage analysis in an urban environment. The analysis
shows:

• How to use ray tracing analysis to predict signal strength for non-line-of-sight links where
reflected propagation paths exist
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• Analysis with realistic materials has a significant impact on the calculated path loss and received
power

• Analysis with higher number of reflections results in increased computation time but reveals
additional areas of signal propagation

• Usage of a directional antenna with beam steering significantly increases the received power for
receivers, even if they are in non-line-of-sight locations

This example analyzed received power and path loss for links and coverage. To see how to use ray
tracing to configure a channel model for link-level simulation, see the “Indoor MIMO-OFDM
Communication Link Using Ray Tracing” on page 8-9 example.

References

[1] Report ITU-R M.2412, "Guidelines for evaluation of radio interface technologies for IMT-2020",
2017. https://www.itu.int/pub/R-REP-M.2412

See Also
Functions
propagationModel | raytrace | coverage | contour | pattern

Objects
siteviewer | txsite | rxsite

Related Examples
• “Ray Tracing for Wireless Communications” on page 30-12

 Urban Link and Coverage Analysis Using Ray Tracing

2-31

https://www.itu.int/pub/R-REP-M.2412




Bluetooth Toolbox Examples

3



Evaluate the Performance of Bluetooth QoS Traffic Scheduling
with WLAN Signal Interference

This example shows how to evaluate the performance of the Bluetooth® scheduler by implementing
multiple applications with different quality-of-service (QoS) requirements (throughput and latency) in
a use-case scenario. Using this example, you can:

• Create and configure a use-case scenario of a home environment showing multiple Bluetooth
applications in a piconet with WLAN interference.

• Emulate and configure the application traffic pattern by using the generic On-Off traffic model.
• Implement round-robin (RR) and QoS-based priority schedulers to schedule application traffic.
• Add your own custom scheduler.
• Specify the source of WLAN interference by adding the WLAN signal using the features of WLAN

Toolbox™ or from a baseband file.
• Evaluate the performance of each Slave in the presence of a synchronous connection-oriented

(SCO) link and by varying the scheduler.

The example supports adaptive frequency hopping (AFH) by classifying channels as good or bad
based on the packet error rate (PER) of each channel. Visualize the power spectral density of
Bluetooth waveforms with a WLAN signal interference using the Spectrum Analyzer.

Bluetooth Logical Transports and Application Profiles

“What Is Bluetooth?” on page 13-2 supports communication over multiple logical transports with
different applications running on it. These applications include audio streaming, gaming controls,
wireless peripherals, and file transfer applications. Because multiple applications can exist in a
Bluetooth piconet, different types of application traffic flow from the higher layers to the baseband.

Logical Transports

In a Bluetooth piconet, the Master and Slave exchange data over multiple logical transports. These
logical transports are:

• Asynchronous connection-oriented (ACL)
• SCO
• Extended synchronous connection-oriented (eSCO)
• Active slave broadcast (ASB)
• Connectionless slave broadcast (CSB)

This figure shows the communication between a Master and three Slaves in a piconet over ACL and
SCO logical transports. Because Bluetooth is a Master-driven time division duplex (TDD) system, the
channel access in the piconet is controlled by the Master. The Slave can respond to only a
transmission from the Master in the previous Tx slot. This process is called polling.
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The Master polls a Slave with a poll packet (if no data exists) or a data packet in a Tx slot, and the
Slave responds to the polling. The Master can poll any Slave of the SCO or ACL logical transport. For
SCO links, the Master reserves the slots for the dedicated SCO Slave. The Master polls the ACL
Slaves in the remaining slots. The Slave responds to the Master with a data packet or a null packet.

Application Profiles

Bluetooth profiles (often called application profiles) are definitions of possible applications and
specify general behaviors that Bluetooth-enabled devices use to communicate with other Bluetooth
devices. The Bluetooth Special Interest Group (SIG) [2] on page 3-0  defines these profiles and the
possible applications of each profile.

In general, Bluetooth application traffic can be categorized into these three classes.

• Streaming - These applications have latency and bandwidth requirements. For example, a
headphone or a laptop.

• Human interface devices (HID) - These applications have low latency requirements. For example,
a keyboard or a joystick.

• Best-effort traffic - These applications have no latency requirements. For example, file transfer
using Bluetooth.

Each Slave corresponds to a specific application profile. Typically, the amount of traffic flow in each
application profile varies. Also, the throughput and latency performance requirements of each
application profile are different. In such scenarios, if the implementation uses an RR scheduler for
polling the ACL Slaves, and if the polled Slaves do not have data to transmit, this results in low
bandwidth utilization by Slaves. To help improve performance, prioritize the ACL Slaves for polling
based on the QoS requirements.
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In this example, the Bluetooth nodes operate with the basic rate (BR) physical layer (PHY) and
communicate with each other simultaneously by transmitting the application data packets (on the
ACL link). This example simulates a use-case scenario consisting of multiple Bluetooth devices that
communicate by emulating the traffic pattern of FTP and A2DP application profiles. For more details,
see Use-Case Scenario on page 3-0 .

Use-Case Scenario

This example shows a use-case scenario of a home environment, where a smartphone (Master)
connects to a laptop (Slave 1), wireless speaker (Slave 2), and smartphone (Slave 3). All of the
devices are Bluetooth-BR-enabled. You can enable or disable presence of static WLAN signal
interference in the vicinity of the Bluetooth piconet.

In the preceding figure:

• The Master transfers a file to the laptop (Slave 1) on the ACL link by emulating the FTP traffic
pattern.

• The Master streams music in the wireless speaker (Slave 2) on the ACL link by emulating the
A2DP traffic pattern.
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• The Master transfers another file smartphone (Slave 3) on the ACL link by emulating the FTP
traffic pattern.

In the preceding scenario, the performance of each Slave degrades due to these reasons.

• Concurrent communication by various Bluetooth applications
• Presence of WLAN signal interference in the wireless medium (if enabled)

This example shows how to simulate this use-case scenario and how to measure the communication
performance. To communicate with the laptop (Slave 1), wireless speaker (Slave 2), and smartphone
(Slave 3) on the ACL links, the Master uses the RR scheduling mechanism. The RR scheduling
mechanism provides equal transmission and reception opportunities for Slave 1, Slave 2, and Slave 3.
Because, Slave 2 has QoS requirements (related to throughput and latency), Slave 2 must be
prioritized. The RR scheduling mechanism fails to prioritize the communication opportunities of Slave
2, resulting in the degradation of communication performance. To mitigate the performance
degradation at Slave 2 and help improve performance the example uses the QoS-based priority
scheduling mechanism at the Master. The example also shows how to add a custom scheduling
algorithm, enabling you to schedule application traffic with specific performance requirements.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed.
commSupportPackageCheck('BLUETOOTH');

Configure Simulation Parameters

Configure the simulation parameters for the Bluetooth piconet, the application traffic, the wireless
channel, and the WLAN signal interference.

Configure Bluetooth Piconet

The NumSlaves parameter specifies the number of Slaves in the Bluetooth piconet. The
LinkTraffic parameter specifies the type of traffic over Bluetooth logical transports between a
Master and the respective Slave. This table maps LinkTraffic to different logical transports. If the
Master communicates with multiple Slaves, LinkTraffic must be a vector.

% Set the simulation time in microseconds
simulationTime = 2*1e6;

% Specify to enable or disable the visualization (true or false, respectively)
enableVisualization = true;

simulationParameters = struct;
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% Configure the number of Slaves in the piconet

simulationParameters.NumSlaves = ;

% Configure the logical links between the Master and Slaves. Each element
% represents the logical link between the Master and the respective Slave.
% If the Master is connected to multiple Slaves, this value must be a row
% vector.
simulationParameters.LinkTraffic = [1 1 1];

% Specify the positions of Bluetooth nodes in the form of an n-by-3 array,
% where n is the number of nodes in the piconet. Each row specifies the
% cartesian coordinates of a node starting from the Master and followed by
% the Slaves.
simulationParameters.NodePositions = [10 0 0; 20 0 0; 30 0 0; 40 0 0];

% Configure the frequency hopping sequence as Connection adaptive (for
% enabling AFH) or Connection basic

simulationParameters.SequenceType = ;

Configure Application Traffic Pattern

This example shows how to use a generic On-Off model for emulating the application traffic pattern.
To emulate the application traffic pattern of the ACL Slaves (Slave 1, Slave 2, and Slave 3), use the
helperBluetoothNetworkTraffic. To model the traffic pattern, specify the application token rate
(bit rate), frame size, access latency, and the values for OnTime and OffTime properties of the
object. If you specify SCO Slaves, model the application traffic pattern based on the packet type. For
each transmission, the data (random bits) is made available at the baseband layer. In the majority of
the scenarios involving ACL links, the traffic flow is present at the source, and the sink sends only the
acknowledgement. In this example, all of the sources are present at the Master.

% Load the Bluetooth application traffic pattern configuration
load('bluetoothTrafficConfig.mat');

% Specify the parameters for SCO application. To enable an SCO logical
% transport, set the linkTraffic value at the Slave index to 2 or 3.
% Specify the SCO packet type as 'HV1', 'HV2', or 'HV3' for the respective
% Slave that has SCO link traffic. Index 1 represents the Slave number, and
% index 2 represents the SCO packet type to be used by the Slave.
simulationParameters.SCOPacketType = {};

% Compute the number of ACL Slaves
numACLSlaves = nnz(simulationParameters.LinkTraffic ~= 2);
aclApplications = repmat({bluetoothTrafficConfig}, 1, numACLSlaves);

% Update the configuration at the first ACL application (for example, a
% laptop). You can observe the variation in throughput based on the
% configured data rate and packet size.
aclApplications{1}.SlaveNumber = 1;                 % Slave LT address
aclApplications{1}.TrafficPattern = 'FTP';          % FTP traffic pattern
aclApplications{1}.PacketSize = 152;                % In bytes
aclApplications{1}.DataRateKbps = 224;              % In Kbps
aclApplications{1}.ApplicationOnTime = 2;           % In milliseconds
aclApplications{1}.ApplicationOffTime = 0;          % In milliseconds
aclApplications{1}.AccessLatency = 500;             % In milliseconds
aclApplications{1}.Role = 'Master';                 % Install the application at 'Master', 'Slave', or 'Both'
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% Update the configuration at the second ACL application (for example, a
% wireless speaker).
aclApplications{2}.SlaveNumber = 2;                 % Slave LT address
aclApplications{2}.TrafficPattern = 'A2DP';         % A2DP traffic pattern
aclApplications{2}.PacketSize = 328;                % In bytes
aclApplications{2}.DataRateKbps = 237;              % In Kbps
aclApplications{2}.ApplicationOnTime = 2;           % In milliseconds
aclApplications{2}.ApplicationOffTime = 0;          % In milliseconds
aclApplications{2}.AccessLatency = 60;              % In milliseconds
aclApplications{2}.Role = 'Master';                 % Install the application at 'Master', 'Slave', or 'Both'

% Update the configuration at the third ACL application (for example, a
% smartphone).
aclApplications{3}.SlaveNumber = 3;                 % Slave LT address
aclApplications{3}.TrafficPattern = 'FTP';          % FTP traffic pattern
aclApplications{3}.PacketSize = 164;                % In bytes
aclApplications{3}.DataRateKbps = 172;              % In Kbps
aclApplications{3}.ApplicationOnTime = 2;           % In milliseconds
aclApplications{3}.ApplicationOffTime = 0;          % In milliseconds
aclApplications{3}.AccessLatency = 500;             % In milliseconds
aclApplications{3}.Role = 'Master';                 % Install the application at 'Master', 'Slave', or 'Both'

% Configure the application traffic objects
for appIdx = 1:numACLSlaves
    appCfg = aclApplications{appIdx};
    app = helperBluetoothNetworkTraffic( ...
        'PacketSize',appCfg.PacketSize, ...
        'DataRate',appCfg.DataRateKbps, ...
        'OnTime',appCfg.ApplicationOnTime, ...
        'OffTime',appCfg.ApplicationOffTime);
    aclApplications{appIdx}.AppTrafficPattern = app;
end
simulationParameters.ACLApplications = aclApplications;

Configure Scheduler

Configure the scheduler to be used at the baseband layer. To configure the RR and priority scheduler,
use the helperBluetoothRRScheduler and helperBluetoothPriorityScheduler helper
objects, respectively. You can also add a custom scheduler at the baseband layer. For information
about how to implement and integrate a custom scheduler, see Compare Performance of Slaves by
varying Scheduling Algorithm on page 3-0 .

% Specify the scheduling scheme as 'RR' or 'Priority'

simulationParameters.Scheduler = ;

Configure Wireless Channel and WLAN Signal Interference

Configure the wireless channel by using the helperBluetoothChannel helper object and set the
SIR value at each node. You can set the EbNo value for the AWGN channel. The AWGN is present
throughout the simulation.

To generate the WLAN signal interference, use the helperBluetoothGenerateWLANWaveform
helper function. Specify the sources of WLAN interference by using the WLANInterference
parameter. Use one of these options to specify the source of the WLAN interference.

 Evaluate the Performance of Bluetooth QoS Traffic Scheduling with WLAN Signal Interference

3-7



• 'Generated' - To add a WLAN toolbox™ signal to interfere the communication between
Bluetooth nodes, select this option. For details on how to add this signal, follow the steps shown in
Add WLAN Signal Using WLAN Toolbox™ Features on page 3-0 .

• 'BasebandFile' - To add a WLAN signal from a baseband file (.bb) to interfere the
communication between Bluetooth nodes, select this option. You can specify the file name using
the WLANBBFilename input argument. If you do not specify the .bb file, the example uses the
default .bb file, 'WLANNonHTDSSS.bb', to add the WLAN signal.

The 'None' option specifies that no WLAN signal is added to the Bluetooth signals, and the example
uses this option by default.

% Configure wireless channel parameters
simulationParameters.EbNo = 22; % Ratio of energy per bit (Eb) to spectral noise density (No) in dB

% Configure the WLAN interference. Specify the WLAN interference as
% Generated, BasebandFile, or None. To use the wlanBBFilename property, set
% wlanInterference to BasebandFile.

simulationParameters.WLANInterference = ;
simulationParameters.WLANBBFilename =  'WLANNonHTDSSS.bb';

% Specify the signal to interference ratio, in dB, at each node. Specify
% this value as an n-element vector, where n is the number of nodes in the
% piconet, starting from the Master and followed by the Slaves. Each value
% indicates the SIR at a node.
simulationParameters.SIR = [-12 -6 -10 -8];

Create Bluetooth Piconet

Create a Bluetooth piconet of nodes with an L2CAP layer, baseband layer, PHY, and channel. To
configure the Bluetooth piconet from the configured parameters, use the
helperBluetoothCreatePiconet helper function.

% Set the random number generator with a default seed
rng('default');

% Specify the Tx power in dBm
simulationParameters.TxPower = 20;

% Specify the Bluetooth node receiver range (in meters).
simulationParameters.ReceiverRange = 40;

% Configure the channel classification parameters
simulationParameters.PERThreshold = 40;
simulationParameters.ClassificationInterval = 3000;
simulationParameters.RxStatusCount = 10;
simulationParameters.MinRxCountToClassify = 4;
simulationParameters.PreferredMinimumGoodChannels = 20;

% Set the total number of nodes in the piconet (one Master and multiple
% Slaves)
numNodes = simulationParameters.NumSlaves + 1;

% Configure the Bluetooth piconet
btNodes = helperBluetoothCreatePiconet(simulationParameters);

Visualize the Bluetooth waveforms by using the dsp.SpectrumAnalyzer System object™.
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if enableVisualization
    btSpectrumAnalyzer = dsp.SpectrumAnalyzer( ...
        'Name','Bluetooth Full Duplex Communication', ...
        'ViewType','Spectrum and spectrogram', ...
        'TimeResolutionSource','Property', ...
        'TimeResolution',0.0005, ...
        'SampleRate',btNodes{1}.PHY.SamplesPerSymbol*1e6, ...
        'TimeSpanSource','Property', ...
        'TimeSpan',0.05, ...
        'FrequencyResolutionMethod','WindowLength', ...
        'WindowLength',512, ...
        'AxesLayout','Horizontal', ...
        'FrequencyOffset',2441*1e6, ...
        'ColorLimits',[-20 15]);
end

Simulation

Run the Bluetooth piconet simulation by calling each node instance. Distribute the Tx packets from
each node to the Rx buffer of the other nodes, and then advance the simulation time to the next event
of a node. Update the Spectrum Analyzer visualization.

% Specify the current simulation time, elapsed time, and next invoke times
% for all of the nodes in microseconds
curTime = 0;
elapsedTime = 0;
nextInvokeTimes = zeros(1, numel(btNodes));
slotPerSec = 1600;

% View buffer size at each ACL Slave
if enableVisualization
    channelNames = cell(1, numACLSlaves);
    for idx=1:numACLSlaves
        channelNames{idx} = btNodes{idx+1}.NodeName;
    end
    bufferSizeVisualization = timescope( ...
        'Name','Buffer Size of each ACL Slave at Master', ...
        'SampleRate',slotPerSec*1.25*simulationTime/1e6, ...
        'AxesScaling','auto', ...
        'ShowLegend',true, ...
        'TimeSpanSource','property', ...
        'TimeSpan',simulationTime/1e6, ...
        'YLabel','Buffer Size', ...
        'YLimits',[0 5], ...
        'ChannelNames',channelNames);
    bufferSizeVisualization(zeros(1, numACLSlaves));
    if ~strcmpi(simulationParameters.WLANInterference, 'None')
        % Generate the WLAN waveform for visualization
        wlanWaveform = helperBluetoothGenerateWLANWaveform(...
            simulationParameters.WLANInterference, simulationParameters.WLANBBFilename);
    end
end

% Run the simulation
while(curTime < simulationTime)
    % Simulate the Bluetooth nodes
    for nodeIdx = 1:numel(btNodes)
        % Run the Bluetooth node instance
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        nextInvokeTimes(nodeIdx) = runNode(btNodes{nodeIdx}, elapsedTime);

        % Update the visualization
        if enableVisualization
            % Update and plot the buffer status at the Master
            if nodeIdx == 1
                [~, emptySlots] = btNodes{1}.Baseband.aclLinkAddress;
                bufferSize = helperBluetoothLogicalTransports.MaxQueueSize - emptySlots;
                bufferSizeVisualization(bufferSize);
            end
        end
    end

    % Advance the current time by the elapsed time
    curTime = curTime + elapsedTime;

    % Distribute any transmitted packets from each node into the receiving
    % buffers of the other nodes
    [isPacketDistributed, txBuffer] = helperBluetoothDistributePackets(btNodes);
    % Update visualization
    if enableVisualization
        for txIdx = 1:numel(txBuffer)
            channelWaveform = txBuffer{txIdx}.Waveform(1:txBuffer{txIdx}.NumSamples);
            if ~strcmpi(simulationParameters.WLANInterference, 'None')
                % Add WLAN interference to the channel waveform.
                channelWaveform = channelWaveform + wlanWaveform(1:txBuffer{txIdx}.NumSamples);
            end
            % Plot the Bluetooth waveform.
            btSpectrumAnalyzer(channelWaveform);
        end
    end

    % If packets are distributed to the receiver nodes, run the nodes to
    % check the packet reception buffer
    if isPacketDistributed
        elapsedTime = 0;
        % Advance the simulation time to the next event at a node
    else
        elapsedTime = min(nextInvokeTimes(nextInvokeTimes ~= -1));
    end
end

ans = 1x79 logical array

   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

ans = 1x79 logical array

   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

ans = 1x79 logical array

   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

% Release the System objects
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if enableVisualization
    release(bufferSizeVisualization);
    release(btSpectrumAnalyzer);
end
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The preceding Spectrum Analyzer plot shows the spectrum of the Bluetooth waveform distorted with
WLAN signal interference (in the frequency domain) and passed through the AWGN channel. The
right-side plot shows the overlapping of Bluetooth packets with the interfering WLAN signal. The
WLAN waveform in the plot is present throughout the simulation.

Simulation Results

At each node, the simulation measures these metrics.

• Throughput at application (L2CAP)
• PER
• Bit error rate (BER)
• Packet statistics at the PHY, baseband layer, and L2CAP layer

In addition to those metrics, at each Slave, the simulation measures these metrics.

• Latency (only for ACL Slaves)
• Fairness of scheduler

These metrics are generated during the simulation and stored in the masterStats and
slavesStats table. For more information on these statistics, refer
helperBluetoothSchedulingStatistics. Get the metrics of each Blutooth Slave in the piconet.
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[masterStats, slavesStats] = helperBluetoothSchedulingStatistics(btNodes, simulationParameters.LinkTraffic, simulationParameters.SCOPacketType, ...
    simulationTime)

masterStats=1×11 table
              Throughput (Kbps)    PER    BER    TotalTxPackets    TotalRxPackets    ValidRxPackets    DroppedRxPackets    TxACLPackets    RxACLPackets    TxSCOPackets    RxSCOPackets
              _________________    ___    ___    ______________    ______________    ______________    ________________    ____________    ____________    ____________    ____________

    Master         569.41           0      0          712               711               711                 0            {7x2 double}    {7x2 double}    {7x2 double}    {7x2 double}

slavesStats=3×17 table
                    Traffic Pattern    Application Data Rate (Kbps)    Throughput (Kbps)    Latency (ms)    Maximum Latency (ms)    Minimum Latency (ms)    PER    BER    Fairness    TotalTxPackets    TotalRxPackets    ValidRxPackets    DroppedRxPackets    TxACLPackets    RxACLPackets    TxSCOPackets    RxSCOPackets
                    _______________    ____________________________    _________________    ____________    ____________________    ____________________    ___    ___    ________    ______________    ______________    ______________    ________________    ____________    ____________    ____________    ____________

    Slave1 (ACL)        "FTP"                      224                      223.74              4.507               8.242                   2.008            0      0      51.966          369               711               369                342             {[369]}         {[369]}          {[0]}           {[0]}    
    Slave2 (ACL)        "A2DP"                     237                      237.47              4.481               5.743                   1.011            0      0      25.562          182               711               182                529             {[182]}         {[182]}          {[0]}           {[0]}    
    Slave3 (ACL)        "FTP"                      172                       104.3             61.871              70.751                  10.751            0      0      22.472          160               711               160                551             {[160]}         {[160]}          {[0]}           {[0]}    

Further Exploration

Because the presence of an SCO Slave in the piconet reserves the slots, the bandwidth for ACL Slaves
decreases. Consequently, the presence of an SCO Slave results in the suspension of most of the
ongoing ACL transmissions. In the default configuration, as the simulation uses the priority scheduler,
wireless speaker (Slave 2) is prioritized over laptop (Slave 1) and smartphone (Slave 2). In this case,
audio streaming has a better throughput and lower latency than the file transfer.

You can further evaluate and compare the performance of Slaves:

• In the presence of an SCO link
• By varying the scheduling algorithm

Compare Performance of Slaves in Presence of SCO Link

Simulate the scenario for 3 seconds with a QoS-based scheduler and with WLAN signal interference
enabled. Compare the throughput and latency by enabling and then disabling the SCO link at Slave 3.
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The presence of the SCO link degrades the throughput and latency performance of ACL Slaves. And
also, the wireless speaker (Slave 2) cannot achieve the required throughput if an SCO Slave in the
piconet exists, even if you use a QoS-based priority scheduler. Because acknowledgement for SCO
packets is not required, the latency is calculated only for the ACL Slaves.

Compare Performance of Slaves by varying Scheduling Algorithm

Simulate the scenario for 3 seconds with the RR and QoS-based priority scheduler. Enable WLAN
signal interference for both scenarios throughout the simulation.
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For the RR scheduler, the throughput and latency values are approximately same for the laptop,
wireless speaker, and smartphone. The QoS-based priority scheduler achieves the desired throughput
and low latency of the wireless speaker (Slave 2).

You can use parameters such as PER, BER, level of WLAN interference, and channel map to create
your own custom scheduler and evaluate its performance using this simulation. For more details on
experimenting with channel classification, see “Bluetooth Full Duplex Data and Voice Transmission in
MATLAB” on page 3-51. Follow these steps to implement and integrate a custom Bluetooth
scheduler.

1 Use the helperBluetoothScheduler object to create a new scheduler object.
2 Implement the algorithm by defining the runScheduler function. Modify the

helperBluetoothBaseband object to update and retrieve the newly added parameters
required by the algorithm.

3 Update the logic to attach the scheduler to the node in the helperBluetoothCreatePiconet
function based on the algorithm.

Add WLAN Signal Using WLAN Toolbox™ Features

To add a WLAN signal using WLAN Toolbox™ features, set the value of wlanInterference to
Generated. Use this code to add the generated WLAN signal as static signal interference to
Bluetooth. Use this sample code snippet in WLAN signal generation using WLAN Toolbox™ features.

% % Create a WLAN waveform to interfere with Bluetooth waveforms,
% % which can be modified by using the features of the WLAN Toolbox.
% psduLength = 1000;
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%
% % Create a configuration object for generating the WLAN waveform (802.11b)
% cfgNHT = wlanNonHTConfig('Modulation','DSSS', ...
%     'PSDULength', psduLength);
%
% % Create a random payload
% payload = randi([0 1], cfgNHT.PSDULength*8, 1);
%
% % Generate the WLAN waveform
% wlanWaveform = wlanWaveformGenerator(payload, cfgNHT);

You can add your custom signal generation code in the helperBluetoothGenerateWLANWaveform
function. You can also write the respective signal WLAN spectrum masks and register to the
WLANSpectrum property of the helperBluetoothChannel as a function pointer.

This example simulates a home environment use-case scenario and demonstrates how to schedule
Bluetooth FTP and A2DP application traffic on ACL link. The example uses the RR and QoS-based
priority scheduling algorithms to schedule the application traffic. The results show that the QoS-
based priority scheduling algorithm prioritizes A2DP traffic and gives a better throughput and latency
performance of the wireless speaker (Slave 2). The results from further explorations indicate that the
performance of ACL Slaves decreases in the presence of SCO Slaves.

Appendix

The example uses these helpers:

• helperBluetoothNode: Configure and simulate Bluetooth node
• helperBluetoothBaseband: Configure and simulate Bluetooth baseband layer
• helperBluetoothLogicalTransports: Configure logical transports between Bluetooth nodes
• helperBluetoothSlotTimer: Manage Bluetooth clock and the timing of slots
• helperBluetoothPHY: Configure and simulate Bluetooth PHY layer
• helperBluetoothChannel: Configure and simulate Bluetooth wireless channel
• helperBluetoothGenerateWLANWaveform: Generate WLAN waveform to be added as an

interference to Bluetooth waveforms
• helperBluetoothWLANDSSSSpectrumMask: Calculate adjacent channel interference power using

the WLAN 802.11b (DSSS) spectrum masks
• helperBluetoothCreatePiconet: Create Bluetooth piconet using the Bluetooth nodes
• helperBluetoothSchedulingStatistics: Return statistics of each Bluetooth node in the Bluetooth

piconet
• helperBluetoothDistributePackets: Distribute Tx packets in the piconet
• helperBluetoothL2CAP: Create and process Bluetooth L2CAP channels
• helperBluetoothL2CAPFrame: Generate Bluetooth L2CAP frame
• helperBluetoothL2CAPFrameDecode: Decode Bluetooth L2CAP frame
• helperBluetoothRRScheduler: Create object for Bluetooth Round-robin scheduler
• helperBluetoothPriorityScheduler: Create object for Bluetooth priority scheduler

Selected Bibliography

1 Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.2. https://
www.bluetooth.com.
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2 Bluetooth Special Interest Group (SIG). "Traditional Profile Specifications." . https://
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See Also

More About
• “Bluetooth-WLAN Coexistence” on page 13-60
• “Configure Bluetooth BR/EDR Channel with WLAN Interference and Pass the Waveform” on

page 13-96
• “Create Bluetooth Piconet by Enabling ACL Traffic, SCO Traffic, and AFH” on page 13-101
• “Packet Distribution in Bluetooth Piconet” on page 13-106
• “BLE Coexistence Model with WLAN Signal Interference” on page 3-175
• “End-to-End Bluetooth BR/EDR PHY Simulation with WLAN Interference and Adaptive

Frequency Hopping” on page 3-76
• “Bluetooth Full Duplex Data and Voice Transmission in MATLAB” on page 3-51
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End-to-End Bluetooth BR/EDR PHY Simulation Using Path Loss
Model, RF Impairments, and AWGN

This example uses Communications Toolbox™ Library for the Bluetooth® Protocol to perform end-to-
end simulation for the Bluetooth basic rate/enhanced data rate (BR/EDR) physical layer (PHY)
transmission modes in the presence of the path loss model, radio front-end (RF) impairments, and
additive white Gaussian noise (AWGN). The simulation results show the estimated value of the bit
error rate (BER), path loss, and the impact of path loss on the spectrum of the waveform.

Path Loss Modeling in Bluetooth BR/EDR Network

Bluetooth is a short-range Wireless Personal Area Network (WPAN) technology, operating in the
globally unlicensed industrial, scientific, and medical (ISM) band in the frequency range of 2.4 GHz to
2.485 GHz.

The Bluetooth Core Specification [1 on page 3-0 ] specifies these PHY modes.

Basic rate (BR) - Mandatory mode, uses Gaussian frequency shift keying (GFSK) modulation with a
data rate of 1 Mbps.

Enhanced data rate (EDR) - Optional mode, uses phase shift keying (PSK) modulation with these
two variants:

• EDR2M: Uses pi/4-DQPSK with a data rate of 2 Mbps
• EDR3M: Uses 8-DPSK with a data rate of 3 Mbps

For more information about Bluetooth BR/EDR protocol stack, see “Bluetooth Protocol Stack” on page
13-7.

For more information about Bluetooth BR/EDR packet structures, see “Bluetooth Packet Structure”
on page 13-23.

Path loss or path attenuation is the decline in the power density of a given signal as it propagates
from the transmitter to receiver through space. This reduction in power density occurs naturally over
the distance and is impacted by the obstacles present in the environment in which the signal is being
transmitted. The path loss is generally expressed in decibels (dB) and is calculated as:

PLdB = Pt− Pr.

In this equation,

• PLdB is the path loss in dB.
• Pt is the transmitted signal power in dB.
• Pr is the received signal power in dB.

Path loss models describe the signal attenuation between the transmitter and receiver based on the
propagation distance and other parameters such as frequency, wavelength, path loss exponent, and
antenna gains. The example considers these path loss models:

• Free-space [3] on page 3-0
• Log-distance [3] on page 3-0
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• Log-normal shadowing [3] on page 3-0
• Two-ray ground reflection [3] on page 3-0
• NIST PAP 02-Task 6 [4] on page 3-0

For more information about these path loss models, see “End-to-End BLE PHY Simulation Using Path
Loss Model, RF Impairments, and AWGN” on page 3-90 example.

This example estimates the BER and the path loss between the transmitter and receiver by
considering a specific path loss model with RF impairments and AWGN added to the transmission
packets.

End-to-End Bluetooth BR/EDR Simulation Procedure

Specify the simulation parameters on page 3-0 . To perform the end-to-end simulation in the
presence of path loss, implement these steps.

1 Generate random bits
2 Generate a Bluetooth BR/EDR waveform
3 Add impairments
4 Attenuate the waveform based on the path loss
5 Add AWGN
6 Display the spectrum of the transmitted and received waveforms

Pass the distorted and noisy waveforms through a practical receiver and perform these operations.

1 Remove DC offset
2 Detect the signal bursts
3 Perform matched filtering
4 Estimate and correct the timing offset
5 Estimate and correct the carrier frequency offset
6 Demodulate BR/EDR waveform
7 Perform forward error correction (FEC) decoding
8 Perform data dewhitening
9 Perform header error check (HEC) and cyclic redundancy check (CRC)
10 Outputs decoded bits

 End-to-End Bluetooth BR/EDR PHY Simulation Using Path Loss Model, RF Impairments, and AWGN

3-19



To estimate the bit error rate, compare the transmitted bits with the decoded bits.

Check for the Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is installed
or not.

commSupportPackageCheck('BLUETOOTH');

Configure Simulation Parameters

Specify the path loss model and the distance between the transmitter and receiver. Set the PHY
transmission mode and the type of Bluetooth BR/EDR packet to be generated. Configure the RF
impairments.

% Configure parameters related to the communication link between the transmitter and receiver

pathLossModel = ; % Path loss model
distance = 5;                         % Distance between transmitter and receiver, in meters

% Configure parameters for waveform generation

phyMode = ;                 % PHY transmission mode
bluetoothPacket = 'FHS';                        % Type of Bluetooth BR/EDR packet. This value can be: {'ID',
                                                % 'NULL','POLL','FHS','HV1','HV2','HV3','DV','EV3',
                                                % 'EV4','EV5','AUX1','DM3','DM1','DH1','DM5','DH3',
                                                % 'DH5','2-DH1','2-DH3','2-DH5','2-DH1','2-DH3',
                                                %  '2-DH5','2-EV3','2-EV5','3-EV3','3-EV5'}
samplesPerSymbol = 8;                           % Samples per symbol

% Configure RF impairments

frequencyOffset = ;% In Hz

timingOffset = ;    % Offset within the symbol, in samples

timingDrift = ;       % In parts per million

dcOffset = ;           % Percentage with respect to maximum amplitude value
EbNo = 25;                                      % Eb/No in dB
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Generate Bluetooth BR/EDR Waveform

Generate Bluetooth BR/EDR waveform based on the physical layer transmission mode, packet type,
and samples per symbol.

% Create a Bluetooth BR/EDR waveform configuration object
txCfg = bluetoothWaveformConfig('Mode',phyMode,'PacketType',bluetoothPacket,...
    'SamplesPerSymbol',samplesPerSymbol);
if strcmp(bluetoothPacket,'DM1')
    txCfg.PayloadLength = 17;       % Maximum length of DM1 packets in bytes
end
dataLen = getPayloadLength(txCfg);  % Length of the payload

% Generate Bluetooth BR/EDR waveform
bitsPerByte = 8;                             % Number of bits per byte
txBits = randi([0 1],dataLen*bitsPerByte,1); % Generate data bits
txWaveform = bluetoothWaveformGenerator(txBits,txCfg);

Add RF Impairments, Path Loss, and AWGN

Distort the generated Bluetooth BR/EDR waveform by adding the RF impairments.

% Create timing offset object
timingDelayObj = dsp.VariableFractionalDelay;

% Create frequency offset object
symbolRate = 1e6; % Symbol rate, in Hz
frequencyDelay = comm.PhaseFrequencyOffset('SampleRate',symbolRate*samplesPerSymbol);

% Add Frequency Offset
frequencyDelay.FrequencyOffset = frequencyOffset;
txWaveformCFO = frequencyDelay(txWaveform);

% Add Timing Delay
[packetDuration,~] = helperBluetoothPacketDuration(bluetoothPacket,phyMode,dataLen);
totalTimingDrift = zeros(length(txWaveform),1);
timingDriftRate = (timingDrift*1e-6)/(packetDuration*samplesPerSymbol);        % Timing drift rate
timingDriftVal = timingDriftRate*(0:1:((packetDuration*samplesPerSymbol)-1))'; % Timing drift
totalTimingDrift(1:(packetDuration*samplesPerSymbol)) = timingDriftVal;
timingDelay = (timingOffset*samplesPerSymbol)+totalTimingDrift;                % Static timing offset and timing drift
txWaveformTimingCFO = timingDelayObj(txWaveformCFO,timingDelay);

% Add DC Offset
dcValue = (dcOffset/100)*max(txWaveformTimingCFO);
txImpairedWaveform = txWaveformTimingCFO + dcValue;

To obtain the path loss value, use helperBluetoothEstimatePathLoss.m function. To attenuate the
Bluetooth BR/EDR waveform, add the path loss value to it.

% Obtain the path loss value in dB
[plLinear,pldB] = helperBluetoothEstimatePathLoss(pathLossModel,distance);

% Attenuate Bluetooth BR/EDR waveform
txAttenWaveform  = txImpairedWaveform./plLinear;

Add AWGN to the attenuated Bluetooth BR/EDR waveform.

% Set code rate based on packet type
if any(strcmp(bluetoothPacket,{'FHS','DM1','DM3','DM5','HV2','DV','EV4'}))
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    codeRate = 2/3;
elseif strcmp(bluetoothPacket,'HV1')
    codeRate = 1/3;
else
    codeRate = 1;
end

% Set number of bits per symbol based on the PHY transmission mode
bitsPerSymbol = 1+ (strcmp(phyMode,'EDR2M'))*1 + (strcmp(phyMode,'EDR3M'))*2;

% Get SNR from EbNo values
snr = EbNo + 10*log10(codeRate) + 10*log10(bitsPerSymbol) - 10*log10(samplesPerSymbol);

% Add AWGN
rxWaveform = awgn(txAttenWaveform,snr,'measured');

Receiver Processing

To retrieve the data bits, pass the attenuated, AWGN-distorted Bluetooth BR/EDR waveform through
the practical receiver.

% Get PHY configuration properties
rxCfg = getPhyConfigProperties(txCfg);

% Receiver Module
[rxBits,~,~] = helperBluetoothPracticalReceiver(rxWaveform,rxCfg);

Simulation Results

Estimate BER based on the retrieved and transmitted bits.

% Calculate BER
ber = [];
if ((~any(strcmp(bluetoothPacket,{'ID','NULL','POLL'})))&&((length(txBits) == length(rxBits))))
    ber = (sum(xor(txBits,rxBits))/length(txBits));
    berDisplay = num2str(ber);
else % BER is not applicable either when packet is lost or when packet type is ID, NULL, POLL packets
    berDisplay = 'Not applicable';
end

Display the estimated BER results. Plot the spectrum of the transmitted and received Bluetooth
BR/EDR waveform.

% Display the estimated BER and distance between the transmitter and the receiver.
disp(['Input configuration: ', newline , '    PHY transmission mode: ', phyMode,....
    newline,'    Path loss model: ', pathLossModel, newline ,...
    '    Distance between the transmitter and receiver: ', num2str(distance), ' m', newline ,...
    '    Eb/No: ', num2str(EbNo), ' dB']);

Input configuration: 
    PHY transmission mode: BR
    Path loss model: Free space
    Distance between the transmitter and receiver: 5 m
    Eb/No: 25 dB

disp(['Estimated outputs: ', newline , '    Path loss : ', num2str(pldB), ' dB'....
    newline, '    BER: ', berDisplay]);
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Estimated outputs: 
    Path loss : 54.0326 dB
    BER: 0

% Plot the spectrum of the transmitted and received Bluetooth BR/EDR waveform
specAnalyzer = dsp.SpectrumAnalyzer('NumInputPorts',2,'SampleRate',symbolRate*samplesPerSymbol,...
    'Title','Spectrum of Transmitted and Received Bluetooth BR/EDR Signals',...
    'ShowLegend',true,'ChannelNames',{'Transmitted Bluetooth BR/EDR signal','Received Bluetooth BR/EDR signal'});
specAnalyzer(txWaveform(1:packetDuration*samplesPerSymbol),rxWaveform(1:packetDuration*samplesPerSymbol));
release(specAnalyzer);

This example demonstrates an end-to-end Bluetooth BR/EDR simulation by considering the path loss
model, distance between transmitter and receiver, RF impairments, and AWGN. The obtained
simulation results display the estimated path loss and BER. The spectrum of the transmitted and
received Bluetooth BR/EDR waveforms is visualized by using a spectrum analyzer.

Appendix

The example uses these helper functions:

• helperBluetoothEstimatePathLoss.m: Estimates the path loss between the transmitter and
receiver based on the path loss model and the distance between the transmitter and receiver.

• helperBluetoothPracticalReceiver.m: Detects, synchronizes, and decodes the received Bluetooth
BR/EDR waveform.
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• helperBluetoothPacketDuration.m: Estimates the duration of a Bluetooth packet.
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Bluetooth BR/EDR Power and Spectrum Test Measurements
This example shows how to perform radio frequency (RF) physical layer (PHY) transmitter tests
specific to power and spectrum on Bluetooth® basic rate (BR) and enhanced data rate (EDR)
transmitted waveforms by using Communications Toolbox™ Library for the Bluetooth Protocol
features. The example also verifies whether these test measurement values are within the limits
specified by the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ].

Objectives of Bluetooth RF-PHY tests

The Bluetooth RF-PHY Test Specifications [1 on page 3-0 ] defined by the Bluetooth Special Interest
Group (SIG) includes RF-PHY tests for transmitters and receivers. The objectives of these RF-PHY
tests are to:

• Ensure interoperability between all Bluetooth devices.
• Verify that a basic level of system performance is guaranteed for all Bluetooth products.

Each test case has a specific test procedure and an expected outcome, which must be met by the
implementation under test (IUT).

Power and Spectrum Tests

This example shows how to perform power and spectrum test measurements on Bluetooth BR/EDR
transmitted waveforms according to the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ].

• Power Tests: These tests verify whether the peak power, average power, power density, and
power control of the transmitted Bluetooth signals are within the limits specified in the Bluetooth
RF-PHY Test Specifications [1 on page 3-0 ]. For more information about these tests, see
sections 4.5.1, 4.5.2, 4.5.3, 4.5.10, and 4.5.14 of the Bluetooth RF-PHY Test Specifications.

• Spectrum Tests: These tests verify whether the signal emissions are within the operating
frequency range specified in the Bluetooth RF-PHY Test Specifications. For more information
about these tests, see sections 4.5.4, 4.5.5, 4.5.6, and 4.5.13 of the Bluetooth RF-PHY Test
Specifications.

This table shows various RF-PHY transmitter tests used in this example.
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Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed.
commSupportPackageCheck('BLUETOOTH');
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Configure Simulation Parameters

Specify the test case ID, center frequency, packet type, samples per symbol, and output power.

% Select test case ID to perform power and spectrum tests

testCaseID = ;

% Select the frequency of operation for the IUT as shown in this table
%  ----------------------------
%  | Operating | Frequency in |
%  | Frequency |    MHz       |
%  ----------------------------
%  | Low       |    2402      |
%  | Mid       |    2440      |
%  | High      |    2480      |
%  ----------------------------
% Specify the type of center frequency required to perform the test case
%  -----------------------------------------------------
%  |    Test Case ID    |   Type of Center Frequency   |
%  -----------------------------------------------------
%  |                    |                              |
%  | RF/TRM/CA/BV-01-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-02-C  |            'Mid'             |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-03-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-04-C  |         'Low','High'         |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-05-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-06-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-10-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-13-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  | RF/TRM/CA/BV-14-C  |      'Low','Mid','High'      |
%  |                    |                              |
%  |                    |                              |
%  -----------------------------------------------------
centerFrequency = 'Low';

% Specify the type of packet required to perform the test case
packetType = 'DH1';
sps = 8;                                  % Number of samples per symbol

outputPower = ; % Output power in dBm (must be in the range [-20,20])
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stepSize = ;      % Step size in dB (for power control tests
                                          % {'RF/TRM/CA/BV-03-C',
                                          % 'RF/TRM/CA/BV-14-C'})

Configure Test Parameters and Generate Bluetooth Test Waveform

Configure the test parameters and generate the Bluetooth test waveform, by using the
helperBluetoothPowerTestConfig.m helper function.

% Get test parameters and test waveform
[configParams,txWaveformBaseBand] = helperBluetoothPowerTestConfig(testCaseID,centerFrequency,packetType,sps,outputPower,stepSize);

% Interpolation factor for upconversion
interpFactor = ceil(2*configParams.StopFreq/configParams.SampleRate);

% Create a digital upconverter System object
upConv = dsp.DigitalUpConverter( ...
    'InterpolationFactor',interpFactor, ...
    'SampleRate',configParams.SampleRate, ...
    'Bandwidth',6e6, ...
    'CenterFrequency',configParams.CenterFreq);
dBmConvFactor = 30;
scalingFactor = 10^((outputPower-dBmConvFactor)/20);

% Upconvert the baseband waveform to passband and scale the waveform to
% required power
txWaveform = scalingFactor*upConv(txWaveformBaseBand);

Perform Spectrum Analysis on the Waveform

Perform the spectrum analysis using the helperBluetoothPowerTestAnalysis.m helper function. The
function returns the output power along with the frequency, time, or step size data from the
spectrum.

[outPower,testMeas] = helperBluetoothPowerTestAnalysis(testCaseID,configParams,txWaveform,interpFactor);

Calculate Test Measurements

Calculate the test measurements for each test based on the spectrum analysis outputs by using the
helperBluetoothPowerTestMeasurements.m helper function.

output = helperBluetoothPowerTestMeasurements(testCaseID,centerFrequency,outPower,testMeas);
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Simulation Results

Validate the test results and display the verdict using the helperBluetoothPowerTestVerdict.m helper
function.

helperBluetoothPowerTestVerdict(testCaseID,output);

Measured average power - 21.043922 dBm 
Measured peak power - 21.546605 dBm 
Verdict - Output power test passed 

This example demonstrates the Bluetooth BR/EDR RF-PHY transmitter test measurements specific to
power and spectrum. The simulation results verify that the computed test measurement values are
within the limits specified by the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ].

Appendix

The example uses these helpers:

• helperBluetoothPowerTestConfig.m: Configure test parameters and generate Bluetooth test
waveform

• helperBluetoothPowerTestAnalysis.m: Perform analysis of Bluetooth test waveforms in time and
frequency domain

• helperBluetoothPowerTestMeasurements.m: Calculate test measurements
• helperBluetoothPowerTestVerdict.m: Validate test results and displays the verdict
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BLE RF-PHY Receiver Tests for IQC and IQDR
This example shows how to perform Bluetooth® low energy (BLE) radio frequency (RF) physical layer
(PHY) receiver tests specific to in-phase quadrature samples coherency (IQC) and IQ samples
dynamic range (IQDR) by using Communications Toolbox™ Library for the Bluetooth Protocol. The
tests compute relative phase, reference phase deviation, and amplitudes of IQ samples at each
antenna in an antenna array. This example also verifies whether these test measurement values are
within the limits specified by the Bluetooth RF-PHY Test Specification [1 on page 3-0 ].

Objectives of Bluetooth RF-PHY Tests

The Bluetooth RF-PHY Test Specification [1 on page 3-0 ] defined by the Bluetooth Special Interest
Group (SIG) includes RF-PHY tests for transmitter and receiver. The objectives of these RF-PHY tests
are to:

• Ensure interoperability between all Bluetooth devices
• Ensure a basic level of system performance for all Bluetooth products

Each test case has a specific test procedure and an expected outcome, which must be met by the
implementation under test (IUT).

IQC and IQDR Tests

The Bluetooth Core Specification 5.1 [2 on page 3-0 ] introduced angle of arrival (AoA) and angle of
departure (AoD) direction finding features. For more information about direction finding services in
BLE, see “Bluetooth Low Energy Based Positioning Using Direction Finding” on page 3-38 and
“Bluetooth Location and Direction Finding” on page 13-37. The Bluetooth RF-PHY Test Specification
[1 on page 3-0 ] specifies the tests for direction finding transmitted waveforms with constant tone
extension (CTE). This example includes AoA and AoD receiver tests specific to IQC and IQDR.

• IQ sample coherency: This test verifies the relative phase and reference phase deviation values
derived from the I and Q values sampled on AoA or AoD receiver.

• IQ sample dynamic range: This test verifies the I and Q values sampled on AoA or AoD receiver
by varying the dynamic range of the CTE.

This table shows various RF-PHY AoA and AoD receiver tests performed in this example.
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Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is
installed.

commSupportPackageCheck('BLUETOOTH');

Configure Simulation Parameters

Specify the receiver test ID, array size, samples per symbol, and element spacing between the
antenna elements.

rxTestID = ;  % Receiver test case ID

arraySize = ; % Array size, must be 4 or [2 2] for AoD receiver tests and 2,3,4,[2 2]
                                  % for AoA receiver tests
sps = 8;                          % Samples per symbol
elementSpacing = 0.5;             % Normalized spacing between the antenna elements with respect to wavelength

Generate RF-PHY Test Parameters

Generate test parameters based on the receiver test ID, array size, and samples per symbol. To
generate the PHY mode, CTE type, slot duration, test switching pattern, number of packets to
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transmit and input power to the receiver, use the helperBLEIQCIQDRTestConfig function. Create and
configure comm.ThermalNoise System object™ to add thermal noise.

[phyMode,cteType,slotDuration,switchingPattern,numPackets,rxPower] = ...
    helperBLEIQCIQDRTestConfig(rxTestID,arraySize,sps);

% The CTEInfo field position is same for the LE test packet and data
% packet, so consider dfPacketType as ConnectionCTE for CTE based RF-PHY
% tests
dfPacketType = 'ConnectionCTE';

% Create and configure BLE angle estimation configuration object
cfg = bleAngleEstimateConfig('ArraySize',arraySize,'SlotDuration',slotDuration, ...
                    'SwitchingPattern',switchingPattern,'ElementSpacing',elementSpacing);
numElements = getNumElements(cfg); % Number of elements in the array

% Create a thermal noise System object
NF = 12; % Noise figure (dB)
symRate = 1e6 + 1e6*(strcmp(phyMode,'LE2M')); % Symbol rate in Hz based on PHY transmission mode
sampleRate = symRate*sps; % Sampling rate in Hz
thNoise = comm.ThermalNoise('NoiseMethod','Noise figure', ...
                            'SampleRate',sampleRate, ...
                            'NoiseFigure',NF);

Simulate IQ Coherency or Dynamic Range Tests

To simulate the IQC and IQDR tests, perform these steps.

1 Generate BLE test packet waveform.
2 Perform waveform steering and antenna switching.
3 Add thermal noise.
4 Perform demodulation, decoding, and IQ sampling on the noisy waveform.
5 Perform IQC and IQDR test measurements.

Based on the receiver test, the helperBLEIQCIQDRTest function returns these values.
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% Initialize the number of outputs based on the receiver test ID
numOutputs = 2 + 4*any(strcmp(rxTestID,{'RF-PHY/RCV/IQC/BV-01-C','RF-PHY/RCV/IQC/BV-02-C', ...
                'RF-PHY/RCV/IQC/BV-03-C','RF-PHY/RCV/IQC/BV-04-C','RF-PHY/RCV/IQC/BV-05-C', ...
                'RF-PHY/RCV/IQC/BV-06-C'}));
[iqcIQDROutputs,iqcIQDROutputsConc] = deal(cell(1,numOutputs));
% Generate BLE test waveform
payloadLength = 0; % Empty payload for the considered receiver test IDs
cteLength = 160; % CTE length must be 160 microseconds for the considered receiver test IDs
payloadType = randsrc(1,1,1:7); % Payload type can be any value as the payload length is zero
bleWaveform = helperBLETestWaveform(payloadType,payloadLength,sps,phyMode,cteLength,cteType);

% Loop over the number of packets
for i = 1:numPackets
    % Generate random angle(s) between -90 to 90 degrees
    angles = randsrc(2,1,-90:90);

    % Perform steering and switching between the antennas
    dfWaveform = helperBLESwitchAntenna(bleWaveform,angles, ...
        phyMode,sps,dfPacketType,payloadLength,cteLength,cfg);

    % Attenuate the waveform according to the given received power
    dfWaveformAtt = dfWaveform.*10.^(rxPower/20);

    % Add thermal noise to the waveform
    noisyWaveform = thNoise(dfWaveformAtt);

    % Pass the noisy waveform to the BLE ideal receiver and get the IQ
    % samples
    [~,~,iqSamples] = bleIdealReceiver(noisyWaveform,'Mode',phyMode, ...
                'SamplesPerSymbol',sps,'DFPacketType',dfPacketType, ...
                'SlotDuration',slotDuration,'WhitenStatus','Off');

    % Perform IQC and IQDR test measurements based on the receiver test ID
    [iqcIQDROutputs{:}] = helperBLEIQCIQDRTest(rxTestID,iqSamples,numElements);

    % Concatenate the outputs over the number of packets
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    for j = 1:numOutputs
        iqcIQDROutputsConc{j} = [iqcIQDROutputsConc{j}; iqcIQDROutputs{j}];
    end
end

Test Verdict

Verify whether the IQC and IQDR test measurements are within the specified limits and display the
test verdict.

if any(strcmp(rxTestID,{'RF-PHY/RCV/IQC/BV-01-C','RF-PHY/RCV/IQC/BV-02-C', ...
        'RF-PHY/RCV/IQC/BV-03-C','RF-PHY/RCV/IQC/BV-04-C', ...
        'RF-PHY/RCV/IQC/BV-05-C','RF-PHY/RCV/IQC/BV-06-C'})) % IQC test
    % For each nonreference antenna, Am, where m is in the range [0, number
    % of antenna elements-1], used in the switching pattern, the results of
    % the summations in the formulae for MRP(m) and MRPD must be nonzero
    disp ('Expected summations in the formulae for MRP(m) and MRPD must be non-zero.');
    if all(all(iqcIQDROutputsConc{2}~=0)) && all(iqcIQDROutputsConc{5}~=0)
        disp('Result: Pass');
    else
        disp('Result: Fail');
    end

    % For each nonreference antenna, Am, used in the switching pattern, 95%
    % of the values, v, in the set must be -0.52<=principal(v-MRP(m))<=0.52
    mrpRep = kron(iqcIQDROutputsConc{3},ones(length(iqcIQDROutputsConc{1})/length(iqcIQDROutputsConc{3}),1));
    subMRP = iqcIQDROutputsConc{1} - mrpRep;
    if size(subMRP,2) == 3 && any(strcmp(rxTestID,{'RF-PHY/RCV/IQC/BV-01-C',...
        'RF-PHY/RCV/IQC/BV-03-C','RF-PHY/RCV/IQC/BV-05-C','RF-PHY/RCV/IQC/BV-06-C'}))
        subMRP(3:3:end,3) = 0;
    end
    subMRPPrincipal = helperBLEPrincipalAngle(subMRP);
    subMRPRange = sum(subMRPPrincipal<=0.52 & subMRPPrincipal>=-0.52);
    disp ('Expected 95% of the values v in the set RP(m) must meet -0.52<=principal(v-MRP(m))<=0.52.');
    if all(subMRPRange>0.95*length(subMRPPrincipal))
        disp('Result: Pass');
    else
        disp('Result: Fail');
    end

    % MRPD must be in the range -1.125 to 1.125
    disp ('Expected MRPD in the range [-1.125, 1.125] radians.');
    if all(iqcIQDROutputsConc{6}<=1.125) && all(iqcIQDROutputsConc{6}>=-1.125)
        disp('Result: Pass');
    else
        disp('Result: Fail');
    end
else  % IQDR test
    
    % The mean of amplitudes of IQ samples measured at each antenna follows
    % the equation mean(ANT3)<mean(ANT2)<mean(ANT0)<mean(ANT1)
    meanA1 = mean(iqcIQDROutputsConc{1});
    meanA = mean(iqcIQDROutputsConc{2});
    if length(meanA) == 1
        disp('The mean of amplitudes must follow mean(ANT0)<mean(ANT1).');
        conditionCheck = meanA1<meanA(1);
    elseif length(meanA) == 2
        disp('The mean of amplitudes must follow mean(ANT2)<mean(ANT0)<mean(ANT1).');
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        conditionCheck = meanA1<meanA(1) && meanA1>meanA(2);
    else
        disp('The mean of amplitudes must follow mean(ANT3)<mean(ANT2)<mean(ANT0)<mean(ANT1).');
        conditionCheck = meanA1<meanA(1) && meanA1>meanA(2) && meanA(3)<meanA(2);
    end
    if conditionCheck
       disp('Result: Pass');
    else
        disp('Result: Fail');
    end
end

Expected summations in the formulae for MRP(m) and MRPD must be non-zero.

Result: Pass

Expected 95% of the values v in the set RP(m) must meet -0.52<=principal(v-MRP(m))<=0.52.

Result: Pass

Expected MRPD in the range [-1.125, 1.125] radians.

Result: Pass

This example demonstrates the BLE receiver test measurements specific to IQC and IQDR test
measurements. The simulation results verify that the computed test measurement values are within
the limits specified by the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ].

Appendix

The example uses these helpers:

• helperBLEIQCIQDRTestConfig: Configure test parameters specific to IQC and IQDR test
measurements

• helperBLETestWaveform: Generate BLE test waveform
• helperBLESwitchAntenna: Perform antenna steering and switching
• helperBLEPrincipalAngle: Compute principal angle in radians
• helperBLEIQCIQDRTest: Perform IQC and IQDR test measurements
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Bluetooth Low Energy Based Positioning Using Direction
Finding

This example shows how to calculate the 2-D or 3-D position of a Bluetooth® low energy (BLE) node
by implementing Bluetooth direction finding features and the triangulation-based location estimation
technique using the Communication Toolbox™ Library for the Bluetooth Protocol. The Bluetooth Core
Specification 5.1 [2 on page 3-0 ] introduced angle of arrival (AoA) and angle of departure (AoD)
direction finding features to support centimeter-level accuracy in BLE location finding. This example
shows how to calculate the distance between the estimated and actual BLE node positions in an
additive white Gaussian noise (AWGN) channel to determine the positioning accuracy with respect to
the bit energy to noise density ratio (Eb/No).

BLE Localization

Bluetooth technology provides different types of location based services [1 on page 3-0 ]. On a high
level, these services can be split into two categories.

• Proximity Solutions: To estimate the distance between two devices, the Bluetooth proximity
solutions previously used received signal strength indication (RSSI) measurements.

• Positioning Systems: To estimate the position of device, the Bluetooth positioning systems use
trilateration based on several RSSI measurements to estimate the position of the device.

Previous versions of Bluetooth provide only meter-level accuracy in estimating the device location.
The Bluetooth Core Specification 5.1 [2 on page 3-0 ] introduced new direction finding features that
support centimeter-level accuracy in estimating the location of a device. For more information about
direction finding services in BLE, see “Bluetooth Location and Direction Finding” on page 13-37.

Direction Finding Methods

Bluetooth direction finding provides two distinct methods each of which exploits the same underlying
basis. These direction finding methods are AoA and AoD. Each of these techniques require one of the
two communicating devices to have an array of multiple antennas. In the AoA and AoD techniques,
the antenna array is present at the receiver and transmitter, respectively.
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Antenna Arrays

Use a uniform linear array (ULA) or uniform rectangular array (URA) to calculate the direction of a
signal. Simple linear designs like ULAs enable you to calculate only azimuth angle from a signal. Two
dimensional arrays like URAs enable you to calculate both the azimuth and elevation angles in the 3-
D half space. For more information about antenna arrays, see “Bluetooth Location and Direction
Finding” on page 13-37.
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Calculating the elevation and azimuth angles of the signal relative to a reference plane is common in
these antenna arrays. This figure shows the concept of azimuth and elevation angles.

• Azimuth angle: This angle is the angle between the x-axis and the orthogonal projection of the
vector onto the xy-plane. The angle is positive in going from the x-axis toward the y-axis.

• Elevation angle: This angle is the angle between the vector and its orthogonal projection onto
the xy-plane. The angle is positive when going toward the positive z-axis from the xy-plane.

Direction Finding Signals

The communication in BLE is realized using one of these two distinct physical layers (PHYs).
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• LE Uncoded: This PHY is further segregated into the LE1M PHY and LE2M PHY. LE1M is the
default PHY and provides a symbol rate of 1 Msym/s. LE2M provides a symbol rate of 2 Msym/s.

• LE Coded: This PHY is equipped for long range communication and provides a symbol rate of 1
Msym/s. It has the potential to quadruple the range that can be achieved whilst reducing the data
rate.

Bluetooth direction finding can use either the LE1M or LE2M PHY, but not the LECoded PHY.

The Bluetooth Core Specification 5.1 [2 on page 3-0 ] specifies additional data in the protocol data
unit (PDU) packet structure, known as the constant tone extension (CTE) for direction finding. This
figure shows the CTE appended at the end of LE uncoded PHY packet.

Use the CTE in any of these communication types.

• Connection-oriented communication: It specifies the CTE using the new LL_CTE_RSP PDUs
that are sent over the connection in response to the LL_CTE_REQ PDUs.

• Connectionless communication: It appends the CTE to the existing periodic advertising PDUs,
AUX_SYNC_IND, for direction finding.

In connection-oriented and connectionless communication, the CTE is appended at the end of the
PDU. For information about Bluetooth packet structures, see “Bluetooth Packet Structure” on page
13-23. For more information about the CTE, see volume 6, Part B, Section 2.5.1 of the Bluetooth
Core Specification 5.1 [2 on page 3-0 ].

AoA and AoD Based BLE Positioning

This example uses these terms:

• BLE node - Specifies the device whose location is to be determined.
• Locator - Specifies the receiving device (in the AoA calculation) and transmitting device (in the

AoD calculation).

This figure shows how to estimate the position of a BLE node using the AoA and AoD methods.
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In the AoA method, the transmitter (BLE node) transmits a direction finding signal using single
antenna. The receiving device (locator), equipped with an antenna array, takes the IQ samples while
switching between the antennas present in the array. The locator uses the IQ samples to calculate the
AoA.
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In the AoD method, the transmitting device (locator) is equipped with an antenna array. The
transmitting device transmits the signals while switching between the antennas in the array. The
receiving device, consisting of a single antenna, collects the IQ samples and calculates the AoD.

To estimate the position of a BLE node in 2-D or 3-D, the device requires at least two or three locators
in the network, respectively. Based on the estimated angles and the known BLE locator positions,
estimate the position of a BLE node using the triangulation technique.

Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is
installed.

commSupportPackageCheck('BLUETOOTH');

Simulation Parameters

Specify the dimension in which the BLE node position needs to be determined and the number of BLE
locators. To estimate the 2-D or 3-D position of a BLE node, specify at least two or three locators,
respectively.

numDimensions = ;    % Dimension of BLE devices position in a network

numLocators = ;      % Number of locators

Specify the Eb/No range and the number of iterations to simulate each Eb/No point.

EbNo = ;             % Eb/No in dB

numIterations = ;    % Number of iterations to average the position error

Specify the direction finding method, the direction finding packet type, and the PHY transmission
mode.

dfMethod = ;         % Direction finding method

dfPacketType = ;     % Direction finding packet type

phyMode = ;          % PHY transmission mode, must be LE1M or LE2M (for ConnectionCTE) and LE1M (for ConnectionlessCTE)

Specify the antenna array parameters.

arraySize = ;        % Antenna array size, must be a scalar (represents ULA) or a row vector (represents URA) for 2D or 3D positioning, respectively

elementSpacing = ;   % Normalized spacing between the antenna elements with respect to wavelength

switchingPattern = ; % Antenna switching pattern, must be a 1xM row vector and M must be in the range [2, 74/slotDuration+1]

Specify the waveform generation parameters.

slotDuration = ;     % Slot duration in microseconds

cteLength = ;  % Length of CTE in microseconds, must be in the range [16, 160] with 8 microseconds step size

sps = ;              % Samples per symbol
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chanIndex = ;   % Channel index

crcInit = ;          % CRC initialization

accAddress = ;       % Access address

payloadLength = ;    % Payload length in bytes

Direction Finding and Position Estimation Procedure

Follow these steps to estimate the BLE node position.

1 Position the BLE node at the origin. Place the locators randomly in the 2-D or 3-D space.
2 Model the direction finding packet exchange between the BLE node and each locator to estimate

the angles between them.

a. Generate a direction finding packet for connection or connectionless communication.

b. Generate BLE waveform.

c. Perform waveform steering and antenna switching.

d. Add AWGN to the waveform.

e. Perform demodulation, decoding, and IQ sampling on the noisy waveform.

f. Estimate the angle(s) between the BLE node and each locator using the IQ samples.

3. Estimate the BLE node position by performing triangulation using the known locator positions and
the estimated angles.

For each iteration, assign random positions to the locators over a range of Eb/No points, and then
repeat the preceding steps.
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To increase the speed of the simulation, use a parfor loop instead of a for loop. The parfor loop
processes each Eb/No point in parallel to reduce the total simulation time. To enable parallel
computing for increased speed, comment-out the for statement and uncomment the parfor
statement in this code. If “Parallel Computing Toolbox”™ is not installed, the parfor statement
switches to the for statement by default.

Validate the simulation parameters.

minLocators = numDimensions; % Minimum number of locators
if numDimensions == 2 && size(arraySize,2) ~= 1
    error('The arraySize must be a scalar for 2-D position estimation');
end
if numDimensions == 3 && size(arraySize,2) ~= 2
    error('The arraySize must be a 1-by-2 vector for 3-D position estimation');
end
if numLocators < minLocators
    error(['The numLocators must be greater than or equal to ' num2str(minLocators) ' for ' num2str(minLocators) '-D position estimation']);
end
if strcmp(dfPacketType,'ConnectionCTE') && payloadLength ~= 1
    error('The payloadLength must be 1 byte for direction finding packet type of ConnectionCTE');
elseif strcmp(dfPacketType,'ConnectionlessCTE') && payloadLength < 3
    error('The payloadLength must be greater than or equal to 3 bytes for direction finding packet type of ConnectionlessCTE');
end

Create and configure BLE angle estimation configuration object. Derive the type of CTE based on the
slot duration and the direction finding method.

if numDimensions == 3 && isscalar(elementSpacing)
    elementSpacing = [elementSpacing elementSpacing]; % Element spacing must be a vector to perform 3D positioning
end
cfg = bleAngleEstimateConfig('ArraySize',arraySize,'SlotDuration',slotDuration,'SwitchingPattern', ...
                                    switchingPattern,'ElementSpacing',elementSpacing);
validateConfig(cfg);
if strcmp(dfMethod,'AoA')
    cteType = [0;0];
else
    cteType = [0;1];
    if slotDuration == 1
        cteType = [1;0];
    end
end

% Convert access address in hexadecimal to binary
accessAddBits = de2bi(hex2dec(accAddress),32)';

% Initialize the variables to be used outside the parfor loop
numEbNo = numel(EbNo); % Number of Eb/No points
posNode = zeros(numDimensions,numEbNo);
posLocator = zeros(numDimensions,numLocators,numEbNo);
angleEst = zeros(numLocators,numDimensions-1,numEbNo);
posNodeEst = zeros(numDimensions,numEbNo);
validResult = zeros(1,numEbNo);
avgPositionError = zeros(1,numEbNo);

Model the direction finding packet exchange between the BLE node and each locator to estimate the
angles between them.
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% parfor iEbNo = 1:numEbNo % Use 'parfor' to speed up the simulation
for iEbNo = 1:numEbNo % Use 'for' to debug the simulation
    
    % Set the random substream index to ensure that each iteration uses a
    % repeatable set of random numbers
    stream = RandStream('combRecursive','Seed',12345);
    stream.Substream = iEbNo;
    RandStream.setGlobalStream(stream);
    
    % Loop over the number of iterations to average the positioning error.
    % If the successful links between the locators and node are less than
    % the minimum number of locators required to perform triangulation, then
    % the iteration fails.
    posErr = zeros(1,numIterations);
    iterationFailCount = 0;
    for iterCount = 1:numIterations
        
        % For each iteration, generate random positions for the locators
        [tempPosNode,tempPosLocator,ang] = helperBLEGeneratePositions(numLocators,numDimensions);
        posNode(:,iEbNo) = tempPosNode;
        posLocator(:,:,iEbNo) = tempPosLocator;

        % Loop over the number of locators
        tempAngleEst = zeros(numLocators,numDimensions-1);
        idx = [];
        linkFailFlag = zeros(numLocators,1);
        for i=1:numLocators
            
            % Generate direction finding packet
            data = helperBLEGenerateDFPDU(dfPacketType,cteLength,cteType,payloadLength,crcInit);
            
            % Generate BLE waveform
            bleWaveform = bleWaveformGenerator(data,'Mode',phyMode,'SamplesPerSymbol',sps,...
                'ChannelIndex',chanIndex,'DFPacketType',dfPacketType,'AccessAddress',accessAddBits);
            
            % Perform steering and switching between the antennas
            dfWaveform = helperBLESwitchAntenna(bleWaveform,ang(i,:),...
                phyMode,sps,dfPacketType,payloadLength,cteLength,cfg);

            % Pass the waveform through AWGN channel
            snr = EbNo(iEbNo) - 10*log10(sps); % Signal to noise ratio (SNR)
            noiseWaveform = awgn(dfWaveform,snr,'measured');

            % Pass the noisy waveform to bleIdealReceiver which returns
            % the IQ samples
            [~, ~, iqSamples] = bleIdealReceiver(noiseWaveform,'Mode',phyMode,...
                'SamplesPerSymbol',sps,'ChannelIndex',chanIndex,'DFPacketType',...
                dfPacketType,'SlotDuration',slotDuration);
            
            % Estimate the angle(s) using the IQ samples. A packet is
            % detected successfully when the minimum number of non-zero IQ
            % samples are present.
            refSampleLength = 8; % Reference samples length
            % IQ samples must contain at least eight samples from reference period and
            % one sample from each antenna
            minIQSamples = refSampleLength+getNumElements(cfg)-1;
            if length(nonzeros(iqSamples)) >= minIQSamples % If packet detection is successful
                tempAngleEst(i,:) = bleAngleEstimate(iqSamples,cfg);
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            else
                linkFailFlag(i) = 1; % If packet detection fails, enable the link fail flag
                idx = [idx i]; %#ok<AGROW> % Store the indices corresponding to the locator-node communication fail links
            end
        end
        
        % If the successful node-locator links are greater than the minimum
        % number of locators and all the locator angles are not same, then
        % estimate the node position using triangulation and compute the
        % position error
        if (numLocators-nnz(linkFailFlag)) >= minLocators && ~isequal(tempAngleEst(:,1),repmat(tempAngleEst(1,1),numLocators,1))
            % If any link fails, then assign NaN to the corresponding angle
            % estimates
            posLocatorEbNo = posLocator(:,:,iEbNo);
            tempAngEstTri = tempAngleEst;
            if any(linkFailFlag == 1)
                posLocatorEbNo(:,idx) = [];
                tempAngleEst(idx,:) = NaN(numel(idx),numDimensions-1);
                tempAngEstTri(idx,:) = [];
            end
            
            % Estimate the node position using triangulation
            posNodeEst(:,iEbNo) = helperBLETriangulation(posLocatorEbNo,tempAngEstTri);
            angleEst(:,:,iEbNo) = tempAngleEst;
            
            % Compute the position error
            posErr(iterCount) = sqrt(sum((posNodeEst(:,iEbNo)-posNode(:,iEbNo)).^2));
        else
            iterationFailCount = iterationFailCount + 1; % Count the number of failed links used to average the position error
        end
    end
    
    if(iterationFailCount == numIterations) % If all the links fail at a given Eb/No value
        disp(['At Eb/No = ',num2str(EbNo(iEbNo)),' dB, all direction finding packet transmissions failed'])
        validResult(iEbNo) = 0; % Disable plot flag for failed links
    else
        avgPositionError(iEbNo) = sum(posErr)/(numIterations-iterationFailCount);
        disp(['At Eb/No = ',num2str(EbNo(iEbNo)),' dB, positioning error in meters = ', num2str(avgPositionError(iEbNo))]) 
        validResult(iEbNo) = 1; % Enable plot flag for successful links
    end
end

At Eb/No = 6 dB, positioning error in meters = 0.5594
At Eb/No = 8 dB, positioning error in meters = 0.43461
At Eb/No = 10 dB, positioning error in meters = 0.31708
At Eb/No = 12 dB, positioning error in meters = 0.27091
At Eb/No = 14 dB, positioning error in meters = 0.21464
At Eb/No = 16 dB, positioning error in meters = 0.17115

Simulation Results

If the direction finding packet transmission is successful, the example displays these plots.

• BLE node position, locators positions, and the estimated node positions in 2-D or 3-D. The plot also
shows the triangulation lines for the maximum Eb/No value and the last iteration.

• Average position error (in meters) versus Eb/No (in dB).
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[~,validIdx] = find(validResult==1);
if ~isempty(validIdx)
    EbNoValid = EbNo(validIdx);
    [~,EbNoIdx] = max(EbNoValid);
    EbNoValidIdx = validIdx(EbNoIdx);
    helperBLEVisualizePosition(posLocator(:,:,EbNoValidIdx),posNode(:,EbNoValidIdx),...
                        angleEst(:,:,EbNoValidIdx),posNodeEst(:,EbNoValidIdx));
    figure
    plot(EbNoValid,avgPositionError(validIdx),'-b*','LineWidth',2, ...
            'MarkerEdgeColor','b','MarkerSize',10)
    grid on
    xlabel('Eb/No (dB)')
    ylabel('Estimated Position Error (meters)')
    title('Position Accuracy in BLE network')
end
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This example enables you to estimate the 2-D or 3-D position of a BLE node by using the BLE
direction finding functionality. The example shows how to implement the triangulation method to
calculate the angles between the locators and the BLE node. The example also shows how to measure
the positioning accuracy related to the Eb/No value by computing the distance between the estimated
and actual node positions in an AWGN channel.

Appendix

The example uses these helpers:

• helperBLEGeneratePositions: Generate locators and node positions
• helperBLEGenerateDFPDU: Generate direction finding packet PDU
• helperBLESwitchAntenna: Perform antenna steering and switching
• helperBLETriangulation: Estimate the node position using triangulation
• helperBLEVisualizePosition: Generate BLE position visualization
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Bluetooth Full Duplex Data and Voice Transmission in MATLAB
This example shows how to model a full duplex communication in a Bluetooth® piconet having WLAN
interference and supporting the adaptive frequency hopping (AFH) functionality using the
Communications Toolbox™ Library for the Bluetooth Protocol. The Bluetooth nodes operating with
basic rate (BR) physical layer (PHY) communicate with each other simultaneously by transmitting
data packets (over an asynchronous connection-oriented (ACL) logical transport) and voice packets
(over a synchronous connection-oriented (SCO) logical transport) as random bits. The supported data
and voice packets are:

• Data packet types: DM1, DH1, DM3, DH3, DM5, and DH5
• Voice packet types: HV1, HV2, and HV3

This example enables AFH by classifying channels as good or bad based on the packet error rate
(PER) of each channel. You can add your own classification algorithm to analyze the simulation
results. The simulation results show a plot of the packet error rate (PER) for each Bluetooth node.
The power spectral density of Bluetooth waveforms with WLAN interference is visualized using the
spectrum analyzer.

Bluetooth Specifications

Bluetooth technology operates in 2.4 GHz industrial, scientific, and medical (ISM) band and shares it
with other wireless technologies like ZigBee and WLAN. The Bluetooth Core Specification [1 on page
3-0 ] defined by the Special Interest Group (SIG) specifies two PHY modes: the mandatory BR and
the optional enhanced data rate (EDR). The Bluetooth BR/EDR radio implements a 1600 hops/s
frequency hopping spread spectrum (FHSS) technique. The radio hops in a pseudo-random way on 79
designated Bluetooth channels. Each Bluetooth channel has a bandwidth of 1 MHz. Each channel is
centered at (2402 + k) MHz, where k = 0, 1, ... 78. The modulation technique on the payload for BR
and EDR mode is Gaussian frequency shift-keying (GFSK) and differential phase shift-keying (DPSK),
respectively. The baud rate is 1 MSymbols/s. The Bluetooth BR/EDR radio uses a time-division duplex
(TDD) scheme in which data transmission occurs in one direction at one time. The transmission
alternates in two directions, one after the other.

Bluetooth and WLAN radios often operate in the same physical scenario and in the same device.
Therefore, Bluetooth and WLAN transmissions can interfere with each other, thus impacting the
performance and reliability of both the networks. To mitigate this interference, the IEEE 802.15.2
Task Group [2 on page 3-0 ] recommends using the AFH technique. To study AFH and the
coexistence of Bluetooth with WLAN, see “Bluetooth-WLAN Coexistence” on page 13-60.

For more information about the Bluetooth BR/EDR radio and the protocol stack, see “Bluetooth
Protocol Stack” on page 13-7. For more information about Bluetooth BR/EDR packet structures,
see “Bluetooth Packet Structure” on page 13-23.

Logical Transports

The Bluetooth system supports point-to-point or point-to-multipoint connections called as piconets.
Each piconet consists of a node in the role of Master, with other nodes in the Slave role. The Master
and Slave exchange data over multiple logical transports. These logical transports are:

• SCO: The Master and Slave exchange SCO packets at regular intervals in the reserved slots. The
Bluetooth nodes use SCO logical transport to exchange periodic data such as audio streaming.
This logical transport does not support retransmissions.
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• Extended synchronous connection-oriented (eSCO): The Bluetooth nodes use eSCO to exchange
periodic data such as audio streaming. This logical transport supports retransmissions.

• ACL: The Bluetooth nodes use ACL to exchange asynchronous data such as a file transfer protocol
(FTP). During each poll interval, the Master polls the ACL logical transport of a Slave at least
once.

• Active slave broadcast (ASB): The Bluetooth nodes use ASB logical transport to send messages
from the Master to all of the Slaves in a piconet. This logical transport supports unidirectional
traffic with no acknowledgments.

• Connectionless slave broadcast (CSB): The Master node uses a CSB logical transport to send
profile broadcast data to multiple Slaves. This logical transport supports unidirectional traffic with
no acknowledgments.

This example supports ACL and SCO logical transports between a Master and Slaves by considering
data as random bits of 0s and 1s. This figure shows the communication between a Master and three
Slaves in a piconet over ACL and SCO logical transports.

Bluetooth uses reserved time slots for communication between the nodes. The duration of each slot is
625 microseconds. The Master node initiates the transmission in even slots and extends the
transmission to odd slots when transmitting a multislot packet. The Slave node initiates the
transmission in odd slots and extends the transmission to even slots when transmitting a multislot
packet.

Check for Support Package Installation
% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed
commSupportPackageCheck('BLUETOOTH');
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Configure Simulation Parameters

This section shows how to configure the simulation parameters for the Bluetooth piconet, the wireless
channel, and WLAN interference.

Bluetooth Piconet

The NumSlaves parameter specifies the number of Slaves in the Bluetooth piconet. The
LinkTraffic parameter specifies the type of traffic over Bluetooth logical transports between a
Master and the respective Slave. This table maps LinkTraffic to different logical transports.

If the Master communicates with multiple Slaves, LinkTraffic must be a vector.

The SequenceType parameter specifies the type of frequency hopping algorithm that the Bluetooth
node uses. When you set SequenceType to 'Connection adaptive', the Bluetooth channels are
classified as good or bad periodically based on the PER of each Bluetooth channel. To classify the
Bluetooth channels, you can use the classifyChannels object function.

% Set the simulation time in microseconds
simulationTime = 3*1e6;

% Enable or disable the visualization in the example
enableVisualization = true;

simulationParameters = struct;
% Configure the number of Slaves in the piconet

simulationParameters.NumSlaves = ;

% Specify the positions of Bluetooth nodes in the form of n-by-3 array.
% where n represents the number of nodes in the piconet. Each row specifies
% the cartesian coordinates of a nodes starting from Master and followed by
% Slaves.
simulationParameters.NodePositions = [10 0 0; 20 0 0];

% Configure the logical links between the Master and Slaves

% Each element represents the logical link between the Master and the
% respective Slave. If the Master is connected to multiple Slaves, this
% value must be a row vector.
simulationParameters.LinkTraffic = 1;

% Configure the frequency hopping sequence as 'Connection basic' or
% 'Connection adaptive'

simulationParameters.SequenceType = ;
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% To enable an ACL logical transport, set linkTraffic to 1 or 3. Specify
% the ACL packet type as 'DM1', 'DH1', 'DM3', 'DH3', 'DM5', or 'DH5'.

simulationParameters.ACLPacketType = ;

% To enable a SCO logical transport, set linkTraffic to 2 or 3. Specify the
% SCO packet type as 'HV1', 'HV2', or 'HV3' for the respective Slave that
% has SCO link traffic. Here, 1 represents the Slave number, and 'HV3'
% represents the corresponding SCO packet type used by Slave 1.
simulationParameters.SCOPacketType = {1, 'HV3'};

Wireless Channel and WLAN Interference

Configure the wireless channel by using the helperBluetoothChannel helper object. You can set the
EbNo value for the AWGN channel. To generate the WLAN signal interference, use the
helperBluetoothGenerateWLANWaveform helper function. Specify the sources of WLAN interference
by using the WLANInterference parameter. Use one of these options to specify the source of the
WLAN interference.

• 'Generated': To add a WLAN Toolbox™ signal, select this option. Perform the steps shown in
further exploration on page 3-0  to add the signal from the WLAN Toolbox™.

• 'BasebandFile': To add a WLAN signal from a baseband file (.bb), select this option. You can
specify the file name using the WLANBBFilename input argument. If you do not specify the .bb
file, the example uses the default .bb file, 'WLANNonHTDSSS.bb', to add the WLAN signal.

The 'None' option implies that no WLAN signal is added. AWGN is present throughout the
simulation.

% Configure wireless channel parameters
simulationParameters.EbNo = 22; % Ratio of energy per bit (Eb) to spectral noise density (No) in dB

% Configure the WLAN interference

% Specify the WLAN interference as 'Generated', 'BasebandFile', or 'None'.
% To use the 'wlanBBFilename' option, set wlanInterference to
% 'BasebandFile'.

simulationParameters.WLANInterference = ;
simulationParameters.WLANBBFilename =  'WLANNonHTDSSS.bb';

% Signal to interference ratio in dB
simulationParameters.SIR = [-15 -16];

Channel Classification Parameters

Classify the Bluetooth channels as good or bad by using the helperBluetoothChannelClassification
object only when the SequenceType is 'Connection adaptive'. The example classifies the
Bluetooth channels by using these parameters.

• PERThreshold: PER threshold
• ClassificationInterval: Periodicity (in slots) of channel classification
• RxStatusCount: Maximum number of received packets status maintained for each channel
• MinRxCountToClassify: Minimum number of received packets status for each channel to

classify a channel as good or bad
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• PreferredMinimumGoodChannels: Preferred number of good channels required to
communicate between the Master and Slaves

You can add your own classification algorithm by customizing the classifyChannels method of the
helperBluetoothChannelClassification object.

simulationParameters.PERThreshold = ;                 % Packet error rate

simulationParameters.ClassificationInterval = ;   % In slots

simulationParameters.RxStatusCount = ;                % Maximum Rx packets status

simulationParameters.MinRxCountToClassify = ;          % Minimum packets received

simulationParameters.PreferredMinimumGoodChannels = ;  % Preferred number of good channels

Create Bluetooth Piconet

Specify the total number of Bluetooth nodes in the piconet. Set the role of the nodes as Master or
Slave. To create a Bluetooth piconet from the configured parameters, use the
helperBluetoothCreatePiconet helper function.

% Reset the random number generator
rng('default');

% Specify Tx power, in dBm
simulationParameters.TxPower = 20;

% Specify the Bluetooth node receiver range (in meters)
simulationParameters.ReceiverRange = 40;

% Set the total number of nodes in the piconet (one Master and multiple
% Slaves)
numNodes = simulationParameters.NumSlaves + 1;

% Create a Bluetooth piconet
btNodes = helperBluetoothCreatePiconet(simulationParameters);

To visualize the Bluetooth waveforms, create the dsp.SpectrumAnalyzer System™ object.

% View the Bluetooth waveforms using the spectrum analyzer
spectrumAnalyzer = dsp.SpectrumAnalyzer(...
    'Name','Bluetooth Full Duplex Communication', ...
    'ViewType','Spectrum and spectrogram', ...
    'TimeResolutionSource','Property', ...
    'TimeResolution',0.0005, ...
    'SampleRate',btNodes{1}.PHY.SamplesPerSymbol*1e6, ...
    'TimeSpanSource','Property', ...
    'TimeSpan',0.05, ...
    'FrequencyResolutionMethod','WindowLength', ...
    'WindowLength',512, ...
    'AxesLayout','Horizontal', ...
    'FrequencyOffset',2441*1e6, ...
    'ColorLimits',[-20 15]);
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Simulation

Simulate the Bluetooth piconet using the configured parameters. Visualize the plot of the PER of each
Bluetooth node in the piconet. Visualize the power spectral density of the Bluetooth waveforms by
using the dsp.SpectrumAnalyzer System object. You can also calculate the baseband layer
statistics (total transmitted packets, total received packets, and total dropped packets) and channel
classification statistics at each Bluetooth node. When the sequence type is set to 'Connection
adaptive', the Bluetooth node updates the channel classification statistics.

% Current simulation time in microseconds
curTime = 0;

% Elapsed time in microseconds
elapsedTime = 0;

% Next invoke times of all of the nodes in microseconds
nextInvokeTimes = zeros(1, numNodes);

if enableVisualization
    % Plot the PER
    perFigure = figure("Name","PER of Each Bluetooth Node",'Tag','BluetoothPERPlot');
    perAxes = axes(perFigure);
    % Add annotations to the figure
    ylim(perAxes, [0 1]);
    xlabel(perAxes, 'Simulation Time (in Microseconds)');
    ylabel(perAxes, 'PER');
    title(perAxes, 'PER of Each Bluetooth Node');
    % Plot the PER line for each Bluetooth node
    [perPlots, legendStr] = deal(cell(1, numNodes));
    for plotIdx = 1:numNodes
        hold on
        perPlots{plotIdx} = plot(perAxes, curTime, 0);
        if plotIdx == 1
            legendStr{1} = ['\color[rgb]{' num2str(perPlots{plotIdx}.Color) '} Master'];
        else
            legendStr{plotIdx} = ['\color[rgb]{' num2str(perPlots{plotIdx}.Color) '} Slave-' num2str(plotIdx-1)];
        end
    end
    % Add a legend to the figure
    legend(perAxes, legendStr,'Location','northeastoutside','Box','on');
    if ~strcmpi(simulationParameters.WLANInterference, 'None')
        % Generate the WLAN waveform for visualization
        wlanWaveform = helperBluetoothGenerateWLANWaveform(...
            simulationParameters.WLANInterference, simulationParameters.WLANBBFilename);
    end
end

% Run the simulation
while(curTime < simulationTime)
    % Simulate the Bluetooth nodes
    for nodeIdx = 1:numNodes
        % Push the data into the node
        pushData(btNodes{nodeIdx}, ...
            simulationParameters.ACLPacketType, simulationParameters.SCOPacketType);
        
        % Run the Bluetooth node instance
        nextInvokeTimes(nodeIdx) = runNode(btNodes{nodeIdx}, elapsedTime);
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        if enableVisualization
            if ~isempty(findobj('Tag', 'BluetoothPERPlot'))
                % Update and plot the PER
                perPlots{nodeIdx}.XData = [perPlots{nodeIdx}.XData curTime];
                if isempty(btNodes{nodeIdx}.PHY.PER)
                    per = 0;
                else
                    per = btNodes{nodeIdx}.PHY.PER;
                end
                perPlots{nodeIdx}.YData = [perPlots{nodeIdx}.YData per];
            end
        end
    end

    % Update the current simulation time
    curTime = curTime + elapsedTime;

    % Distribute any transmitted packets from each node into the receiving
    % buffers of the other nodes
    [isPacketDistributed, txBuffer] = helperBluetoothDistributePackets(btNodes);
    % Update visualization
    if enableVisualization
        for txIdx = 1:numel(txBuffer)
            channelWaveform = txBuffer{txIdx}.Waveform(1:txBuffer{txIdx}.NumSamples);
            if ~strcmpi(simulationParameters.WLANInterference, 'None')
                % Add WLAN interference to the channel waveform
                channelWaveform = channelWaveform + wlanWaveform(1:txBuffer{txIdx}.NumSamples);
            end
            % Plot the Bluetooth waveform
            spectrumAnalyzer(channelWaveform);
        end
    end

    % If packets are distributed to the receiver nodes, run the nodes to
    % check the packet reception buffer.
    if isPacketDistributed
        elapsedTime = 0;
    % Advance the simulation time to the next event at a node
    else
        elapsedTime = min(nextInvokeTimes(nextInvokeTimes ~= -1));
    end
end

ans = 1x79 logical array

   0   1   1   0   0   1   0   1   1   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
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release(spectrumAnalyzer);
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The preceding spectrum analyzer plot shows the spectrum of the Bluetooth waveform distorted with
WLAN interference (in the frequency domain) and passed through the AWGN channel. The right-side
plot shows the overlapping of Bluetooth packets with the interfering WLAN signal.

The plot "PER of Each Bluetooth Node" shows the PER of each node in the Bluetooth piconet with
respect to the simulation time.

To see the baseband layer statistics for each Bluetooth node, inspect the statisticsAtEachNode
variable. To see the channel classification statistics for each Master-Slave pair, inspect the
classificationStats variable. The channel classification statistics are valid when sequenceType
is set to 'Connection adaptive'. Get the baseband layer and channel classification statistics of
each Bluetooth node in the piconet.

% Get the baseband layer and channel classification statistics of each Bluetooth node in the piconet
[statisticsAtEachNode, classificationStats] = helperBluetoothFullDuplexStatistics(btNodes)

statisticsAtEachNode=2×19 table
              TotalRxPackets    TotalTxPackets    TxACLPackets    TxACLOneSlotPackets    TxACLThreeSlotPackets    TxACLFiveSlotPackets    RetransmittedACLPackets    RxSlotsWithNoPacket    TxSCOPackets    RxACLPackets    RxACLOneSlotPackets    RxACLThreeSlotPackets    RxACLFiveSlotPackets    RxSCOPackets    TotalRxFailedPackets    ACKedACLPackets    ACKedSCOPackets    DroppedPackets    DroppedLMPMessages
              ______________    ______________    ____________    ___________________    _____________________    ____________________    _______________________    ___________________    ____________    ____________    ___________________    _____________________    ____________________    ____________    ____________________    _______________    _______________    ______________    __________________

    Master         1435              2401         {7x2 double}       {7x2 double}            {7x2 double}             {7x2 double}             {7x2 double}                  965            {7x2 double}    {7x2 double}       {7x2 double}            {7x2 double}             {7x2 double}        {7x2 double}            157              {7x2 double}       {7x2 double}           254                  0         
    Slave1         2379              1444         {7x2 double}       {7x2 double}            {7x2 double}             {7x2 double}             {7x2 double}                    0            {7x2 double}    {7x2 double}       {7x2 double}            {7x2 double}             {7x2 double}        {7x2 double}            384              {7x2 double}       {7x2 double}           551                  0         
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classificationStats=1×3 table
    LTAddress    ClassificationCount                                    ChannelMap                                
    _________    ___________________    __________________________________________________________________________

        1                 1             {[0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 ... ]}

This example enables you to configure and simulate a full duplex data and voice communication in a
Bluetooth piconet with WLAN interference. The example uses AFH to mitigate WLAN interference by
classifying channels as good or bad based on the PER value. The performance of full duplex
communication is analyzed by visualizing the impact of WLAN interference on each Bluetooth node.

Further Exploration

To add the WLAN signal using the features of the WLAN Toolbox™, set the value of wlanInterference
to 'Generated'. Use this code to add the WLAN signal.

Add the WLAN signal generated using the features of the WLAN Toolbox™ as static signal
interference to Bluetooth. To enable this, set wlanInterference value as 'Generated', add your
custom signal generation code in function. Use this sample code snippet in WLAN signal generation
using features of WLAN Toolbox™.

% % WLAN waveform to interfere with Bluetooth waveforms can be
% % modified by using the features of the WLAN Toolbox(TM).
% psduLength = 1000;
%
% % Create configuration object for WLAN waveform (802.11b)
% cfgNHT = wlanNonHTConfig('Modulation','DSSS', ...
%     'PSDULength', psduLength);
%
% % Create random PSDU
% psdu = randi([0 1], cfgNHT.PSDULength*8, 1);
%
% % Generate WLAN waveform
% wlanWaveform = wlanWaveformGenerator(psdu, cfgNHT);

You can add your custom signal generation code in the helperBluetoothGenerateWLANWaveform
function. You can also write the respective signal WLAN spectrum masks and register to the
WLANSpectrum property of the helperBluetoothChannel as a function pointer.

Appendix

The example uses this object:

• bluetoothFrequencyHop: Selects Bluetooth BR/EDR channel index for frequency hopping

The example uses these helpers:

• helperBluetoothFullDuplexNode: Configures and simulates Bluetooth node
• helperBluetoothBaseband: Configures and simulates Bluetooth baseband layer
• helperBluetoothLogicalTransports: Configures logical transports between Bluetooth nodes
• helperBluetoothSlotTimer: Manages Bluetooth clock and the timing of slots
• helperBluetoothPHY: Configures and simulates Bluetooth PHY layer
• helperBluetoothChannel: Configures and simulates Bluetooth wireless channel
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• helperBluetoothGenerateWLANWaveform: Generates WLAN waveform to be added as an
interference to Bluetooth waveforms

• helperBluetoothWLANDSSSSpectrumMask: Calculates adjacent channel interference power using
the WLAN 802.11b (DSSS) spectrum masks

• helperBluetoothCreatePiconet: Creates Bluetooth piconet using the Bluetooth nodes
• helperBluetoothFullDuplexStatistics: Returns statistics of each Bluetooth node in the Bluetooth

piconet
• helperBluetoothQueue: Create an object for Bluetooth queue functionality
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Bluetooth EDR RF-PHY Transmitter Tests for Modulation
Accuracy and Carrier Frequency Stability

This example shows how to perform Bluetooth® enhanced data rate (EDR) radio frequency (RF)
physical layer (PHY) transmitter tests specific to modulation accuracy and carrier frequency stability
using the Communications Toolbox™ Library for the Bluetooth Protocol. The test measurements
compute the initial frequency offset, root mean square (RMS) differential error vector magnitude
(DEVM), and peak DEVM values. This example also verifies whether these test measurement values
are within the limits specified by the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ].

Objectives of Bluetooth RF-PHY Tests

The Bluetooth RF-PHY Test Specifications [1 on page 3-0 ] defined by the Bluetooth Special Interest
Group (SIG) includes RF-PHY tests for the transmitter and receiver. The objectives of these RF-PHY
tests are to:

• Ensure interoperability between all of the Bluetooth devices.
• Ensure a basic level of system performance for all of the Bluetooth products.

Each test case has a specific test procedure and an expected outcome, that must be achieved by the
implementation under test (IUT).

RF-PHY Transmitter Tests

The main goal of the transmitter test measurements is to ensure that the transmitter characteristics
are within the limits specified by the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ]. This
example includes transmitter tests relevant to EDR modulation accuracy and carrier frequency
stability. This table shows various RF-PHY transmitter tests performed in this example.

RF-PHY Transmitter Test Procedure

This block diagram summarizes the test procedure for transmitter tests relevant to EDR modulation
accuracy and carrier frequency stability of Bluetooth EDR waveforms.
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• Generate DH or EV packets by using pseudorandom sequences of these lengths.
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• Pass the payload bits through the bluetoothWaveformGenerator function to generate
Bluetooth EDR test waveforms.

• Add a carrier frequency offset and drift.
• Add additive white Gaussian noise (AWGN).
• Estimate the initial frequency offset using the basic rate (BR) portion of the waveform.
• Compensate the EDR portion with the estimated initial frequency offset.
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• Perform square root raised cosine filtering using the filter whose coefficients are generated based
on the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ].

• Divide the EDR portion into blocks of length 50 microseconds each.
• For each block, delay the compensated sequence by 1 microsecond and differentiate the delay

with actual compensated sequence to get the error sequence.
• Compute the RMS DEVM and peak DEVM based on the error sequence and compensated

sequence.
• Get the test verdict and display the results.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Configure Simulation Parameters

To specify PHY transmission mode, packet type, initial frequency offset, maximum frequency drift,
and samples per symbol, set phyMode, packetType, initialFreqOffset, maxFreqDrift, and
sps respectively.

phyMode = ;                    % PHY transmission mode

packetType = ;                 % EDR packet type

initialFreqOffset = ; % Initial frequency offset (Hz)

maxFreqDrift = ;      % Maximum frequency drift (Hz), must be in the range [-10e3, 10e3]
sps = 8;                                           % Samples per symbol

Generate Test Parameters

Use the preceding configured parameters to generate the test parameters. To get all of the test
parameters, use the helperEDRModulationTestConfig.m helper function. To add frequency offset and
thermal noise, create and configure comm.PhaseFrequencyOffset and comm.ThermalNoise
System objects, respectively.

[edrTestParams,waveformConfig,filtCoeff] = helperEDRModulationTestConfig(phyMode,packetType,sps);

% Create frequency offset System object
frequencyDelay = comm.PhaseFrequencyOffset('SampleRate',edrTestParams.sampleRate);

% Create thermal noise System object
NF = 12; % Noise figure (dB)
thNoise = comm.ThermalNoise('NoiseMethod','Noise figure', ...
                            'SampleRate',edrTestParams.sampleRate, ...
                            'NoiseFigure',NF);

Simulate Transmitter Tests

Using the preceding RF-PHY transmitter test procedure, simulate the transmitter tests.

% Initialize variables 
symDEVM = zeros(1,edrTestParams.requiredBlocks*edrTestParams.blockLength);
[blockRMSDEVM,estimatedBlockFreqDrifts] = deal(zeros(1,edrTestParams.requiredBlocks));
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estimatedInitFreqOff = zeros(1,edrTestParams.NumPackets);
blockCount = 0;

% Generate 200 blocks of data as specified in Bluetooth RF-PHY Test Specifications
for packetCount = 1:edrTestParams.NumPackets
    
    % Generate random bits
    payload = edrTestParams.pnSeq();
    
    % Generate Bluetooth EDR waveform
    txWaveform = bluetoothWaveformGenerator(payload,waveformConfig);
    
    % Generate ideal EDR symbols from waveform
    packetDuration = helperBluetoothPacketDuration(packetType,phyMode,edrTestParams.numBytes);
    txWaveform1 = txWaveform(1:(packetDuration+edrTestParams.span)*sps);
    idealTxEDRWaveform = txWaveform1((edrTestParams.startIndex)*sps+1:end);
    
    % Perform matched filtering
    rxFilt = upfirdn(idealTxEDRWaveform,filtCoeff,1,sps);
    
    % Remove delay and normalize filtered signal
    idealEDRSymbols = rxFilt(edrTestParams.span+1:end,1)/sqrt(sps);
    
    % Add frequency offset    
    driftRate = maxFreqDrift/((packetDuration+edrTestParams.span)*sps); % Drift rate
    freqDrift = driftRate*(0:1:((packetDuration+edrTestParams.span)*sps-1))';% Frequency drift for the packet
    frequencyDelay.FrequencyOffset = freqDrift + initialFreqOffset; % Frequency offset, includes initial frequency offset and drift
    transWaveformCFO = frequencyDelay(txWaveform(1:(packetDuration+edrTestParams.span)*sps));
    
    % Add thermal noise
    noisyWaveform = thNoise(transWaveformCFO);
            
    % Compute initial frequency offset specified in Bluetooth RF-PHY Test Specifications
    estimatedInitFreqOff(packetCount) = helperEstimateInitialFreqOffset(noisyWaveform,sps);
    
    % Compensate initial frequency offset in the received waveform
    pfOffset = comm.PhaseFrequencyOffset('SampleRate',edrTestParams.sampleRate,'FrequencyOffset',-estimatedInitFreqOff(packetCount));
    freqTimeSyncRcv = pfOffset(noisyWaveform);

    % Remove access code, packet header, and guard time from packet
    rxEDRWaveform = freqTimeSyncRcv((edrTestParams.startIndex)*sps+1:end);
    
    % Perform matched filtering
    rxFilt = upfirdn(rxEDRWaveform,filtCoeff,1,sps);
    receivedEDRSymbols = rxFilt(edrTestParams.span+1:end,1)/sqrt(sps);
    
    % Compute DEVM values
    [rmsDEVM,rmsDEVMSymbol,samplingFreq] = ...
        helperEDRModulationTestMeasurements(receivedEDRSymbols,idealEDRSymbols,edrTestParams);
    
    % Accumulate measured values for 200 blocks as specified in Bluetooth RF-PHY Test Specifications 
    blockCount = blockCount + edrTestParams.numDEVMBlocks;
    symDEVM(((packetCount-1)*edrTestParams.numDEVMBlocks*edrTestParams.blockLength)+1:(packetCount)*edrTestParams.numDEVMBlocks ...
        *edrTestParams.blockLength) = rmsDEVMSymbol(1:edrTestParams.numDEVMBlocks*edrTestParams.blockLength);
    blockRMSDEVM(((packetCount-1)*edrTestParams.numDEVMBlocks)+1:((packetCount)*edrTestParams.numDEVMBlocks)) = ...
        rmsDEVM(1:edrTestParams.numDEVMBlocks);  
    estimatedBlockFreqDrifts(((packetCount-1)*edrTestParams.numDEVMBlocks)+1:((packetCount)*edrTestParams.numDEVMBlocks)) = ...
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        samplingFreq(1:edrTestParams.numDEVMBlocks); 
end

Use the helperEDRModulationTestVerdict.m helper function to verify whether the measurements are
within the specified limits and display the verdict.

helperEDRModulationTestVerdict(phyMode, ...
    edrTestParams,estimatedInitFreqOff,symDEVM,blockRMSDEVM,estimatedBlockFreqDrifts)

Modulation Accuracy Test Results: 

       Expected peak DEVM for all pi/4-DQPSK symbols is less than or equal to 0.35
       Result: Pass
       Percentage of pi/4-DQPSK symbols with DEVM less than or equal to 0.3 is 100
       Expected percentage of pi/4-DQPSK symbols with DEVM less than or equal to 0.3 is 99 % 
       Result: Pass
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       Expected RMS DEVM for all pi/4-DQPSK blocks is less than or equal to 0.2
       Result: Pass
Carrier Frequency Stability Test Results: 
       Expected initial frequency offset range: [-75 kHz, 75 kHz]
       Do estimated initial frequency offsets for all the packets fall under expected values?
       Result: Yes
       Expected sampling frequencies range: [-10 kHz, 10 kHz]
       Do estimated sampling frequencies for all the blocks fall under expected values?
       Result: Yes

% Plot the constellation diagram
if strcmp(phyMode,'EDR2M')
    refSymbols = dpskmod(0:edrTestParams.M-1,edrTestParams.M,pi/4,'gray'); % Perform pi/4-DQPSK modulation
else
    refSymbols = dpskmod(0:edrTestParams.M-1,edrTestParams.M,0,'gray'); % Perform 8-DPSK modulation
end
constDiag = comm.ConstellationDiagram('ReferenceConstellation',refSymbols, ...
    'Title','Received EDR Constellation');
constDiag(receivedEDRSymbols);
release(constDiag);
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This example demonstrates the Bluetooth EDR transmitter test measurements specific to modulation
accuracy and carrier frequency stability. The simulation results verify that these computed test
measurement values are within the limits specified by the Bluetooth RF-PHY Test Specifications [1 on
page 3-0 ].

Appendix

The example uses these helpers:

• helperEDRModulationTestConfig.m: Configure Bluetooth test parameters
• helperEstimateInitialFreqOffset.m: Estimate initial frequency offset
• helperEDRModulationTestMeasurements.m: Compute all DEVM measurements required for test
• helperEDRModulationTestVerdict.m: Validate test measurements and display result
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Bluetooth BR RF-PHY Transmitter Tests for Modulation
Characteristics, Carrier Frequency Offset, and Drift

This example shows how to perform Bluetooth® basic rate (BR) radio frequency (RF) physical layer
(PHY) transmitter tests specific to modulation characteristics, carrier frequency offset, and drift using
the Communications Toolbox™ Library for the Bluetooth Protocol. The test measurements compute
frequency deviation, carrier frequency offset, and drift values. This example also verifies whether
these test measurement values are within the limits specified by the Bluetooth RF-PHY Test
Specifications [1 on page 3-0 ].

Objectives of Bluetooth RF-PHY Tests

The Bluetooth RF-PHY Test Specifications [1 on page 3-0 ] defined by the Bluetooth Special Interest
Group (SIG) include RF-PHY tests for transmitters and receivers. The objectives of these RF-PHY
tests are to:

• Ensure interoperability between all Bluetooth devices.
• Ensure a basic level of system performance for all Bluetooth products.

Each test case has a specified test procedure. The expected outcome must be met by the
implementation under test (IUT).

RF-PHY Transmitter Tests

The main goal of the transmitter test measurements is to ensure that the transmitter characteristics
are within the limits specified by the Bluetooth RF-PHY Test Specifications [1 on page 3-0 ]. This
example includes transmitter tests relevant to modulation characteristics, carrier frequency offset,
and drift. This table shows various RF-PHY transmitter tests performed in this example.

RF-PHY Transmitter Test Procedure

This block diagram summarizes the test procedure for transmitter tests relevant to modulation
characteristics, carrier frequency offset, and drift.
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Generate DH/DM packets and pass through the bluetoothWaveformGenerator function to
generate Bluetooth test waveforms. This table shows the test waveforms and packet type(s) required
for different test IDs:

Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is
installed.

commSupportPackageCheck('BLUETOOTH');

Configure Simulation Parameters

You can change the txTestID, packetType, initFreqOffset, maxFreqDrift and sps
parameters based on the transmitter test, packet type, initial frequency offset, maximum frequency
drift, and samples per symbol, respectively.

txTestID = ;

packetType = ;             % Select packet type as per transmitter test case ID

initFreqOffset = ; % Initial frequency offset in Hz

maxFreqDrift = ;   % Maximum frequency drift in Hz, [-25e3, 25e3] for one slot packet
                                               % [-40e3, 40e3] for three and five slot packets
sps = 32;                                      % Minimum of 4 samples per symbol as per test specifications
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Generate Test Parameters

Test parameters are generated based on transmitter test, packet type, initial frequency offset,
maximum frequency drift and samples per symbol. To generate payload, packet duration, and
waveform configuration parameters, use helperBRModulationTestPacketConfig.m function. To design
channel filter based on the sample rate, use helperModulationTestFilterDesign.m function. To add
frequency offset and thermal noise, create and configurecomm.PhaseFrequencyOffset and
comm.ThermalNoise System objects, respectively.

[payload,packetDuration,cfg] = helperBRModulationTestPacketConfig(txTestID,packetType,sps);
filtDesign = helperModulationTestFilterDesign('BR',sps); % Design channel filter
driftRate = maxFreqDrift/(packetDuration*sps);           % Drift rate
freqDrift = driftRate*(0:1:(packetDuration*sps-1))';     % Frequency drift for the packet
freqOffset = freqDrift + initFreqOffset;                 % Frequency offset, includes initial frequency offset and drift

% Create a phase frequency offset System object
sampleRate = sps*1e6;                                    % Sample rate in Hz
pfo = comm.PhaseFrequencyOffset('FrequencyOffset',freqOffset,'SampleRate',sampleRate);

% Create a thermal noise System object
NF = 12;                                                 % Noise figure (dB)
thNoise = comm.ThermalNoise('NoiseMethod','Noise figure', ...
                            'SampleRate',sampleRate, ...
                            'NoiseFigure',NF);

Simulate Transmitter Tests

To simulate the transmitter tests, follow these steps:

1 Generate a Bluetooth BR waveform for the selected packet type and waveform configuration.
2 Add frequency offset, which includes initial frequency offset and drift to the waveform.
3 Add noise to the waveform.
4 Perform filtering on the noisy waveform.
5 Perform FM demodulation on the filtered waveform.
6 Perform test measurements and display the pass verdict.

filtWaveform = zeros(packetDuration*sps,size(payload,2)); % Initialization
for i = 1:size(payload,2)
    txWaveform = bluetoothWaveformGenerator(payload(:,i),cfg);
    txWaveformValid = txWaveform(1:packetDuration*sps);
    wfmFreqOffset = pfo(txWaveformValid);
    wfmChannel = thNoise(wfmFreqOffset);
    filtWaveform(:,i) = conv(wfmChannel,filtDesign.Coefficients.','same');
end

Based on the transmitter test, the helperBRModulationTestMeasurements.m function performs FM
demodulation and returns these values:

• RF/TRM/CA/BV-07-C: Returns the frequency deviations and center frequencies for the two test
sequences, freq1, freq2, respectively and maximum frequency deviation for the second test
sequence, freq3.

• RF/TRM/CA/BV-08-C: Returns the initial frequency offset, freq1.
• RF/TRM/CA/BV-09-C: Returns the initial frequency offset and frequency drift, freq1 and freq2,

respectively.
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[waveform,freq1,freq2,freq3] = helperBRModulationTestMeasurements(filtWaveform,txTestID,sps,packetType);

The helperBRModulationTestVerdict.m function verifies whether the test measurements are within
the specified limits and displays the verdict.

helperBRModulationTestVerdict(waveform,txTestID,sps,freq1,freq2,freq3)

Test sequence: 11110000
    Measured average frequency deviation: 160 kHz
    Expected average frequency deviation range: [140 kHz, 175 kHz]
    Result: Pass
Test sequence: 10101010
    Expected 99.9% of all maximum frequency deviation greater than 115 kHz
    Result: Pass
Ratio of frequency deviations in the two test sequences: 1.1462
Expected Ratio greater than 0.8
    Result: Pass

This example demonstrates the Bluetooth BR transmitter test measurements specific to modulation
characteristics, carrier frequency offset, and drift. The simulation results verify that these computed
test measurement values are within the limits specified by Bluetooth RF-PHY Test Specifications [1 on
page 3-0 ].

Appendix

The example uses these helpers:
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• helperBRModulationTestPacketConfig.m: Configures Bluetooth transmitter test parameters
• helperModulationTestFilterDesign.m: Designs channel filter
• helperBRModulationTestMeasurements.m: Measures frequency deviation, carrier frequency offset

and drift
• helperModulationCharacteristicsTest.m: Performs modulation characteristics test
• helperBRModulationTestVerdict.m: Validates test measurement values and displays the result
• helperBluetoothPacketDuration.m: Returns the packet duration
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End-to-End Bluetooth BR/EDR PHY Simulation with WLAN
Interference and Adaptive Frequency Hopping

This example presents an end-to-end simulation to demonstrate how adaptive frequency hopping
(AFH) alters the frequency hopping sequence in Bluetooth® basic rate (BR) and enhanced data rate
(EDR) physical layer (PHY) and minimizes the impact of WLAN interference using the
Communications Toolbox™ Library for the Bluetooth® Protocol. Unlike basic frequency hopping, AFH
excludes the Bluetooth channels that are sources of interference. By excluding these channels from
the list of available channels, AFH reassigns the transmission and reception of packets on channels
with relatively less interference. The simulation results in the example show that the packet error
rate (PER) and bit error rate (BER) values of the Bluetooth PHY simulation with WLAN interference
are less with AFH as compared with basic frequency hopping. Also, the example shows the selected
channel index per slot for basic frequency hopping and AFH. The power spectral density of Bluetooth
BR/EDR waveforms with WLAN interference is visualized using the spectrum analyzer.

Bluetooth BR/EDR PHY

The Bluetooth standard specifies two PHY modes: BR and EDR. The Communications Toolbox™
Library for the Bluetooth Protocol support package enables you to model Bluetooth BR/EDR
communication system links, as specified in the Bluetooth Core Specification [1] on page 3-0 .

The Bluetooth BR mode is mandatory, whereas the EDR mode is optional. The Bluetooth BR/EDR
radio implements a 1600 hops/s frequency hopping spread spectrum (FHSS) technique. The radio
hops in a pseudo-random way on 79 designated Bluetooth channels. Each Bluetooth channel has a
bandwidth of 1 MHz. Each channel is centered at (2402 + k) MHz, where k = 0, 1, ..., 78. The
modulation technique on BR and EDR mode payloads is Gaussian frequency shift-keying (GFSK) and
differential phase shift-keying (DPSK), respectively. The baud rate is 1 MSymbols/s. The Bluetooth
BR/EDR radio uses time division duplex (TDD) in which data transmission occurs in one direction at
one time. The transmission alternates in two directions, one after the other.

For more information about the Bluetooth BR/EDR radio and the protocol stack, see “Bluetooth
Protocol Stack” on page 13-7. For more information about Bluetooth BR/EDR packet structures,
see “Bluetooth Packet Structure” on page 13-23.

Adaptive Frequency Hopping

The objective of using FHSS in Bluetooth is to provide diversity that allows to minimize BER even if
the interfering networks or the physical environment renders some channels unusable. Frequency
hopping techniques can either implement a fixed sequence of channel hops such as with basic
frequency hopping or adapt its hopping sequence dynamically with AFH to varying interference
conditions.

Prior to AFH capability, Bluetooth devices implemented the basic frequency hopping scheme. In this
approach, a Bluetooth radio hops in a pseudo-random way at the rate of 1600 hops/s. When another
wireless device operating in the same 2.4 GHz band comes into the environment, the basic frequency
hopping scheme results in occasional collisions. For example, Bluetooth and WLAN are two such
networks that operate in the 2.4 GHz frequency band. Bluetooth and WLAN radios often operate in
the same physical scenario and on the same device. In these cases, Bluetooth and WLAN
transmissions can interfere with each other. This interference impacts the performance and reliability
of both networks. This figure shows a scenario in which Bluetooth and WLAN packet transmissions
interfere with each other.
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AFH enables Bluetooth to minimize collisions by avoiding sources of interference and excluding them
from the list of available channels.This figure shows the previous scenario with AFH enabled.

This procedure of remapping involves reducing the number of channels to be used by Bluetooth. The
Bluetooth Core Specifications [1] on page 3-0  require at least 20 channels for Bluetooth
transmissions.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed.
commSupportPackageCheck('BLUETOOTH');
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Bluetooth BR/EDR Transmitter and Receiver Chain

This example demonstrates an end-to-end Bluetooth BR/EDR waveform processing by using the
frequency hopping mechanism defined in the Bluetooth Core Specification [1] on page 3-0 . The
generated Bluetooth BR/EDR waveform is frequency modulated and then distorted with WLAN
interference. This flowchart shows the Bluetooth transmitter and receiver chain.

Transmitter chain

1 Select a channel index for the transmission.
2 Generate random input bits.
3 Generate a Bluetooth BR/EDR waveform.
4 Apply a frequency offset based on the selected channel index.

Receiver chain

1 Select a channel index for reception.
2 Apply a frequency offset based on the selected channel index.
3 Decode the Bluetooth BR/EDR waveform to get the output bits.

Wireless Channel

1 Add WLAN (IEEE 802.11b) interference to Bluetooth BR/EDR waveform.
2 Add AWGN to Bluetooth BR/EDR waveform.

Results

The example displays these results for basic frequency hopping and AFH.

• The PER and BER for the simulations performed under an additive white gaussian noise (AWGN)
channel for a given bit energy to noise density ratio (Eb/No) value

• The received signal spectrum and the spectrogram of the channel
• A plot displaying the selected channel index per transmission or reception slot
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Configure Simulation Parameters

Configure the desired Bluetooth packet type, payload length, PHY mode, and simulation time.

simulationTime = 2*1e6; % Simulation time in microseconds

packetType     = ; % Specify baseband packet type

mode           = ; % Specify PHY mode ('BR', 'EDR2M', 'EDR3M')
payloadLength  = 10; % Length of baseband packet in bytes

Configure Frequency Hopping

Use the bluetoothFrequencyHop object to select a channel index for the transmission and
reception of Bluetooth BR/EDR waveforms.

% Bluetooth frequency hopping
frequencyHop = bluetoothFrequencyHop;
frequencyHop.SequenceType = 'Connection Adaptive';

Configure Bluetooth PHY

Use the helperBluetoothPHY helper object to model the Bluetooth BR/EDR waveform transmission
and reception.

% Configure Bluetooth PHY transmission
phyTx = helperBluetoothPHY;
phyTx.Mode = mode;

% Configure Bluetooth PHY reception
phyRx = helperBluetoothPHY;
phyRx.Mode = mode;

Configure Channel and WLAN Interference:

Use helperBluetoothChannel object to configure the wireless channel. You can set the EbNo value for
the AWGN channel. To generate the interfering WLAN waveform, use the
helperBluetoothGenerateWLANWaveform function. Specify the sources of WLAN interference by
using wlanInterferenceSource parameter. The WLAN signal is present between -10 to 10 MHz
throughout the simulation. Use one of these options to specify the source of WLAN interference.

• ‘Generated’: To add WLAN signal from the WLAN Toolbox™, select this option.
• ‘BasebandFile’: To add a WLAN signal from a baseband file (.bb), select this option and specify

the baseband file name in the WLANBBFilename property. If you do not specify the .bb file, the
example uses the default .bb file, WLANNonHTDSSS.bb, to add the WLAN signal.

• ‘None’: No WLAN signal is added.

AWGN is present throughout the simulation.

% Specify as one of 'Generated' | 'BasebandFile' | 'None'

wlanInterferenceSource = ;
wlanBBFilename = 'WLANNonHTDSSS.bb'; % Default baseband file
% Configure wireless channel
channel = helperBluetoothChannel;
channel.EbNo = 22; % Ratio of energy per bit (Eb) to the spectral noise density (No) in dB
channel.SIR = -20; % Signal to interference ratio in dB

 End-to-End Bluetooth BR/EDR PHY Simulation with WLAN Interference and Adaptive Frequency Hopping

3-79



if ~strcmpi(wlanInterferenceSource, 'None')
    % Generate the WLAN waveform
    wlanWaveform = helperBluetoothGenerateWLANWaveform(wlanInterferenceSource, wlanBBFilename);
    % Add the WLAN interference to Bluetooth channel
    addWLANWaveform(channel, wlanWaveform);
end

Simulation Setup

Initialize parameters to perform the end-to-end Bluetooth BR/EDR simulation.

slotTime = 625; % Bluetooth slot duration in microseconds
% Simulation time in terms of slots
numSlots = floor(simulationTime/slotTime);
% Slot duration, including transmission and reception
slotValue = phyTx.slotsRequired(packetType)*2;
% Number of Master transmission slots
numMasterTxSlots = floor(numSlots/slotValue);
% Total number of Bluetooth physical channels
numBtChannels = 79;
% errorsBasic and errorsAdaptive store relevant bit and packet error
% information per channel. Each row stores the channel index, bit errors,
% packet errors, total bits, and BER per channel. errorsBasic and
% errorsAdaptive arrays store these values for basic frequency hopping
% and AFH, respectively.
[errorsBasic, errorsAdaptive] = deal(zeros(numBtChannels,5));
% Initialize first column with channel numbers
[errorsBasic(:,1), errorsAdaptive(:,1)] = deal(0:78);
% Initialize variables for calculating PER and BER
[berBasic, berAdaptive, bitErrors] = deal(0);
badChannels = zeros(1,0);
totalTransmittedPackets = numMasterTxSlots;
% Number of bits per octet
octetLength = 8;
% Sample rate and input clock used in PHY processing
samplePerSymbol = 88;
symbolRate = 1e6;
sampleRate = symbolRate*samplePerSymbol;
inputClock = 0;
% Store hop index
hopIndex = zeros(1, numMasterTxSlots);
% Index to hop index vector
hopIdx = 1;
% Baseband packet structure
basebandData = struct(...
    'LTAddr',1,             ... % Logical transport address
    'PacketType',packetType,... % Packet type
    'Payload',zeros(1,phyTx.MaxPayloadSize), ... % Payload
    'PayloadLength',0,  ... % Payload length
    'LLID',[0; 0],      ... % Logical link identifier
    'SEQN',0,           ... % Sequence number
    'ARQN',1,           ... % Acknowledgment flag
    'IsValid',false);   ... % Flag to identify the status of
    % cyclic redundancy check (CRC) and
% header error control (HEC)

% Bluetooth signal structure
bluetoothSignal = struct(...
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    'PacketType',packetType, ... % Packet type
    'Waveform',[],           ... % Waveform
    'NumSamples',[],         ... % Number of samples
    'SampleRate',sampleRate, ... % Sample rate
    'SamplesPerSymbol',samplePerSymbol,      ... % Samples per symbol
    'Payload',zeros(1,phyTx.MaxPayloadSize), ... % Payload
    'PayloadLength',0, ... % Payload length
    'SourceID',0,      ... % Source identifier
    'Bandwidth',1,     ... % Bandwidth
    'NodePosition',[0 0 0], ... % Node position
    'CenterFrequency',centerFrequency(phyTx), ... % Center frequency
    'StartTime',0, ... % Waveform start time
    'EndTime',0,   ... % Waveform end time
    'Duration',0); ... % Waveform duration

% Clock ticks(one slot is 2 clock ticks)
clockTicks = slotValue*2;

To visualize the Bluetooth BR/EDR waveforms, create a dsp.SpectrumAnalyzer System object™.

% Spectrum analyzer for basic frequency hopping
spectrumAnalyzerBasic = dsp.SpectrumAnalyzer(...
    'Name','Bluetooth Basic Frequency Hopping', ...
    'ViewType','Spectrum and spectrogram', ...
    'TimeResolutionSource','Property', ...
    'TimeResolution',0.0005, ...
    'SampleRate',sampleRate, ...
    'TimeSpanSource','Property', ...
    'TimeSpan', 0.05, ...
    'FrequencyResolutionMethod', 'WindowLength', ...
    'WindowLength', 512, ...
    'AxesLayout', 'Horizontal', ...
    'FrequencyOffset',2441*1e6, ...
    'ColorLimits',[-20 15]);

% Spectrum analyzer for AFH
spectrumAnalyzerAdaptive = dsp.SpectrumAnalyzer(...
    'Name','Bluetooth Adaptive Frequency Hopping', ...
    'ViewType','Spectrum and spectrogram', ...
    'TimeResolutionSource','Property', ...
    'TimeResolution',0.0005, ...
    'SampleRate',sampleRate, ...
    'TimeSpanSource','Property', ...
    'TimeSpan',0.05, ...
    'FrequencyResolutionMethod','WindowLength', ...
    'WindowLength',512, ...
    'AxesLayout','Horizontal', ...
    'FrequencyOffset',2441*1e6, ...
    'ColorLimits',[-20 15]);

Simulations

The Bluetooth transmitter and receiver chain is simulated using basic frequency hopping and AFH.
Using per channel PER and BER results of basic frequency hopping, derive a list of used channels.
The list of used channels is fed as an input to the simulation using AFH.

Basic Frequency Hopping
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The simulation runs for all the specified number of Master transmission slots. Simulates the
transmitter chain, receiver chain, and channel for each slot. At the end of the simulation, the example
computes the PER and BER for all the Bluetooth BR/EDR waveforms.

sprev = rng('default'); % Set random number generator seed
for slotIdx = 0:slotValue:numSlots-slotValue
    % Update clock
    inputClock = inputClock + clockTicks;

    % Frequency hopping
    [channelIndex,~] = nextHop(frequencyHop,inputClock);
    % PHY transmission
    stateTx = 1; % Transmission state
    TxBits = randi([0 1],payloadLength*octetLength,1);
    basebandData.Payload = TxBits;
    basebandData.PayloadLength = payloadLength;
    % Generate whiten initialization vector from clock
    clockBinary = comm.internal.utilities.de2biBase2RightMSB(inputClock,28);
    whitenInitialization = [clockBinary(2:7)'; 1];
    % Update the PHY with request from the baseband layer
    updatePHY(phyTx,stateTx,channelIndex,whitenInitialization,basebandData);
    % Initialize and pass elapsed time as zero
    elapsedTime = 0;
    [nextTxTime,btWaveform] = run(phyTx,elapsedTime); % Run PHY transmission
    run(phyTx, nextTxTime); % Update next invoked time

    % Channel
    bluetoothSignal.Waveform = btWaveform;
    bluetoothSignal.NumSamples = numel(btWaveform);
    bluetoothSignal.CenterFrequency = centerFrequency(phyTx);
    channel.ChannelIndex = channelIndex;
    bluetoothSignal = run(channel,bluetoothSignal,mode);
    distortedWaveform = bluetoothSignal.Waveform;

    % PHY reception
    stateRx = 2; % Reception state
    % Update the PHY with request from the baseband layer
    updatePHY(phyRx,stateRx,channelIndex,whitenInitialization);
    [nextRxTime,~] = run(phyRx,elapsedTime,bluetoothSignal);
    bluetoothSignal.NumSamples = 0;
    run(phyRx,nextRxTime,bluetoothSignal); % Run PHY reception
    chIdx = channelIndex + 1;

    % Calculate error rate upon successful decoding the packet
    if phyRx.Decoded
        rxBitsLength = phyRx.DecodedBasebandData.PayloadLength*octetLength;
        RxBits = phyRx.DecodedBasebandData.Payload(1:rxBitsLength);
        % BER calculation
        txSymLength = length(TxBits);
        rxSymLength = length(RxBits);
        minSymLength = min(txSymLength,rxSymLength);
        if minSymLength > 0
            bitErrors = sum(xor(TxBits(1:minSymLength),RxBits(1:minSymLength)));
            totalBits = minSymLength;
            % Bit errors found in channel
            errorsBasic(chIdx,2) = errorsBasic(chIdx,2) + bitErrors;
            % Total bits transmitted in channel
            errorsBasic(chIdx,4) = errorsBasic(chIdx,4) + totalBits;
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        end
        if ~phyRx.DecodedBasebandData.IsValid || bitErrors
            % Packet errors found in channel
            errorsBasic(chIdx,3) = errorsBasic(chIdx,3) + 1;
        end
    else
        % Packet errors found in channel
        errorsBasic(chIdx,3) = errorsBasic(chIdx,3) + 1;
    end
    hopIndex(hopIdx) = channelIndex;
    hopIdx = hopIdx + 1;

    % Plot spectrum
    spectrumAnalyzerBasic(btWaveform + wlanWaveform(1:numel(btWaveform)));
    pause(0.01);
end

In the previous figure, the plot on the left shows the spectrum of the Bluetooth BR/EDR waveform
distorted with WLAN interference in the frequency domain and passed through the AWGN channel.
The plot on the right shows that the WLAN signal is present from –10 to 10 MHz. The results show
that Bluetooth packets with the interfering WLAN signal overlap.

% Plot selected channel index per slot
figBasic = figure('Name','Basic frequency hopping');
axisBasic = axes(figBasic);
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xlabel(axisBasic,'Slot');
ylabel(axisBasic,'Channel Index');
ylim(axisBasic,[0 numBtChannels+3]);
title(axisBasic,'Bluetooth Basic Frequency Hopping');
hold on;
plot(axisBasic,0:slotValue:numSlots-slotValue,hopIndex,'-o');

This plot displays the selected channel index per transmission or reception slot using basic frequency
hopping. In this case all of the channels are used channels.

Channel Classification

The channels with more packet errors are marked as bad channels. Based on the bit and packet
errors collected from the above simulation, calculate the PER and BER.

% Select 25 channels with highest packet errors as bad channels
[~,indexes] = sort(errorsBasic(:,3),'descend');
badChannelIdx = min(nnz(errorsBasic(:,3)),25);
if badChannelIdx ~= 0
    badChannels = indexes(1:badChannelIdx) - 1;
end
usedChannels = setdiff(0:numBtChannels-1,badChannels);

% BER per channel calculation
errorsBasic(:,5) = errorsBasic(:,2)./errorsBasic(:,4);
errorsBasic(:,5) = fillmissing(errorsBasic(:,5),'constant',0);
ber = nonzeros(errorsBasic(:,5));
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if ~isempty(ber)
    berBasic = mean(ber);
end

% PER calculation
packetErrorsBasic = sum(errorsBasic(:,3));
perBasic = packetErrorsBasic/totalTransmittedPackets;

% Reset
hopIdx = 1;
[inputClock,bitErrors] = deal(0);
fprintf('PER of Bluetooth BR/EDR waveforms using basic frequency hopping: %.4f\n',perBasic);

PER of Bluetooth BR/EDR waveforms using basic frequency hopping: 0.2787

fprintf('BER of Bluetooth BR/EDR waveforms using basic frequency hopping: %.4f\n',berBasic);

BER of Bluetooth BR/EDR waveforms using basic frequency hopping: 0.0550

Adaptive Frequency Hopping

Set the value of the sequence type as 'Connection adaptive' and specify the classified used
channels.

frequencyHop.SequenceType = 'Connection adaptive';
frequencyHop.UsedChannels = usedChannels;

Run the simulation using AFH and compute the PER and BER.

%rng('default'); % Set random number generator seed
for slotIdx = 0:slotValue:numSlots-slotValue
    % Update clock
    inputClock = inputClock + clockTicks;

    % Frequency hopping
    [channelIndex,~] = nextHop(frequencyHop,inputClock);

    % PHY transmission
    stateTx = 1; % Transmission state
    TxBits = randi([0 1],payloadLength*octetLength,1);
    basebandData.Payload = TxBits;
    basebandData.PayloadLength = payloadLength;
    % Generate whiten initialization vector from clock
    clockBinary = comm.internal.utilities.de2biBase2RightMSB(inputClock,28);
    whitenInitialization = [clockBinary(2:7)'; 1];
    % Update the PHY with request from the baseband layer
    updatePHY(phyTx,stateTx,channelIndex,whitenInitialization,basebandData);
    % Initialize and pass elapsed time as zero
    elapsedTime = 0;
    [nextTxTime,btWaveform] = run(phyTx,elapsedTime); % Run PHY transmission
    run(phyTx,nextTxTime); % Update next invoked time

    % Channel
    bluetoothSignal.Waveform = btWaveform;
    bluetoothSignal.NumSamples = numel(btWaveform);
    bluetoothSignal.CenterFrequency = centerFrequency(phyTx);
    channel.ChannelIndex = channelIndex;
    bluetoothSignal = run(channel,bluetoothSignal,mode);
    distortedWaveform = bluetoothSignal.Waveform;
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    % PHY reception
    stateRx = 2; % Reception state
    % Update the PHY with request from the baseband layer
    updatePHY(phyRx,stateRx,channelIndex,whitenInitialization);
    [nextRxTime,~] = run(phyRx,elapsedTime,bluetoothSignal);
    bluetoothSignal.NumSamples = 0;
    run(phyRx,nextRxTime,bluetoothSignal); % Run PHY reception
    chIdx = channelIndex + 1;
    
    % Calculate error rate upon successful decoding the packet
    if phyRx.Decoded
        rxBitsLength = phyRx.DecodedBasebandData.PayloadLength*octetLength;
        RxBits = phyRx.DecodedBasebandData.Payload(1:rxBitsLength);
        % BER calculation
        txSymLength = length(TxBits);
        rxSymLength = length(RxBits);
        minSymLength = min(txSymLength,rxSymLength);
        if minSymLength > 0
            bitErrors = sum(xor(TxBits(1:minSymLength),RxBits(1:minSymLength)));
            totalBits = minSymLength;
            % Bit errors found in channel
            errorsAdaptive(chIdx,2) = errorsAdaptive(chIdx,2) + bitErrors;
            % Total bits transmitted in channel
            errorsAdaptive(chIdx,4) = errorsAdaptive(chIdx,4) + totalBits;
        end

        if ~phyRx.DecodedBasebandData.IsValid || bitErrors
            % Packet errors found in channel
            errorsAdaptive(chIdx, 3) = errorsAdaptive(chIdx, 3) + 1;
        end
    else
        % Packet errors found in channel
        errorsAdaptive(chIdx, 3) = errorsAdaptive(chIdx, 3) + 1;
    end
    hopIndex(hopIdx) = channelIndex;
    hopIdx = hopIdx + 1;

    % Plot spectrum
    spectrumAnalyzerAdaptive(btWaveform + wlanWaveform(1:numel(btWaveform)));
    pause(0.01);
end
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In the previous plot, you can observe that the transmission of Bluetooth packets does not overlap with
the WLAN signal. AFH excludes the channels that are sources of WLAN interference and reassigns
the transmission of Bluetooth packets on channels with relatively less interference.

% Plot selected channel index per slot
figAdaptive = figure('Name','Adaptive Frequency Hopping');
axisAdaptive = axes(figAdaptive);
xlabel(axisAdaptive,'Slot');
ylabel(axisAdaptive,'Channel Index');
title(axisAdaptive,'Bluetooth Adaptive Frequency Hopping');
ylim(axisAdaptive,[0 numBtChannels+3]);
hold on;
plot(axisAdaptive,0:slotValue:numSlots-slotValue,hopIndex,'-o');
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This plot displays the selected channel index per transmission or reception slot using AFH. To
minimize the packet and bit errors in the wireless channel, AFH selects only used channels for
transmission or reception of Bluetooth BR/EDR waveforms

Compute the PER and BER of the Bluetooth BR/EDR waveforms with AFH.

% BER per channel calculation
errorsAdaptive(:,5) = errorsAdaptive(:,2)./errorsAdaptive(:,4);
errorsAdaptive(:,5) = fillmissing(errorsAdaptive(:,5),'constant',0);
ber = nonzeros(errorsAdaptive(:,5));
if ~isempty(ber)
    berAdaptive = mean(ber);
end

% PER calculation
packetErrorsAdaptive = sum(errorsAdaptive(:,3));
perAdaptive = packetErrorsAdaptive/totalTransmittedPackets;
fprintf('PER of Bluetooth BR/EDR waveforms using adaptive frequency hopping: %.4f\n',perAdaptive);

PER of Bluetooth BR/EDR waveforms using adaptive frequency hopping: 0.0625

fprintf('BER of Bluetooth BR/EDR waveforms using adaptive frequency hopping: %.4f\n',berAdaptive);

BER of Bluetooth BR/EDR waveforms using adaptive frequency hopping: 0.0020

% Restore previous setting of random number generation
rng(sprev);

3 Bluetooth Toolbox Examples

3-88



The PER and BER values of the Bluetooth BR/EDR waveforms are less with AFH as compared with
basic frequency hopping.

This example simulates an end-to-end transmitter-receiver chain to study how AFH mitigates
interference between the Bluetooth BR/EDR and WLAN signals. The simulation results verify that the
PER and the BER of the Bluetooth BR/EDR waveforms with WLAN interference is less with AFH as
compared to basic frequency hopping.

Appendix

The example uses this feature.

• bluetoothFrequencyHop: Bluetooth BR/EDR channel index for frequency hopping

The example uses these helpers:

• helperBluetoothPHY: Configure and simulate Bluetooth PHY
• helperBluetoothChannel: Configure and simulate wireless channel
• helperBluetoothGenerateWLANWaveform: Generates WLAN waveform to be added as an

interference to Bluetooth waveforms
• helperBluetoothWLANDSSSSpectrumMask: Calculates adjacent channel interference power using

the WLAN 802.11b (DSSS) spectrum masks
• helperBluetoothPacketDuration: Calculate duration of Bluetooth packet

Selected Bibliography

1 Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification" Version 5.2.https://
www.bluetooth.com.

See Also

More About
• “Bluetooth-WLAN Coexistence” on page 13-60
• “Configure Bluetooth BR/EDR Channel with WLAN Interference and Pass the Waveform” on

page 13-96
• “Packet Distribution in Bluetooth Piconet” on page 13-106
• “BLE Coexistence Model with WLAN Signal Interference” on page 3-175
• “Bluetooth Full Duplex Data and Voice Transmission in MATLAB” on page 3-51
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End-to-End BLE PHY Simulation Using Path Loss Model, RF
Impairments, and AWGN

This example uses Communications Toolbox™ Library for the Bluetooth® Protocol to perform end-to-
end Bluetooth low energy (BLE) simulation for different BLE physical layer (PHY) transmission modes
in the presence of the path loss model, radio front-end (RF) impairments, and additive white Gaussian
noise (AWGN). The simulation results show the estimated value of the bit error rate (BER), path loss,
and distance between the transmitter and receiver.

Path Loss Modeling in BLE Network

The Bluetooth Core Specifications [1] on page 3-0  defined by the Bluetooth Special Interest Group
(SIG) introduced BLE to enable low-power short-range communication. BLE devices operate in the
globally unlicensed industrial, scientific, and medical (ISM) band in a frequency range from 2.4 GHz
to 2.485 GHz. BLE specifies a channel spacing of 2 MHz, resulting in 40 RF channels. The prominent
applications of BLE include direction finding services and building intelligent internet of things (IoT)
solutions to facilitate home, commercial, and industrial automation. For more information about
direction finding services in BLE, see the “Bluetooth Location and Direction Finding” on page 13-37
topic.

In past few years, there has been a significant increase in designing BLE networks for a plethora of
use case scenarios. To achieve high performance and quality in the BLE network, studying the
propagation of the BLE signal along the link between the transmitter and the receiver is
recommended. This example shows an end-to-end BLE simulation considering these factors that
impact the propagation of BLE signals along the communication link between the transmitter and
receiver.

• Receiver sensitivity
• Path loss model
• Transmit power
• Antenna gain

Receiver Sensitivity

Receiver sensitivity is the measure of minimum signal strength at which the receiver can detect,
demodulate, and decode the waveform. The reference sensitivity level specified in the Bluetooth Core
Specifications [1] on page 3-0  is -70 dBm. However, the actual sensitivity level for the receiver as
per the Bluetooth Core Specifications [1] on page 3-0  is defined as the receiver input level for
which the BER specified in this table is achieved.
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This table shows the actual sensitivity level of the receiver for a given PHY transmission mode.

Path Loss Model

Path loss or path attenuation is the decline in the power density of a given signal as it propagates
from the transmitter to receiver through space. This reduction in power density occurs naturally over
the distance and is impacted by the obstacles present in the environment in which the signal is being
transmitted. The path loss is generally expressed in decibels (dB) and is calculated as:

PLdB = Pt− Pr.

In this equation,

• PLdB is the path loss in dB.

• Pt is the transmitted signal power in dB.

• Pr is the received signal power in dB.
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Path loss models describe the signal attenuation between the transmitter and receiver based on the
propagation distance and other parameters such as frequency, wavelength, path loss exponent, and
antenna gains. The example considers these path loss models:

• Free-space [3] on page 3-0
• Log-distance [3] on page 3-0
• Log-normal shadowing [3] on page 3-0
• Two-ray ground reflection [3] on page 3-0
• NIST PAP 02-Task 6 [4] on page 3-0

Free-Space Path Loss Model

Free-space path loss is the attenuation of signal strength between the transmitter and receiver along
the line of sight (LoS) path through free space (usually air), excluding the effect of the obstacles in
the path. The free-space path loss is calculated as:

PLdB = 20log 4πd
λ .

In this equation,

• d is the distance between the transmitter and receiver.
• λ is the signal wavelength.

Log-Distance Path Loss Model

A log-distance path loss model reflects the path loss that a signal encounters in an indoor
environment such as a building. It is computed as:

PLdB = PL0 + 10γlog d
d0

.

In this equation,

• PL0 is the path loss at the reference distance d0.
• d is the distance between the transmitter and receiver.
• d0 is the reference distance.
• γ is the path loss exponent.

Log-Normal Shadowing Path Loss Model

The log-normal shadowing model is an extension of log-distance path loss model. Unlike the log-
distance model, the log-normal shadowing model considers the fact that the surrounding environment
clutter can be vastly different at two different locations having the same transmitter-receiver
separation. Measurements show that at any transmitter-receiver distance, d, the path loss at a
particular location is random and distributed log normally (in dB) about the mean distance dependent
value. The path loss is calculated as:

PLdB d = PLdB d0 + 10γlog d
d0

+ Xσ.

In this equation,
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• PLdB d0  is the path loss at the reference distance d0.
• d is the distance between the transmitter and receiver.
• d0 is the reference distance.
• γ is the path loss exponent.
• Xσ is the normal or Gaussian random variable with zero mean, reflecting the attenuation caused

by the flat fading.

Two-Ray Ground Reflection Model

The two-ray ground reflection model is a radio propagation model that estimates the path loss
between the transmitter and receiver by considering these two signal components: LoS and the
component reflected from the ground. When the transmitter and receiver antenna heights are
approximately similar and the distance between the antennas is very large relative to the height of
the antennas, then the path loss is calculated as:

PLlinear scale =
G ht

2hr
2

d4 .

The path loss in logarithmic scale is calculated as:

PLdB = 40log10 d − 10log10 G ht
2hr

2 .

In this equation,

• d is the distance between the transmitter and receiver.
• G is the product of antenna gains.
• ht is the height of the transmitter.
• hr is the height of the receiver.

NIST PAP02-Task 6 Model

The National Institute of Standards and Technology (NIST) conducted studies for indoor to indoor,
outdoor to outdoor, and outdoor to indoor propagation paths and derived these equations for
calculating the path loss:

PLd = PL0 + 10 n0 log10 d
d0

. for d ≤ d1

PLd = PL0 + 10 n0 log10 d
d0

+ 10 n1 log10 d
d1

. for d > d1

In these equations,

• PL0 is the path loss at the reference distance d0.
• n0,n1 are the path loss exponents.
• d is the distance between the transmitter and receiver.
• d0 is the reference distance, assumed to be 1 meter in simulations.
• d1 is the breakpoint where the path loss exponent adjusts from n0 to n1.
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The example considers these values for different environments.

Most of these measurements for the NIST PAP02 Task 6 channel model were taken with transmitters
and receivers located in hallways with distances ranging from 5 m to 45 m.

Transmit Power

Transmit power is the power of the radio frequency signal generated by the transmitter. Increasing
the transmit power increases the likelihood that the signal can be transmitted over longer distances.
Bluetooth supports transmit power from -20 dBm (0.01 mW) to 20 dBm (100 mW).

Antenna Gain

Antenna gain is the factor by which the antenna improves the total radiated power. Bluetooth
designers can choose to implement a variety of antenna options. Bluetooth devices typically achieve
an antenna gain in the range from -10 dBi to 10 dBi.

End-to-End BLE Simulation Procedure

The end-to-end BLE PHY simulations estimate the BER and the distance between the transmitter and
receiver by considering a specific path loss model with RF impairments and AWGN added to the
transmission packets.

For a given set of simulation parameters, obtain the signal-to-noise ratio (SNR) at the receiver by
assuming a fixed noise figure. For the obtained value of SNR including the path loss, generate the
BLE waveform using bleWaveformGenerator function. Distort the generated waveform with RF
impairments and AWGN. Each packet is distorted by these RF impairments:

• DC offset
• Carrier frequency offset
• Carrier phase offset
• Timing drift

The noisy packets are processed through a practical BLE receiver that performs these operations:

1 Automatic gain control (AGC)
2 DC removal
3 Carrier frequency offset correction
4 Matched filtering
5 Packet detection
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6 Timing error detection
7 Demodulation and decoding
8 De-whitening

The end-to-end example chain is summarized in these block diagrams

The BER is obtained by comparing the transmitted and recovered data bits.

Check for the Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is installed
or not.

commSupportPackageCheck('BLUETOOTH');

Configure Simulation Parameters

In this example, the distance between the transmitter and receiver is estimated based on the
environment and the power levels of the signal at the transmitter and receiver.
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Configure parameters related to the communication link between the transmitter and
receiver

pathLossModel = ;          % Path loss model

rxSensitivity =  ; % Receiver sensitivity in dBm

txPower = ;          % Transmit power in dBm

txAntennaGain = ;    % Transmitter antenna gain in dB

rxAntennaGain = ;    % Receiver antenna gain in dB
linkMargin = 15;                              % Link margin(dB) assumed in the simulation

Configure parameters for waveform generation

samplesPerSymbol = 8;                 % Samples per symbol

dataLen = ;  % Data length in bytes

phyMode = ;       % PHY transmission mode

% Default access address for periodic advertising channels
accessAdd = [0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1]';

% Random data bits generation
txBits = randi([0 1],dataLen*8,1,'int8');

% Random channel index

chanIndex = ;
fc = (2*chanIndex+2402)*1e6; % Center frequency in Hz

% Generate BLE waveform
txWaveform = bleWaveformGenerator(txBits,'Mode',phyMode,...
                    'SamplesPerSymbol',samplesPerSymbol,...
                    'ChannelIndex',chanIndex,...
                    'AccessAddress',accessAdd);

Configure noise and signal power at the receiver

The noise floor of the receiver is simulated with thermal noise. The height of the noise floor
determines the SNR at the receiver. The noise figure of the receiver determines the level of noise
floor.

NF = 6;            % Noise figure (dB)
T = 290;           % Ambient temperature (K)
dBm2dBFactor = 30; % Factor for converting dBm to dB

% Symbol rate based on the PHY transmission mode
symbolRate = 1e6; 
if strcmp(phyMode,'LE2M')
    symbolRate = 2e6;
end
BW = samplesPerSymbol*symbolRate; % Bandwidth (Hz)
k = 1.3806e-23;                   % Boltzmann constant (J/K)
noiseFloor = 10*log10(k*T*BW)+NF; % Nosie floor in dB
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% Measure signal power at the receiver based on the receiver sensitivity and
% assumed link margin
measuredPowerVector = rxSensitivity - dBm2dBFactor+linkMargin;
snrdB = measuredPowerVector - noiseFloor; % SNR in dB

Distort BLE Waveform

Distort the generated BLE waveform using RF impairments, path loss, and AWGN.

Add RF Impairments

The RF impairments are generated randomly and added to the BLE waveform.

% Create and configure the System objects for impairments
initImp = helperBLEImpairmentsInit(phyMode,samplesPerSymbol);

% Configure RF impairments

initImp.pfo.FrequencyOffset = ; % Frequency offset in Hz

initImp.pfo.PhaseOffset = ;         % Phase offset in degrees
initoff = 0.15*samplesPerSymbol; % Static timing offset
stepsize = 20*1e-6;              % Timing drift in ppm, Max range is +/- 50 ppm
initImp.vdelay = (initoff:stepsize:initoff+stepsize*(length(txWaveform)-1))';
initImp.dc = 20; % Percentage related to maximum amplitude value

% Pass generated BLE waveform through RF impairments
txImpairedWfm = helperBLEImpairmentsAddition(txWaveform,initImp);

Attenuate Impaired BLE Waveform

Obtain the path loss value and attenuate the impaired BLE waveform.

% Obtain the path loss value in dB
pldB = txPower-dBm2dBFactor+rxAntennaGain+txAntennaGain-measuredPowerVector;
plLinear = 10^(pldB/20); % Convert from dB to linear scale

% Attenuate BLE waveform
attenWaveform  = txImpairedWfm./plLinear;

Add AWGN

Add AWGN to the attenuated BLE waveform.

% Add WGN to the attenuated BLE waveform
rxWaveform = awgn(attenWaveform,snrdB,'measured');

Simulation Results

Estimate and display the BER and the distance between the transmitter and the receiver by
processing the distorted BLE waveform through the practical receiver.

Receiver Processing

To retrieve the data bits, pass the attenuated, AWGN-distorted BLE waveform through the practical
receiver.

% Create and configure the receiver System objects 
initRxParams = helperBLEReceiverInit(phyMode,samplesPerSymbol,accessAdd);
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% Recover data bits using practical receiver
[rxBits,accessAddress] = helperBLEPracticalReceiver(rxWaveform,initRxParams,chanIndex);

Estimate BER

Estimate value of the BER based on the retrieved and the transmitted data bits.

% Obtain BER by comparing the transmitted and recovered bits
ber = [];
if(length(txBits) == length(rxBits))
    ber = (sum(xor(txBits,rxBits))/length(txBits));
end

Estimate Distance

Estimate the distance between the transmitter and the receiver.

% Estimate the distance between the transmitter and the receiver based on the path loss value and the environment
if any(strcmp(pathLossModel,{'Free space','Log distance','Log normal shadowing'})) 
    
    % Center frequency is required only for these path loss models
    distance = helperBluetoothEstimateDistance(pathLossModel,pldB,fc);
else
    distance = helperBluetoothEstimateDistance(pathLossModel,pldB);  
end

Display Results

Display the estimated results and plot the spectrum of the transmitted and received BLE waveform.

% Display estimated BER and distance between the transmitter and the receiver.
disp(['Input configuration: ', newline , '    PHY transmission mode: ', phyMode,....
    newline,'    Path loss model: ', pathLossModel]);

Input configuration: 
    PHY transmission mode: LE1M
    Path loss model: Free space

disp(['Estimated outputs: ', newline , '    Path loss : ', num2str(pldB), ' dB'....
    newline,'    Distance between the transmitter and receiver: ', num2str(distance), ' m', newline, ...
    '    BER: ', num2str(ber)]);

Estimated outputs: 
    Path loss : 55 dB
    Distance between the transmitter and receiver: 5.422 m
    BER: 0

% Plot the spectrum of the transmitted and received BLE waveform
specAnalyzer = dsp.SpectrumAnalyzer('NumInputPorts',2,'SampleRate',symbolRate*samplesPerSymbol,...
    'Title','Spectrum of Transmitted and Received BLE Signals',...
   'ShowLegend',true,'ChannelNames',{'Transmitted BLE signal','Received BLE signal'});
specAnalyzer(txWaveform,rxWaveform);
release(specAnalyzer);
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This example demonstrates an end-to-end BLE simulation for different PHY transmission modes by
considering the path loss model, RF impairments, and AWGN. The obtained simulation results display
the path loss, estimated distance between the transmitter and receiver, and BER. The spectrum of the
transmitted and received BLE waveform is visualized by using a spectrum analyzer.

Appendix

The example uses these helper functions:

• helperBluetoothEstimateDistance.m: Calculates the distance between the transmitter and receiver
based on the obtained path loss and the assumed environment.

• helperBLEImpairmentsAddition.m: Adds RF impairments to the BLE waveform.
• helperBLEPracticalReceiver.m: Demodulates and decodes the received BLE waveform.
• helperBLEReceiverInit.m: Initializes BLE receiver parameters.
• helperBLEImpairmentsInit.m: Initializes RF impairment parameters.
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Bluetooth BR/EDR Waveform Reception by Using SDR
This example shows how to capture and decode Bluetooth® BR/EDR waveforms by using the
Communications Toolbox™ Library for the Bluetooth Protocol. You can either capture the Bluetooth
BR/EDR waveforms by using the ADALM-PLUTO radio or load IQ samples corresponding to the
Bluetooth BR/EDR waveforms from a baseband file (*.bb). To generate and transmit the Bluetooth
BR/EDR waveforms, refer to “Bluetooth BR/EDR Waveform Generation and Transmission Using SDR”
on page 3-129 and configure your test environment with:

• Two SDR platforms connected to the same host computer, and run two MATLAB® sessions on the
single host computer.

• Two SDR platforms connected to two host computers, and run one MATLAB session on each host
computer.

To configure your host computer to work with the Support Package for ADALM-PLUTO Radio, refer to
“Guided Host-Radio Hardware Setup” (Communications Toolbox Support Package for Analog Devices
ADALM-Pluto Radio).

Required Hardware

To capture signals in real time, you need ADALM-PLUTO radio and the corresponding support
package add-on:

• Communications Toolbox Support Package for ADALM-PLUTO Radio

For a full list of communications toolboxes supported by SDR platforms, refer to the Supported
Hardware section of the Software Defined Radio (SDR) discovery page.

Bluetooth BR/EDR Radio Specifications

Bluetooth is a short-range Wireless Personal Area Network (WPAN) technology, operating in the
globally unlicensed industrial, scientific, and medical (ISM) band in the frequency range of 2.4 GHz to
2.485 GHz. In Bluetooth technology, data is divided into packets and each packet is transmitted on
one of the 79 designated Bluetooth channels. Each channel has a bandwidth of 1 MHz. As there are
different types of wireless networks operating in the same unlicensed frequency band, it is possible
for two different networks to interfere with each other. To mitigate the interference, Bluetooth
implements the frequency-hopping spread spectrum (FHSS) scheme to switch a carrier between
multiple frequency channels by using a pseudorandom sequence known to both transmitter and
receiver.

The Bluetooth standard specifies these physical layer (PHY) modes:

Basic rate (BR) - Mandatory mode, uses gaussian frequency shift keying (GFSK) modulation with a
data rate of 1 Mbps

Enhanced data rate (EDR) - Optional mode, uses phase shift keying (PSK) modulation with these
two variants:

• EDR2M: Uses pi/4-DQPSK with a data rate of 2 Mbps
• EDR3M: Uses 8-DPSK with a data rate of 3 Mbps

Bluetooth BR/EDR Packet Formats

The air interface packet formats for PHY modes include these fields:
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Access Code: Each packet starts with an access code. If a packet header follows, the access code is
72 bits long. Otherwise, the length of the access code is 68 bits and referred to as a shortened access
code. The access code consists of these fields:

• Preamble: The preamble is a fixed zero-one pattern of four symbols.
• Sync Word: The sync word is a 64-bit code word derived from the 24-bit lower address part (LAP)

of the Bluetooth device address.
• Trailer: The trailer is a fixed zero-one pattern of four symbols.

Access Code Format

Packet Header: The header includes link control information and consists of these fields:

• LT_ADDR: 3-bit logical transport address
• TYPE: 4-bit type code, which specifies the packet type used for transmission. The value of this
field can be ID, NULL, POLL, FHS, HV1, HV2, HV3, DV, EV3, EV4, EV5, 2-EV3, 2-EV5, 3-EV3, 3-
EV5, DM1, DH1, DM3, DH3, DM5, DH5, AUX1, 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3 and 3-DH5.
This field determines the number of slots the current packet occupies.

• FLOW: 1-bit flow control over the asynchronous connection-oriented logical (ACL) transport
• ARQN: 1-bit acknowledgement indication
• SEQN: 1-bit sequence number
• HEC: 8-bit header error check

Header Format

Payload: Payload includes an optional payload header, a payload body, and an optional CRC.

Payload Format

Guard: For EDR packets, guard time allows the Bluetooth BR/EDR radio to prepare for the change in
modulation from GFSK to DPSK. The guard time must be between 4.75 to 5.25 microseconds.

Sync: For EDR packets, the synchronization sequence contains one reference symbol and ten DPSK
symbols.

Trailer: For EDR packets, the trailer bits must be all zero pattern of two symbols, {00,00} for pi/4-
DQPSK and {000,000} for 8DPSK.
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Packet format for BR mode is shown in this figure.

Basic Rate Packet Format

Packet format for EDR mode is shown in this figure.

Enhanced Data Rate Packet Format

Check for Support Package Installation

Check if the Communications Toolbox Library for the Bluetooth Protocol support package is installed.

commSupportPackageCheck('BLUETOOTH');

Decode Bluetooth BR/EDR Waveforms

This example shows how to decode Bluetooth BR/EDR waveforms either captured by using ADALM-
PLUTO or by reading IQ samples from a baseband file.

Bluetooth BR/EDR Receiver

The general structure of the Bluetooth receiver example is:

1 Initialize the receiver parameters.
2 Specify the signal source.
3 Capture the Bluetooth BR/EDR waveforms.
4 Process Bluetooth BR/EDR waveforms at receiver.
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Initialize the Receiver Parameters

To configure Bluetooth BR/EDR parameters, use bluetoothPhyConfig object.

cfg = bluetoothPhyConfig;

cfg.Mode = ; % Mode of transmission as one of BR, EDR2M and EDR3M
cfg.WhitenInitialization = [0;0;0;0;0;1;1]; % Whiten initialization

Specify the Signal Source

Specify the signal source as File or ADALM-PLUTO.

• File: Uses the comm.BasebandFileReader to read a file that contains a previously captured
over-the-air signal.

• ADALM-PLUTO: Uses thesdrrx (Communications Toolbox Support Package for Analog Devices
ADALM-Pluto Radio) System object to receive a live signal from the SDR hardware.

If you assign ADALM-PLUTO as the signal source, the example searches your computer for the
ADALM-PLUTO radio at radio address 'usb:0' and uses it as the signal source.

% The default signal source is 'File'

signalSource = ;

bbSymbolRate = 1e6; % 1 MSps
if strcmp(signalSource,'File')
    switch cfg.Mode
        case 'BR'
            bbFileName = 'bluetoothCapturesBR.bb';
        case 'EDR2M'
            bbFileName = 'bluetoothCapturesEDR2M.bb';
        case 'EDR3M'
            bbFileName = 'bluetoothCapturesEDR3M.bb';
    end
    sigSrc = comm.BasebandFileReader(bbFileName);
    sigSrcInfo = info(sigSrc);
    bbSampleRate = sigSrc.SampleRate;
    sigSrc.SamplesPerFrame = sigSrcInfo.NumSamplesInData;
    cfg.SamplesPerSymbol = bbSampleRate/bbSymbolRate;

else

    % Check if the pluto Hardware Support Package (HSP) is installed
    if isempty(which('plutoradio.internal.getRootDir'))
        error(message('comm_demos:common:NoSupportPackage', ...
                      'Communications Toolbox Support Package for ADALM-PLUTO Radio',...
                      ['<a href="https://www.mathworks.com/hardware-support/' ...
                      'adalm-pluto-radio.html">ADALM-PLUTO Radio Support From Communications Toolbox</a>']));
    end
    connectedRadios = findPlutoRadio; % Discover ADALM-PLUTO radio(s) connected to your computer
    radioID = connectedRadios(1).RadioID;    

    rxCenterFrequency = ;  % In Hz, choose between 2.402e9 to 2.480e9 with 1e6 spacing
    bbSampleRate = bbSymbolRate * cfg.SamplesPerSymbol;
    sigSrc = sdrrx('Pluto',...
        'RadioID',             radioID,...
        'CenterFrequency',     rxCenterFrequency,...
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        'BasebandSampleRate',  bbSampleRate,...
        'SamplesPerFrame',     1e7,...
        'GainSource',         'Manual',...
        'Gain',                25,...
        'OutputDataType',     'double');
end

Capture the Bluetooth BR/EDR Waveforms

Capture the IQ samples corresponding to Bluetooth BR/EDR waveforms either by using ADALM-
PLUTO or baseband file as signal source. Visualize the spectrum of the received Bluetooth waveforms
by using a spectrum analyzer.

% The transmitted waveforms are captured as a burst
dataCaptures = sigSrc();

% Setup spectrum viewer
spectrumScope = dsp.SpectrumAnalyzer( ...
    'SampleRate',       bbSampleRate,...
    'SpectrumType',     'Power density', ...
    'SpectralAverages', 10, ...
    'YLimits',          [-130 -30], ...
    'Title',            'Received Baseband Bluetooth Signal Spectrum', ...
    'YLabel',           'Power spectral density');

% Show power spectral density of the received waveform
spectrumScope(dataCaptures);
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Process Bluetooth BR/EDR Waveforms at Receiver

To decode the packet header, payload header information, and raw message bits, the receiver
processess the baseband samples received from the signal source. This figure shows the receiver
processing.

Bluetooth Practical Receiver
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The Bluetooth practical receiver performs these functions:

1 Remove DC offset 
2 Detect the signal bursts  
3 Perform matched filtering 
4 Estimate and correct the timing offset 
5 Estimate and correct the carrier frequency offset 
6 Demodulate BR/EDR waveform 
7 Perform forward error correction (FEC) decoding 
8 Perform data dewhitening 
9 Perform header error check (HEC) and cyclic redundancy check (CRC) 
10 Outputs decoded bits and decoded packet statistics based on decoded lower address part (LAP),

HEC and CRC 

% Bluetooth practical receiver
[decBits,decodedInfo,pktStatus] = helperBluetoothPracticalReceiver(dataCaptures,cfg);

% Get the number of detected packets
pktCount = length(pktStatus);
disp(['Number of Bluetooth packets detected: ' num2str(pktCount)])

Number of Bluetooth packets detected: 2

% Get the decoded packet statistics

displayFlag = ; % set true, to display the decoded packet statistics  
if(displayFlag && (pktCount~=0))
    decodedInfoPrint = decodedInfo;
    for ii = 1:pktCount
        if(pktStatus(ii))
            decodedInfoPrint(ii).PacketStatus = 'Success';
        else
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            decodedInfoPrint(ii).PacketStatus = 'Fail';
        end
    end
    packetInfo = struct2table(decodedInfoPrint,'AsArray',1);
    fprintf('Decoded Bluetooth packet(s) information: \n \n')
    disp(packetInfo);
end

Decoded Bluetooth packet(s) information: 
 

         LAP         PacketType    LogicalTransportAddress    HeaderControlBits    PayloadLength        LLID        FlowIndicator    PacketStatus
    _____________    __________    _______________________    _________________    _____________    ____________    _____________    ____________

    {24x1 double}     {'FHS'}           {3x1 double}            {3x1 double}            18          {2x1 double}          0          {'Success'} 
    {24x1 double}     {'FHS'}           {3x1 double}            {3x1 double}            18          {2x1 double}          0          {'Success'} 

% Get the packet error rate performance metrics
if(pktCount)
    pktErrCount = sum(~pktStatus);
    pktErrRate = pktErrCount/pktCount;
    disp(['Simulated Mode: ' cfg.Mode ', '...
        'Packet error rate: ',num2str(pktErrRate)])
end

Simulated Mode: BR, Packet error rate: 0

% Release the signal source
release(sigSrc);

This example enables you to decode Bluetooth BR/EDR waveforms either captured by using ADALM-
PLUTO or by reading IQ samples from a baseband file. Visualize the spectrum of the received
Bluetooth waveforms by using a spectrum analyzer. The packet error rate is computed based on the
decoded packet information.

Further Exploration

You can use this example to receive EDR packets by changing the PHY transmission mode. To
generate the Bluetooth waveforms in this example, refer to “Bluetooth BR/EDR Waveform Generation
and Transmission Using SDR” on page 3-129.

Troubleshooting

General tips for troubleshooting SDR hardware and the Communications Toolbox Support Package for
ADALM-PLUTO Radio can be found in “Common Problems and Fixes” (Communications Toolbox
Support Package for Analog Devices ADALM-Pluto Radio).

Appendix

This example uses this helper function:

• helperBluetoothPracticalReceiver.m: Practical receiver for Bluetooth physical layer
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End-to-End Bluetooth BR/EDR PHY Simulations with RF
Impairments and Corrections

This example shows an end-to-end simulation to measure the bit error rate (BER) and packet error
rate (PER) for different Bluetooth® BR/EDR physical layer (PHY) packet types by using the
Communications Toolbox™ Library for the Bluetooth® Protocol. These PHY packets are distorted by
adding radio front-end (RF) impairments and the additive white Gaussian noise (AWGN). The
distorted Bluetooth BR/EDR waveforms are processed at the practical receiver to get the BER and
PER values. The obtained simulation results show the plots of BER and PER as a function of energy-
to-noise density ratio (Eb/No).

Bluetooth BR/EDR Radio Specifications

Bluetooth is a short-range Wireless Personal Area Network (WPAN) technology, operating in the
globally unlicensed industrial, scientific, and medical (ISM) band in the frequency range of 2.4 GHz to
2.485 GHz. In Bluetooth technology, data is divided into packets. Each packet is transmitted on one of
the 79 designated Bluetooth channels. The bandwidth of each channel is 1 MHz. Bluetooth
implements the frequency-hopping spread spectrum (FHSS) scheme to switch a carrier between
multiple frequency channels by using a pseudorandom sequence known to the transmitter and the
receiver.

The Bluetooth standard specifies these PHY modes:

Basic rate (BR) - Mandatory mode, uses Gaussian frequency shift keying (GFSK) modulation with a
data rate of 1 Mbps.

Enhanced data rate (EDR) - Optional mode, uses phase shift keying (PSK) modulation with these
two variants:

• EDR2M: Uses pi/4-DQPSK with a data rate of 2 Mbps
• EDR3M: Uses 8-DPSK with a data rate of 3 Mbps

This end-to-end Bluetooth BR/EDR PHY simulation determines BER and PER performance of one
Bluetooth packet that has RF impairments and AWGN. Each packet is generated over a loop of a
vector equal to length of the energy-to-noise density ratio (Eb/No) using the
bluetoothWaveformGenerator function by configuring the bluetoothWaveformConfig object.

To accumulate the error rate statistics, the generated waveform is altered with RF impairments and
AWGN before passing through the receiver.

These RF impairments are used to distort the packet:

• DC offset
• Carrier frequency offset
• Static timing offset
• Timing drift

White Gaussian noise is added to the generated Bluetooth BR/EDR waveforms. The distorted and
noisy waveforms are processed through a practical Bluetooth receiver performing these operations:

• Remove DC offset
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• Detect the signal bursts
• Perform matched filtering
• Estimate and correct the timing offset
• Estimate and correct the carrier frequency offset
• Demodulate BR/EDR waveform
• Perform forward error correction (FEC) decoding
• Perform data dewhitening
• Perform header error check (HEC) and cyclic redundancy check (CRC)
• Outputs decoded bits and decoded packet statistics based on decoded lower address part (LAP),

HEC, and CRC

This block diagram illustrates the processing steps for each Bluetooth BR/EDR PHY packet.

 End-to-End Bluetooth BR/EDR PHY Simulations with RF Impairments and Corrections

3-111



To determine the BER and the PER, compare the recovered output bits with the transmitted data bits.

Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is
installed.

commSupportPackageCheck('BLUETOOTH');

Initialize Simulation Parameters

% Eb/No in dB
EbNo = 2:2:14;                     
% Maximum number of bit errors simulated at each Eb/No point
maxNumErrs = 100;                 
% Maximum number of bits accumulated at each Eb/No point
maxNumBits = 1e6;                  
% Maximum number of packets considered at each Eb/No point 
maxNumPkts = 1000;                  

In this example, the values for maxNumErrs, maxNumBits, and maxNumPkts are selected for a short
simulation time.

Configure Bluetooth BR/EDR Waveform

The Bluetooth BR/EDR waveform is configured by using the bluetoothWaveformConfig object.
Configure the properties of the bluetoothWaveformConfig object as per your requirements. In
this example, the PHY mode of transmission, the Bluetooth packet type, and the number of samples
per symbol are configured.

phyMode = ;      % PHY transmission mode
bluetoothPacket = 'FHS';            % Type of Bluetooth packet, this value can be: {'ID',
                                     % 'NULL','POLL','FHS','HV1','HV2','HV3','DV','EV3',
                                     % 'EV4','EV5','AUX1','DM3','DM1','DH1','DM5','DH3',
                                     % 'DH5','2-DH1','2-DH3','2-DH5','2-DH1','2-DH3',
                                     %  '2-DH5','2-EV3','2-EV5','3-EV3','3-EV5'}
sps = 8;                             % Samples per symbol, must be greater than 1

Configure RF Impairments

Set frequency, time, and DC offset parameters to distort the Bluetooth BR/EDR waveform.

frequencyOffset = ;% In Hz

timingOffset = ;    % In samples, less than 1 microsecond

timingDrift = ;        % In parts per million

dcOffset = ;            % Percentage w.r.t maximum amplitude value
symbolRate = 1e6;                               % Symbol Rate

% Create timing offset object
timingDelayObj = dsp.VariableFractionalDelay;

% Create frequency offset object
frequencyDelay = comm.PhaseFrequencyOffset('SampleRate',symbolRate*sps);
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Process Eb/No Points

For each Eb/No point, packets are generated and processed through these steps:

• Generate random bits
• Generate Bluetooth BR/EDR waveform
• Pass generated waveform through AWGN channel
• Add frequency offset
• Add timing offset
• Add DC offset
• Pass distorted waveform through practical receiver
• Calculate BER and PER

ber = zeros(1,length(EbNo));       % BER results
per = zeros(1,length(EbNo));       % PER results
bitsPerByte = 8;                   % Number of bits per byte
% Set code rate based on packet
if any(strcmp(bluetoothPacket,{'FHS','DM1','DM3','DM5','HV2','DV','EV4'}))
    codeRate = 2/3;
elseif strcmp(bluetoothPacket,'HV1')
    codeRate = 1/3;
else
    codeRate = 1;        
end
% Set number of bits per symbol based on the PHY transmission mode
bitsPerSymbol = 1+ (strcmp(phyMode,'EDR2M'))*1 +(strcmp(phyMode,'EDR3M'))*2;

% Get SNR from EbNo values
snr = EbNo + 10*log10(codeRate) + 10*log10(bitsPerSymbol) - 10*log10(sps);
% Create a Bluetooth BR/EDR waveform configuration object
txCfg = bluetoothWaveformConfig('Mode',phyMode,'PacketType',bluetoothPacket,...
                                'SamplesPerSymbol',sps);
if strcmp(bluetoothPacket,'DM1')
    txCfg.PayloadLength = 17; % Maximum length of DM1 packets in bytes
end
dataLen = getPayloadLength(txCfg);  % Length of the payload
% Get PHY properties
rxCfg = getPhyConfigProperties(txCfg);  

for iSnr = 1:length(snr)
        rng default
        % Initialize error computation parameters
        errorCalc = comm.ErrorRate;
        berVec = zeros(3,1); 
        pktCount = 0;  % Counter for number of detected Bluetooth packets
        loopCount = 0; % Counter for number of packets at each SNR value
        pktErr = 0;
         while((berVec(2) < maxNumErrs) && (berVec(3) < maxNumBits) && (loopCount < maxNumPkts))
            txBits = randi([0 1],dataLen*bitsPerByte,1); % Data bits generation
            txWaveform = bluetoothWaveformGenerator(txBits,txCfg);   
            
            % Add Frequency Offset
            frequencyDelay.FrequencyOffset = frequencyOffset;
            transWaveformCFO = frequencyDelay(txWaveform);
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            % Add Timing Delay
            timingDriftRate = (timingDrift*1e-6)/(length(txWaveform)*sps);% Timing drift rate
            timingDriftVal = timingDriftRate*(0:1:(length(txWaveform)-1))';% Timing drift
            timingDelay = (timingOffset*sps)+timingDriftVal;   % Static timing offset and timing drift
            transWaveformTimingCFO = timingDelayObj(transWaveformCFO,timingDelay);
            
            % Add DC Offset
            dcValue = (dcOffset/100)*max(transWaveformTimingCFO);
            txImpairedWaveform = transWaveformTimingCFO + dcValue;  
            
             % Add AWGN
            txNoisyWaveform = awgn(txImpairedWaveform,snr(iSnr),'measured');
        
            % Receiver Module
            [rxBits,decodedInfo,pktStatus]...
                                = helperBluetoothPracticalReceiver(txNoisyWaveform,rxCfg);
            numOfSignals = length(pktStatus);
            pktCount = pktCount+numOfSignals;
            loopCount = loopCount+1;
            
            % BER and PER Calculations
            L1 = length(txBits);
            L2 = length(rxBits);
            L = min(L1,L2);
            if(~isempty(L))
               berVec = errorCalc(txBits(1:L),rxBits(1:L));
            end
            pktErr = pktErr+sum(~pktStatus);
         end
         % Average of BER and PER
         per(iSnr) = pktErr/pktCount;
         ber(iSnr) = berVec(1);
         if ((ber(iSnr) == 0) && (per(iSnr) == 1))
             ber(iSnr) = 0.5; % If packet error rate is 1, consider average BER of 0.5
         end
         if ~any(strcmp(bluetoothPacket,{'ID','NULL','POLL'}))
             disp(['Mode ' phyMode ', '...
                 'Simulated for Eb/No = ', num2str(EbNo(iSnr)), ' dB' ', '...
                 'obtained BER:',num2str(ber(iSnr)),' obtained PER: ',...
                    num2str(per(iSnr))]);
         else
             disp(['Mode ' phyMode ', '...
                 'Simulated for Eb/No = ', num2str(EbNo(iSnr)), ' dB' ', '...
                 'obtained PER: ',num2str(per(iSnr))]);
         end
end

Mode BR, Simulated for Eb/No = 2 dB, obtained BER:0.23611 obtained PER: 0.875
Mode BR, Simulated for Eb/No = 4 dB, obtained BER:0.084028 obtained PER: 0.89474
Mode BR, Simulated for Eb/No = 6 dB, obtained BER:0.063492 obtained PER: 0.86667
Mode BR, Simulated for Eb/No = 8 dB, obtained BER:0.025 obtained PER: 0.77419
Mode BR, Simulated for Eb/No = 10 dB, obtained BER:0.0083333 obtained PER: 0.38824
Mode BR, Simulated for Eb/No = 12 dB, obtained BER:0.0019597 obtained PER: 0.13699
Mode BR, Simulated for Eb/No = 14 dB, obtained BER:0.00025304 obtained PER: 0.022267
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Simulation Results

This section presents the BER and PER results with respect to the input Eb/No range for the
considered PHY mode.

figure,
if any(strcmp(bluetoothPacket,{'ID','NULL','POLL'}))
    numOfPlots = 1; % Plot only PER 
else
    numOfPlots = 2; % Plot both BER and PER
    subplot(numOfPlots,1,1),semilogy(EbNo,ber.','-r*');
    xlabel('Eb/No (dB)');
    ylabel('BER');
    legend(phyMode);
    title('BER of Bluetooth with RF impairments');
    hold on;
    grid on;
end
subplot(numOfPlots,1,numOfPlots),semilogy(EbNo,per.','-k*');
xlabel('Eb/No (dB)');
ylabel('PER');
legend(phyMode);
title('PER of Bluetooth with RF impairments');
hold on;
grid on;
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Appendix

The example uses this helper function:

• helperBluetoothPracticalReceiver.m: Detects, synchronizes, and decodes the received Bluetooth
BR/EDR waveform.

This example shows an entire end-to-end procedure to generate a Bluetooth BR/EDR packet. The
generated Bluetooth BR/EDR waveform is distorted by adding RF impairments and AWGN. To get the
BER and PER values, the distorted Bluetooth BR/EDR waveform is synchronized, demodulated, and
decoded from the practical receiver.

Selected Bibliography
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Estimate Packet Delivery Ratio in Bluetooth Mesh Network
This example models a multi-node Bluetooth® mesh network discrete event simulation (DES) by
using the Communications Toolbox™ Library for the Bluetooth® Protocol. DES is the process of
simulating the behavior of a system as an ordered and discrete sequence of well-defined events
occurring in the time domain. DES allows you to model events in a system that occur in microsecond
granularity. Moreover, DES also results in low simulation time thus making it viable to support large-
scale system-level simulations. The multi-node mesh network simulated in this example models the
complete Bluetooth mesh stack over the advertising bearer. The example aims to accurately model
the asynchronous transmissions by using DES. The simulation results include packet delivery ratio
(PDR), node-related statistics, and a plot displaying the visual representation of the mesh network.

Bluetooth Mesh Stack

The Bluetooth Core Specification [ 1 ] includes a low energy version for low-rate wireless personal
area networks, referred as Bluetooth low energy (BLE) or Bluetooth Smart. The BLE stack consists of
the: generic attribute profile (GATT), attribute protocol (ATT), security manager protocol (SMP),
logical link control and adaptation protocol (L2CAP), link layer (LL) and physical layer (PHY). BLE
was added to the standard for low energy devices generating small amounts of data, such as the
notification alerts used in applications like home automation, healthcare, fitness, and the Internet of
Things (IoT).

The Bluetooth Mesh Profile [ 2 ] defines the fundamental requirements to implement mesh
networking solutions for BLE. The mesh stack is located on top of the Bluetooth Core Specification
and consists of the: model layer, foundation model layer, access layer, upper transport layer, lower
transport layer, network layer and bearer layer. Bluetooth mesh networking enables end-to-end
communication in large-scale networks to support applications like smart lighting, industrial
automation, sensor networking, asset tracking, and many other IoT solutions.

Mesh Stack

This figure shows the Bluetooth mesh stack over the advertising bearer.
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• Model layer: This layer defines the models, messages, and states required to create user
scenarios. For example, to change the state of a light to On or Off, use the 'Generic onOff set'
message from the 'Generic onOff' model.

• Foundation model layer: This layer defines the models, messages, and states required to configure
and manage the mesh network. This layer configures the element, the publish and the
subscription addresses of the node.

• Access layer: This layer defines the interface to the upper transport layer and the format of the
application data. This layer also controls the encryption and decryption of the application data in
the upper transport layer.

• Upper transport layer: The functionality of the upper transport layer includes encryption,
decryption and authentication of the application data and provides confidentiality of the access
messages. This layer also generates the transport control messages (Friendship and Heartbeat)
and transmits them to the peer upper transport layer.

• Lower transport layer: The functionality of lower transport layer includes segmentation and
reassembly of upper transport layer messages into multiple lower transport layer messages. This
layer helps to deliver large upper transport layer messages to other nodes in the network. It also
defines the Friend queue used by the Friend node to store the lower transport layer messages for
a Low Power node.

• Network layer: This layer defines encryption, decryption, and authentication of the lower
transport layer messages. It transmits the lower transport layer messages over the bearer layer
and relays the mesh messages when the 'Relay' feature is enabled. It also defines the message
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cache containing all the recently seen network messages. If the received message is in the cache,
then it is discarded. The message cache is used by the relay nodes (nodes in which the 'Relay'
feature is enabled).

• Bearer layer: This layer is an interface between the Bluetooth mesh stack and the BLE core stack.
This layer is also responsible for creating a mesh network by provisioning the devices. Here,
provisioning implies authenticating and providing basic information to a device. A device must be
provisioned to become a node. This example assumes all the nodes are already provisioned into a
mesh network. The two types of bearers supported by the Bluetooth mesh are advertising bearer
and GATT bearer. This example uses only the advertising bearer.

BLE Core Stack

This example models these layers of the BLE core stack:

• Generic access profile: This profile defines advertising data (AD) types for carrying mesh
messages over the advertising bearer. This example supports 'Mesh message' AD type, which is
used for exchanging network layer messages between mesh nodes.

• Link layer: This layer defines Broadcaster and Observer roles for message exchange between the
nodes within the Bluetooth mesh network. In a Broadcaster role, a node always advertises.
Whereas in an Observer role, the node always scans for the advertisers. Each node in the mesh
network switches between these two roles to serve as a Bluetooth mesh node.

• Physical layer: This layer transmits and receives the waveforms for exchanging messages between
the nodes within the Bluetooth mesh network. This layer models channel impairments such as
free-space path loss, range propagation loss, and interference.

Discrete Event Simulation

DES is a type of simulation that models the functioning of a system as a discrete sequence of events
in the time domain. Each event occurs at a specific time epoch and subsequently marks a change of
state in the system. As a result, the simulation can directly jump from event to event in the time
domain. The fundamental advantages of using DES in this example are:

• Its flexibility in time handling to suppress or expand, allowing the simulation to speed-up or slow-
down the phenomena under investigation. This property of DES is used to model asynchronous
transmissions in a multi-node Bluetooth network, resulting in accurate modeling of collisions.

• DES improves the simulation time performance and thus makes it feasible to support large-scale
system-level simulations. For accurate modeling in a MATLAB implementation, simulations might
need to run in microsecond steps. This will not only increase the simulation time but will also
impact the network scalability. An increase in the step time might not allow you to capture or
schedule events that occur in the microsecond granularity. DES enables you to address this issue
by modeling events in discrete points in time.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Multi-Node Bluetooth Mesh Network Model

This example models a Bluetooth mesh network with 21 nodes. The model outputs PDR of the
network along with different statistics such as the number of transmitted, received, and dropped
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packets at physical, link, and network layers, and also a plot visualizing the network scenario. The
modeling includes:

• Multiple nodes, where each node contains a Bluetooth mesh packet generator and receiver (mesh
packet includes model, access, and transport layer encoding and decoding), network layer, link
layer, and physical layer

• A shared channel, which is simulated with these channel impairment options: range propagation
loss, free-space path loss, and interference

• Packets transmitted over the shared channel
• A node position allocator (NPA) that configures the position of nodes in the network. NPA supports

linear, grid, and list allocation strategies
• A visualizer that visualizes the mesh network scenario

To configure a specific scenario, do one of these:

• Update the default configuration parameters for each node in the preceding model

• Specify the configuration as an input to helperBLEMeshCreateNetworkModel for creating a mesh
network model

Bluetooth node

Each node is modeled as a subsystem with a network stack, which includes the Bluetooth mesh
packet generator and receiver, network layer, LL, and PHY.
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• The application layer generates packets by using the Entity Generator (SimEvents) block
• The MATLAB Discrete-Event System (SimEvents) block is used to model the network layer, LL,

and PHY
• In each node, the shared channel is modeled in the receive path

Application layer

The application layer is implemented to generate and receive application traffic. It is divided into two
sub-blocks:

• Bluetooth mesh packet generator This block uses the SimEvents Entity Generator block to
generate lower transport data protocol data unit (PDU). The generated PDU contains the model
layer message of type 'Generic onOff set unacknowledged' appended with higher layer headers.
This PDU is passed to the network layer. You can configure the application state (On/Off), name of
the destination node, source rate (in packets/second), and maximum number of packets that can
be transmitted from source to destination by using this block. The block stops generating the
packets once it has generated the maximum number of packets configured.

• Bluetooth mesh packet receiver This block uses the SimEvents Entity Terminator block to
receive the output from the network layer

Network layer
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The network layer is modeled as a DES block. This block is responsible for transmitting the lower
transport layer messages over the advertising bearer and relaying the mesh messages when the
'Relay' feature is enabled. When a network PDU is received, this block decodes the received PDU. If
the PDU is decoded successfully, then the decoded information is passed to the lower transport layer.

You can configure the relay feature, network transmit interval, network transmit count, relay
retransmit interval, and relay retransmit count by using mask parameters of the Network layer block.

Link layer

The link layer is modeled as a DES block. This block maintains a state machine for LL Broadcaster
and Observer roles. This block is responsible for transmitting and receiving the mesh advertising
packets by using bleLLAdvertisingChannelPDU and bleLLAdvertisingChannelPDUDecode
functions.

You can configure scan and advertising intervals by using mask parameters of the Link layer block.

Physical layer

The PHY functionality includes:

• Transmit chain

LL initiates packet transmission by sending an LL packet and Tx indication to the PHY Tx block. This
block generates a waveform for the received LL packet by using the bleWaveformGenerator
function. It also scales the samples of the BLE waveform with the configured Tx power (assuming Tx
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gain is 0). The generated BLE waveform is transmitted through the shared channel. The shared
channel is modeled by using the SimEvents Multicast Queue.

You can configure the Tx power (dBm) by using mask parameters of the PHY Tx block.

• Channel impairments modeling

The free-space path loss model is added to the transmitted BLE waveform as channel impairments.
You can choose to enable or disable this impairment. In addition to this impairment model, the signal
reception range can also be limited by using an optional range propagation loss model. To model any
of these channel impairment options, the channel model must contain the position of both the sender
and the receiver. The channel is modeled inside each receiving node, before passing the BLE
waveform to the PHY Rx block.

You can configure channel impairments by using mask parameters of the BLE channel block.

• Receive chain

This block applies thermal noise and interference to the received BLE waveform (assuming Rx gain is
0). Thermal noise is modeled by using the comm.ThermalNoise function with the configured value
of the noise figure. Interference is modeled by adding the IQ samples of both the interfered and the
actual signals. After applying thermal noise and interference, PHY Rx block decodes the resultant
waveform. If the LL packet is decoded successfully, then it is passed to the LL.
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You can configure the noise figure (in dB) using mask parameters of the PHY Rx block.

Node position allocator (NPA) Assigns the location of nodes in the mesh network. This block
supports linear, grid, and list position allocation strategies.

• Linear position allocation Places nodes uniformly in a straight line on a 2D grid

• Grid position allocation Places nodes in a grid format specified by the grid properties

• List position allocation Assigns node positions from a list [[x1, y1, z1] [x2, y2, z2] ... [xn, yn, zn]]
such that (xk, yk, zk) is the position of the kth node for all k in (1, 2, ..., n)

Visualizer This block is used to visualize the mesh network scenario in the simulation. You can
configure this block to visualize the specified configuration. You can enable or disable visualization by
using the mask parameters of this block.

Simulation Results

The results obtained in this simulation are:

• Packet delivery ratio (PDR)

The PDR is the ratio of number of received packets at the destination to the number of packets
transmitted by the source and is given by:

This model outputs PDR for this multi-node mesh network and is saved to a base workspace variable
named PDR.

• Statistics at each node

This model outputs statistics of each node in the workspace variable statisticsAtEachNode. The
statistics captured at each node are:
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• Number of transmitted and received messages at the PHY
• Number of transmitted and received messages at the LL
• Number of messages received with CRC failures
• Number of transmitted, received, and dropped messages at the network layer
• Number of messages relayed at the network layer
• Number of received application messages at the network layer

• Network visualization

A plot with visual representation of the mesh network scenario is shown in the simulation. You can
see the statistics of each node by placing your cursor over it.

This example shows how to configure and simulate a multi-node Bluetooth mesh network by using
DES. The mesh network model in this example outputs PDR as a workspace variable with a visual
representation of the mesh network.

Further Exploration

To observe the variation in the network PDR, you can vary the configuration parameters at the mesh
packet generator, the network layer, LL and PHY. In these simulation results, you can see the impact
of network layer repetitions (NLR) on the network PDR.
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The NLR includes the repetitions of both the network messages and the relayed messages. The
working principle of flood-based networks ensures that the message reaches the destination node.
Therefore, it is important to retransmit the network and the relay messages. The number of NLR is
dependent on the network configuration of the given network topology. Increasing the number of NLR
ensures that the likelihood of the messages reaching the desired destination node is high. However,
specifying a high value of the NLR can have adverse effects on the network performance parameters
such as the overhead, energy consumption, and the duty cycle. As a result, it is essential to tune the
value of NLR for a given network topology and achieve an efficient tradeoff between the PDR and
network performance.

In the preceding figure you can see that the PDR increases with the NLR and decreases with the
number of source nodes in the network. For a specific value of the NLR, the PDR value reaches 1 and
thereafter it stabilizes. This specific value of the NLR might vary based on the network configuration
parameters such as the total number of nodes, location of the nodes, number of source nodes,
number of relay nodes, and so on. You can run helperBLEMeshDESPDRCalculation to reproduce
these results by using three source nodes. Set the number of source nodes to two and five to get the
corresponding results. You can run the simulations for any custom network scenario and get the
optimal value of the NLR.
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Apart from the NLR, the PDR varies with respect to multiple configuration parameters stated in
helperBLEMeshDESPDRCalculation. You can further explore the mesh network model by varying any
of these parameters.

Appendix

The example uses these features:

• bleLLAdvertisingChannelPDUConfig: Create a configuration object for the BLE Link Layer
advertising channel PDU

• bleLLAdvertisingChannelPDU: Generate BLE Link Layer advertising channel PDU
• bleLLAdvertisingChannelPDUDecode: Decode BLE Link Layer advertising channel PDU
• bleWaveformGenerator: Generate BLE waveform

The example uses these helpers:

• helperBLEMeshAppGenericPDU: Generate Bluetooth mesh generic PDU
• helperBLEMeshAccessPDU: Generate Bluetooth mesh access PDU
• helperBLEMeshTransportDataMessage: Generate Bluetooth mesh transport data message
• helperBLEMeshNetworkLayer: Create an object for Bluetooth mesh network layer functionality
• helperBLEMeshNetworkLayerDES: Model Bluetooth mesh network layer
• helperBLEMeshNetworkPDU: Generate Bluetooth mesh network PDU
• helperBLEMeshNetworkPDUDecode: Decode Bluetooth mesh network PDU
• helperBLEMeshLLGAPBearer: Create an object for BLE LL advertising bearer functionality
• helperBLEMeshLinkLayerDES: Model Bluetooth mesh link layer
• helperBLEMeshGAPDataBlock: Generate advertising data with Bluetooth mesh network PDU
• helperBLEMeshGAPDataBlockDecode: Decode advertising data with Bluetooth mesh network PDU
• helperBLEPHYTransmitter: Create an object for BLE PHY transmitter
• helperBLEPHYTxDES: Generate and transmit the BLE waveform
• helperBLEChannel: Create an object for BLE channel model
• helperBLEChannelDES: Apply channel model on the received BLE waveform
• helperBLEPHYReceiver: Create an object for BLE PHY receiver
• helperBLEPHYRxDES: Receive and decode the BLE waveform
• helperBLEPracticalReceiver: Demodulate and decode the received signal
• helperBluetoothQueue: Create an object for Bluetooth queue functionality
• helperBLEMeshRetransmissions: Create an object for retransmissions in Bluetooth mesh
• helperBLEMeshVicinityNodes: Obtain the vicinity nodes of a given node
• helperBLEMeshGraphCursorCallback: Display the node statistics on mouse hover action
• helperBLEMeshVisualizeNetwork: Create an object for Bluetooth mesh network visualization
• helperBLEMeshAssignNodeIDs: Assigns node IDs to all the nodes in the model
• helperBLEMeshGetNodeNamesList: Get the list of nodes in the model
• helperBLEMeshCreateNetworkModel: Create a Bluetooth mesh network with given configuration
• helperBLEMeshUpdateStatistics: Create and update statistics in a Bluetooth mesh network

simulation
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Bluetooth BR/EDR Waveform Generation and Transmission
Using SDR

This example shows how to generate and transmit Bluetooth® BR/EDR waveforms using the
Communications Toolbox™ Library for the Bluetooth Protocol. You can either transmit the Bluetooth
BR/EDR waveforms by using the ADALM-PLUTO radio or write to a baseband file (*.bb).

To receive the transmitted Bluetooth BR/EDR waveform, see the Bluetooth BR/EDR Receiver example
and implement any one of these setups:

• Two SDR platforms connected to the same host computer which runs two MATLAB sessions.
• Two SDR platforms connected to two host computers which runs two separate MATLAB sessions.

To configure your host computer to work with the Support Package for ADALM-PLUTO Radio, refer
“Guided Host-Radio Hardware Setup” (Communications Toolbox Support Package for Analog Devices
ADALM-Pluto Radio).

Required Hardware

To transmit signals in real time, you need ADALM-PLUTO radio and the corresponding support
package:

• Communications Toolbox Support Package for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of the Software Defined Radio (SDR) discovery page.

Bluetooth BR/EDR Radio Specifications

Bluetooth [ 1 on page 3-0  ] is a short-range Wireless Personal Area Network (WPAN) technology,
operating in the globally unlicensed industrial, scientific, and medical (ISM) band in the frequency
range 2.4 GHz to 2.485 GHz. In Bluetooth technology, data is divided into packets. Each packet is
transmitted on one of the 79 designated Bluetooth channels. Each channel has a bandwidth of 1 MHz.
As there are different types of wireless networks operating in the same unlicensed frequency band, it
is possible for two different networks to interfere with each other. To mitigate the interference,
Bluetooth implements the frequency-hopping spread spectrum (FHSS) scheme to switch a carrier
between multiple frequency channels by using a pseudorandom sequence known to both the
transmitter and receiver.

The Bluetooth standard specifies these physical layer (PHY) modes:

Basic rate (BR) - Mandatory mode, uses Gaussian frequency shift keying (GFSK) modulation with a
data rate of 1 Mbps.

Enhanced data rate (EDR) - Optional mode, uses phase shift keying (PSK) modulation with these
two variants:

• EDR2M: Uses pi/4-DQPSK with a data rate of 2 Mbps.
• EDR3M: Uses 8-DPSK with a data rate of 3 Mbps.

Packet Formats

The air interface packet formats for PHY modes include these fields:
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Access Code: Each packet starts with an access code. If a packet header follows, the access code is
72 bits long, otherwise the access code is 68 bits long. The access code consists of these fields:

• Preamble: The preamble is a fixed zero-one pattern of four symbols.
• Sync Word: The sync word is a 64-bit code word derived from 24-bit lower address part (LAP) of

the Bluetooth device address.
• Trailer: The trailer is a fixed zero-one pattern of four symbols.

Packet Header: The header includes link control information and consists of these fields:

• LT_ADDR: 3-bit logical transport address.
• TYPE: 4-bit type code, which specifies the packet type used for transmission. It can be one of {ID,

NULL, POLL, FHS, HV1, HV2, HV3, DV, EV3, EV4, EV5, 2-EV3, 2-EV5, 3-EV3, 3-EV5, DM1, DH1,
DM3, DH3, DM5, DH5, AUX1, 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5}.

• FLOW: 1-bit flow control.
• ARQN: 1-bit acknowledgement indication.
• SEQN: 1-bit sequence number.
• HEC: 8-bit header error check.

Payload: Payload includes an optional payload header, a payload body, and an optional CRC.

Guard: For EDR packets, guard time allows the Bluetooth radio to prepare for the change in
modulation from GFSK to DPSK. The guard time must be between 4.75 to 5.25 microseconds.

Sync: For EDR packets, the synchronization sequence contains one reference symbol and ten DPSK
symbols.

Trailer: For EDR packets, the trailer bits must be all zero pattern of two symbols, {00,00} for pi/4-
DQPSK and {000,000} for 8DPSK.

This figure shows the packet format for BR mode
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This figure shows the packet format for EDR mode

Bluetooth BR/EDR Waveform Generation and Transmission

This example shows how to generate Bluetooth BR/EDR waveforms according to the Bluetooth
specification. The spectrum and spectrogram of the generated Bluetooth BR/EDR waveforms are
visualized by using the spectrum analyzer. You can transmit the generated waveforms by using the
ADALM-PLUTO radio or by writing them to a baseband file (*.bb).

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed.
commSupportPackageCheck('BLUETOOTH');

Bluetooth BR/EDR Baseband Waveform Generation and Visualization

To configure the Bluetooth waveform generator for basic rate transmission, use the
bluetoothWaveformConfig object.

cfg = bluetoothWaveformConfig;

cfg.Mode = ; % Mode of transmission as one of BR, EDR2M and EDR3M
cfg.PacketType = 'FHS';     % Packet type
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cfg.SamplesPerSymbol = 60; % Samples per symbol
cfg.WhitenInitialization = [0;0;0;0;0;1;1]; % Whiten initialization

To generate the Bluetooth BR/EDR waveforms, use the bluetoothWaveformGenerator function.
Use getPayloadLength to determine the required payload length for the given configuration. Then
use the payload length to create a random payload for transmission.

payloadLength = getPayloadLength(cfg); % Payload length in bytes
octetLength = 8;
dataBits = randi([0 1],payloadLength*octetLength,1); % Generate random payload bits
txWaveform = bluetoothWaveformGenerator(dataBits,cfg); % Create Bluetooth waveform

You can configure the function helperBluetoothPacketDuration.m to derive Bluetooth packet duration
corresponding to the generated Bluetooth symbols.

packetDuration = helperBluetoothPacketDuration(cfg.PacketType,cfg.Mode,payloadLength);

The comm.PhaseFrequencyOffset System object is used to perform a frequency shift for Bluetooth
BR/EDR waveforms based on the channel number. In this example, the waveform is visualized by
using the dsp.SpectrumAnalyzer System object that selects a random channel number from the
range 0 to 60 as sample rate used in this example is 60 MHz.

symbolRate = 1e6; % Symbol rate
sampleRate = symbolRate * cfg.SamplesPerSymbol;
numChannels = 10; % Number of channels

% Create and configure frequency offset System object
pfo = comm.PhaseFrequencyOffset('SampleRate',sampleRate);
% Create and configure spectrum analyzer System object
scope = dsp.SpectrumAnalyzer('ViewType','Spectrum and spectrogram',...
                'TimeResolutionSource','Property','TimeResolution',1e-5,...
                'SampleRate',sampleRate,'TimeSpanSource','Property',...
                'TimeSpan',2e-3,'FrequencyResolutionMethod','WindowLength',...
                'WindowLength',512,'AxesLayout','Horizontal','YLimits',[-40 25]);
% Loop over the number of channels to visaulize the frequency shift
for packetIdx = 1:numChannels
    channelNum = randsrc(1,1,0:60); % Generate random channel number
    freqIndex = channelNum - 39; % To visualize as a two sided spectrum
    pfo.FrequencyOffset = freqIndex*symbolRate; % Frequency shift
    hoppedWaveform = pfo(txWaveform(1:packetDuration*cfg.SamplesPerSymbol));
    scope.Title = ['Spectrum of Bluetooth ',cfg.Mode,...
                   ' Waveform for Channel Number = ', num2str(channelNum)];
    scope(hoppedWaveform);
end
% Release the System objects
release(scope);
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release(pfo);

Transmitter Processing

Specify the signal sink as 'File' or 'ADALM-PLUTO'.

• File: Uses the comm.BasebandFileWriter System object to write a baseband file.
• ADALM-PLUTO: Uses the sdrtx (Communications Toolbox Support Package for Analog Devices

ADALM-Pluto Radio) function to create a comm.SDRTxPluto (Communications Toolbox Support
Package for Analog Devices ADALM-Pluto Radio) System object to transmit a live signal from the
SDR hardware.

% Initialize the parameters required for signal sink

txCenterFrequency = ;  % In Hz, varies between 2.402e9 to 2.480e9 with 1e6 spacing
txFrameLength     = length(txWaveform);
txNumberOfFrames  = 1e4;
bbFileName        = 'bluetoothBRCaptures.bb';

% The default signal sink is 'File'

signalSink = ;

if strcmp(signalSink,'File')
    sigSink = comm.BasebandFileWriter('CenterFrequency',txCenterFrequency,...
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        'Filename',bbFileName,...
        'SampleRate',sampleRate);
    sigSink(txWaveform); % Writing to a baseband file 'bluetoothBRCaptures.bb'
else % For 'ADALM-PLUTO'
    % Check if the pluto Hardware Support Package (HSP) is installed
    if isempty(which('plutoradio.internal.getRootDir'))
        error(message('comm_demos:common:NoSupportPackage', ...
                      'Communications Toolbox Support Package for ADALM-PLUTO Radio',...
                      ['<a href="https://www.mathworks.com/hardware-support/' ...
                      'adalm-pluto-radio.html">ADALM-PLUTO Radio Support From Communications Toolbox</a>']));
    end
    connectedRadios = findPlutoRadio; % Discover ADALM-PLUTO radio(s) connected to your computer
    radioID = connectedRadios(1).RadioID;
    sigSink = sdrtx('Pluto',...
        'RadioID',           radioID,...
        'CenterFrequency',   txCenterFrequency,...
        'Gain',              0,...
        'SamplesPerFrame',   txFrameLength,...
        'BasebandSampleRate',sampleRate);
    % The transfer of baseband data to the SDR hardware is enclosed in a
    % try/catch block. This implies that if an error occurs during the
    % transmission, the hardware resources used by the SDR System
    % object are released.
    currentFrame = 1;
    try
        while currentFrame <= txNumberOfFrames
            % Data transmission
            sigSink(txWaveform);
            % Update the counter
            currentFrame = currentFrame + 1;
        end
    catch ME
        release(sigSink);
        rethrow(ME);
    end
end

% Release the signal sink
release(sigSink);

In this example, you can generate and transmit Bluetooth BR/EDR waveforms by using ADALM-
PLUTO or by writing the waveforms to a baseband file. The spectrum and spectogram of the
generated Bluetooth BR/EDR waveforms is visualized by using a spectrum analyzer.

Further Exploration

You can use this example to transmit EDR packets by changing the mode of transmission. The
example uses the helperBluetoothPacketDuration.m helper function to return the Bluetooth packet
duration.

To decode the Bluetooth BR/EDR waveform generated in this example, refer to the Bluetooth BR/EDR
Receiver example.

Troubleshooting

General tips for troubleshooting SDR hardware and the Communications Toolbox Support Package for
ADALM-PLUTO Radio can be found in “Common Problems and Fixes” (Communications Toolbox
Support Package for Analog Devices ADALM-Pluto Radio).
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Energy Profiling of Bluetooth Mesh Nodes in Wireless Sensor
Networks

This example shows energy profiling of different types of nodes in a Bluetooth® mesh network using
the Communications Toolbox™ Library for the Bluetooth® Protocol. Energy is computed based on the
time profiled by End nodes, Low Power nodes (LPNs), Friend nodes, and Relay nodes in transmission,
listen, sleep, and idle state. Using this example, you can:

• Create and configure a Bluetooth mesh network
• Visualize the impact of mesh message exchange on the energy performance of End node, LPN,

Friend node, and Relay node
• Observe the energy consumption of mesh nodes by varying the number of source-destination pair,

Friend node-LPN pair, and the application traffic.
• Estimate the node lifetime based on the hardware-specific energy parameters
• Modify the hardware-specific energy parameters to suit your requirements
• Explore the impact of poll timeout and receive window size on the node lifetime

The simulation calculates the lifetime of an LPN with the specified configuration and the hardware-
specific energy parameters. The results validate that LPN always consume less energy by spending
more time in sleep, resulting in energy conservation and increased lifetime.

Bluetooth Mesh Stack

The Bluetooth Core Specification [ 1 ] includes a Low Energy version for low-rate wireless personal
area networks, referred to as Bluetooth low energy (BLE) or Bluetooth Smart. The BLE stack consists
of generic attribute profile (GATT), attribute protocol (ATT), security manager protocol (SMP), logical
link control and adaptation protocol (L2CAP), link layer (LL) and physical layer. The Special Interest
Group (SIG) added BLE to the Bluetooth standard for low energy devices which generate small
amounts of data such as notification alerts used in such applications as home automation, health-
care, fitness, and Internet of Things (IoT). For more information about BLE protocol stack, see
“Bluetooth Protocol Stack” on page 13-7.

The Bluetooth mesh profile [ 2 ] defines the fundamental requirements to implement a mesh
networking solution for BLE. The mesh stack is located on top of the BLE core specification and
consists of model layer, foundation model layer, access layer, upper transport layer, lower transport
layer, network layer and bearer layer. Bluetooth mesh networking enables large-scale device
networks in the applications such as smart lighting, industrial automation, sensor networking, asset
tracking, and many other IoT solutions. For more information about Bluetooth mesh stack, see
“Bluetooth Mesh Networking” on page 13-46.

Each Bluetooth mesh node can possess some optional features enabling them to acquire additional,
special capabilities. These features include the Relay, Proxy, Friend, and the Low Power features. The
Bluetooth mesh nodes possessing these features are known as Relay nodes, Proxy nodes, Friend
nodes, and Low Power nodes (LPNs), respectively. To reduce the duty cycles of the LPN and conserve
energy, the LPN must establish a Friendship with a mesh node supporting the Friend feature. This
Friendship between the LPN and the Friend nodes (mesh nodes supporting the Friend feature)
enables the Friend node to store and forward messages addressed to the LPN. Forwarding by the
Friend node occurs only when the LPN wakes up and polls the Friend node for messages awaiting
delivery. This mechanism enables all of the LPNs to conserve energy and operate for longer
durations.
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For more information about devices, nodes, and the Friendship in Bluetooth mesh network, see
“Bluetooth Mesh Networking” on page 13-46.

The main objectives of this example are:

1 Create and configure a Bluetooth mesh network
2 Visualize message flooding
3 Analyze the behavior of Friendship in the Bluetooth mesh network
4 Profile the energy consumed by each node in the Bluetooth mesh network

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Bluetooth Mesh Energy Profiling Simulation

In the simulation, a source node initiates and relays a sample mesh message to a destination node. To
relay mesh messages to multiple destination nodes, the source nodes transmits the messages to a
common group address. During the simulation, the Friend nodes and LPNs exchange Friendship
messages. Each node computes the time spent in various states (transmission, listen, idle and sleep)
and calculates its lifetime.

To create and visualize the mesh network, use helperBLEMeshNode and
helperBLEMeshVisualizeNetwork classes. Specify the number of nodes (NumberofNodes) and the
type of node position (NodePositionType) in helperBLEMeshVisualizeNetwork function. The
default type of node position is 'Grid'. To specify your own network, set the value of
NodePositionType to 'UserInput' and node positions to Positions.

% Set random number generator seed to 'default'
sprev = rng('default');

% Specify the number of nodes in the mesh network
totalNodes = 55;

% Initialize 'bleMeshNodes' vector with objects of type helperBLEMeshNode
meshNodes(1, totalNodes) = helperBLEMeshNode();

% Configure each mesh node with unique identifier
for nodeIdx = 1:totalNodes
    meshNode = helperBLEMeshNode();
    meshNode.Identifier = nodeIdx;
    meshNodes(nodeIdx) = meshNode;
end

% Load node positions from the MAT file
load('bleMeshNodesPositions.mat');

% Create and Configure the visualization object for Bluetooth mesh network
meshNetworkGraph = helperBLEMeshVisualizeNetwork();
meshNetworkGraph.NumberOfNodes = totalNodes;

% Set the type of the node position allocation as 'Grid' or 'UserInput'
meshNetworkGraph.NodePositionType = 'UserInput';
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% Set node positions based on number of nodes (applicable for 'UserInput'),
% in meters
meshNetworkGraph.Positions = bleMeshNodesPositions;

% Set vicinity range (in meters) based on node positions, in meters
meshNetworkGraph.VicinityRange = 25;

% Set title to the network visualization
meshNetworkGraph.Title = 'Energy Profiling in Bluetooth Mesh Network';

Specify the number of source and destination pairs by using sourceDestinationPairs variable. To
specify Friend node and LPN pairs, use friendLowPowerPairs variable. To specify the Relay nodes
in the network, use relayNodeIDs variable. Configure the mesh node objects related to each mesh
node. The paths variable store the paths obtained for each source and destination pair.

% Specify the simulation time (in milliseconds)
simulationTime = 6000;

% Enable or disable visualization
enableVisualization = true;

% Enable or disable the animation in the visualization. If
% "enableVisualization" is set to false, the simulation does not considers
% "enableAnimation".
enableAnimation = false;

% Specify the source and destination pairs. Source node transmits sample
% mesh message to destination node.
sourceDestinationPairs = [1 52; 1 17; 12 7; 6 53; 54 51; 9 33; 18 52; ...
    29 52; 31 7; 12 9; 54 53; 55 1; 9 17; 18 35];

% Specify the time to live (TTL) value (in the range [0, 127]) for each
% source and destination pair
ttl = [20 23 35 21 23 30 22 20 23 35 21 23 30 22];

% Specify the Friend node and LPN
friendLowPowerPairs = [16 52];

% Specify the receive window (in milliseconds) for each Friend and LPN
% pair. This value is in the range [120, 255]
receiveWindow = 180;

% Specify the poll timeout (in seconds) for each Friend and LPN pair. The
% value is in the range [2 seconds, 95.9 hours].
pollTimeout = 20;

% Specify the relay nodes
relayNodeIDs = [3 4 5 8 10 11 15 19 20 21 23 25 28 30 32 34 36 37 38 39 41 ...
    42 43 44 45 46 47 48 49 26 2 16 13 27];

% Simulate the Bluetooth mesh network
[meshNodes, paths] = helperBLEMeshSimulation(meshNodes, totalNodes, meshNetworkGraph, ...
    simulationTime, sourceDestinationPairs, ttl, friendLowPowerPairs, receiveWindow, ...
    pollTimeout, relayNodeIDs, enableVisualization, enableAnimation);

% Restore the previous setting of random number generation
rng(sprev);
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Simulation Results

At each mesh node, the simulation captures these statistics.

• Time spent in transmission state
• Time spent in listening state
• Time spent in sleep state
• Time spent in idle state
• Number of messages transmitted from the node
• Number of messages received by the node
• Number of messages relayed by the node
• Number of messages dropped at the node
• Number of messages received with cyclic redundancy check (CRC) failures
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The workspace variable, statisticsAtEachNode, contains the cumulative value of the preceding
statistics for all the nodes in the network. For a given simulation run, you can view the statistics for
first five nodes. The network statistics for the first five nodes in the network are:

% Statistics for first five nodes
statisticsAtEachNode = helperBLEMeshNodesStatistics(meshNodes);
statisticsForFirstFiveNodes = statisticsAtEachNode(1:min(totalNodes, 5), :)

statisticsForFirstFiveNodes =

  5x14 table

              NodeType    TransmittedMsgs    ReceivedMsgs    ReceivedMsgsFromLPN    ReceivedApplicationMsgs    RelayedMsgs    DroppedMsgs    CRCFailedMsgs    TotalTransmittedBytes    TotalReceivedBytes    SleepTime (milliseconds)    IdleTime (milliseconds)    ListenTime (milliseconds)    TransmissionTime (milliseconds)
              ________    _______________    ____________    ___________________    _______________________    ___________    ___________    _____________    _____________________    __________________    ________________________    _______________________    _________________________    _______________________________

    Node_1     End               6                10                  0                        1                    0              9               0                   171                    284                       0                         123.5                        5871                           1.368             
    Node_2     Relay            15                 6                  0                        0                    5              1               0                   426                    170                       0                           187                        5800                           3.408             
    Node_3     Relay            15                24                  0                        0                    5             19               0                   426                    685                       0                           178                        5809                           3.408             
    Node_4     Relay            12                20                  0                        0                    4             14               2                   339                    566                       0                           168                      5821.5                           2.712             
    Node_5     Relay            12                10                  0                        0                    4              4               2                   339                    285                       0                           168                      5821.5                           2.712             

This plot shows the average time spent by different type of mesh nodes in different states. The results
conclude that the LPN spend most of the time in sleep state, resulting in energy conservation and
increased lifetime.

fprintf('Average time statistics of different Bluetooth mesh nodes are:\n');
meshNodesAvgStats = helperBLEMeshNodeAverageTime(meshNodes)

Average time statistics of different Bluetooth mesh nodes are:

meshNodesAvgStats =

  4x5 table

    Type of Bluetooth mesh node    Transmission time (milliseconds)    Listen time (milliseconds)    Idle time (milliseconds)    Sleep time (milliseconds)
    ___________________________    ________________________________    __________________________    ________________________    _________________________

          Low Power node                         2.304                              720                         103                       5166.5          
          Friend node                            6.192                           5771.5                       205.5                            0          
          Relay node                            3.3869                           5801.4                       185.7                            0          
          End node                              0.4836                           5907.4                        90.3                            0          
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The simulation consists of single message transmission from source node to destination node.
Configure the traffic between the mesh nodes by using the pushModelMessage function periodically.
The transmission time at the End node depends on the application traffic. The transmission time at
the LPN depends on the poll timeout value.

Further Exploration

Calculate Lifetime of LPN:

Use helperBLEMeshNodeLifetime function to calculate the lifetime of a node in the Bluetooth mesh
network at the end of simulation. To compute node lifetime, the simulationTime and the mesh node
object of type helperBLEMeshNode is given as an input to the helperBLEMeshNodeLifetime function.
The node lifetime is calculated by using the energy parameters that are hardware dependent. To
update these hardware parameters, use helperBLEMeshNodeLifetime function.

% Fetch one of the Low Power nodes for calculating the lifetime
meshNode = meshNodes(52);
lifeTime = helperBLEMeshNodeLifetime(meshNode, simulationTime);
fprintf('Lifetime of node %d is %.4f days.\n', meshNode.Identifier, lifeTime);

Configured hardware parameters for a 1200 mAh battery are:

hardwareParameters =

  7x2 table

       Hardware parameters        Configured values (mA)
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    __________________________    ______________________

    Self-discharge                      0.0013699       
    Transmission on channel 37               7.57       
    Transmission on channel 38               7.77       
    Transmission on channel 39                7.7       
    Listening                                10.3       
    Sleep                                     0.2       
    Idle                                     1.19       

Statistics at node 52 are:

statisticsAtNode =

  4x2 table

     Time variables      Time (milliseconds)
    _________________    ___________________

    Transmission time           2.304       
    Listen time                   720       
    Sleep time                 5166.5       
    Idle time                     103       

Lifetime of node 52 is 34.8927 days.

Lifetime of LPN by Varying Poll Timeout

The lifetime of a LPN depends on the time for which the node is in the listen state. In a given poll
timeout, a LPN is in listen or sleep state for most of the time. The receive window for each poll
request of a LPN determines the time spent in listen state. The time spent in transmission state is
negligible.

Visualize the impact of the poll timeout and receive window on the lifetime of LPN by using the
helperBLEMeshLPNLifetimeVSPolltimeout function.
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The preceding plot concludes that the lifetime of LPN is directly proportional to the poll timeout. The
poll timeout specifies the maximum time between two consecutive requests from an LPN to Friend
node. As the poll timeout increases, the LPN spends more time in sleep state that results in
increasing the lifetime of the LPN.

This example shows how to create and configure a multinode Bluetooth mesh network and analyze
the message exchange in the network. This example also enables you to analyze the behavior and the
advantages of the Friendship between Friend node and LPN. To calculate the time spent by each node
on different states the Bluetooth mesh node is simulated with multiple Friend and Low Power node
pairs. The plot of the average time spent by each node in different states show that the LPNs always
consume less energy by spending more time in sleep state. You can further explore the energy
profiling of LPN by varying the poll timeout and receive window values.

Appendix

The example uses these features:

• bleLLAdvertisingChannelPDUConfig: Create a configuration object for BLE Link Layer
advertising channel PDU

• bleLLAdvertisingChannelPDU: Generate BLE Link Layer advertising channel PDU
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• bleLLAdvertisingChannelPDUDecode: Decode BLE Link Layer advertising channel PDU

The example uses these helpers:

• helperBLEMeshNode: Create an object for Bluetooth mesh node
• helperBLEMeshAccessLayer: Create an object for Bluetooth mesh access layer functionality
• helperBLEMeshNetworkLayer: Create an object for Bluetooth mesh network layer functionality
• helperBLEMeshTransportLayer: Create an object for Bluetooth mesh transport (upper and lower)

layer functionality
• helperBLEMeshLowPowerNode: Create an object for Bluetooth mesh Low Power node

functionality
• helperBLEMeshFriendNode: Create an object for Bluetooth mesh Friend node functionality
• helperBLEMeshFriendTimer: Create an object for Bluetooth mesh friend timer
• helperBLEMeshLLGAPBearer: Create an object for BLE LL advertising bearer functionality
• helperBLEMeshAppGenericPDU: Generate Bluetooth mesh generic PDU
• helperBLEMeshAppGenericPDUDecode: Decode Bluetooth mesh generic PDU
• helperBLEMeshLightnessPDU: Generate Bluetooth mesh lightness PDU
• helperBLEMeshLightnessPDUDecode: Decode Bluetooth mesh lightness PDU
• helperBLEMeshAccessPDU: Generate Bluetooth mesh access PDU
• helperBLEMeshAccessPDUDecode: Decode Bluetooth mesh access PDU
• helperBLEMeshNetworkPDU: Generate Bluetooth mesh network PDU
• helperBLEMeshNetworkPDUDecode: Decode Bluetooth mesh network PDU
• helperBLEMeshTransportControlMessage: Generate Bluetooth mesh transport control message
• helperBLEMeshTransportControlMessageDecode: Decode Bluetooth mesh transport control

message
• helperBLEMeshTransportDataMessage: Generate Bluetooth mesh transport data message
• helperBLEMeshTransportDataMessageDecode: Decode Bluetooth mesh transport data message
• helperBLEMeshGAPDataBlock: Generate advertising data with Bluetooth mesh network PDU
• helperBLEMeshGAPDataBlockDecode: Decode advertising data with Bluetooth mesh network PDU
• helperBluetoothQueue: Create an object for Bluetooth queue functionality
• helperBLEMeshRetransmissions: Create an object for retransmissions in Bluetooth mesh
• helperBLEMeshNetworkChannelMessage: Receive message from Bluetooth mesh network

channel
• helperBLEMeshPath: Return the path between source and destination within Bluetooth mesh

network
• helperBLEMeshVicinityNodes: Obtain the vicinity nodes of a given node
• helperBLEMeshGraphCursorCallback: Display the node statistics on mouse hover action
• helperBLEMeshVisualizeNetwork: Create an object for Bluetooth mesh network visualization
• helperBLEMeshSimulation: Simulate a Bluetooth mesh network
• helperBLEMeshNodesStatistics: Collect statistics at each node into a table
• helperBLEMeshNodeLifetime: Compute lifetime of a Bluetooth mesh node
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• helperBLEMeshNodeAverageTime: Compute average time spent in various states by the Bluetooth
mesh nodes

• helperBLEMeshLPNLifetimeVSPolltimeout: Script to compute the lifetime of Bluetooth mesh Low
Power node for different poll timeout and receive window values

• helperBLEPrependAccessAddress: Prepend the PDU with the access address

Selected Bibliography

1 Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification". Version 5.0. https://
www.bluetooth.com/.

2 Bluetooth Special Interest Group (SIG). "Bluetooth Mesh Profile". Version 1.0. https://
www.bluetooth.com/.

See Also

More About
• “Bluetooth Protocol Stack” on page 13-7
• “Bluetooth Mesh Networking” on page 13-46
• “Create, Configure, and Visualize BLE Mesh Network” on page 13-93
• “Bluetooth Mesh Flooding in Wireless Sensor Networks” on page 3-159
• “Estimate Packet Delivery Ratio in Bluetooth Mesh Network” on page 3-117
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BLE Modulation Characteristics, Carrier Frequency Offset and
Drift Test Measurements

This example shows how to perform Bluetooth® low energy (BLE) radio frequency (RF) physical layer
(PHY) transmitter tests specific to modulation characteristics, carrier frequency offset, and drift using
Communications Toolbox™ Library for the Bluetooth Protocol. The test measurements compute
frequency deviation, carrier frequency offset, and drift values. This example also verifies whether
these test measurement values are within the limits specified by the Bluetooth RF-PHY Test
Specifications [ 1 on page 3-0  ].

Objectives of BLE RF-PHY Tests

The Bluetooth RF-PHY Test Specifications [ 1 on page 3-0  ] defined by Bluetooth Special Interest
Group (SIG) includes RF-PHY tests for both transmitter and receiver. The objectives of these RF-PHY
tests are to:

• Ensure interoperability between all Bluetooth devices.
• Ensure a basic level of system performance for all Bluetooth products.

Each test case has a specified test procedure and an expected outcome, which must be met by the
implementation under test (IUT).

RF-PHY Transmitter Tests

The main aim of transmitter test measurements is to ensure that the transmitter characteristics are
within the specified limits as specified in the test specifications [ 1 on page 3-0  ]. This example
includes transmitter tests relevant to modulation characteristics, carrier frequency offset, and drift.
This table shows various RF-PHY transmitter tests performed in this example.
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Transmitter Test Procedure

This block diagram summarizes the test procedure for transmitter tests relevant to modulation
characteristics, carrier frequency offset, and drift.

Generate test packets and pass them through bleWaveformGenerator to generate BLE test
waveforms. The test waveforms required for different test IDs are:

Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is
installed.

commSupportPackageCheck('BLUETOOTH');
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Configure the Test Parameters

Initialize variables such as transmitter test ID, number of samples per symbol, payload length, and
maximum carrier frequency drift. The function,helperBLEModulationTestConfig.m, can be configured
to generate test parameters.

txTestID = ;

payloadLen = ;    % Payload length in bytes, must be in the range [37,255]
sps = 32;           % Number of samples per symbol, minimum of 32 samples per
                    % symbol as per the test specifications

% Frequency offset and drift for the tests: RF-PHY/TRM/BV-06-C,
% RF-PHY/TRM/BV-12-C, RF-PHY/TRM/BV-14-C.

maxFreqDrift = ;     % In Hz, must be in the range [-50e3,50e3]

initFreqOffset = ;   % In Hz, must be in the range [-100e3,100e3]
testParams = helperBLEModulationTestConfig(txTestID,sps); % Generate test parameters

Simulate Transmitter Tests

To simulate the transmitter tests, perform these steps:

1 Generate BLE test packet waveform using helperBLETestWaveform.
2 Add frequency offset, which includes initial frequency offset, and drift to the waveform using

comm.PhaseFrequencyOffset.
3 Add thermal noise using comm.ThermalNoise.
4 Perform filtering on the noisy waveform using helperModulationTestFilterDesign.
5 Perform FM demodulation on the filtered waveform.
6 Perform test measurement and display the pass verdict.

testWfmLen = (testParams.nonPDULen+testParams.codingFactor*payloadLen*testParams.bitsPerByte)*sps;
driftRate = maxFreqDrift/length(testWfmLen);% Drift rate
freqDrift = driftRate*(0:1:(length(testWfmLen)-1))';% Frequency drift
freqOffset = freqDrift+initFreqOffset;% Frequency offset and frequency drift
% Create a phase frequency offset System object
pfo = comm.PhaseFrequencyOffset('FrequencyOffset',freqOffset,'SampleRate',testParams.sampleRate);
% Create a thermal noise System object
NF = 12; % Noise figure (dB)
thNoise = comm.ThermalNoise('NoiseMethod','Noise figure',...
                            'SampleRate',testParams.sampleRate,...
                            'NoiseFigure',NF);
filtDesign = helperModulationTestFilterDesign(testParams.phyMode,sps);
filtTestWfm = zeros(testWfmLen,testParams.numOfTestSeqs);
for wfmIdx = 1:testParams.numOfTestSeqs
    % Generate BLE test waveforms
    testWfm = helperBLETestWaveform(testParams.testSeqIds(wfmIdx),...
                                        payloadLen,sps,testParams.phyMode);
    wfmFreqOffset = pfo(testWfm);
    wfmChannel = thNoise(wfmFreqOffset);
    filtTestWfm(:,wfmIdx) =  conv(wfmChannel,filtDesign.Coefficients.','same'); % Perform filtering
end
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The function, helperBLEModulationTestMeasurements.m, performs FM demodulation and computes
either frequency deviation, or frequency drift and initial frequency offset based on the provided test
case ID.

[waveformDiffFreq,fOut1,fOut2,fOut3] = helperBLEModulationTestMeasurements(filtTestWfm,txTestID,testParams);

The function, helperBLEModulationTestVerdict.m, verifies whether the measurements are within the
specified limits, and displays the verdict on the command window.

helperBLEModulationTestVerdict(waveformDiffFreq,txTestID,testParams,fOut1,fOut2,fOut3)

Test sequence: 00001111
    Measured average frequency deviation = 250 kHz
    Expected average frequency deviation = 247.5 kHz to 252.5 kHz
    Result: Pass
Test sequence: 10101010
    Expected 99.9% of all maximum frequency deviation > 185000 kHz
    Result: Pass
Ratio of frequency deviations between two test sequences = 1.163
Expected Ratio > 0.8 
    Result: Pass

This example demonstrated the BLE transmitter test measurements specific to modulation
characteristics, carrier frequency offset and, drift. The simulation results verify that these computed
test measurement values are within the limits specified by Bluetooth RF-PHY Test Specifications [ 1
on page 3-0  ].
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Appendix

The helpers used in this example are:

• helperBLETestWaveform.m: Generates BLE test packet waveform
• helperBLEModulationTestConfig.m: Configures BLE transmitter test parameters
• helperBLEModulationTestMeasurements.m: Measures frequency deviation, carrier frequency
offset and drift

• helperBLEModulationTestVerdict.m: Validates test measurement values and displays the result
• helperModulationCharacteristicsTest.m: Performs modulation characteristics test
• helperModulationTestFilterDesign.m: Designs channel filter

Selected Bibliography

1 Bluetooth Special Interest Group (SIG). “Bluetooth RF-PHY Test Specification”, Revision: RF-
PHY.TS.5.1.0, Section 4.4. 2018. https://www.bluetooth.com.

2 Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification". Version 5.2. https://
www.bluetooth.com.
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More About
• “BLE Modulation Characteristics, Carrier Frequency Offset and Drift Test Measurements” on

page 3-146
• “BLE Output Power and In-Band Emissions Test Measurements” on page 3-151
• “BLE Blocking, Intermodulation and Carrier to Interference Performance Tests” on page 3-168
• “Bluetooth EDR RF-PHY Transmitter Tests for Modulation Accuracy and Carrier Frequency

Stability” on page 3-62
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BLE Output Power and In-Band Emissions Test Measurements
This example shows how to perform transmitter test measurements specific to output power and in-
band emissions on Bluetooth® Low Energy (BLE) transmitted waveforms as per the Bluetooth RF-
PHY Test Specifications [ 1 on page 3-0  ] using Communications Toolbox™ Library for the
Bluetooth® Protocol.

Objectives of BLE RF-PHY tests

The Bluetooth RF-PHY Test Specifications [ 1 on page 3-0  ] defined by Bluetooth Special Interest
Group (SIG) includes RF-PHY tests for both transmitter and receiver. The objectives of these RF-PHY
tests are to ensure interoperability between all BLE devices and to verify that a basic level of system
performance is guaranteed for all BLE products. Each test case has a specified test procedure and an
expected outcome, which must be met by the implementation under test (IUT).

RF-PHY Transmitter Tests

This example performs output power and in-band emissions test measurements according to the
Bluetooth RF-PHY Test Specifications [ 1 on page 3-0  ]. The output power measurement is designed
to ensure that power levels are high enough to maintain interoperability with other Bluetooth devices
and low enough to minimize interference within the ISM band. The in-band emission test is to verify
that the level of unwanted signals within the frequency range from the transmitter do not exceed the
specified limits. The test case IDs corresponding to the tests considered in this example are as
follows:

Output Power:

RF-PHY/TRM/BV-01-C: This test verifies the maximum peak and average power emitted from the IUT
are within limits.

In-band Emissions:

• RF-PHY/TRM/BV-03-C: This test verifies that the in-band emissions are within limits when the
transmitter is operating with uncoded data at 1 Ms/s.

• RF-PHY/TRM/BV-08-C: This test verifies that the in-band emissions are within limits when the
transmitter is operating with uncoded data at 2 Ms/s.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Configure the Test Parameters

You can change phyMode, Fc, outputPower and numDominantFreq parameters based on the PHY
transmission mode, frequency of operation, output power and number of dominant frequencies,
respectively.

% Select PHY transmission mode {'LE1M','LE2M'} as per Bluetooth RF-PHY Test
% Specifications

phyMode = ;
% Select frequency of operation for IUT based on the generic access profile
% (GAP) role(s) as shown in the table below.
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%  --------------------------------------------------------------------------------
% | Operating |  Peripheral & Central Devices    |  Broadcaster & Observer Devices |
% | Frequency |                                  |                                 |
% | (MHz)     |----------------------------------|---------------------------------|
% |           | Output Power | In-band Emissions | Output Power | In-band Emissions|
% |           |     Test     |        Test       |     Test     |        Test      |    
% |-----------|--------------|-------------------|--------------|------------------|
% | Lowest    |    2402      |       2406        |     2402     |       2402       |
% | Middle    |    2440      |       2440        |     2426     |       2440       |
% | Highest   |    2480      |       2476        |     2480     |       2480       |
%  --------------------------------------------------------------------------------
Fc = 2440e6; % Frequency of operation in Hz

payloadLength = ; % Payload length in bytes, must be in the range [37,255]
sps = 32; % Number of samples per symbol, minimum of 32 sps as per the test specifications

outputPower = ; % Output power in dBm, must be in the range [-20,20]

numDominantFreq = ; % Select number of dominant frequencies for in-band emissions test, must
% be in the range [1,78] and [1,74] for LE1M and LE2M modes, respectively.

% The number of dominant frequencies represents the number of test
% frequencies near the operating frequency at which the in-band emissions
% test is to be performed. The number chosen in this example leads to a
% short simulation. For performing complete in-band emissions test, change
% the |numDominantFreq| parameter to maximum number of dominant frequencies
% as specified in the Section 4.4.2 of the Bluetooth RF-PHY Test
% Specifications.

Generate BLE Test Waveforms

The function, helperBLETestWaveform.m, is configured to generate a BLE test waveform as per the
Bluetooth specifications [ 2 on page 3-0  ].

payloadType = 0; % Payload type for PRBS9 sequence
waveform =  helperBLETestWaveform(payloadType,payloadLength,sps,phyMode);

% Calculate sampling rate in Hz based on PHY transmission mode
Rsym = 1e6;
if strcmp(phyMode,'LE2M')
    Rsym = 2e6;
end
Fs = Rsym*sps;

% Apply frequency upconversion to obtain a passband signal for the
% specified frequency of operation.
maxFreq = 2485e6; % in Hz
interpFactor = ceil(2*maxFreq/Fs); % Interpolation factor for upconversion to
                                   % cover BLE RF frequency band (2400e6 to 2485e6)

% Change the stopband frequency in Hz based on the PHY transmission mode
stopbandFreq = 2e6;
if strcmp(phyMode,'LE2M')
    stopbandFreq = 4e6;
end

% Create a digital upconverter System object
upConv = dsp.DigitalUpConverter(...
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              'InterpolationFactor', interpFactor,...
              'SampleRate', Fs,...
              'Bandwidth', 2e6,...
              'StopbandAttenuation', 44,...
              'PassbandRipple',0.5,...
              'CenterFrequency',Fc,...
              'StopbandFrequencySource','Property',...
              'StopbandFrequency', stopbandFreq);

% Upconvert the baseband waveform to passband
dBdBmConvFactor = 30;
scalingFactor = 10^((outputPower-dBdBmConvFactor)/20);
upConvWaveform = scalingFactor*upConv(waveform);

Perform Output Power Test Measurement

rbwOutputPower = 3e6; % Resolution bandwidth, in Hz
% Frequency span must be zero so that the power measurement is performed in
% the time domain. Span 0 can be replicated by taking power values from the
% spectrogram at frequency of operation (Fc). Frequency limits are
% considered starting from frequency of operation (Fc) up to maximum
% frequency in the frequency band.
[P,F,T] = pspectrum(upConvWaveform,interpFactor*Fs,'spectrogram',...
                               'TimeResolution',1/rbwOutputPower,...
                               'FrequencyLimits',[Fc,maxFreq]);
powerAtFc = P(1,:); % Extract power values at Fc (F(1) = Fc)
% Calculate average power, AVGPOWER over at least 20% to 80% of the
% duration of the burst as specified in Section 4.4.1 of the Bluetooth
% RF-PHY Test Specifications.
powerAvgStartIdx = floor(0.2*length(powerAtFc));
powerAvgStopIdx = floor(0.8*length(powerAtFc));
avgPower = 10*log10(mean(powerAtFc(powerAvgStartIdx:powerAvgStopIdx)))+dBdBmConvFactor;
% Calculate peak power, PEAKPOWER
peakPower = 10*log10(max(powerAtFc))+dBdBmConvFactor;

% Plot power vs time
powerAtFcdBm = 10*log10(powerAtFc) + dBdBmConvFactor;
figure,plot(T,powerAtFcdBm)
grid on;
xlabel('Time(sec)');
ylabel('Power(dBm)');
title('Measured Output Power');
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% Pass verdict - All measured values shall fulfill the following conditions:
%
% * Peak power <= (Average power + 3 dB)
% * -20dBm <= Average power <= 20dBm
%
fprintf('Measured average power and peak power are %f dBm and %f dBm, respectively.\n',avgPower,peakPower);

Measured average power and peak power are 19.792338 dBm and 20.362792 dBm, respectively.

if (-20 <= avgPower <= 20) && (peakPower <= (avgPower+3))
    fprintf('Output power test passed.\n');
else
    fprintf('Output power test failed.\n');
end

Output power test passed.

Perform In-band Emissions Test Measurement

% The function, <matlab:edit('helperBLEInbandEmissionsParams.m')
% helperBLEInbandEmissionsParams.m>, is configured to generate dominant
% test frequency parameters.
[testFreq,idx1,idx2] = helperBLEInbandEmissionsParams(Fc,numDominantFreq,phyMode);

% For each test frequency measure the power levels at the following 10
% frequencies.
numOffsets = 10;
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freqOffset = -450e3+(0:numOffsets-1)*100e3;
adjChannelFreqOffsets = (freqOffset+testFreq-Fc).';

% Create and configure a spectrum analyzer for the waveform sampling rate
% and a resolution bandwidth of 100 kHz as specified in Section 4.4.2 of
% the Bluetooth RF-PHY Test Specifications.
rbw = 100e3; % Resolution bandwidth, in Hz
spectrumScope = dsp.SpectrumAnalyzer( ...
                'SampleRate',            Fs*interpFactor,...
                'SpectralAverages',      10, ...
                'YLimits',               [-120 30], ...
                'Title',                 'Power Spectrum of In-band Emissions',...
                'YLabel',                'Power (dBW)',...
                'SpectrumUnits',         'dBW',...
                'ShowLegend',            true,...
                'FrequencySpan',         'Start and stop frequencies',...
                'StartFrequency',         2400e6,...
                'StopFrequency',          maxFreq,...
                'RBWSource',             'Property',...
                'RBW',                    rbw,...
                'PlotMaxHoldTrace',       true,...
                'PlotAsTwoSidedSpectrum', false);

spectrumScope.ChannelMeasurements.Enable = true;
spectrumScope.ChannelMeasurements.Algorithm = 'ACPR';
spectrumScope.ChannelMeasurements.CenterFrequency = Fc;
spectrumScope.ChannelMeasurements.Span = 2e6; % Main channel bandwidth
spectrumScope.ChannelMeasurements.AdjacentBW = 1e5; % Adjacent channel bandwidth
spectrumScope.ChannelMeasurements.NumOffsets = numOffsets;

% Compute adjacent channel power ratio (ACPR) for the transmitted waveform
acpr = zeros(numOffsets,numDominantFreq);
for i = 1:numDominantFreq
    % Assign the 10 frequency offsets at each test frequency to ACPR Offsets
    spectrumScope.ChannelMeasurements.ACPROffsets = adjChannelFreqOffsets(:,i);

    % Estimate the power spectrum of the transmitted waveform using the spectrum analyzer
    spectrumScope(upConvWaveform);

    % Compute ACPR
    data = getMeasurementsData(spectrumScope); % Get the measurements data
    mainChannelPower = data.ChannelMeasurements.ChannelPower; % Main channel power at Fc
    acpr(:,i) = data.ChannelMeasurements.ACPRUpper; % Extract the ACPR values
end
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% Power levels at 10 frequency offsets at each test frequency are
% calculated by adding main channel power to ACPR.
adjChannelPower = acpr(:,1:numDominantFreq) + mainChannelPower;

% Compute the power at each test frequency by adding all the powers
% measured at 10 frequency offsets.
adjPowerAtTestFreq = 10*log10(sum(10.^(adjChannelPower(:,1:numDominantFreq)/10))) + dBdBmConvFactor;

% Plot the adjacent channel powers
tick = 1:numel(adjPowerAtTestFreq);
ticklabel = testFreq/1e9;
figure;
bar(adjPowerAtTestFreq, 'BaseValue', -120, 'FaceColor', 'yellow');
set(gca, 'XTick', tick, 'XTickLabel', ticklabel, 'YLim', [-120 -20]);
for i = tick
    text(i, adjPowerAtTestFreq(i), sprintf('%0.2f',adjPowerAtTestFreq(i)), ...
        'HorizontalAlignment', 'Center', 'VerticalAlignment', 'Top');
end
title('In-Band Emission Test Measurement');
xlabel('Frequency (GHz)');
ylabel('Power (dBm)');
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% Pass verdict- All measured values shall fulfill the following conditions:
% For LE1M PHY transmission mode
%
% * powerAtTestFreq <= -20 dBm for testFreq = Fc ± 2 MHz
% * powerAtTestFreq <= -30 dBm for testFreq = Fc ± [3+n] MHz; where
%   n=0,1,2,...
%
% For LE2M PHY transmission mode
%
% * powerAtTestFreq <= -20 dBm for testFreq = Fc ± 4 MHz AND testFreq = Fc
% ± 5 MHz
% * powerAtTestFreq <= -30 dBm for testFreq = Fc ± [6+n] MHz; where
%   n=0,1,2,...
%
for i = 1:numDominantFreq
    fprintf('Measured power at test frequency (Fc%+de6) is %.3f dBm.\n',(Fc-testFreq(i))*1e-6,adjPowerAtTestFreq(i));
end

Measured power at test frequency (Fc+4e6) is -79.393 dBm.
Measured power at test frequency (Fc+3e6) is -72.852 dBm.
Measured power at test frequency (Fc+2e6) is -32.670 dBm.
Measured power at test frequency (Fc-2e6) is -30.924 dBm.
Measured power at test frequency (Fc-3e6) is -72.038 dBm.
Measured power at test frequency (Fc-4e6) is -78.351 dBm.

if (all(adjPowerAtTestFreq(idx1) <= -20)||isempty(idx1)) && (all(adjPowerAtTestFreq(idx2) <= -30)||isempty(idx2))
    fprintf('In-band emissions test passed.\n');
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else
    fprintf('In-band emissions test failed.\n');
end

In-band emissions test passed.

This example demonstrated the transmitter test measurements specific to output power and in-band
emissions on BLE transmitted waveforms as per the Bluetooth RF-PHY Test Specifications [ 1 on page
3-0  ].

Appendix

This example uses the following helper functions:

• helperBLETestWaveform.m
• helperBLEInbandEmissionsParams.m

Selected Bibliography

1 Bluetooth RF-PHY Test Specification.
2 Volume 6 of the Bluetooth Core Specification, Version 5.0 Core System Package [Low Energy

Controller Volume].

See Also

More About
• “BLE Modulation Characteristics, Carrier Frequency Offset and Drift Test Measurements” on

page 3-146
• “BLE Blocking, Intermodulation and Carrier to Interference Performance Tests” on page 3-168
• “Bluetooth EDR RF-PHY Transmitter Tests for Modulation Accuracy and Carrier Frequency

Stability” on page 3-62
• “Bluetooth BR RF-PHY Transmitter Tests for Modulation Characteristics, Carrier Frequency

Offset, and Drift” on page 3-71

3 Bluetooth Toolbox Examples

3-158



Bluetooth Mesh Flooding in Wireless Sensor Networks
This example demonstrates network layer flooding in a Bluetooth® mesh network using
Communication Toolbox Library™ for the Bluetooth® Protocol. Using this example, you can:

• Create and configure a Bluetooth mesh network by positioning the nodes in a grid.
• Specify your own network by configuring the node positions and the type of node position

allocation.
• Classify and configure the mesh nodes as source, destination, relay, and end nodes and observe

how network layer flooding helps in communication between the source and destination even after
disabling few intermediate relay nodes.

• Visualize the flow of packets from source to destination.

The example also shows how to perform Monte Carlo simulations on the Bluetooth mesh network to
obtain numerical results (like number of relay nodes required, critical relay nodes between the
source and destination) averaged over multiple iterations.

Bluetooth Mesh Stack

The Bluetooth Core Specification [ 1 ] includes a Low Energy version for low-rate wireless personal
area networks, referred to as Bluetooth low energy (BLE) or Bluetooth Smart. The BLE stack consists
of generic attribute profile (GATT), attribute protocol (ATT), security manager protocol (SMP), logical
link control and adaptation protocol (L2CAP), link layer (LL) and physical layer. BLE was added to the
standard for low energy devices generating small amounts of data, such as notification alerts used in
such applications as home automation, health-care, fitness, and Internet of things (IoT). For more
information about BLE protocol stack, see “Bluetooth Protocol Stack” on page 13-7.

The Bluetooth mesh profile [ 2 ] defines the fundamental requirements to implement a mesh
networking solution for BLE. The mesh stack is located on top of the BLE core specification and
consists of model layer, foundation model layer, access layer, upper transport layer, lower transport
layer, network layer and bearer layer. Bluetooth mesh networking enables large-scale device
networks in the applications such as smart lighting, industrial automation, sensor networking, asset
tracking, and many other IoT solutions. For more information about Bluetooth mesh stack, see
“Bluetooth Mesh Networking” on page 13-46.

The Bluetooth mesh network layer performs these primary operations.

• Transmit upper layer messages over the network using the bearer layer
• Relay mesh messages
• Implement managed flooding to optimize network flooding
• Assign network addresses
• Configure network layer security

For more information about these mesh network layer operations, see “Bluetooth Mesh Networking”
on page 13-46.

This example uses the advertising bearer to demonstrate Bluetooth mesh flooding in a wireless
sensor network.

The main objectives of this example are:
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1 Create and configure a Bluetooth mesh network
2 Visualize message flooding
3 Derive path between selected source and destination
4 Display statistics (refer Network Layer Statistics at Each Node) at each node

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Create and Configure Bluetooth Mesh Network Scenarios

This example enables you to create and configure two Bluetooth mesh network scenarios. Each
scenario is a 50-node network. The nodes in the network are classified as relays, source, destination,
and end nodes. Specify the corresponding time to live (TTL) values of source and destination nodes.
In the first scenario, the example identifies the paths between the source and destination nodes. You
can visualize the message flow in the network with network layer statistics. In the second scenario,
the example disables some relay nodes and end nodes. In this case, the simulations show that the
network has the likelihood of establishing a path between the specified source and destination pair.

To create and visualize the mesh network, use helperBLEMeshNetworkNode and
helperBLEMeshVisualizeNetwork functions. Specify number of nodes (totalNodes) and the type of
node position (NodePositionType) in helperBLEMeshVisualizeNetwork function. The default type
of node position is 'Grid'. To specify your own network, set the value of NodePositionType to
'UserInput' and node positions to Positions.

% Set random number generator seed to 'default'
sprev = rng('default');

% Specify the number of nodes in the mesh network
totalNodes = 50;

% Initialize 'bleMeshNodes' vector with objects of type
% helperBLEMeshNetworkNode
bleMeshNodes(1, totalNodes) = helperBLEMeshNetworkNode;

% Configure each mesh node with unique identifier
for idx = 1:totalNodes
    meshNode = helperBLEMeshNetworkNode;
    meshNode.Identifier = idx;
    meshNode.NetworkLayer.ElementAddresses = dec2hex(idx, 4);
    bleMeshNodes(idx) = meshNode;
end

% Load node positions from the MAT file
load('bleMeshNetworkNodePositions.mat');

% Number of scenarios simulated in this examples
numberOfScenarios = 2;

% Initialize 'meshNetworkPlots' vector with objects of type
% helperBLEMeshVisualizeNetwork
meshNetworkPlots(1, numberOfScenarios) = helperBLEMeshVisualizeNetwork;

for idx = 1:numberOfScenarios
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    meshNetworkPlots(idx) = helperBLEMeshVisualizeNetwork;
    meshNetworkPlots(idx).NumberOfNodes = totalNodes;
    % Set the type of the node position allocation as 'Grid' or
    % 'UserInput'
    meshNetworkPlots(idx).NodePositionType = 'UserInput';

    % Set node positions based on number of nodes (applicable for
    % 'UserInput'), in meters
    meshNetworkPlots(idx).Positions = bleMeshNetworkNodePositions;

    % Set vicinity range based on node positions, in meters
    meshNetworkPlots(idx).VicinityRange = 25;

    % Set title to the network visualization
    meshNetworkPlots(idx).Title = ...
        ['Scenario ' num2str(idx) ': Bluetooth Mesh Flooding'];
end

Specify the number of source and destination pairs in the mesh network using srcDstPairs
parameter. Specify the TTL values for the packet originated at each source node.

% Specify the simulation time in milliseconds
simulationTime = 600;

% Enable or disable visualization
enableVisualization = true;

% Specify the source and destination pairs
srcDstPairs = [1 7; 13 29];

% Specify TTL values for packet originated at each source node
ttl = [25; 25];

Simulations

To run the simulation and get the results, use helperBLEMeshFloodingSimulation and
helperBLEMeshFloodingSimulationResults functions, respectively.

• Scenario 1: In this scenario, all the fifty nodes in the network are active. Some of these nodes are
selected as relays and there are no failed nodes in this scenario.

% Specify the relay nodes
relayNodeIDs = [3 4 5 8 10 11 15 19 20 21 23 25 28 30 32 34 36 37 38 39 41 ...
    42 43 44 45 46 47 48 49];

% Specify the failed nodes (nodes that are out of network)
failedNodeIDs = [];

This plot shows the corresponding paths between each source and destination pair. The
scenarioOneResults workspace variable stores the results containing the obtained paths in
scenario 1.

% Run the simulation with scenario 1 configuration
pathScenarioOne = helperBLEMeshFloodingSimulation(totalNodes, bleMeshNodes, meshNetworkPlots(1), ...
    simulationTime, srcDstPairs, ttl, relayNodeIDs, failedNodeIDs, ...
    enableVisualization);
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% Display the results of the scenario 1
scenarioOneResults = helperBLEMeshFloodingSimulationResults(srcDstPairs, pathScenarioOne)

scenarioOneResults =

  2x4 table

    Source    Destination               Path                NumberOfHops
    ______    ___________    ___________________________    ____________

       1           7         {[1 46 19 4 39 41 48 23 7]}         8      
      13          29         {[     13 5 3 28 36 44 29]}         6      

• Scenario 2: In this scenario, disable the relay feature of Node 41. Remove Node 3 and Node 43
from the network.
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% Specify the relay nodes
relayNodeIDs = [4 5 8 10 11 15 19 20 21 23 25 28 30 32 34 36 37 38 39 42 ...
    44 45 46 47 48 49];

% Specify the failed nodes (nodes that are out of network)
failedNodeIDs = [3, 43];

This plot shows the corresponding paths between each source and destination pair. The
scenarioTwoResults workspace variable stores the results containing the obtained paths in
scenario 2.

% Run the simulation with scenario 2 configuration
pathScenarioTwo = helperBLEMeshFloodingSimulation(totalNodes, bleMeshNodes, meshNetworkPlots(2), ...
    simulationTime, srcDstPairs, ttl, relayNodeIDs, failedNodeIDs, ...
    enableVisualization);

% Display the results of the scenario 2
scenarioTwoResults = helperBLEMeshFloodingSimulationResults(srcDstPairs, pathScenarioTwo)

scenarioTwoResults =

  2x4 table

    Source    Destination                  Path                  NumberOfHops
    ______    ___________    ________________________________    ____________

       1           7         {[1 46 19 4 8 20 37 45 34 23 7]}         10     
      13          29         {[     13 30 45 34 28 36 44 29]}          7     
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Network Layer Statistics

At each node, the example captures these network layer statistics.

• Number of messages transmitted by the node
• Number of messages received by the node
• Number of application messages received
• Number of messages relayed by the node
• Number of messages dropped at the node

The statisticsAtEachNode workspace variable contains cumulative network statistics of all the
nodes in scenario 1 and scenario 2. For a specific simulation run, you can see the network statistics
for only first five nodes. These are the network statistics for first five nodes in the network.

statisticsAtEachNode = helperBLEMeshFloodingSimulationResults(bleMeshNodes);
statisticsForFirstFiveNodes = statisticsAtEachNode(1:min(5, totalNodes), :)
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statisticsForFirstFiveNodes =

  5x6 table

    NodeID    TotalTxMsgs    TotalRxMsgs    TotalAppRxMsgs    TotalRelayedMsgs    TotalDroppedMsgs
    ______    ___________    ___________    ______________    ________________    ________________

      1            2              4               0                  0                   4        
      2            0              8               0                  0                   8        
      3            0              5               0                  2                   3        
      4            0             10               0                  4                   6        
      5            0              9               0                  4                   5        

Further Exploration

To obtain numerical results averaged over multiple simulations, the example implements the Monte
Carlo method [ 3 ]. To analyze the probability of message delivery from the source node to the
destination node after enabling or disabling the relay nodes in the mesh network, use
helperBLEMeshMonteCarloSimulations script. Each simulation run follows these steps.

1 Uses a new seed to generate a random number.
2 Randomly disables the relay nodes until only one path exist between the source and destination

nodes.
3 Stores the path.

The Monte Carlo simulations outputs these statistics.

• Probability of a message delivery from source to destination when relay nodes are randomly
disabled in the network

• Average hop count between the source and destination nodes
• Critical relays required to ensure packet delivery from the source to destination

The example performs Monte Carlo simulations by using these configuration parameters.

% Source and destination nodes
srcDstPair = [16 12];

% TTL value for the message originated at the above source node
ttl = 25;

% Relay nodes
relayNodeIDs = [21 15 25 11 38 19 46 8 39 20 37 32 30 5 45 49 43 3 28 36 47 ...
    34 23 48 41 44 42 10 4];

% Failed nodes (nodes that are out of network)
failedNodeIDs = [];

The example performs 10,000 simulations by using the above configuration. To view the simulation
results, see bleMeshMonteCarloResults.mat MAT file.

load('bleMeshMonteCarloResults.mat');
disp(['Probability of having a path between nodes Node ' num2str(srcDstPair(1)) ...
    ' and Node ' num2str(srcDstPair(2)) ' is ' ...
    num2str(probabilityOfSuccess) '%.']);
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disp(['Average hop count between nodes Node ' num2str(srcDstPair(1)) ' and Node ' ...
    num2str(srcDstPair(2)) ' is ' ...
    num2str(averageHopCount) '.']);
disp(['Critical relay nodes required to derive a path between Node ' num2str(srcDstPair(1)) ...
    ' and Node ' num2str(srcDstPair(2)) ' are [' num2str(criticalRelaysInfo{1:5, 1}') ...
    '].']);
% Restore the previous setting of random number generation
rng(sprev);

Probability of having a path between nodes Node 16 and Node 12 is 88.6428%.
Average hop count between nodes Node 16 and Node 12 is 8.
Critical relay nodes required to derive a path between Node 16 and Node 12 are [39  37   8  38   4].

To perform Monte Carlo simulations for custom configuration parameters, modify and run the
helperBLEMeshMonteCarloSimulations script.

This example enables you to create and configure a multinode Bluetooth mesh network and analyze
the network layer flooding. To study the flooding behavior, the example considers two simulation
scenarios. In the first scenario, the path between source and destination nodes is identified and
visualized by selecting some intermediate nodes as relay nodes. In the second scenario, some nodes
(Relay and End) are dropped, and the relay feature for some of the relay nodes is disabled. The
obtained results show that there exists a path between the source and destination nodes even if
nodes (Relay and End) fail randomly in the network.

This example enables you to create your own Bluetooth mesh network and visualize mesh flooding
and network statistics. To obtain numerical results averaged over multiple iterations, you can perform
Monte Carlo simulations on the Bluetooth mesh network.

Appendix

The example uses these helpers:

• helperBLEMeshNetworkNode: Create an object for Bluetooth mesh node
• helperBLEMeshNetworkLayer: Create an object for Bluetooth mesh network layer functionality
• helperBLEMeshNetworkPDU: Generate Bluetooth mesh network PDU
• helperBLEMeshNetworkPDUDecode: Decode Bluetooth mesh network PDU
• helperBluetoothQueue: Create an object for Bluetooth queue functionality
• helperBLEMeshRetransmissions: Create an object for retransmissions in Bluetooth mesh node
• helperBLEMeshChannelMessage: Receive message from Bluetooth mesh network channel
• helperBLEMeshPath: Derive path between source and destination within Bluetooth mesh network
• helperBLEMeshVicinityNodes: Get vicinity nodes of a given node
• helperBLEMeshGraphCursorCallback: Display the node statistics on mouse hover action
• helperBLEMeshVisualizeNetwork: Create an object for Bluetooth mesh network visualization
• helperBLEMeshFloodingSimulation: Simulate a Bluetooth mesh network
• helperBLEMeshFloodingSimulationResults: Bluetooth mesh network simulation results
• helperBLEMeshMonteCarloSimulations: Bluetooth mesh network Monte Carlo simulations
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BLE Blocking, Intermodulation and Carrier to Interference
Performance Tests

This example shows how to model Bluetooth® low energy (BLE) RF-PHY receiver tests specific to
blocking, intermodulation and carrier to interference (C/I) performance as per the Bluetooth RF-PHY
Test Specifications [ 1 on page 3-0  ] using Communications Toolbox™ Library for the Bluetooth
Protocol.

Background

The Bluetooth RF-PHY Test Specifications [ 1 on page 3-0  ] defined by Bluetooth special interest
group (SIG) includes RF-PHY tests for both transmitter and receiver. The objectives of these RF-PHY
tests are to ensure interoperability between all BLE devices and to verify that a basic level of system
performance is guaranteed for all BLE products. Each test case has a specified test procedure and an
expected outcome, which must be met by the implementation under test (IUT).

Introduction

The Bluetooth receiver tests are designed to ensure that the IUT can receive data over a range of
conditions where the transmitted signal has high power, and in presence of both in-band and out-of-
band interference with a defined packet error rate (PER). This example covers three BLE RF-PHY
receiver tests for blocking, intermodulation and C/I performance as per the Bluetooth RF-PHY Test
Specifications [ 1 on page 3-0  ].

• Blocking Performance: The blocking performance test verifies the receiver performance in the
presence of out-of-band interfering signals i.e. operating outside the 2400 MHz - 2483.5 MHz
band.

• Intermodulation Performance: The intermodulation performance test verifies the receiver
performance in presence of unwanted signals nearby in frequency.

• C/I Performance: The C/I performance test verifies the receiver performance in presence of
adjacent and co-channel interfering signals.

All the above RF-PHY tests are necessary because the wanted signal often will not be the only signal
transmitting in the given frequency range.

The following block diagram summarizes the example flow.
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1 Generate test packets and pass through bleWaveformGenerator to generate BLE test waveform.
2 Perform frequency upconversion to obtain a passband signal.
3 Scale the transmitted signal to a desired input level.
4 Add the interference signal(s) depending on the performance test.
5 Add white gaussian noise based on receiver noise floor.
6 At the receiver, down convert the signal and then demodulate, decode and perform CRC check.
7 Measure the PER based on CRC check and then compare it with the reference PER.

Check for Support Package Installation
% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Initialize the Simulation Parameters

You can change rxPerformanceTest, phyMode and Fc parameters based on the receiver
performance test, PHY transmission mode and frequency of operation, respectively.

rxPerformanceTest = ; % Select one from the set {'C/I', 'Blocking', 'Intermodulation'}
% Select PHY transmission mode as per Bluetooth RF-PHY Test Specifications

phyMode = ; % {LE1M, LE2M, LE500K, LE125K} for C/I
                                % {LE1M, LE2M} for blocking and intermodulation
% Select frequency of operation for IUT based on the performance test and
% generic access profile (GAP) role(s) as shown in the table below.
% --------------------------------------------------------------------------------
% Operating | Peripheral & Central Devices    | Broadcaster & Observer Devices   |
% Frequency |                                 |                                  |
% (MHz)     |---------------------------------|----------------------------------|
%           | C/I  | Blocking |Intermodulation| C/I  | Blocking | Intermodulation|
% ----------|------|----------|---------------|------|----------|----------------|
%   Lowest  | 2406 |    -     |    2402       | 2402 |    -     |    2402        |
%   Middle  | 2440 |    2426  |    2440       | 2426 |    2426  |    2426        |
%   Highest | 2476 |    -     |    2480       | 2480 |    -     |    2480        |
% --------------------------------------------------------------------------------
Fc = 2426e6; % Frequency of operation in Hz

payloadLength = ; % Payload length in bytes, must be in the range [37,255]
sps = 40; % Number of samples per symbol

% Calculate sampling rate in Hz based on PHY transmission mode
Rsym = 1e6;
if strcmp(phyMode,'LE2M')
    Rsym = 2e6;
end
Fs = Rsym*sps;

Generate Baseband Waveforms

The function, helperBLETestWaveform.m, can be configured to generate a BLE test packet waveform
as per the Bluetooth specifications [ 2 on page 3-0  ]. In this example, wanted and interference
baseband waveforms can be generated by changing the payload type parameter.

% Generate a wanted signal which is always a modulated carrier with a PRBS9
% payload
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payloadTypeWanted = 0; % Payload type for PRBS9 sequence
wantedWaveform =  helperBLETestWaveform(payloadTypeWanted,payloadLength,sps,phyMode);

% Generate an interference signal #1 which is a modulated carrier with a
% PRBS15 payload
payloadTypeInterference = 3; % Payload type for PRBS15 sequence
interferenceWaveform1 =  helperBLETestWaveform(payloadTypeInterference,payloadLength,sps,phyMode);

Frequency Upconversion

Apply frequency upconversion to obtain a passband signal for the specified frequency of operation.

% Interpolation factor for upconversion to cover BLE RF frequency band
% (2400e6 to 2485e6)
interpFactor = ceil(2*2485e6/Fs);

% Create a digital upconverter System object
upConv = dsp.DigitalUpConverter(...
              'InterpolationFactor',interpFactor,...
              'SampleRate',Fs,...
              'Bandwidth',2e6,...
              'StopbandAttenuation',44,...
              'PassbandRipple',0.5,...
              'CenterFrequency',Fc);

% Upconvert the baseband waveform to passband
wantedWaveformUp = upConv([wantedWaveform;zeros(8*sps,1)]);

Generate Test Parameters

Test parameters are generated based on performance test, frequency of operation and PHY
transmission mode. The function, helperBLETestParamGenerate.m, is used to generate all the
interference frequencies and corresponding scaling factors (alpha, beta, gamma) for selected
receiver performance test.

[alpha,beta,gamma,interferenceFreq1,interferenceFreq2] = ...
                helperBLETestParamGenerate(rxPerformanceTest,Fc,phyMode);

Repeat test parameters based on the number of packets used for simulation.

pktCnt = 10; % Number of packets
maxInterferenceParams = min(length(interferenceFreq1),pktCnt); % Maximum number of interference parameters used for simulation

% Repeat all the interference parameters such that PER can be averaged over
% the entire range of interference frequencies for selected receiver
% performance test.
repFact = ceil(pktCnt/maxInterferenceParams); % Repetition factor
betaRep = repmat(beta,repFact,1);
gammaRep = repmat(gamma,repFact,1);
interferenceFreq1Rep = repmat(interferenceFreq1,repFact,1);
interferenceFreq2Rep = repmat(interferenceFreq2,repFact,1);

Test Simulation

In this example, all the three BLE RF-PHY performance tests are simulated as follows:

• For Blocking performance, there will be only one interference signal i.e. interference signal #2.
So, the scaling factor (beta) for interference signal #1 is zero.
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• For Intermodulation performance, there will be two interference signals.
• For C/I performance, there will be only one interference signal i.e. interference signal #1. So, the

scaling factor (gamma) for interference signal #2 is zero.

% Upconvert and store the interference waveform #1 based on buffer
% size, so that the stored interference waveforms can be reused if
% the packet count exceeds the buffer size.
interferenceWaveform1Up = zeros(length(wantedWaveformUp),maxInterferenceParams);
if any(strcmp(rxPerformanceTest,{'C/I','Intermodulation'}))
    for i=1:maxInterferenceParams
        release(upConv)
        upConv.CenterFrequency = interferenceFreq1Rep(i);
        interferenceWaveform1Up(:,i) = upConv([interferenceWaveform1;zeros(8*sps,1)]);
    end
end

% Initialize a variable for reusing the interference waveform #1
j = rem(1:pktCnt,maxInterferenceParams);
j(j == 0) = maxInterferenceParams;

% Create a digital down converter System object
downConv = dsp.DigitalDownConverter(...
              'DecimationFactor',interpFactor,...
              'SampleRate',Fs*interpFactor,...
              'Bandwidth',2e6,...
              'StopbandAttenuation',44,...
              'PassbandRipple',0.5,...
              'CenterFrequency',Fc);

% Create automatic gain control System object
agc = comm.AGC('DesiredOutputPower',1);

% Create a thermal noise System object
NF = 12; % Noise figure (dB)
thNoise = comm.ThermalNoise('NoiseMethod','Noise figure',...
                            'SampleRate',interpFactor*Fs,...
                            'NoiseFigure',NF);

% Time vector to generate sinusoidal unmodulated interference signal i.e.
% interference signal #2.
t = (0:(length(wantedWaveformUp)-1)).'/(interpFactor*Fs);
pktLost = 0; % Initialize counter
for i=1:pktCnt

    % Generate an interference waveform #2 which is a sinusoidal
    % unmodulated signal. The sqrt(2) factor ensures that the power of the
    % sinusoidal signal is normalized.
    interferenceWaveform2 = sqrt(2)*sin(2*pi*interferenceFreq2Rep(i)*t);

    % Add the interference signals to wanted signal
    rxWaveform = alpha*wantedWaveformUp + betaRep(i)*interferenceWaveform1Up(:,j(i)) + gammaRep(i)*interferenceWaveform2;
    chanOut = thNoise(complex(rxWaveform)); % Add thermal noise to the signal
    downConvOut = downConv(real(chanOut)); % Perform frequency down conversion
    agcOut = agc(downConvOut); % Apply AGC
    [payload,accessAddr] = bleIdealReceiver(agcOut,'Mode',phyMode,...
                                'SamplesPerSymbol',sps,'WhitenStatus','Off'); % Extract message information
    [crcFail,pdu] = helperBLETestPacketValidate(payload,accessAddr); % Validate the BLE test packet
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    pktLost = pktLost + crcFail;
end

% Determine the PER
per = pktLost/pktCnt;

Spectrum Visualization

Create and configure a spectrum analyzer and show the spectrum of last transmitted wanted signal
and interference signal(s) based on the receiver performance test.

% Setup spectrum viewer
spectrumScope = dsp.SpectrumAnalyzer( ...
                    'SampleRate',            interpFactor*Fs,...
                    'SpectralAverages',      10,...
                    'YLimits',               [-160 0], ...
                    'Title',                 'Spectrum of Wanted and Interference Signals',...
                    'SpectrumUnits',         'dBm',...
                    'NumInputPorts' ,        2,...
                    'ChannelNames',          {'Wanted Signal','Interference Signal'},...
                    'ShowLegend',            true,...
                    'FrequencySpan',         'Start and stop frequencies',...
                    'StartFrequency',        2400e6,...
                    'StopFrequency',         2485e6,...
                    'RBWSource',             'Property',...
                    'RBW',                   1e5,...
                    'PlotAsTwoSidedSpectrum',false);

if strcmp(rxPerformanceTest,'C/I')
    spectrumScope(alpha*wantedWaveformUp,betaRep(end)*interferenceWaveform1Up(:,end))
elseif strcmp(rxPerformanceTest,'Blocking')
    spectrumScope.StartFrequency = 30e6;
    spectrumScope(alpha*wantedWaveformUp,gammaRep(end)*interferenceWaveform2)
else
    spectrumScope.NumInputPorts = 3;
    spectrumScope.ChannelNames = {'Wanted Signal','Interference Signal #1','Interference Signal #2'};
    spectrumScope(alpha*wantedWaveformUp,betaRep(end)*interferenceWaveform1Up(:,end),gammaRep(end)*interferenceWaveform2)
end
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Reference Results

This section generates the reference PER values for each PHY transmission mode based on the
payload length as specified in section 6.4 of the Bluetooth RF-PHY Test Specifications [ 1 on page 3-
0  ].

berTable = [0.1 0.064 0.034 0.017]*0.01;
if(payloadLength <= 37)
    refBER = berTable(1);
elseif(payloadLength <= 63)
    refBER = berTable(2);
elseif(payloadLength <= 127)
    refBER = berTable(3);
else
    refBER = berTable(4);
end
accessAddLen = 4; % Access address length in bytes
crcLengthBytes = 3; % CRC length in bytes
pduHeaderLen = 2; % Header length in bytes
refPER = 1-(1-refBER)^((payloadLength+accessAddLen+pduHeaderLen+crcLengthBytes)*8);
fprintf('Measured PER and reference PER for payload length of %d bytes are %f, %f respectively.\n',payloadLength,per,refPER);

Measured PER and reference PER for payload length of 37 bytes are 0.000000, 0.308010 respectively.
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if per <= refPER
    fprintf('%s performance test passed.\n',rxPerformanceTest);
else
    fprintf('%s performance test failed.\n',rxPerformanceTest);
end

Intermodulation performance test passed.

Appendix

This example uses the following helper functions:

• helperBLETestWaveform.m: Generates BLE test waveform
• helperBLETestParamGenerate.m: Generates BLE test parameters specific to blocking,

intermodulation, and C/I
• helperBLETestPacketValidate.m: Validates BLE test packets

Selected Bibliography

1 Bluetooth RF-PHY Test Specification.
2 Volume 6 of the Bluetooth Core Specification, Version 5.0 Core System Package [Low Energy

Controller Volume].
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More About
• “BLE Modulation Characteristics, Carrier Frequency Offset and Drift Test Measurements” on

page 3-146
• “BLE Output Power and In-Band Emissions Test Measurements” on page 3-151
• “Bluetooth EDR RF-PHY Transmitter Tests for Modulation Accuracy and Carrier Frequency

Stability” on page 3-62
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BLE Coexistence Model with WLAN Signal Interference
This example shows how to simulate Bluetooth® low energy (BLE) coexistence with WLAN
interference using the Communications Toolbox™ Library for the Bluetooth Protocol and the WLAN
Toolbox™. Coexistence mechanisms are used to minimize the interference of WLAN on BLE network.
In this example, the collision probability and interference level of each WLAN network is used to
corrupt the BLE signals. The simulation results generated in this example conclude that for high
collision probability and interference level of a WLAN channel, the achieved success rate of the
respective BLE channel is low.

BLE-WLAN Coexistence Mechanism

As there are different types of wireless networks operating in the same unlicensed frequency band, it
is possible for two different networks to interfere with each other. This interference can cause
transmission failures in both the networks. There is no standardized algorithm to achieve coexistence
of two different wireless networks. However, the IEEE® 802.15.2™ standard [ 1 ] specifies some
recommended practices to achieve the coexistence of wireless personal area networks (WPAN) with
other wireless devices operating in unlicensed frequency bands.

This example illustrates a BLE coexistence model with WLAN signal interference. WLAN
communication requires a minimum of 20 MHz bandwidth, while BLE devices require only 2 MHz
bandwidth. WLAN uses a channel access mechanism called carrier-sense multiple access with
collision avoidance (CSMA/CA), while BLE devices use frequency hopping. Interference occurs when
the operating frequency of BLE and WLAN devices overlap. To minimize the interference, coexistence
mechanisms are used.

Coexistence mechanisms are broadly classified into these two categories [ 1 ]:

• Collaborative: This mechanism requires a communication link between the BLE and WLAN
networks. Since these two networks can communicate with each other, one of these networks
pauses its transmission while the other is using the channel. This mechanism is used when the
WLAN and BLE devices are embedded into the same physical device.

• Non-Collaborative: This mechanism does not require any communication link between the BLE
and WLAN networks. Since these two networks cannot communicate with each other, they use
their own methods to detect the interference of the other network. This mechanism is used when
the WLAN and BLE devices are not embedded into the same physical device.

This example illustrates a non-collaborative coexistence mechanism for BLE devices with WLAN.

BLE Coexistence with WLAN - Model Description

This section elaborates the data communication in BLE, WLAN interference and coexistence
algorithm used for avoiding the interference in this example.

Communication in BLE: BLE defines two major roles at the Link Layer, namely the Master and the
Slave. Master initiates the data communication and Slave responds to the Master. In this example,
BLE packet exchange is modeled between one Master and multiple (configurable up to 5) Slaves. In
BLE [ 2 ], data communication occurs only during connection events. A connection event is a
recurring (at regular intervals called connection interval) sequence of data packets exchange
between a Master and a Slave. All the packets within a connection event are transmitted on the same
data channel. At the start of every connection event, the Master initiates communication with the
respective Slave. Thereafter, the Slave responds to the Master with a data packet. If there is no data
to send, the Slave responds with an empty packet. In this example, only one transaction is modeled
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per connection event. A new connection event uses a new data channel. The new channel is selected
based on adaptive channel hopping. A channel map indicating good or bad channels is used while
selecting a new channel, thus showing the adaptiveness in channel hopping.

WLAN traffic: WLAN traffic is dynamically added to, or removed from, the model according to the
specified start and end times. Each WLAN network is configured with an individual collision
probability. Additionally, WLAN interference level is configured for each WLAN network to corrupt
the BLE signals in the respective channel. For every transmission, a random number between 0 and 1
is generated. If the generated random number is less than the collision probability, then the
transmitting BLE signal is corrupted by adding the WLAN signals in that channel. The generated
WLAN traffic can be modified for IEEE® 802.11ax™ [ 3 ] or 802.11n [ 4 ] using the wlanTraffic
function. However, this example uses only 20 MHz WLAN channels.

BLE coexistence with WLAN: If the selected BLE channel is significantly impacted by the WLAN
interference based on collision probability, then the transmitted BLE signal is interfered by WLAN
signals in that channel. The Master device periodically classifies the Slave channels as 'good
channels' or 'bad channels', based on packet failures in that channel. The channel classification
information is stored in the form of a bitmap called channel map. The bitmap is an array of 1's and 0's
defining the classification of the channel (either 'good' or 'bad'). The classifyChannels function
classifies the BLE channels and stores the generated bitmap. The Master maintains a different
channel map for each Slave. The updated channel map is sent to the Slave. The periodicity of channel
classification is configured by setting the property ClassificationInterval in
helperBLEChannelClassification object. BLE devices in idle state, calculate channel busy time for all
the 'bad channels' by performing energy detection (ED) of the received signals. If the current number
of good channels is less than the preferred number of good channels, the bad channels are classified
again. This classification is based on the channel busy time when the
BadChannelClassificationMethod property is set to 'Using energy indications'. If the
BadChannelClassificationMethod property is set to 'Reset all bad channels', then all the bad
channels are reset to good channels.
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Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is installed
or not.

commSupportPackageCheck('BLUETOOTH');

BLE Configuration Parameters

This section adds a BLE Master device and the specified number of Slave devices to the BLE network.
Since the Master is responsible for updating channel map for each Slave in a BLE network, the
channel classification parameters are configured at the Master device using
helperBLEChannelClassification. The helperBLEDeviceModel object is used to model the BLE
coexistence with WLAN.

% The number of BLE Slaves in connection with the Master
slavesCount = 1;

% Create the BLE Master device capable of connecting with "slavesCount"
% number of Slaves
master = helperBLEDeviceModel('Role','Master', ...
    'SlavesCount',slavesCount);

% Initialize the channel classification parameters to classify the BLE
% channels into good or bad channels. PERThreshold:                 Packet
% error rate (PER) threshold value ClassificationInterval:
% Periodicity of channel classification RxStatusCount:
% Maximum number of received packets status MinRxCountToClassify:
% Minimum number of received packets status BadChannelClassificationMethod:
% Method for bad channels classification PreferredMinimumGoodChannels:
% Preferred number of good channels
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channelClassification = helperBLEChannelClassification(...
    'PERThreshold',40, ...
    'ClassificationInterval',150, ...
    'RxStatusCount',50, ...
    'MinRxCountToClassify',4, ...
    'BadChannelClassificationMethod','Reset all the bad channels', ...
    'PreferredMinimumGoodChannels',30);

% Assign channel classification parameters to the Master device
master.ChannelClassification = channelClassification;

% Initialize "slavesCount" number of Slaves
slaves(1, slavesCount) = helperBLEDeviceModel;

% Create "slavesCount" number of Slave devices
for idx = 1:slavesCount
    slaves(idx) = helperBLEDeviceModel('Role','Slave');
end

% Create "slavesCount" connections between the "Master" and "Slaves". This
% function creates a Link Layer connection by sharing the common connection
% parameters such as connection interval, access address for each
% Master-Slave connection pair.
[master, slaves] = helperBLECreateLLConnection(master, slaves);

Model WLAN Traffic

This section models the WLAN traffic using specified configuration.

Configuration Parameters

The configuration parameters for each WLAN network includes collision probability, interference
level, interference start time and interference end time in the specified WLAN channel. The
helperBLEWLANSignalTrafficConfig object is used to model the WLAN traffic.

% Set number of WLAN networks interfering with the BLE network
wlanNetworksCount = 6;

% Set of WLAN channels (in the range [1, 14]) used by each WLAN network
wlanChannels = [1, 5, 6, 12, 9, 8];
% Probability of collisions of each WLAN network with BLE network
collisionProbabilities = [0.75, 0.68, 0.76, 0.80, 0.78, 0.64];
% Start and end times (in milliseconds) of transmission in each WLAN
% network
wlanInterferencePeriod = [0, inf; ...
    0, inf; ...
    0, 2100; ...
    0, inf; ...
    200, 2800; ...
    150, inf];

% Ratio of WLAN signal power level relative to BLE signal power level
wlanInterferenceLevel = [1.20, 0.90, 0.85, 0.95, 0.70, 1.15];

Model WLAN Traffic
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This section configures the interference to each Slave by adding WLAN traffic with the specified
configuration. WLAN traffic (non-HT waveforms) is added in all specified WLAN channels using
wlanTraffic function.

% Create a configuration object for WLAN traffic
wlanTrafficConfig = helperBLEWLANSignalTrafficConfig();

% Configure WLAN traffic with the specified WLAN network parameters
wlanTraffic(wlanTrafficConfig, wlanNetworksCount, wlanChannels, collisionProbabilities, ...
    wlanInterferencePeriod, wlanInterferenceLevel);

Coexistence Simulation

This section illustrates the communication between Master and Slave devices while interfering with
WLAN signals.

Initialize Simulation Parameters

The simulation parameters required for the BLE coexistence with WLAN signal interference are
initialized in this code.

% Initialize simulation parameters

% Reset the random number generator seed
sprev = rng('default');

% To enable the visualization of BLE coexistence with WLAN, set the
% "enableVisualization" to true. To disable the visualization of BLE
% coexistence with WLAN set the "enableVisualization" to false.
enableVisualization = true;

% To enable the visualization of channel hopping sequence, set the
% "enableHoppingVisualization" to true. To disable the visualization of
% channel hopping sequence, set the "enableHoppingVisualization" to false.
% If the "enableVisualization" is set to false, then
% "enableHoppingVisualization" is not considered.
enableHoppingVisualization = true;

% Total simulation time in milliseconds
simulationTime = 4000;

% One step time is considered as 0.025 milliseconds. All the timing
% parameters (connection interval, scan interval, advertising interval,
% etc.) in BLE specification are multiple of 0.625 milliseconds. The
% minimum packet size used in this example is 9 octets (72 bits). The
% packet transmission time in different PHY modes are: 0.072 milliseconds
% (in LE1M), 0.036 milliseconds (in LE2M), 0.144 milliseconds (in LE500K)
% and 0.288 milliseconds (in LE125K). Therefore, the step time is
% considered as 0.025 milliseconds (0.625 is multiple of 0.025) to achieve
% a trade-off between the simulation time and accuracy.
timeStep = 0.025;

% Parameters for generating BLE transmission mode
phyMode = 'LE1M';   % Mode can be 'LE2M' | 'LE1M' | 'LE500K' | 'LE125K'
EbNo = 16;          % Eb/No value in dB

% Initialize PHY parameters sps:              Samples per symbol bleSNR:
% BLE signal to noise ratio initImpairments:  System object for BLE PHY
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% impairments
[sps, bleSNR, initImpairments] = helperBLEInitPHYParameters(EbNo, phyMode);

% Create structure for an empty packet to initialize the output of Master
% and Slaves LLPDU:        Generated Link Layer Protocol Data Unit (PDU)
% appended with
%               Cyclic Redundancy Check (CRC)
% RateIndex:    String representing the rate at which the packet will be
%               transmitted. It contains one of 'LE2M' | 'LE1M' | 'LE500K'
%               | 'LE125K'
% AccessAddress:Unique address for each Master-Slave connection pair
% ChannelIndex: Channel on which the packet is transmitted
emptyPacket = struct('LLPDU',[], ...
    'AccessAddress','', ...
    'RateIndex','', ...
    'ChannelIndex',-1);

% Initialize the Slave output
slaveOutput = emptyPacket;

% Preallocate the buffers to store the Slave outputs
slaveOutputs = cell(1, slavesCount);

Simulation

This section simulates the exchange of packets between a BLE Master and Slave devices for a
specified amount of time.

• Master (Transmission or Reception): In each connection event, BLE Master initiates the
communication with the respective Slave by transmitting a BLE waveform generated for the Link
Layer packet on a data channel. The WLAN signal interferes with the generated BLE waveform in
the respective BLE channel. After transmission, the Master waits for the response from the Slave.

• Slave (Transmission or Reception): In each connection event, BLE Slave receives the
interfered waveform from the Master on a data channel. Thereafter, the Slave responds to the
Master on the same data channel by transmitting a Link Layer packet after the generating BLE
waveform. The generated BLE waveform is interfered by the WLAN signal in the respective BLE
channel.

Before adding the WLAN interference, the transmitted BLE signal is passed through the following RF
impairments.

• DC offset
• Carrier frequency offset
• Carrier phase offset
• Timing drift

Use the helperBLEImpairments function to configure the RF impairments.

The run function of helperBLEDeviceModel is used for communication between BLE Master and
Slave devices. The addInterference function adds the WLAN signals to corrupt the BLE signals. White
gaussian noise (WGN) is added to the interfered BLE waveforms. The helperBLEVisualizeCoexistence
visualizes the simulation of BLE coexistence with WLAN signals.

% Initialize figures for visualization of coexistence model for each Slave.
% This visualization shows the WLAN channels along with their collision
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% probabilities and also shows the channel hopping for the communication
% between BLE Master and Slave devices. It also shows the status (good or
% bad) of each BLE channel along with the success rate in the respective
% channel.
coexistenceModel = ...
    helperBLEVisualizeCoexistence(...
    'Action','Initialize', ...
    'SlaveCount',slavesCount, ...
    'WLANChannelList',wlanChannels, ...
    'PERThreshold',master.ChannelClassification.PERThreshold, ...
    'ClassificationInterval',master.ChannelClassification.ClassificationInterval, ...
    'ChannelBusyCountThreshold',master.ChannelClassification.ChannelBusyCountThreshold, ...
    'PreferredMinimumGoodChannels',master.ChannelClassification.PreferredMinimumGoodChannels, ...
    'ConnectionInterval',master.LLConnectionConfigs(1).ConnectionInterval, ...
    'Stoptime',simulationTime, ...
    'PHYMode',phyMode, ...
    'EnableVisualization',enableVisualization, ...
    'EnableHoppingVisualization',enableHoppingVisualization);
coexistenceModel.initializeVisualization();
viewModel(coexistenceModel);
master.CoexistenceVisualization = coexistenceModel;

% Run simulation
for simulationTimer = 0:timeStep:simulationTime
    % Stop the simulation, if all the Slaves are disconnected from the
    % Master due to interference. If the PER of the BLE channels in which
    % they are communicating with each other is high, then the Master and
    % the Slave are disconnected. The PER of the channel is high because of
    % the high collision probability in the respective channel.
    if numel(master.ActiveConnectionIdxs(master.ActiveConnectionIdxs ~= -1)) == 0
        fprintf('Simulation terminated as all Slaves are disconnected from the Master device.\n')
        break;
    end

    % Update WLAN traffic in visualization
    helperBLEUpdateWLANTraffic(slavesCount, wlanChannels, wlanTrafficConfig, simulationTimer, master);

    % MASTER: Transmitting or Receiving mode
    if (master.ActiveChannel == slaveOutput.ChannelIndex) && ...
            ~isempty(slaveOutput.LLPDU)
        masterOutput = run(master, slaveOutput);
    else
        masterOutput = run(master, emptyPacket);
    end

    if ~(isempty(masterOutput.LLPDU))
        % Generate PHY waveform
        masterOutput.RateIndex = phyMode;
        masterWaveformTx = helperBLEPHYTx(masterOutput, sps);

        % Add impairments
        masterWaveformTx = helperBLEImpairments(initImpairments, masterWaveformTx, sps);

        % Add WLAN interference
        masterWaveformTx = addInterference(wlanTrafficConfig, ...
            masterOutput.ChannelIndex, simulationTimer, masterWaveformTx);

        % Pass the transmitted waveform through AWGN channel
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        masterWaveformRx = awgn(masterWaveformTx, bleSNR);

        % Decode PHY waveform after adding impairments and interference
        [decodedMasterPacket, decodedMasterAccessAddress] = helperBLEPHYRx(masterWaveformRx, ...
            phyMode, sps, masterOutput.AccessAddress, masterOutput.ChannelIndex);

        masterOutput.LLPDU = decodedMasterPacket;
        % Access address becomes empty when the BLE PHY receiver fails to
        % detect a valid BLE packet due to high interference level or
        % impairments or noise level.
        if ~isempty(decodedMasterAccessAddress)
            masterOutput.AccessAddress = dec2hex(bi2de(decodedMasterAccessAddress'), 8);
        end
    end

    % Update current simulation time
    master.CoexistenceVisualization.CurrentTime = simulationTimer;
    master.CoexistenceVisualization.Action = 'Simulation Progress';

    % SLAVE: Transmitting or Receiving mode
    for idx = 1:slavesCount
        % Pass the "MasterOutput" to the Slave listening in the same
        % frequency
        if (slaves(idx).ActiveChannel == masterOutput.ChannelIndex) && ...
                ~isempty(masterOutput.LLPDU)
            slaveOutputs{idx} = run(slaves(idx), masterOutput);
            % Pass an empty packet to all other Slaves
        else
            slaveOutputs{idx} = run(slaves(idx), emptyPacket);
        end

        % Update simulation progress for each Slave
        master.CoexistenceVisualization.SlaveNumber = idx;
        viewModel(master.CoexistenceVisualization)
    end

    slaveOutput = emptyPacket;

    % Get the active Slave output (At any time instance only one Slave is
    % active)
    for idx = 1:slavesCount
        if ~isempty(slaveOutputs{idx}.LLPDU)
            slaveOutput = slaveOutputs{idx};
            break
        end
    end

    if ~(isempty(slaveOutput.LLPDU))
        % Generate PHY waveform
        slaveOutput.RateIndex = phyMode;
        slaveWaveformTx = helperBLEPHYTx(slaveOutput, sps);

        % Add BLE impairments
        slaveWaveformTx = helperBLEImpairments(initImpairments, slaveWaveformTx, sps);

        % Add WLAN interference
        slaveWaveformTx = addInterference(wlanTrafficConfig, ...
            slaveOutput.ChannelIndex, simulationTimer, slaveWaveformTx);
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        % Pass the transmitted waveform through AWGN channel
        slaveWaveformRx = awgn(slaveWaveformTx, bleSNR);

        % Decode PHY waveform after adding impairments and interference
        [decodedSlavePacket, decodedSlaveAccessAddress] = helperBLEPHYRx(slaveWaveformRx, ...
            phyMode, sps, slaveOutput.AccessAddress, slaveOutput.ChannelIndex);

        slaveOutput.LLPDU = decodedSlavePacket;
        % Access address becomes empty when the BLE PHY receiver fails to
        % detect a valid BLE packet due to high interference level or
        % impairments or noise level.
        if ~isempty(decodedSlaveAccessAddress)
            slaveOutput.AccessAddress = dec2hex(bi2de(decodedSlaveAccessAddress'), 8);
        end
    end
end

% Update the simulation progress for each Slave
for idx = 1:slavesCount
    master.CoexistenceVisualization.SlaveNumber = idx;
    master.CoexistenceVisualization.Action = 'Simulation Progress';
    viewModel(master.CoexistenceVisualization)
end

% Log the statistics of this example to
% |bleCoexistenceWithWLANSignalStatistics.mat| file
helperBLELogCoexistenceStats(master, slaves, ...
    'bleCoexistenceWithWLANSignalStatistics.mat');

% Restore the previous setting of random number generation
rng(sprev)
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Simulation Results

The simulation of this example generates:

1 A run-time plot for each Master-Slave connection pair depicting the status (good or bad) and the
cumulative, recent success rates of each channel is displayed

2 A MAT file bleCoexistenceWithWLANSignalStatistics.mat with detailed statistics such as number
of packets received, number of packets corrupted on each channel and status (good or bad) of
the channel for each classification interval is obtained

Further Exploration

You can further explore this example by:

• Using other variants of WLAN formats such as non-HT direct-sequence spread spectrum (DSSS) or
high throughput (HT) in the wlanTraffic function
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• Corrupting the BLE signal in the addInterference function by varying the interference present at
different stages of the BLE signal

You can also explore “Statistical Modeling of WLAN Interference on BLE Network” on page 3-198.

This example enables you to analyze the BLE coexistence with WLAN signal interference. Collision
probability and interference level of each WLAN network is used to corrupt the BLE signals. The BLE
Master and Slave devices use good channels to communicate with each other to avoid packet loss.
The success rate is calculated at each BLE channel. This example concludes that for high collision
probability and interference level of a WLAN channel, the achieved success rate of the respective
BLE channel is low. Therefore, these channels are not used for communication between BLE Master
and Slave devices.

Appendix

The example uses these features:

• bleChannelSelection: Select a BLE channel index
• bleLLDataChannelPDUConfig: Create a configuration object for BLE Link Layer data channel

PDU
• bleLLDataChannelPDU: Generate BLE Link Layer data channel PDU
• bleLLDataChannelPDUDecode: Decode BLE Link Layer data channel PDU

The example uses these helpers:

• helperBLEChannelClassification: Create an object BLE channel classification
• helperBLEWLANSignalTrafficConfig: Create a configuration object for WLAN signal traffic
• helperBLEDeviceModel: Create an object for BLE device
• helperBLELLConnectionEvent: Create an object for BLE Link Layer connection events
• helperBLELLConnectionEventStatus: Enumeration to indicate the status of BLE Link Layer

connection events
• helperBLEConnectionStateModel: Create an object for a BLE Link Layer connection
• helperBLECreateLLConnection: Create a connection between BLE Master and BLE Slave devices
• helperBLEUpdateWLANTraffic: Update WLAN traffic in the visualization at the simulation timer
• helperBLEVisualizeCoexistence: Create an object to visualization the coexistence model
• helperBLELogCoexistenceStats: Log the coexistence statistics to MATLAB workspace
• helperBLEInitPHYParameters: Initialize BLE PHY parameters
• helperBLEPHYTx: Generate BLE PHY waveform
• helperBLEImpairments: Add impairments to the BLE waveform
• helperBLEPHYRx: BLE PHY waveform receiver
• helperBLEImpairmentsAddition: Add RF impairments to the BLE waveform
• helperBLEImpairmentsInit: Initialize RF impairment parameters
• helperBLEPracticalReceiver: Demodulate and decode the received signal
• helperBLEReceiverInit: Initialize BLE PHY receiver parameters
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See Also

More About
• “Bluetooth-WLAN Coexistence” on page 13-60
• “Configure Bluetooth BR/EDR Channel with WLAN Interference and Pass the Waveform” on

page 13-96
• “Bluetooth Full Duplex Data and Voice Transmission in MATLAB” on page 3-51
• “End-to-End Bluetooth BR/EDR PHY Simulation with WLAN Interference and Adaptive

Frequency Hopping” on page 3-76
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Link Layer State Machine for BLE Devices Using Stateflow
This example shows how to model link layer state machine to establish a connection between
Bluetooth® low energy (BLE) devices using the Communications Toolbox™ Library for the Bluetooth
Protocol and Stateflow®. The working mechanism of the link layer is described in terms of a state
machine consisting of these five states: Standby, Advertising, Scanning, Initiating, and Connection.
Based on these states, the Bluetooth devices can either be Advertisers, Scanners, Initiators, Master
or Slave. This example presents a model to demonstrate the connection establishment process
between a Master and a Slave through transitions between different states of the link layer state
machine. The simulation results display the time taken to establish a connection between a Master
and a Slave. Moreover, this example also provides plots showing the variation in connection
establishment time as a function of configuration parameters such as advertising interval and
interference.

BLE Stack

The Bluetooth core specification [ 1 ] includes a low energy (LE) version for low-rate wireless
personal area networks, referred as BLE or Bluetooth Smart. The BLE stack consists of: Generic
Attribute Profile (GATT), Attribute Protocol (ATT), Security Manager Protocol (SMP), Logical Link
Control and Adaptation Protocol (L2CAP), Link Layer (LL) and Physical layer (PHY). BLE was added
to the Bluetooth Special Interest Group (SIG) [ 1 ] standard for low energy devices generating small
amount of data such as notification alerts used in applications like home automation, health-care,
fitness, and Internet of Things (IoT).
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BLE operates in the 2.4 GHz ISM band at 2400 - 2483.5 MHz. It uses 40 RF channels and each
channel is 2 MHz wide.

BLE classifies these 40 RF channels into three advertising channels (channel indices: 37, 38, 39) and
37 data channels (channel indices: 0 - 36). Advertising channels are mainly used for creating
connection between the BLE devices by transmitting advertising packets, scan request/response
packets and connection indication packets. Data channels are mainly used after connection
establishment for exchanging data packets.

Check for Support Package Installation

BLE Link Layer State Machine Model

The model in this example demonstrates the connection establishment process between two BLE
devices, where one device acts as a Master and the other acts as a Slave. The Master device starts
scanning for the advertising packets on the advertising channels. The Slave device starts sending
advertising packets on advertising channels. After selecting an advertiser, the Master initiates a
connection with it using the 'Connection indication' packet. The connection is established when the
Slave receives this packet. Thereafter, the Master and Slave devices can exchange the data packets.

Link Layer States

The link layer state machine is implemented using Stateflow® as shown below.
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The link layer maintains a state machine consisting of these five states:

1 Standby : This is the default state in the link layer. The device does not send or receive packets
in this state. It may leave the Standby state to enter one of the Advertising, Scanning or Initiating
states.

2 Advertising : In this state, the device transmits advertising packets in periodic intervals called
advertising events. These devices are called advertisers.

3 Scanning : In this state, the device listens for advertisers on the advertising channels and
transits to the Standby state for selecting an advertiser to initiate a connection.

4 Initiating : In this state, the device listens for a specific advertiser and initiates a connection
with it. The device will move to Connection state after receiving the advertising packet from the
selected advertiser. These devices are called initiators.

5 Connection : In this state, the device transmits data packets in periodic intervals called
connection events.

After the connection is established, the initiator becomes the Master (Central) device and the
advertiser becomes the Slave (Peripheral) device.
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Link Layer Events

An advertising device transmits advertising packets on the three advertising channels in a cyclic
manner (starting from channel index 37). Each cycle of advertising is called an advertising event. The
same procedure is used by the scanning or the initiating device that listens on the three advertising
channels in a cyclic manner called scan event.

A connected device changes to a new data channel for every connection event. A connection event is
a time frame for exchanging a sequence of data packets between two connected devices, which
repeats at regular intervals. All the packets within a connection event are transmitted on the same
data channel. A new connection event uses a new data channel. Two alternate channel selection
algorithms are specified by the Bluetooth core specification (refer Section 4.5.8, Part-B, Vol-6 of [ 1 ]).
These algorithms are used to select the data channel for each connection event.

This figure illustrates the connection establishment process between two BLE devices using link layer
events:
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Model Configuration

The link layer state machine model demonstrated in this example use these two library blocks: Device
and Wireless Medium.

You can update the device configuration through the mask parameters of the Device block in the
model. Based on the selected GAP role (Central/ Peripheral), the mask will be updated with relevant
properties.
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You can also configure the interference statistically for each advertising channel (37, 38 and 39) in
the Wireless Medium block.

Simulation Results

The results obtained in this simulation are:

• Connection establishment time:

This model outputs the time taken, in milliseconds, for establishing the connection. This time value is
saved to a base workspace variable timeTakenToEstablishConnection.

• Channel hopping sequence:

The sequence of channel hops used by the Master and Slave devices is separately shown in a scope
diagram.

• Packet exchange between devices

The packets exchanged between the Master and the Slave are captured in a PCAP format file with the
name BLEPacketExchange.pcap. This PCAP file can be opened with any third-party packet
analyzing software.
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• Diagnostic log for device operations

You can enable or disable the message log using the settings of the Device block.
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Further Exploration

In the simulation, you can vary the intervals and the interference to observe the variation of the
connection establishment time. The simulation results are shown below:

• Simulation results without interference:

This plot shows how the connection establishment time varies with the advertising interval. Here,
scan window is 10 milliseconds with a scan interval of 100 milliseconds i.e. 10% of the active period
in scanning.
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Run helperBLEPlotConnectionTimeWithoutInterference script (long run simulation) for generating
the above results.

• Simulation results with interference:

This plot shows how the average connection establishment time varies with different levels of
interference. The plot also shows the variation for multiple values of advertising intervals. Here, scan
window is 100 milliseconds with a scan interval of 100 milliseconds i.e. 100% of active period in
scanning. These connection establishment time values are averaged over 100 simulation runs for
different values of advertising intervals and interference levels.
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Run helperBLEPlotConnectionTimeWithInterference script (long run simulation) for generating the
above results.

Apart from advertising interval, the connection establishment time varies with respect to multiple
parameters such as scan interval, scan window, scan duration, advertising duration and interference.
You can further explore by varying any of these parameters. Both the above simulations are run with
scan and advertising duration of 1 and 10 seconds respectively.

Conclusion

This example illustrates a link layer state machine model to establish a connection between two BLE
devices namely: Master and Slave. This model gives detailed information about different link layer
states and events. The state transition diagrams presented in this example clearly explain the process
of connection establishment between the Master and the Slave. The derived simulation results
display the time taken to establish a connection between the BLE devices. Furthermore, the derived
plots also show that the connection establishment time varies with the configuration parameters such
as advertising interval and interference.

Appendix

The example uses these features:

• bleLLAdvertisingChannelPDU: Generate LL advertising channel PDU
• bleLLAdvertisingChannelPDUDecode: Decode LL advertising channel PDU
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• bleLLAdvertisingChannelPDUConfig: Create a configuration object for generation and
decoding of LL advertising channel PDU

• bleLLDataChannelPDU: Generate LL data channel PDU
• bleLLDataChannelPDUDecode: Decode LL data channel PDU
• bleLLDataChannelPDUConfig: Create a configuration object for generation and decoding of LL

data channel PDU
• bleLLControlPDUConfig: Create a sub-configuration object used in generation and decoding of

data channel PDU
• bleGAPDataBlock: Generate GAP advertising and scan response data
• bleGAPDataBlockDecode: Decode GAP advertising and scan response data
• bleGAPDataBlockConfig: Create a configuration object for generation and decoding of GAP

data block
• bleChannelSelection: Create a System object used for selecting a new data channel to

transmit the data packet
• blePCAPWriter: Create BLE PCAP or PCAPNG file writer object

The example uses these helpers:

• helperBLELLConnectionEvent: Create an object for BLE LL connection events
• helperBLELLConnectionEventStatus: Enumeration to indicate the status of BLE LL connection

events
• helperBLELLStateMachineEnumeration: Enumeration to indicate strings used in BLE LL state

machine model
• helperBLEGenerateRandomDeviceAddress: Generate random device address for a Bluetooth

device
• helperBLEGetDurationInSteps: Calculate the number of steps required for timing parameters in

the model based on stepunit
• helperBLEPlotConnectionTimeWithoutInterference: Run multiple simulations varying advertising

interval without interference
• helperBLEPlotConnectionTimeWithInterference: Run multiple simulations varying advertising

interval with interference

Selected Bibliography
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Statistical Modeling of WLAN Interference on BLE Network
This example shows how to simulate the statistical modeling of WLAN interference on Bluetooth®
low energy (BLE) network using the Communications Toolbox™ Library for the Bluetooth Protocol.
Coexistence mechanisms are used to minimize the interference of WLAN on BLE network. In this
example, the collision probability of each WLAN network is used to corrupt the BLE signals. The
simulation results generated in this example conclude that for high collision probability of a WLAN
channel, the achieved success rate of the respective BLE channel is low.

BLE-WLAN Coexistence Mechanism

As there are different types of wireless networks operating in the same unlicensed frequency band, it
is possible for two different networks to interfere with each other. This interference can cause
transmission failures in both the networks. There is no standardized algorithm to achieve coexistence
of two different wireless networks. However, the IEEE® 802.15.2™ standard [ 1 ] specifies some
recommended practices to achieve the coexistence of wireless personal area networks (WPAN) with
other wireless devices operating in unlicensed frequency bands.

This example illustrates a statistical modeling of WLAN interference on BLE network. WLAN
communication requires a minimum of 20 MHz bandwidth, while BLE devices require only 2 MHz
bandwidth. WLAN uses a channel access mechanism called carrier-sense multiple access with
collision avoidance (CSMA/CA), while BLE devices use frequency hopping. Interference occurs when
the operating frequency of BLE and WLAN devices overlap. To minimize the interference, coexistence
mechanisms are used.

Coexistence mechanisms are broadly classified into these two categories [ 1 ]:

• Collaborative: This mechanism requires a communication link between the BLE and WLAN
networks. Since these two networks can communicate with each other, one of these networks
pauses its transmission while the other is using the channel. This mechanism is used when the
WLAN and BLE devices are embedded into the same physical device.

• Non-Collaborative: This mechanism does not require any communication link between the BLE
and WLAN networks. Since these two networks cannot communicate with each other, they use
their own methods to detect the interference of the other network. This mechanism is used when
the WLAN and BLE devices are not embedded into the same physical device.

This example illustrates a non-collaborative coexistence mechanism for BLE devices with WLAN.

BLE Coexistence with WLAN - Model Description

This section elaborates the data communication in BLE, WLAN interference and coexistence
algorithm used for avoiding the interference in this example.

Communication in BLE: BLE defines two major roles at the Link Layer, namely the Master and the
Slave. Master initiates the data communication and Slave responds to the Master. In this example,
BLE packet exchange is modeled between one Master and multiple (configurable up to 5) Slaves. In
BLE [ 2 ], data communication occurs only during connection events. A connection event is a
recurring (at regular intervals called connection interval) sequence of data packets exchange
between a Master and a Slave. All the packets within a connection event are transmitted on the same
data channel. At the start of every connection event, the Master initiates communication with the
respective Slave. Thereafter, the Slave responds to the Master with a data packet. If there is no data
to send, the Slave responds with an empty packet. In this example, only one transaction is modeled
per connection event. A new connection event uses a new data channel. The new channel is selected
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based on adaptive channel hopping. A channel map indicating good or bad channels is used while
selecting a new channel, thus showing the adaptiveness in channel hopping.

WLAN traffic: WLAN traffic is dynamically added to, or removed from, the model according to the
specified start and end times. Each WLAN network is configured with an individual collision
probability. For every transmission, a random number between 0 and 1 is generated. If the generated
random number is less than the collision probability, then the transmitting frame is corrupted.

BLE coexistence with WLAN: If the selected BLE channel is significantly impacted by the WLAN
interference based on collision probability, then the transmitted BLE packet will undergo corruption.
The Master device periodically classifies the Slave channels as 'good channels' or 'bad channels',
based on packet failures in that channel. The channel classification information is stored in the form
of a bitmap called channel map. The bitmap is an array of 1's and 0's defining the classification of the
channel (either 'good' or 'bad'). The classifyChannels function classifies the BLE channels and stores
the generated bitmap. The Master maintains a different channel map for each Slave. The updated
channel map is sent to the Slave. The periodicity of channel classification is configured by setting the
property ClassificationInterval in helperBLEChannelClassification object. BLE devices in idle
state, calculate channel busy time for all the 'bad channels' by performing energy detection (ED). If
the current number of good channels is less than the preferred number of good channels, the bad
channels are classified again. This classification is based on the channel busy time when the
BadChannelClassificationMethod property is set to 'Using energy indications'. If the
BadChannelClassificationMethod property is set to 'Reset all bad channels', all the bad
channels are reset to good channels.

Check for Support Package Installation

Check if the 'Communications Toolbox Library for the Bluetooth Protocol' support package is installed
or not.

commSupportPackageCheck('BLUETOOTH');

BLE Configuration Parameters

This section adds a BLE Master device and the specified number of Slave devices to the BLE network.
Since the Master is responsible for updating channel map for each Slave in a BLE network, the
channel classification parameters are configured at the Master device using
helperBLEChannelClassification. The helperBLEDeviceModel object is used to model the BLE
coexistence with WLAN.
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% The number of BLE Slaves in connection with the Master
slavesCount = 1;

% Create the BLE Master device capable of connecting with "slavesCount"
% number of Slaves
master = helperBLEDeviceModel('Role','Master', ...
    'SlavesCount',slavesCount);

% Initialize the channel classification parameters to classify the BLE
% channels into good or bad channels. PERThreshold:                 Packet
% error rate (PER) threshold value ClassificationInterval:
% Periodicity of channel classification RxStatusCount:
% Maximum number of received packets status MinRxCountToClassify:
% Minimum number of received packets status BadChannelClassificationMethod:
% Method for bad channels classification PreferredMinimumGoodChannels:
% Preferred number of good channels
channelClassification = helperBLEChannelClassification(...
    'PERThreshold',60, ...
    'ClassificationInterval',150, ...
    'RxStatusCount',50, ...
    'MinRxCountToClassify',4, ...
    'BadChannelClassificationMethod','Using energy detections', ...
    'PreferredMinimumGoodChannels',20);

% Assign channel classification parameters to the Master device
master.ChannelClassification = channelClassification;

% Initialize "slavesCount" number of Slaves
slaves(1, slavesCount) = helperBLEDeviceModel;

% Create "slavesCount" number of Slave devices
for idx = 1:slavesCount
    slaves(idx) = helperBLEDeviceModel('Role','Slave');
end

% Create "slavesCount" connections between the "Master" and "Slaves". This
% function creates a Link Layer connection by sharing the common connection
% parameters such as connection interval, access address for each
% Master-Slave connection pair.
[master, slaves] = helperBLECreateLLConnection(master, slaves);

Model WLAN Traffic

This section models the WLAN traffic using specified configuration.

Configuration Parameters

The configuration parameters for each WLAN network includes collision probability, interference
start time and interference end time in the specified WLAN channel. The
helperBLEWLANStatisticalTrafficConfig object is used to model the WLAN traffic.

% Set number of WLAN networks interfering with the BLE network
wlanNetworksCount = 6;

% Set of WLAN channels (in the range [1, 14]) used by each WLAN network
wlanChannels = [1, 5, 6, 12, 9, 8];
% Probability of collisions of each WLAN network with BLE network
collisionProbabilities = [0.35, 0.48, 0.26, 0.60, 0.28, 0.34];
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% Start and end times (in milliseconds) of transmission in each WLAN
% network
wlanInterferencePeriod = [0, inf; ...
    0, inf; ...
    0, 2100; ...
    0, inf; ...
    200, 2800; ...
    150, inf];

Model WLAN Traffic

This section configures the interference to each Slave by adding WLAN traffic with the specified
configuration. WLAN network is added in all specified WLAN channels using wlanTraffic function.

% Create a configuration object for WLAN traffic
wlanTrafficConfig = helperBLEWLANStatisticalTrafficConfig();

% Configure WLAN traffic with the specified WLAN network parameters
wlanTraffic(wlanTrafficConfig, wlanNetworksCount, wlanChannels, ...
    collisionProbabilities, wlanInterferencePeriod);

Coexistence Simulation

This section illustrates the communication between Master and Slave devices while the WLAN is
interfering statistically.

Initialize Simulation Parameters

The simulation parameters required for the statistical modeling of WLAN interference on BLE
network are initialized in this code.

% Initialize simulation parameters

% Reset the random number generator seed
sprev = rng('default');

% To enable the visualization of BLE coexistence with WLAN, set the
% "enableVisualization" to true. To disable the visualization of BLE
% coexistence with WLAN set the "enableVisualization" to false.
enableVisualization = true;

% To enable the visualization of channel hopping sequence, set the
% "enableHoppingVisualization" to true. To disable the visualization of
% channel hopping sequence, set the "enableHoppingVisualization" to false.
% If the "enableVisualization" is set to false, then
% "enableHoppingVisualization" is not considered.
enableHoppingVisualization = true;

% Total simulation time in milliseconds
simulationTime = 4000;

% One step time is considered as 0.025 milliseconds. All the timing
% parameters (connection interval, scan interval, advertising interval,
% etc.) in BLE specification are multiple of 0.625 milliseconds. The
% maximum packet size used in this example is 33 octets (264 bits). The
% packet transmission time in different PHY modes are: 0.264 milliseconds
% (in LE1M), 0.132 milliseconds (in LE2M), 0.528 milliseconds (in LE500K)
% and 1.056 milliseconds (in LE125K). Therefore, the step time is
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% considered as 0.025 milliseconds (0.625 is multiple of 0.025) to achieve
% a trade-off between the simulation time and accuracy.
timeStep = 0.025;

% Create structure for an empty packet to initialize the output of Master
% and Slaves LLPDU:        Generated Link Layer Protocol Data Unit (PDU)
% appended with
%               Cyclic Redundancy Check (CRC)
% RateIndex:    String representing the rate at which the packet will be
%               transmitted. It contains one of 'LE2M' | 'LE1M' | 'LE500K'
%               | 'LE125K'
% AccessAddress:Unique address for each Master-Slave connection pair
% ChannelIndex: Channel on which the packet is transmitted
emptyPacket = struct('LLPDU',[], ...
    'AccessAddress','', ...
    'RateIndex','', ...
    'ChannelIndex',-1);

% Initialize the Slave output
slaveOutput = emptyPacket;

% Preallocate the buffers to store the Slave outputs
slaveOutputs = cell(1, slavesCount);

Simulation

This section simulates the exchange of packets between a BLE Master and Slave devices for a
specified amount of time.

• Master (Transmission or Reception): In each connection event, BLE Master initiates the
communication with the respective Slave by transmitting a Link Layer packet on a data channel.
The generated BLE packet is corrupted based on the WLAN collision probability of the respective
channel. After transmission, the Master waits for the response from the Slave.

• Slave (Transmission or Reception): In each connection event, BLE Slave receives the
interfered packet from the Master on a data channel. Thereafter, the Slave responds to the Master
on the same data channel by transmitting a Link Layer packet. The generated BLE packet is
corrupted based on the WLAN collision probability of the respective channel.

The run function of helperBLEDeviceModel is used for communication between BLE Master and
Slave devices. The getInterferenceLevel function verifies whether or not the BLE channel is
significantly interfered by the WLAN traffic. The helperBLEVisualizeCoexistence visualizes the
simulation of BLE coexistence with WLAN traffic.

% Initialize figures for visualization of coexistence model for each Slave.
% This visualization shows the WLAN channels along with their collision
% probabilities and also shows the channel hopping for the communication
% between BLE Master and Slave devices. It also shows the status (good or
% bad) of each BLE channel along with the success rate in the respective
% channel.
coexistenceModel = ...
    helperBLEVisualizeCoexistence(...
    'Action','Initialize', ...
    'SlaveCount',slavesCount, ...
    'WLANChannelList',wlanChannels, ...
    'PERThreshold',master.ChannelClassification.PERThreshold, ...
    'ClassificationInterval',master.ChannelClassification.ClassificationInterval, ...
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    'ChannelBusyCountThreshold',master.ChannelClassification.ChannelBusyCountThreshold, ...
    'PreferredMinimumGoodChannels',master.ChannelClassification.PreferredMinimumGoodChannels, ...
    'ConnectionInterval',master.LLConnectionConfigs(1).ConnectionInterval, ...
    'Stoptime',simulationTime, ...
    'EnableVisualization',enableVisualization, ...
    'EnableHoppingVisualization',enableHoppingVisualization);
coexistenceModel.initializeVisualization();
viewModel(coexistenceModel);
master.CoexistenceVisualization = coexistenceModel;

% Run simulation
for simulationTimer = 0:timeStep:simulationTime
    % Stop the simulation, if all the Slaves are disconnected from the
    % Master due to interference. Master and Slave are disconnected when
    % the PER of the BLE channels in which they are communicating with each
    % other is high.
    if numel(master.ActiveConnectionIdxs(master.ActiveConnectionIdxs ~= -1)) == 0
        fprintf('Simulation terminated as all Slaves are disconnected from the Master device.\n')
        break;
    end

    % Update WLAN traffic in visualization
    helperBLEUpdateWLANTraffic(slavesCount, wlanChannels, wlanTrafficConfig, ...
        simulationTimer, master);

    % MASTER: Transmitting or Receiving mode
    if (master.ActiveChannel == slaveOutput.ChannelIndex) && ...
            strcmpi(master.ActiveAccessAddress, slaveOutput.AccessAddress)
        masterOutput = run(master, slaveOutput);
    else
        masterOutput = run(master, emptyPacket);
    end

    if ~(isempty(masterOutput.LLPDU))
        interferenceEffect = getInterferenceLevel(wlanTrafficConfig, ...
            masterOutput.ChannelIndex, simulationTimer);
        % Corrupt the packet, if the interference effect is 1
        if (interferenceEffect == 1)
            masterOutput.LLPDU(1:2) = ~masterOutput.LLPDU(1:2);
            % Drop the packet, if the interference effect is 2
            % (interference is too high)
        elseif (interferenceEffect == 2)
            masterOutput = emptyPacket;
        end
    end

    % Update current simulation time
    coexistenceModel.CurrentTime = simulationTimer;
    coexistenceModel.Action = 'Simulation Progress';

    % SLAVE: Transmitting or Receiving mode
    for idx = 1:slavesCount
        % Pass the "MasterOutput" to the Slave listening in the same
        % frequency and matched access address
        if (slaves(idx).ActiveChannel == masterOutput.ChannelIndex) && ...
                strcmpi(slaves(idx).ActiveAccessAddress, masterOutput.AccessAddress)
            slaveOutputs{idx} = run(slaves(idx), masterOutput);
            % Pass an empty packet to all other Slaves to update the timers
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        else
            slaveOutputs{idx} = run(slaves(idx), emptyPacket);
        end

        % Update simulation progress for each Slave
        coexistenceModel.SlaveNumber = idx;
        viewModel(coexistenceModel)
    end

    slaveOutput = emptyPacket;

    % Get the active Slave output (At any time instance only one Slave is
    % active)
    for idx = 1:slavesCount
        if ~isempty(slaveOutputs{idx}.LLPDU)
            slaveOutput = slaveOutputs{idx};
            break;
        end
    end

    if ~(isempty(slaveOutput.LLPDU))
        interferenceEffect = getInterferenceLevel(wlanTrafficConfig, ...
            slaveOutput.ChannelIndex, simulationTimer);
        % Corrupt the packet, if the interference effect is 1
        if (interferenceEffect == 1)
            slaveOutput.LLPDU(1:2) = ~slaveOutput.LLPDU(1:2);
            % Drop the packet, if the interference effect is 2
            % (interference is too high)
        elseif (interferenceEffect == 2)
            slaveOutput = emptyPacket;
        end
    end
end

% Update the simulation progress for each Slave
for idx = 1:slavesCount
    master.CoexistenceVisualization.SlaveNumber = idx;
    master.CoexistenceVisualization.Action = 'Simulation Progress';
    viewModel(master.CoexistenceVisualization)
end

% Log the statistics of this example to
% |bleCoexistenceWithStatisticalWLANStatistics.mat| file
helperBLELogCoexistenceStats(master, slaves, ...
    'bleCoexistenceWithStatisticalWLANStatistics.mat');

% Restore the previous setting of random number generation
rng(sprev);
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Simulation results

The simulation of this example generates:

1 A run-time plot for each Master-Slave connection pair depicting the status (good or bad) and the
cumulative, recent success rates of each channel is displayed

2 A MAT file bleCoexistenceWithStatisticalWLANStatistics.mat with detailed statistics such as
number of packets received, number of packets corrupted on each channel and status (good or
bad) of the channel for each classification interval is obtained

This example enables you to analyze the BLE coexistence with WLAN statistical interference.
Collision probability of each WLAN network is used to corrupt the BLE packets. The BLE Master and
Slave devices use good channels to communicate with each other to avoid packet loss. The success
rate is calculated at each BLE channel. This example concludes that for high collision probability of a
WLAN channel, the achieved success rate of the respective BLE channel is low. Therefore, these
channels are not used for communication between BLE Master and Slave devices.
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Appendix

The example uses these features:

• bleChannelSelection: Select a BLE channel index
• bleLLDataChannelPDUConfig: Create a configuration object for BLE Link Layer data channel

PDU
• bleLLDataChannelPDU: Generate BLE Link Layer data channel PDU
• bleLLDataChannelPDUDecode: Decode BLE Link Layer data channel PDU

The example uses these helpers:

• helperBLEChannelClassification: Create an object BLE channel classification
• helperBLEWLANStatisticalTrafficConfig: Create a configuration object for WLAN signal traffic
• helperBLEDeviceModel: Create an object for BLE device
• helperBLELLConnectionEvent: Create an object for BLE Link Layer connection events
• helperBLELLConnectionEventStatus: Enumeration to indicate the status of BLE Link Layer

connection events
• helperBLEConnectionStateModel: Create an object for a BLE Link Layer connection
• helperBLECreateLLConnection: Create a connection between BLE Master and BLE Slave devices
• helperBLEUpdateWLANTraffic: Update WLAN traffic in the visualization at the simulation timer
• helperBLEVisualizeCoexistence: Create an object to visualization the coexistence model
• helperBLELogCoexistenceStats: Log the coexistence statistics to MATLAB workspace
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Bluetooth Low Energy Transmitter
This example shows how to implement a Bluetooth® Low Energy (BLE) transmitter using the
Communications Toolbox™ Library for the Bluetooth Protocol. You can either transmit BLE signals
using the ADALM-PLUTO radio or write to a baseband file (*.bb). The transmitted BLE signal can be
received by the companion example, “Bluetooth Low Energy Receiver” on page 3-212, with any one of
the following setup: (i) Two SDR platforms connected to the same host computer which runs two
MATLAB sessions (ii) Two SDR platforms connected to two computers which run separate MATLAB
sessions.

Refer to the “Guided Host-Radio Hardware Setup” (Communications Toolbox Support Package for
Analog Devices ADALM-Pluto Radio) documentation for details on how to configure your host
computer to work with the Support Package for ADALM-PLUTO Radio.

Required Hardware and Software

To run this example, you need the following software:

• Communications Toolbox Library for the Bluetooth Protocol

To transmit signals in real time, you also need ADALM-PLUTO radio and the corresponding support
package Add-On:

• Communications Toolbox Support Package for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of the Software Defined Radio (SDR) discovery page.

Background

The Bluetooth Special Interest Group (SIG) introduced BLE for low power short range
communications. The Bluetooth standard [ 1 ] specifies the Link layer which includes both PHY and
MAC layers. BLE applications include image and video file transfers between mobile phones, home
automation, and the Internet of Things (IoT).

Specifications of BLE:

• Transmission frequency range: 2.4-2.4835 GHz
• RF channels : 40
• Symbol rate : 1 Msym/s, 2 Msym/s
• Modulation : Gaussian Minimum Shift Keying (GMSK)
• PHY transmission modes : (i) LE1M - Uncoded PHY with data rate of 1 Mbps (ii) LE2M -

Uncoded PHY with data rate of 2 Mbps (iii) LE500K - Coded PHY with data rate of 500 Kbps (iv)
LE125K - Coded PHY with data rate of 125 Kbps

The Bluetooth standard [ 1 ] specifies air interface packet formats for all the four PHY transmission
modes of BLE using the following fields:

• Preamble: The preamble depends on PHY transmission mode. LE1M mode uses an 8-bit sequence
of alternate zeros and ones, '01010101'. LE2M uses a 16-bit sequence of alternate zeros and ones,
'0101...'. LE500K and LE125K modes use an 80-bit sequence of zeros and ones obtained by
repeating '00111100' ten times.
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• Access Address: Specifies the connection address shared between two BLE devices using a 32-bit
sequence.

• Coding Indicator: 2-bit sequence used for differentiating coded modes (LE125K and LE500K).
• Payload: Input message bits including both protocol data unit (PDU) and cyclic redundancy check

(CRC). The maximum message size is 2080 bits.
• Termination Fields: Two 3-bit vectors of zeros, used in forward error correction encoding. The

termination fields are present for coded modes (LE500K and LE125K) only.

Packet format for uncoded PHY (LE1M and LE2M) modes is shown in the figure below:

Packet format for coded PHY (LE500K and LE125K) modes is shown in the figure below:

Check for Support Package Installation
% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Example Structure

The general structure of the BLE transmitter example is described as follows:

1 Generate link layer PDUs
2 Generate baseband IQ waveforms
3 Transmitter processing

Generate Link Layer PDUs

Link layer PDUs can be either advertising channel PDUs or data channel PDUs. You can configure
and generate advertising channel PDUs using bleLLAdvertisingChannelPDUConfig and
bleLLAdvertisingChannelPDU functions respectively. You can configure and generate data
channel PDUs using bleLLDataChannelPDUConfig and bleLLDataChannelPDU functions
respectively.

% Configure an advertising channel PDU
cfgLLAdv = bleLLAdvertisingChannelPDUConfig;
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cfgLLAdv.PDUType         = 'Advertising indication';
cfgLLAdv.AdvertisingData = '0123456789ABCDEF';
cfgLLAdv.AdvertiserAddress = '1234567890AB';

% Generate an advertising channel PDU
messageBits = bleLLAdvertisingChannelPDU(cfgLLAdv);

Generate Baseband IQ Waveforms

You can use the bleWaveformGenerator function to generate standard-compliant waveforms.

phyMode = 'LE1M'; % Select one mode from the set {'LE1M','LE2M','LE500K','LE125K'}
sps = 8;          % Samples per symbol
channelIdx = 37;  % Channel index value in the range [0,39]
accessAddLen = 32;% Length of access address
accessAddHex = '8E89BED6';  % Access address value in hexadecimal
accessAddBin = de2bi(hex2dec(accessAddHex),accessAddLen)'; % Access address in binary

% Symbol rate based on |'Mode'|
symbolRate = 1e6;
if strcmp(phyMode,'LE2M')
    symbolRate = 2e6;
end

% Generate BLE waveform
txWaveform = bleWaveformGenerator(messageBits,...
    'Mode',            phyMode,...
    'SamplesPerSymbol',sps,...
    'ChannelIndex',    channelIdx,...
    'AccessAddress',   accessAddBin);

% Setup spectrum viewer
spectrumScope = dsp.SpectrumAnalyzer( ...
    'SampleRate',       symbolRate*sps,...
    'SpectrumType',     'Power density', ...
    'SpectralAverages', 10, ...
    'YLimits',          [-130 0], ...
    'Title',            'Baseband BLE Signal Spectrum', ...
    'YLabel',           'Power spectral density');

% Show power spectral density of the BLE signal
spectrumScope(txWaveform);
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Transmitter Processing

Specify the signal sink as 'File' or 'ADALM-PLUTO'.

• File:Uses the comm.BasebandFileWriter to write a baseband file.
• ADALM-PLUTO: Uses the sdrtx (Communications Toolbox Support Package for Analog Devices

ADALM-Pluto Radio) System object to transmit a live signal from the SDR hardware.

% Initialize the parameters required for signal source
txCenterFrequency       = 2.402e9;  % Varies based on channel index value
txFrameLength           = length(txWaveform);
txNumberOfFrames        = 1e4;
txFrontEndSampleRate    = symbolRate*sps;

% The default signal source is 'File'
signalSink = 'File';

if strcmp(signalSink,'File')

    sigSink = comm.BasebandFileWriter('CenterFrequency',txCenterFrequency,...
        'Filename','bleCaptures.bb',...
        'SampleRate',txFrontEndSampleRate);
    sigSink(txWaveform); % Writing to a baseband file 'bleCaptures.bb'
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elseif strcmp(signalSink,'ADALM-PLUTO')

    % First check if the HSP exists
    if isempty(which('plutoradio.internal.getRootDir'))
        error(message('comm_demos:common:NoSupportPackage', ...
                      'Communications Toolbox Support Package for ADALM-PLUTO Radio',...
                      ['<a href="https://www.mathworks.com/hardware-support/' ...
                      'adalm-pluto-radio.html">ADALM-PLUTO Radio Support From Communications Toolbox</a>']));
    end
    connectedRadios = findPlutoRadio; % Discover ADALM-PLUTO radio(s) connected to your computer
    radioID = connectedRadios(1).RadioID;
    sigSink = sdrtx( 'Pluto',...
        'RadioID',           radioID,...
        'CenterFrequency',   txCenterFrequency,...
        'Gain',              0,...
        'SamplesPerFrame',   txFrameLength,...
        'BasebandSampleRate',txFrontEndSampleRate);
    % The transfer of baseband data to the SDR hardware is enclosed in a
    % try/catch block. This means that if an error occurs during the
    % transmission, the hardware resources used by the SDR System
    % object(TM) are released.
    currentFrame = 1;
    try
        while currentFrame <= txNumberOfFrames
            % Data transmission
            sigSink(txWaveform);
            % Update the counter
            currentFrame = currentFrame + 1;
        end
    catch ME
        release(sigSink);
        rethrow(ME)
    end
else
    error('Invalid signal sink. Valid entries are File and ADALM-PLUTO.');
end

% Release the signal sink
release(sigSink)

Further Exploration

The companion example “Bluetooth Low Energy Receiver” on page 3-212 can be used to decode the
waveform transmitted by this example. You can also use this example to transmit the data channel
PDUs by changing channel index, access address and center frequency values in both the examples.

Troubleshooting

General tips for troubleshooting SDR hardware and the Communications Toolbox Support Package for
ADALM-PLUTO Radio can be found in “Common Problems and Fixes” (Communications Toolbox
Support Package for Analog Devices ADALM-Pluto Radio).

Selected Bibliography

1 Volume 6 of the Bluetooth Core Specification, Version 5.0 Core System Package [Low Energy
Controller Volume].
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Bluetooth Low Energy Receiver
This example shows how to implement a Bluetooth® Low Energy (BLE) receiver using the
Communications Toolbox™ Library for the Bluetooth Protocol. You can either use captured signals or
receive signals in real time using the ADALM-PLUTO Radio. A suitable signal for reception can be
generated by simulating the companion example, “Bluetooth Low Energy Transmitter” on page 3-207,
with any one of the following setup: (i) Two SDR platforms connected to the same host computer
which runs two MATLAB sessions (ii) Two SDR platforms connected to two computers which run
separate MATLAB sessions.

Refer to the “Guided Host-Radio Hardware Setup” (Communications Toolbox Support Package for
Analog Devices ADALM-Pluto Radio) documentation for details on how to configure your host
computer to work with the Support Package for ADALM-PLUTO Radio.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox Library for the Bluetooth Protocol

To receive signals in real time, you also need an ADALM-PLUTO radio and the corresponding support
package Add-On:

• Communications Toolbox Support Package for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of the Software Defined Radio (SDR) discovery page.

Background

The Bluetooth Special Interest Group (SIG) introduced BLE for low power short range
communications. The Bluetooth standard [ 1 ] specifies the Link layer which includes both PHY and
MAC layers. BLE applications include image and video file transfers between mobile phones, home
automation, and the Internet of Things (IoT).

Specifications of BLE:

• Transmission frequency range: 2.4-2.4835 GHz
• RF channels : 40
• Symbol rate : 1 Msym/s, 2 Msym/s
• Modulation : Gaussian Minimum Shift Keying (GMSK)
• PHY transmission modes : (i) LE1M - Uncoded PHY with data rate of 1 Mbps (ii) LE2M -

Uncoded PHY with data rate of 2 Mbps (iii) LE500K - Coded PHY with data rate of 500 Kbps (iv)
LE125K - Coded PHY with data rate of 125 Kbps

The Bluetooth standard [ 1 ] specifies air interface packet formats for all the four PHY transmission
modes of BLE using the following fields:

• Preamble: The preamble depends on PHY transmission mode. LE1M mode uses an 8-bit sequence
of alternate zeros and ones, '01010101'. LE2M uses a 16-bit sequence of alternate zeros and ones,
'0101...'. LE500K and LE125K modes use an 80-bit sequence of zeros and ones obtained by
repeating '00111100' ten times.
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• Access Address: Specifies the connection address shared between two BLE devices using a 32-bit
sequence.

• Coding Indicator: 2-bit sequence used for differentiating coded modes (LE125K and LE500K).
• Payload: Input message bits including both protocol data unit (PDU) and cyclic redundancy check

(CRC). The maximum message size is 2080 bits.
• Termination Fields: Two 3-bit vectors of zeros, used in forward error correction encoding. The

termination fields are present for coded modes (LE500K and LE125K) only.

Packet format for uncoded PHY (LE1M and LE2M) modes is shown in the figure below:

Packet format for coded PHY (LE500K and LE125K) modes is shown in the figure below:

Check for Support Package Installation
% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Example Structure

The general structure of the BLE receiver example is described as follows:

1 Initialize the receiver parameters
2 Signal source
3 Capture the BLE packets
4 Receiver processing

Initialize the Receiver Parameters

The helperBLEReceiverConfig.m script initializes the receiver parameters. You can change phyMode
parameter to decode the received BLE waveform based on the PHY transmission mode. phyMode can
be one from the set: {'LE1M','LE2M','LE500K','LE125K'}.

phyMode = 'LE1M';
bleParam = helperBLEReceiverConfig(phyMode);
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Signal Source

Specify the signal source as 'File' or 'ADALM-PLUTO'.

• File:Uses the comm.BasebandFileReader to read a file that contains a previously captured
over-the-air signal.

• ADALM-PLUTO: Uses the sdrrx (Communications Toolbox Support Package for Analog Devices
ADALM-Pluto Radio) System object to receive a live signal from the SDR hardware.

If you assign ADALM-PLUTO as the signal source, the example searches your computer for the
ADALM-PLUTO radio at radio address 'usb:0' and uses it as the signal source.

signalSource = 'File'; % The default signal source is 'File'

if strcmp(signalSource,'File')
    switch bleParam.Mode
        case 'LE1M'
            bbFileName = 'bleCapturesLE1M.bb';
        case 'LE2M'
            bbFileName = 'bleCapturesLE2M.bb';
        case 'LE500K'
            bbFileName = 'bleCapturesLE500K.bb';
        case 'LE125K'
            bbFileName = 'bleCapturesLE125K.bb';
        otherwise
            error('Invalid PHY transmission mode. Valid entries are LE1M, LE2M, LE500K and LE125K.');
    end
    sigSrc = comm.BasebandFileReader(bbFileName);
    sigSrcInfo = info(sigSrc);
    sigSrc.SamplesPerFrame = sigSrcInfo.NumSamplesInData;
    bbSampleRate = sigSrc.SampleRate;
    bleParam.SamplesPerSymbol = bbSampleRate/bleParam.SymbolRate;

elseif strcmp(signalSource,'ADALM-PLUTO')

    % First check if the HSP exists
    if isempty(which('plutoradio.internal.getRootDir'))
        error(message('comm_demos:common:NoSupportPackage', ...
            'Communications Toolbox Support Package for ADALM-PLUTO Radio',...
            ['<a href="https://www.mathworks.com/hardware-support/' ...
            'adalm-pluto-radio.html">ADALM-PLUTO Radio Support From Communications Toolbox</a>']));
    end

    bbSampleRate = bleParam.SymbolRate * bleParam.SamplesPerSymbol;
    sigSrc = sdrrx('Pluto',...
        'RadioID',             'usb:0',...
        'CenterFrequency',     2.402e9,...
        'BasebandSampleRate',  bbSampleRate,...
        'SamplesPerFrame',     1e7,...
        'GainSource',         'Manual',...
        'Gain',                25,...
        'OutputDataType',     'double');
else
    error('Invalid signal source. Valid entries are File and ADALM-PLUTO.');
end

% Setup spectrum viewer

3 Bluetooth Toolbox Examples

3-214



spectrumScope = dsp.SpectrumAnalyzer( ...
    'SampleRate',       bbSampleRate,...
    'SpectrumType',     'Power density', ...
    'SpectralAverages', 10, ...
    'YLimits',          [-130 -30], ...
    'Title',            'Received Baseband BLE Signal Spectrum', ...
    'YLabel',           'Power spectral density');

Capture the BLE Packets

% The transmitted waveform is captured as a burst
dataCaptures = sigSrc();

% Show power spectral density of the received waveform
spectrumScope(dataCaptures);

Receiver Processing

The baseband samples received from the signal source are processed to decode the PDU header
information and raw message bits. The following diagram shows the receiver processing.
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1 Perform automatic gain control (AGC)
2 Remove DC offset
3 Estimate and correct for the carrier frequency offset
4 Perform matched filtering with gaussian pulse
5 Timing synchronization
6 GMSK demodulation
7 FEC decoding and pattern demapping for LECoded PHYs (LE500K and LE125K)
8 Data dewhitening
9 Perform CRC check on the decoded PDU
10 Compute packet error rate (PER)

% Initialize System objects for receiver processing
agc = comm.AGC('MaxPowerGain',20,'DesiredOutputPower',2);

freqCompensator = comm.CoarseFrequencyCompensator('Modulation','OQPSK', ...
    'SampleRate',bbSampleRate,...
    'SamplesPerSymbol',2*bleParam.SamplesPerSymbol,...
    'FrequencyResolution',100);

prbDet = comm.PreambleDetector(bleParam.RefSeq,'Detections','First');

% Initialize counter variables
pktCnt = 0;
crcCnt = 0;
displayFlag = false; % true if the received data is to be printed

% Loop to decode the captured BLE samples
while length(dataCaptures) > bleParam.MinimumPacketLen

    % Consider two frames from the captured signal for each iteration
    startIndex = 1;
    endIndex = min(length(dataCaptures),2*bleParam.FrameLength);
    rcvSig = dataCaptures(startIndex:endIndex);
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    rcvAGC = agc(rcvSig); % Perform AGC
    rcvDCFree = rcvAGC - mean(rcvAGC); % Remove the DC offset
    rcvFreqComp = freqCompensator(rcvDCFree); % Estimate and compensate for the carrier frequency offset
    rcvFilt = conv(rcvFreqComp,bleParam.h,'same'); % Perform gaussian matched filtering

    % Perform frame timing synchronization
    [~, dtMt] = prbDet(rcvFilt);
    release(prbDet)
    prbDet.Threshold = max(dtMt);
    prbIdx = prbDet(rcvFilt);

    % Extract message information
    [cfgLLAdv,pktCnt,crcCnt,remStartIdx] = helperBLEPhyBitRecover(rcvFilt,...
        prbIdx,pktCnt,crcCnt,bleParam);

    % Remaining signal in the burst captures
    dataCaptures = dataCaptures(1+remStartIdx:end);

    % Display the decoded information
    if displayFlag && ~isempty(cfgLLAdv)
        fprintf('Advertising PDU Type: %s\n',cfgLLAdv.PDUType);
        fprintf('Advertising Address: %s\n',cfgLLAdv.AdvertiserAddress);
    end

    % Release System objects
    release(freqCompensator)
    release(prbDet)
end

% Release the signal source
release(sigSrc)

% Determine the PER
if pktCnt
    per = 1-(crcCnt/pktCnt);
    fprintf('Packet error rate for %s mode is %f.\n',bleParam.Mode,per);
else
    fprintf('\n No BLE packets were detected.\n')
end

Packet error rate for LE1M mode is 0.000000.

Further Exploration

The companion example “Bluetooth Low Energy Transmitter” on page 3-207 can be used to transmit
a standard-compliant BLE waveform which can be decoded by this example. You can also use this
example to transmit the data channel PDUs by changing channel index, access address and center
frequency values in both the examples.

Troubleshooting

General tips for troubleshooting SDR hardware and the Communications Toolbox Support Package for
ADALM-PLUTO Radio can be found in “Common Problems and Fixes” (Communications Toolbox
Support Package for Analog Devices ADALM-Pluto Radio).

Appendix

This example uses these helper functions:
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* helperBLEReceiverConfig.m: Configures BLE receiver parameters * helperBLEPhyBitRecover.m:
Recovers the payload bits

Selected Bibliography

Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification". Version 5.2, Volume 6. https://
www.bluetooth.com.
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• “Bluetooth Low Energy Receiver” on page 3-212
• “Bluetooth Low Energy Waveform Generation and Visualization” on page 3-270
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Bluetooth Low Energy Bit Error Rate Simulation
This example shows how the Communications Toolbox™ Library for the Bluetooth® Protocol can be
used to measure the bit error rate (BER) for different modes of Bluetooth Low Energy (BLE) [ 1 ]
using an end-to-end physical layer simulation.

Introduction

In this example, an end-to-end simulation is used to determine the BER performance of BLE [ 1 ]
under an additive white gaussian noise (AWGN) channel for a range of bit energy to noise density
ratio (Eb/No) values. At each Eb/No point, multiple BLE packets are transmitted through a noisy
channel with no other radio front-end (RF) impairments. Assuming perfect synchronization, an ideal
receiver is used to recover the data bits. These recovered data bits are compared with the
transmitted data bits to determine the BER. BER curves are generated for the four PHY transmission
throughput modes supported in BLE specification [ 1 ] as follows:

• Uncoded PHY with data rate of 1 Mbps (LE1M)
• Uncoded PHY with data rate of 2 Mbps (LE2M)
• Coded PHY with data rate of 500 Kbps (LE500K)
• Coded PHY with data rate of 125 Kbps (LE125K)

The following diagram summarizes the simulation for each packet.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Initialize the Simulation Parameters

EbNo = -2:2:8;                        % Eb/No range in dB
sps = 4;                              % Samples per symbol
dataLen = 2080;                       % Data length in bits
simMode = {'LE1M','LE2M','LE500K','LE125K'};

The number of packets tested at each Eb/No point is controlled by two parameters:

1 maxNumErrors is the maximum number of bit errors simulated at each Eb/No point. When the
number of bit errors reaches this limit, the simulation at this Eb/No point is complete.

2 maxNumPackets is the maximum number of packets simulated at each Eb/No point and limits
the length of the simulation if the bit error limit is not reached.

The numbers chosen for maxNumErrors and maxNumPackets in this example will lead to a very
short simulation. For statistically meaningful results we recommend increasing these numbers.
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maxNumErrors = 100; % Maximum number of bit errors at an Eb/No point
maxNumPackets = 10; % Maximum number of packets at an Eb/No point

Simulating for Each Eb/No Point

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each Eb/No point to speed up a simulation. parfor, as part of the “Parallel Computing
Toolbox”, executes processing for each Eb/No point in parallel to reduce the total simulation time. To
enable the use of parallel computing for increased speed, comment out the 'for' statement and
uncomment the 'parfor' statement below. If Parallel Computing Toolbox™ is not installed, 'parfor' will
default to the normal 'for' statement.

numMode = numel(simMode);          % Number of modes
ber = zeros(numMode,length(EbNo)); % Pre-allocate to store BER results

for iMode = 1:numMode

    phyMode = simMode{iMode};
    % Set signal to noise ratio (SNR) points based on mode
    % For Coded PHY's (LE500K and LE125K), the code rate factor is included
    % in SNR calculation as 1/2 rate FEC encoder is used.
    if any(strcmp(phyMode,{'LE1M','LE2M'}))
        snrVec = EbNo - 10*log10(sps);
    else
        codeRate = 1/2;
        snrVec = EbNo + 10*log10(codeRate) - 10*log10(sps);
    end

%     parfor iSnr = 1:length(snrVec)  % Use 'parfor' to speed up the simulation
    for iSnr = 1:length(snrVec)       % Use 'for' to debug the simulation

        % Set random substream index per iteration to ensure that each
        % iteration uses a repeatable set of random numbers
        stream = RandStream('combRecursive','Seed',0);
        stream.Substream = iSnr;
        RandStream.setGlobalStream(stream);

        % Create an instance of error rate
        errorRate = comm.ErrorRate('Samples','Custom','CustomSamples',1:(dataLen-1));

        % Loop to simulate multiple packets
        numErrs = 0;
        numPkt = 1; % Index of packet transmitted
        while numErrs < maxNumErrors && numPkt < maxNumPackets

            % Generate BLE waveform
            txBits = randi([0 1],dataLen,1,'int8'); % Data bits generation
            chanIndex = randi([0 39],1,1); % Random channel index value for each packet
            if chanIndex <=36
                % Random access address for data channels
                % Ideally, this access address value should meet the requirements specified in
                % Section 2.1.2, Part-B, Vol-6 of Bluetooth specification.
                accessAdd = [1 0 0 0 1 1 1 0 1 1 0 0 1 ...
                          0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0]';
            else
                % Default access address for periodic advertising channels
                accessAdd = [0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 ...
                            1 0 0 0 1 0 1 1 1 0 0 0 1]';
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            end
            txWaveform = bleWaveformGenerator(txBits,'Mode',phyMode,...
                                            'SamplesPerSymbol',sps,...
                                            'ChannelIndex',chanIndex,...
                                            'AccessAddress',accessAdd);

            % Pass the transmitted waveform through AWGN channel
            rxWaveform = awgn(txWaveform,snrVec(iSnr));

            % Recover data bits using ideal receiver
            rxBits = bleIdealReceiver(rxWaveform,'Mode',phyMode,...
                                        'SamplesPerSymbol',sps,...
                                        'ChannelIndex',chanIndex);

            % Determine the BER
            errors = errorRate(txBits,rxBits);
            ber(iMode,iSnr) = errors(1);
            numErrs = errors(2);
            numPkt = numPkt + 1;
        end
    disp(['Mode ' phyMode ', '...
        'Simulating for Eb/No = ', num2str(EbNo(iSnr)), ' dB' ', '...
        'BER:',num2str(ber(iMode,iSnr))])
    end
end

Mode LE1M, Simulating for Eb/No = -2 dB, BER:0.22222
Mode LE1M, Simulating for Eb/No = 0 dB, BER:0.14622
Mode LE1M, Simulating for Eb/No = 2 dB, BER:0.087542
Mode LE1M, Simulating for Eb/No = 4 dB, BER:0.024531
Mode LE1M, Simulating for Eb/No = 6 dB, BER:0.0080167
Mode LE1M, Simulating for Eb/No = 8 dB, BER:0.00010689
Mode LE2M, Simulating for Eb/No = -2 dB, BER:0.23377
Mode LE2M, Simulating for Eb/No = 0 dB, BER:0.16306
Mode LE2M, Simulating for Eb/No = 2 dB, BER:0.074074
Mode LE2M, Simulating for Eb/No = 4 dB, BER:0.022126
Mode LE2M, Simulating for Eb/No = 6 dB, BER:0.0063733
Mode LE2M, Simulating for Eb/No = 8 dB, BER:0.00053444
Mode LE500K, Simulating for Eb/No = -2 dB, BER:0.37326
Mode LE500K, Simulating for Eb/No = 0 dB, BER:0.27898
Mode LE500K, Simulating for Eb/No = 2 dB, BER:0.12266
Mode LE500K, Simulating for Eb/No = 4 dB, BER:0.032708
Mode LE500K, Simulating for Eb/No = 6 dB, BER:0.0017637
Mode LE500K, Simulating for Eb/No = 8 dB, BER:0
Mode LE125K, Simulating for Eb/No = -2 dB, BER:0.30736
Mode LE125K, Simulating for Eb/No = 0 dB, BER:0.065897
Mode LE125K, Simulating for Eb/No = 2 dB, BER:0.0013361
Mode LE125K, Simulating for Eb/No = 4 dB, BER:0
Mode LE125K, Simulating for Eb/No = 6 dB, BER:0
Mode LE125K, Simulating for Eb/No = 8 dB, BER:0

Plot BER vs Eb/No Results

markers = 'ox*s';
color = 'bmcr';
dataStr = {zeros(numMode,1)};
figure;
for iMode = 1:numMode
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    semilogy(EbNo,ber(iMode,:).',['-' markers(iMode) color(iMode)]);
    hold on;
    dataStr(iMode) = simMode(iMode);
end
grid on;
xlabel('Eb/No (dB)');
ylabel('BER');
legend(dataStr);
title('BER for BLE with AWGN channel');

Further Exploration

The number of packets tested at each Eb/No point is controlled by maxNumErrors and
maxNumPackets parameters. For statistically meaningful results these values should be larger than
those presented in this example. The figure below was created by running the example for longer
with maxNumErrors = 1e3, maxNumPackets = 1e4, for all the four modes.
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Summary

This example simulates a BLE physical layer link over an AWGN channel. It shows how to generate
BLE waveforms, demodulate and decode bits using an ideal receiver and compute the BER.

Selected Bibliography

1 Volume 6 of the Bluetooth Core Specification, Version 5.0 Core System Package [Low Energy
Controller Volume].
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BLE Channel Selection Algorithms
This example shows how to select a channel index using the channel selection algorithms specified in
the Bluetooth® Low Energy (BLE) core specification [ 1 ] using the Communications Toolbox™
Library for the Bluetooth® Protocol.

BLE channels

The BLE system operates in the 2.4 GHz ISM band at 2400 - 2483.5 MHz. It uses forty RF channels
(each channel is 2 MHz wide). The figure below shows the mapping between the frequencies and BLE
channels. Each of these RF channels is allocated a unique channel index (labelled as "BLE Channel"
in the figure).

BLE classifies these forty RF channels into three advertising channels (channel indices: 37, 38, 39)
and thirty-seven data channels (channel indices: 0 to 36). Note that the advertising channels are
spread across the 2.4 GHz spectrum. The purpose of this wide spacing is to avoid interference from
other devices operating in the same spectrum, such as WLAN. Advertising channels are mainly used
for transmitting advertising packets, scan request/response packets and connection indication
packets. Data channels are mainly used for exchanging data packets.

Channel Hopping

Channel hopping is used in Bluetooth to reduce interference and improve throughput. The Bluetooth
standard defines rules for switching between channels and algorithms used when performing channel
hopping.

Use of the unlicensed 2.4GHz ISM band by several wireless technologies causes increased
interference and results in retransmissions to correct errors in received packets. Since BLE is a low
energy oriented protocol, it is more susceptible to interference. BLE uses channel hopping to combat
the impact of interference. When one channel is completely blocked due to interference, devices can
still continue to communicate with each other on other channels.

In classic Bluetooth, channel hopping is restricted to 1600 frequency hops/sec. For BLE, the channel
hopping specification has been revised. Different rules apply for advertising and connected devices,
and two channel selection algorithms are defined.
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An advertising device transmits advertising packets on the three advertising channels in a cyclic
manner (starting from channel index 37). The same procedure is used by the scanning/initiating
device, listening on the three advertising channels in a cyclic manner.

A connected device changes to a new data channel for every connection event. A connection event is
a sequence of data packet exchanges between two connected devices. The connection events occur
periodically with an interval called connection interval. All the packets within a connection event are
transmitted on the same data channel. A new connection event uses a new data channel.

Two alternative channel selection algorithms are specified by the Bluetooth core specification (see
Section 4.5.8, Part-B, Vol-6 of [ 1 ]) can be used to select data channels for each connection event:

1 Algorithm #1
2 Algorithm #2

The two channel selection algorithms avoid channels that are prone to transmission errors. A channel
map is exchanged between the master and slave devices. This map indicates the good and bad data
channels. The classification of good and bad data channels is implementation dependent and can be
done based on various parameters like SNR (Signal-To-Noise Ratio), PER (Packet Error Rate), etc.
Only the good data channels are used for communication between devices. The channel map will be
updated by the master device if it recognizes any bad data channels. The two channel selection
algorithms use the channel map to determine whether the selected data channel is good to use. If the
selected data channel turns out to be bad, a new data channel is selected using channel remapping
procedure (see Section 4.5.8, Part-B, Vol-6 of [ 1 ]), which remaps the bad data channel to one of the
good data channels. Each algorithm has a remapping procedure of its own.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Simulating Algorithm #1

You can use bleChannelSelection System object to select a new channel index. This System
object configures the fields required for selecting a channel index.

Create a System object for 'Algorithm #1'

To select a channel index, create a bleChannelSelection System object with Algorithm set to 1.

csa = bleChannelSelection('Algorithm', 1);

Configure the fields.

• The HopIncrement property defines the hop increment count to be used. The default value is 5.
This property is applicable for 'Algorithm #1'.

• The UsedChannels property defines the list of used (good) data channels.

csa.HopIncrement = 8;
csa.UsedChannels = [0, 5, 13, 9, 24, 36]

csa = 
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  bleChannelSelection with properties:

       Algorithm: 1
    HopIncrement: 8
    UsedChannels: [0 5 9 13 24 36]
    ChannelIndex: 0
    EventCounter: 0

• ChannelIndex is a read-only property that indicates the current channel being used.

• EventCounter is a read-only property that indicates the number of connection events occurred
until now. It is incremented for every new selected channel.

Select a channel index for next hop

Call the object csa as a function to determine the next channel hop and to select a new channel for
each new connection event.

nextChannel = csa();
fprintf('Selected channel for connection event %d using ''Algorithm #1'' is: %d\n', csa.EventCounter, nextChannel);

Selected channel for connection event 0 using 'Algorithm #1' is: 9

Simulating Algorithm #2

You can use bleChannelSelection System object to select a new channel index. This System
object configures the fields required for selecting a channel index.

Create a System object for 'Algorithm #2'

To select a channel index, Create a bleChannelSelection System object with Algorithm set to 2.

csa = bleChannelSelection('Algorithm', 2);

Configure the fields.

• The AccessAddress property defines the 32-bit unique connection address between two devices.
The default value is '8E89BED6'. This property is applicable for 'Algorithm #2'.

• The UsedChannels property defines the list of used (good) data channels.

csa.AccessAddress = 'E89BED68';
csa.UsedChannels = [9, 10, 21, 22, 23, 33, 34, 35, 36]

csa = 

  bleChannelSelection with properties:

                   Algorithm: 2
               AccessAddress: 'E89BED68'
    SubeventChannelSelection: 0
                UsedChannels: [9 10 21 22 23 33 34 35 36]
                ChannelIndex: 0
                EventCounter: 0

Select a channel index for next hop
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Call the object csa as a function to determine the next channel hop and to select a new channel for
each new connection event.

nextChannel = csa();
fprintf('Selected channel for connection event %d using ''Algorithm #2'' is: %d\n', csa.EventCounter, nextChannel);

Selected channel for connection event 0 using 'Algorithm #2' is: 22

GUI for analyzing Channel Selection Algorithms

The function helperBLEChannelHopSelectionUI provides a graphical user interface to generate
desired number of channel hops for analyzing the algorithm. Both channel selection algorithms can
be analyzed using this GUI. It can be used to plot the channel hopping pattern of an algorithm and
also plots the corresponding histogram.

helperBLEChannelHopSelectionUI()
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Algorithm verification with sample data

Sample data is provided to verify Algorithm #2 (see Section 3, Vol 6, Part C in [ 1 ]). However, there is
no sample data available for verifying Algorithm #1.

Sample data 1 (thirty-seven good data channels)

1 Access Address = 8E89BED6
2 Used Channels = [0:36]
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When the above inputs are used, the Algorithm #2 is expected to select the following channels
according to Section 3.1, Part-B, Vol-6 of [ 1 ]

The following code selects three channels for the first three connection events.

% Create a System object for 'Algorithm #2'
csa = bleChannelSelection('Algorithm', 2);

Configure the fields with sample data #1.

% Connection access address
csa.AccessAddress = '8E89BED6';
% Use 37 good data channels as used channels according to the sample data
csa.UsedChannels = (0:36);

Select channel indices for first 3 connection events. Verify the generated outputs with the table
mentioned above.

numConnectionEvents = 4;
for i = 1:numConnectionEvents
    channel = csa();
    fprintf('Event Counter: %d, selected Channel: %d\n', csa.EventCounter, channel);
end

Event Counter: 0, selected Channel: 25
Event Counter: 1, selected Channel: 20
Event Counter: 2, selected Channel: 6
Event Counter: 3, selected Channel: 21

Sample data 2 (nine good data channels)

1 Access Address = 8E89BED6
2 Used Channels = [9, 10, 21, 22, 23, 33, 34, 35, 36]

When the above inputs are used, the Algorithm #2 is expected to select the following channels
according to Section 3.2, Part-B, Vol-6 of [ 1 ]. Since the channel map contains bad channels, the
channel remapping procedure used in the algorithm is also verified.

The following code selects eight channels for the first eight connection events.

% Create a System object for 'Algorithm #2'
csa = bleChannelSelection('Algorithm', 2);
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Configure the fields with sample data #2.

% Connection access address
csa.AccessAddress = '8E89BED6';
% Use 9 good data channels as used channels according to the sample data
csa.UsedChannels = [9, 10, 21, 22, 23, 33, 34, 35, 36];

Select channel indices for first 8 connection events. Verify the generated outputs with the table
mentioned above.

numConnectionEvents = 9;
for i = 1:numConnectionEvents
    channel = csa();
    fprintf('Event Counter: %d, selected Channel: %d\n', csa.EventCounter, channel);
end

Event Counter: 0, selected Channel: 35
Event Counter: 1, selected Channel: 9
Event Counter: 2, selected Channel: 33
Event Counter: 3, selected Channel: 21
Event Counter: 4, selected Channel: 34
Event Counter: 5, selected Channel: 36
Event Counter: 6, selected Channel: 23
Event Counter: 7, selected Channel: 9
Event Counter: 8, selected Channel: 34

Plot and analyze the hopping pattern - Algorithm #1 and Algorithm #2

The following code selects channel indices for the first hundred connection events using 'Algorithm
#1'. The selected channels are plotted and compared with those of 'Algorithm #2'.

% Channel selection algorithm System object for 'Algorithm #1'
csa = bleChannelSelection;
% For 100 connection events
numConnectionEvents = 100;
hopSequence = zeros(1, numConnectionEvents);
% Generate channel hop sequence for 100 connection events
for i = 1:numConnectionEvents
    hopSequence(i) = csa();
end

The helperBLEPlotChannelHopSequence function plots the hopping pattern and also outputs a
histogram of the selected channels.

helperBLEPlotChannelHopSequence(csa, hopSequence);
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The following code generates channel indices for the first hundred connection events using
'Algorithm #2'. The selected channels are plotted and compared with those of 'Algorithm #1'.

% Channel selection algorithm System object for 'Algorithm #2'
csa = bleChannelSelection('Algorithm', 2);
% For 100 connection events
numConnectionEvents = 100;
hopSequence = zeros(1, numConnectionEvents);
% Generate channel hop sequence for 100 connection events
for i = 1:numConnectionEvents
    hopSequence(i) = csa();
end

The helperBLEPlotChannelHopSequence function plots the hopping pattern and also outputs a
histogram of the selected channels.

helperBLEPlotChannelHopSequence(csa, hopSequence);
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Algorithm #1 vs Algorithm #2

The above plots show the difference between the two algorithms.

• Algorithm #1 is a simple incremental algorithm that produces a uniform sequence of channels.
There is no randomization involved in the process of selecting a new channel.

• Algorithm #2 was introduced in version 5.0 of the Bluetooth Core Specification [ 1 ]. Compared to
Algorithm #1, this is more complex and produces a randomized sequence of channels.

Conclusion

This example demonstrated the behavior of the channel selection algorithms specified in the
Bluetooth core specification [ 1 ].

Appendix

The example uses this feature:

• bleChannelSelection: Create a System object used for selecting a new data channel to
transmit the data packet

3 Bluetooth Toolbox Examples

3-232



The example uses these helpers:

• helperBLEChannelHopSelectionUI: Script for helperBLEChannelHopSelectionUI figure
• helperBLEPlotChannelHopSequence: Plot the channel hopping sequence for a given algorithm

Selected Bibliography

1 Bluetooth® Technology Website. "Bluetooth Technology Website | The Official Website of
Bluetooth Technology." Accessed July 8, 2020. https://www.bluetooth.com/.

 BLE Channel Selection Algorithms

3-233

https://www.bluetooth.com/


Modeling of BLE Devices with Heart Rate Profile
This example shows the modeling of Bluetooth® Low Energy devices with Heart Rate Profile using
the Communications Toolbox™ Library for the Bluetooth® Protocol.

Background

The Bluetooth core specification [ 1 ] includes a Low Energy version for low-rate wireless personal
area networks, that is referred to as Bluetooth Low Energy (BLE) or Bluetooth Smart. The BLE stack
consists of: Generic Attribute Profile (GATT), Attribute Protocol (ATT), Security Manager Protocol
(SMP), Logical Link Control and Adaptation Protocol (L2CAP), Link Layer (LL) and Physical layer
(PHY). BLE was added to the standard for low energy devices generating small amounts of data, such
as notification alerts used in such applications as home automation, health-care, fitness, and Internet
of Things (IoT).

Attribute Protocol

The ATT is built on top of the L2CAP layer of BLE. ATT defines a set of Protocol Data Units (PDUs)
that are used for data exchange in GATT-based profiles.
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Generic Attribute Profile

The GATT is a service framework built using ATT. GATT handles the generation of requests or
responses based on application data from the higher layers or ATT PDU received from the lower
layer. It stores the information in the form of services, characteristics, and characteristic descriptors.
It uses a client-server architecture.

GATT Terminology:

• Service: A service is a collection of data and associated behaviors to accomplish a particular
function or feature. Example: A heart rate service that allows measurement of a heart rate.

• Characteristic: A characteristic is a value used in a service along with its permissions. Example:
A heart rate measurement characteristic contains information about the measured heart rate
value.

• Characteristic descriptor: Descriptors of the characteristic behavior. Example: A Client
Characteristic Configuration Descriptor (CCCD), describes whether or not the server has to notify
the client in a response containing the characteristic value.

• GATT-Client: Initiates commands and requests to the server, and receives responses, indications
and notifications sent by the server.

• GATT-Server: Accepts incoming commands and requests from a client, and sends responses,
indications, and notifications to the client.
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Heart Rate Profile

Heart Rate Profile (HRP) [ 2 ] is a GATT-based low energy profile defined by the Bluetooth Special
Interest Group (SIG). The HRP defines the communication between a GATT-server of a heart rate
sensor device, such as a wrist band, and a GATT-client, such as a smart phone or tablet. The HRP is
widely used in fitness applications to collect heart rate measurements.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

BLE HRP Client-Server Scenario

In this scenario, the GATT-server is a wrist band with a heart rate sensor and the GATT-client is a
smart phone.
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% Create objects for GATT-server and GATT-client devices.
gattServer = helperBLEGATTServer;
gattClient = helperBLEGATTClient;

Initially, the HRP client discovers the services, characteristics, characteristic descriptors defined at
the server. After discovery, the client subscribes for heart rate measurement notifications.

Service Discovery

Clients perform a service discovery operation to get information about the available services. In
service discovery, the client invokes 'Discover all primary services' by sending a Read by
group type request ATT PDU. The server responds with the available services and their associated
handles by sending a 'Read by group type response' ATT PDU. A handle is a unique identifier of an
attribute that are dynamically assigned by the server.

Client request for services at Server

The generateATTPDU function generates an ATT PDU corresponding to the given sub-procedure as
specified in the Bluetooth core specification.

% Preallocate a variable to store the generated link layer packets.
pcapPackets = cell(1, 9);
count = 1;

% Configure a GATT client to discover services available at the server.
gattClient.SubProcedure = 'Discover all primary services';
serviceDiscReqPDU = generateATTPDU(gattClient);

% Transmit the application data (|serviceDiscReqPDU|) to the server through
% PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(serviceDiscReqPDU);
count = count+1;

Receive Client request at Server

The server receives a Read by group type request from the client and sends the list of available
services in a Read by group type response ATT PDU.

The receiveData function decodes the incoming PDU as a GATT-server and returns the corresponding
ATT PDU configuration object and the appropriate response PDU.

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode the received ATT PDU and generate response PDU, if applicable.
[attServerRespPDU, serviceDiscReqCfg, gattServer] = receiveData(gattServer, receivedPDU);

fprintf("Received service discovery request at the server:\n")
serviceDiscReqCfg

% Transmit the application response data (|attServerRespPDU|) to the client
% through PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(attServerRespPDU);
count = count+1;

Received service discovery request at the server:
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serviceDiscReqCfg = 

  bleATTPDUConfig with properties:

           Opcode: 'Read by group type request'
      StartHandle: '0001'
        EndHandle: 'FFFF'
    AttributeType: '2800'

   Read-only properties:
    No properties.

Receive Server response at Client

The receiveData function decodes the incoming PDU as a GATT-client and returns the corresponding
ATT PDU configuration object and the appropriate response PDU, if applicable.

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[~, serviceDiscRespCfg] = receiveData(gattClient, receivedPDU);
gattClient.StartHandle = serviceDiscRespCfg.StartHandle;
gattClient.EndHandle = serviceDiscRespCfg.EndHandle;

% Expected response from the server: |'Read by group type response'| or
% |'Error response'|.
if strcmp(serviceDiscRespCfg.Opcode, 'Error response')
    fprintf("Received error response at the client:\n")
    serviceDiscRespCfg
    serviceDiscRespMsg = ['Error response(''' serviceDiscRespCfg.ErrorMessage ''')'];
else
    fprintf("Received service discovery response at the client:\n")
    serviceDiscRespCfg
    service = helperBluetoothID.getBluetoothName(serviceDiscRespCfg.AttributeValue);
    serviceDiscRespMsg = ['Service discovery response(''' service ''')'];
end

Received service discovery response at the client:

serviceDiscRespCfg = 

  bleATTPDUConfig with properties:

            Opcode: 'Read by group type response'
       StartHandle: '0001'
         EndHandle: '0006'
    AttributeValue: [2x2 char]

   Read-only properties:
    No properties.

Characteristics Discovery

A service consists of multiple characteristics. For each service, there are information elements
exchanged between a client and server. Each information element may contain descriptors of its
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behavior. A characteristic contains a value and its associated descriptors. After discovering the
service, clients perform characteristics discovery to learn about the characteristics defined in the
service. In characteristic discovery, the client invokes 'Discover all characteristics of
service' by sending 'Read by type request' ATT PDU. The server responds with the available
characteristics and their associated handles by sending a 'Read by type response' ATT PDU.

Client request for characteristics at Server

% Configure a GATT client to discover all the available characteristics at
% the server.
gattClient.SubProcedure = 'Discover all characteristics of service';
chrsticDiscReqPDU = generateATTPDU(gattClient);

% Transmit the application data (|chrsticDiscReqPDU|) to the server through
% PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(chrsticDiscReqPDU);
count = count+1;

Receive Client request at Server

Decodes the received request and return the list of available characteristics in a Read by type
response ATT PDU.

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[chrsticDiscRespPDU, chrsticDiscReqCfg, gattServer] = receiveData(gattServer, receivedPDU);

fprintf("Received characteristic discovery request at the server:\n")
chrsticDiscReqCfg

% Transmit the application response data (|chrsticDiscRespPDU|) to the
% client through PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(chrsticDiscRespPDU);
count = count+1;

Received characteristic discovery request at the server:

chrsticDiscReqCfg = 

  bleATTPDUConfig with properties:

           Opcode: 'Read by type request'
      StartHandle: '0001'
        EndHandle: '0006'
    AttributeType: '2803'

   Read-only properties:
    No properties.

Receive Server response at Client

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.

 Modeling of BLE Devices with Heart Rate Profile

3-239



[~, chrsticDiscRespCfg] = receiveData(gattClient, receivedPDU);

% Expected response from the server: |'Read by type response'| or |'Error
% response'|.
if strcmp(chrsticDiscRespCfg.Opcode, 'Error response')
    fprintf("Received error response at the client:\n")
    chrsticDiscRespCfg
    chrsticDescRespMsg = ['Error response(''' chrsticDiscRespCfg.ErrorMessage ''')'];
else
    fprintf("Received characteristic discovery response at the client:\n")
    attributeValueCfg = helperBLEDecodeAttributeValue(...
        chrsticDiscRespCfg.AttributeValue, 'Characteristic');
    attributeValueCfg
    chrsticDescRespMsg = ['Characteristic discovery response(''' attributeValueCfg.CharacteristicType ''')'];
end

Received characteristic discovery response at the client:

attributeValueCfg = 

  helperBLEAttributeValueConfig with properties:

                    AttributeType: 'Characteristic'
                    BroadcastFlag: 'False'
                         ReadFlag: 'False'
         WriteWithoutResponseFlag: 'False'
                        WriteFlag: 'False'
                       NotifyFlag: 'True'
                     IndicateFlag: 'False'
    AuthenticatedSignedWritesFlag: 'False'
           ExtendedPropertiesFlag: 'False'
        CharacteristicValueHandle: '0003'
               CharacteristicType: 'Heart rate measurement'

   Read-only properties:
    No properties.

Characteristic Descriptor Discovery

A characteristic may consists of multiple characteristic descriptors. After discovering the
characteristic, clients perform characteristic descriptors discovery to learn about the list of
descriptors and their handles. In characteristic descriptor discovery, the client invokes 'Discover
all descriptors' by sending 'Information request' ATT PDU. The server responds with the
available characteristic descriptors and their associated handles by sending a 'Information response'
ATT PDU.

Client request for characteristic descriptors at Server

% Configure a GATT client to discover all the available characteristic
% descriptors at the server.
gattClient.SubProcedure = 'Discover all descriptors';
gattClient.StartHandle = dec2hex(hex2dec(chrsticDiscRespCfg.AttributeHandle)+1, 4);
chrsticDescDiscReqPDU = generateATTPDU(gattClient);

% Transmit the application data (|chrsticDescDiscReqPDU|) to the client
% through PHY.
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[bleWaveform, pcapPackets{count}] = helperBLETransmitData(chrsticDescDiscReqPDU);
count = count+1;

Receive Client request at Server

Decodes the received request and returns the list of available characteristic descriptors in a
Information response ATT PDU.

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[chrsticDescDiscRespPDU, chrsticDescDiscReqCfg, gattServer] = receiveData(gattServer, receivedPDU);

fprintf("Received characteristic descriptor discovery request at the server:\n")
chrsticDescDiscReqCfg

% Transmit the application response data (|chrsticDescDiscRespPDU|) to the
% client through PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(chrsticDescDiscRespPDU);
count = count+1;

Received characteristic descriptor discovery request at the server:

chrsticDescDiscReqCfg = 

  bleATTPDUConfig with properties:

         Opcode: 'Information request'
    StartHandle: '0003'
      EndHandle: '0006'

   Read-only properties:
    No properties.

Receive Server response at Client

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[~, chrsticDescDiscRespCfg] = receiveData(gattClient, receivedPDU);

% Expected response from the server: |'Information response'| or |'Error
% response'|.
if strcmp(chrsticDescDiscRespCfg.Opcode, 'Error response')
    fprintf("Received error response at the client:\n")
    chrsticDescDiscRespCfg
    chrsticDescDiscRespMsg = ['Error response(''' chrsticDescDiscRespCfg.ErrorMessage ''')'];
else
    fprintf("Received characteristic descriptor discovery response at the client:\n")
    chrsticDescDiscRespCfg
    descriptor = helperBluetoothID.getBluetoothName(chrsticDescDiscRespCfg.AttributeType);
    chrsticDescDiscRespMsg = ['Characteristic descriptor discovery response(''' descriptor ''')'];
end

Received characteristic descriptor discovery response at the client:
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chrsticDescDiscRespCfg = 

  bleATTPDUConfig with properties:

             Opcode: 'Information response'
             Format: '16 bit'
    AttributeHandle: '0004'
      AttributeType: '2902'

   Read-only properties:
    No properties.

Subscribe for Notifications

After discovering the characteristic descriptors, the client may enable or disable notifications for its
characteristic value. To enable notifications, the client must set the notification bit (first bit) of Client
Characteristic Configuration Descriptor (CCCD) value by invoking 'Write characteristic
value' sub-procedure.

Client subscribe for notifications at Server

% Configure a GATT client to enable the notifications of Heart rate
% measurement characteristic.
gattClient.SubProcedure = 'Write characteristic value';
gattClient.AttributeHandle = chrsticDescDiscRespCfg.AttributeHandle;
gattClient.AttributeValue = '0100';
enableNotificationReqPDU = generateATTPDU(gattClient);

% Transmit the application data (|enableNotificationReqPDU|) to the client
% through PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(enableNotificationReqPDU);
count = count+1;

Receive Client request at Server

Decodes the received request and sends the response in a Write response ATT PDU.

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[enableNotificationRespPDU, enableNotificationReqCfg, gattServer] = receiveData(gattServer, receivedPDU);

fprintf("Received enable notification request at the server:\n")
enableNotificationReqCfg

% Transmit the application response data (|enableNotificationRespPDU|) to
% the client through PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(enableNotificationRespPDU);
count = count+1;

Received enable notification request at the server:

enableNotificationReqCfg = 

  bleATTPDUConfig with properties:
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             Opcode: 'Write request'
    AttributeHandle: '0004'
     AttributeValue: [2x2 char]

   Read-only properties:
    No properties.

Receive Server response at Client

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[~, enableNotificationRespCfg] = receiveData(gattClient, receivedPDU);

% Expected response from the server: |'Write response'| or |'Error
% response'|.
if strcmp(enableNotificationRespCfg.Opcode, 'Error response')
    fprintf("Received error response at the client:\n")
    enableNotificationRespCfg
    enableNotificRespMsg = ['Error response(''' enableNotificationRespCfg.ErrorMessage ''')'];
else
    fprintf("Received enable notification response at the client:\n")
    enableNotificationRespCfg
    enableNotificRespMsg = 'Notifications enabled(''Heart rate measurement '')';
end

Received enable notification response at the client:

enableNotificationRespCfg = 

  bleATTPDUConfig with properties:

    Opcode: 'Write response'

   Read-only properties:
    No properties.

Notifying the Heart Rate Measurement Value to the Client

When a client enables notifications for a characteristic, the server periodically notifies the value of
characteristic (Heart rate measurement) to the client.

The HRP server notifies heart rate measurement to the client after its subscription.

Server sends notifications to Client

The notifyHeartRateMeasurement function generates notification PDU as specified in the Bluetooth
core specification.

% Reset the random number generator seed.
rng default

% Measure heart rate value using sensor (generate a random number for heart
% rate measurement value).
heartRateMeasurementValue = randi([65 95]);
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% Notify the heart rate measurement.
[gattServer, notificationPDU] = notifyHeartRateMeasurement(gattServer, ...
    heartRateMeasurementValue);

% Transmit the application data (|notificationPDU|) to the client through
% PHY.
[bleWaveform, pcapPackets{count}] = helperBLETransmitData(notificationPDU);
count = count+1;

Receive Server notifications at Client

% Decode the received BLE waveform and retrieve the application data.
receivedPDU = helperBLEDecodeData(bleWaveform);

% Decode received ATT PDU and generate response PDU, if applicable.
[~, notificationCfg] = receiveData(gattClient, receivedPDU);

fprintf("Received notification at the client:\n")

% Decode the received heart rate measurement characteristic value.
heartRateCharacteristicValue = helperBLEDecodeAttributeValue(...
    notificationCfg.AttributeValue, 'Heart rate measurement');
heartRateCharacteristicValue

heartRateMeasurementValue = heartRateCharacteristicValue.HeartRateValue;

% Visualize the BLE GATT Client-Server model.
helperBLEVisualizeHRPFrame(serviceDiscRespMsg, chrsticDescRespMsg, ...
    chrsticDescDiscRespMsg, enableNotificRespMsg, heartRateMeasurementValue);

Received notification at the client:

heartRateCharacteristicValue = 

  helperBLEAttributeValueConfig with properties:

              AttributeType: 'Heart rate measurement'
       HeartRateValueFormat: 'UINT8'
        SensorContactStatus: 'Contact detected'
    EnergyExpendedFieldFlag: 'Present, Units: Kilo Joules'
        RRIntervalFieldFlag: 'Present'
             HeartRateValue: 90
             EnergyExpended: 100
                 RRInterval: 10

   Read-only properties:
    No properties.
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Exporting to a PCAP File

This example uses blePCAPWriter object to export the generated PDUs to a file with .pcap
extension or .pcapng extension. To analyze and visualize this file, use a third part packet analyzer
such as Wireshark.

Create an object of type blePCAPWriter and specify the packet capture file name.

% Create the BLE PCAP Writer file object
pcapObj = blePCAPWriter("FileName", "bleHRP");

Use the write function to write all the BLE LL PDUs to a PCAP file. The constant timestamp
specifies the capture time of a PDU. In this example, the capture time is same for all the PDUs.

timestamp = 124800; % timestamp (in microseconds)

% Write all the LL PDUs to the PCAP file
for idx = 1:numel(pcapPackets)
    write(pcapObj, pcapPackets{idx}, timestamp, "PacketFormat", "bits");
end

% Clear the object
clear pcapObj;
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fprintf("Open generated pcap file 'bleHRP.pcap' in a protocol analyzer to view the generated frames.\n")

Open generated pcap file 'bleHRP.pcap' in a protocol analyzer to view the generated frames.

Visualization of the Generated ATT PDUs

Since the generated heart rate profile packets are compliant with the Bluetooth standard, you can
open, analyze and visualize the PCAP file using a third party packet analyzer such as Wireshark [ 3 ].
The data shown in these figures uses the heart rate profile packets generated in this example.

• Service discovery request

• Service discovery response

• Notifying heart rate measurement value
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Conclusion

This example demonstrated the modeling of BLE devices with Heart Rate Profile using the GATT
client-server scenario as specified in the Bluetooth core specification [ 1 ]. You can use a packet
analyzer to view the generated frames.

Appendix

The example uses these features:

• bleATTPDUConfig: Create configuration object for a BLE ATT PDU
• bleATTPDU: BLE ATT PDU generation
• bleATTPDUDecode: BLE ATT PDU decoding
• blePCAPWriter: Create BLE PCAP or PCAPNG file writer object

The example uses these helpers:

• helperBLEGATTClient: Provides methods to the Generic Attribute profile
• helperBLEGATTServer: Creates a GATT server object
• helperBLEAttributeValueConfig: Create configuration object for a BLE attribute value
• helperBLEGenerateAttributeValue: BLE attribute value generation
• helperBLEDecodeAttributeValue: BLE attribute value decoder
• helperBLEDecodeData: Decodes the received waveform and retrieve the application data
• helperBLEPrependAccessAddress: Prepends the link layer PDU with the access address
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• helperBLETransmitData: Transmit application data by generating BLE waveform
• helperBluetoothID: Bluetooth identifiers and their names assigned by the Bluetooth Special

Interest Group (SIG)
• helperBLEVisualizeHRPFrame: Visualize the Heart Rate Profile (HRP) frames exchanged in HRP

Example
• helperBLEPlotHRPFrames: Plot the data frame exchange between the Heart rate profile server

and client
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BLE L2CAP Frame Generation and Decoding
This example shows how to generate and decode Bluetooth® Low Energy L2CAP frames using the
Communications Toolbox™ Library for the Bluetooth® Protocol.

Background

The Bluetooth Core Specification [ 1 ] includes a Low Energy (LE) version for low-rate wireless
personal area networks, that is referred to as Bluetooth Low Energy (BLE) or Bluetooth Smart. The
BLE stack consists of: Generic Attribute Profile (GATT), Attribute Protocol (ATT), Security Manager
Protocol (SMP), Logical Link Control and Adaptation Protocol (L2CAP), Link layer and Physical layer.
BLE was added to the standard for low energy devices generating small amounts of data, such as
notification alerts used in such applications as home automation, health-care, fitness, and Internet of
Things (IoT).

The L2CAP layer in BLE corresponds to the higher sub-layer i.e. Logical Link Control (LLC) of the
Data Link Layer in the OSI reference model. The L2CAP is above the PHY and Link Layer of BLE. The
BLE specification optimized and simplified the L2CAP when compared to classic Bluetooth.

L2CAP in BLE is responsible for: (i) logical connection establishment (ii) protocol multiplexing (iii)
segmentation and reassembly (iv) flow control per 'dynamic' L2CAP channel.

The L2CAP layer adds an L2CAP basic header to the higher-layer payload and passes the Protocol
Data Unit (PDU) to the Link Layer below it.
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L2CAP Frames

L2CAP Frames consist of two sub-categories: Data frames and Signaling frames. There are
different types of frames within these two categories of frames. The Data frames are again sub-
categorized into B-frame (Basic information frame) and LE-frame (Low Energy information frame).
Each frame type has its own format.

A channel identifier (CID) is the local name representing a logical channel endpoint on the device.
For the protocols, such as the ATT and SMP, these channels are fixed by the Bluetooth Special
Interest Group (SIG). For application specific profiles, such as Internet Protocol Support Profile
(IPSP) and Object Transfer Profile (OTP), these channels are dynamically allocated.

Signaling frames are used with a fixed logical channel called signaling channel ('0005') and used
for logical connection establishment between peer devices using the LE credit based flow control
mechanism. These signaling frames are also used for updating the connection parameters (Slave
latency, Connection timeout, Minimum connection interval and Maximum connection interval) when
connection parameters request procedure is not supported in the Link Layer.

Data frames (B-frames and LE-frames) carry the upper-layer payload as 'Information Payload' in
its frame format. B-Frames are used to carry fixed channels (ATT and SMP with fixed logical channels
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'0004' and '0006' respectively) payload. LE-frames are used to carry payload through dynamically
created logical channels for application specific profiles, such as IPSP and OTP.

This example illustrates generation and decoding of the following frames. For a list of other signaling
frames supported, see the CommandType property of bleL2CAPFrameConfig object.

1. Flow control credit: This signaling frame is sent to create and configure an L2CAP logical channel
between two devices.

2. B-frames over fixed channels (ATT, SMP, etc.): This frame is used for carrying fixed channels
payload in basic L2CAP mode.

3. LE-frames over dynamic channels (profiles like IPSP, OTP, etc.): This frame is used for carrying
dynamic channels payload in LE credit based flow control mode.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

L2CAP Frames Generation

You can use the bleL2CAPFrame function to generate an L2CAP frame. This function accepts a
configuration object bleL2CAPFrameConfig. This object configures the fields required for
generating an L2CAP frame.

Signaling frame generation

To generate a signaling frame, create a bleL2CAPFrameConfig object with ChannelIdentifier
set to '0005'.

cfgL2CAP = bleL2CAPFrameConfig('ChannelIdentifier', '0005');

Configure the fields:

% Command type
cfgL2CAP.CommandType = 'Flow control credit';
% Source channel identifier
cfgL2CAP.SourceChannelIdentifier = '0041';
% LE credits
cfgL2CAP.Credits = 25

cfgL2CAP = 

  bleL2CAPFrameConfig with properties:
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          ChannelIdentifier: '0005'
                CommandType: 'Flow control credit'
           SignalIdentifier: '01'
    SourceChannelIdentifier: '0041'
                    Credits: 25

   Read-only properties:
    No properties.

Generate a 'Flow control credit' command.

sigFrame = bleL2CAPFrame(cfgL2CAP);

B-frame generation

To generate a B-frame (carrying ATT PDU), create a bleL2CAPFrameConfig object with
ChannelIdentifier set to '0004' (ATT channel ID).

cfgL2CAP = bleL2CAPFrameConfig('ChannelIdentifier', '0004')

cfgL2CAP = 

  bleL2CAPFrameConfig with properties:

    ChannelIdentifier: '0004'

   Read-only properties:
    No properties.

A B-frame is used to transmit payload from the ATT upper-layer. A 5-byte ATT PDU is used as payload
in this example.

payload = ['04';'01';'00';'FF';'FF'];

Generate an L2CAP B-frame using the payload and configuration.

bFrame = bleL2CAPFrame(cfgL2CAP, payload);

LE-frame generation

To generate an LE-frame, create a bleL2CAPFrameConfig object with ChannelIdentifier set to
'0035'.

cfgL2CAP = bleL2CAPFrameConfig('ChannelIdentifier', '0035')

cfgL2CAP = 

  bleL2CAPFrameConfig with properties:

    ChannelIdentifier: '0035'

   Read-only properties:
    No properties.

3 Bluetooth Toolbox Examples

3-252



An LE-frame is used to transmit the payload of dynamic channels. A 2-byte payload is used in this
example.

payload = ['01';'02'];

Generate an L2CAP LE-frame using the payload and configuration.

leFrame = bleL2CAPFrame(cfgL2CAP, payload);

Decoding L2CAP Frames

You can use the bleL2CAPFrameDecode function to decode an L2CAP frame. This function outputs
the following information:

1 status: An enumeration of type blePacketDecodeStatus, which indicates whether or not the
L2CAP decoding was successful.

2 cfgL2CAP: An L2CAP frame configuration object of type bleL2CAPFrameConfig, which
contains the decoded L2CAP properties.

This function accepts a BLE L2CAP frame as the input.

Decoding Signaling frame
[sigFrameDecodeStatus, cfgL2CAP] = bleL2CAPFrameDecode(sigFrame);

% Observe the outputs

% Decoding is successful
if strcmp(sigFrameDecodeStatus, 'Success')
    fprintf('L2CAP decoding status is: %s\n\n', sigFrameDecodeStatus);
    fprintf('Received L2CAP signaling frame configuration is:\n');
    cfgL2CAP
% Decoding failed
else
    fprintf('L2CAP decoding status is: %s\n', sigFrameDecodeStatus);
end

L2CAP decoding status is: Success

Received L2CAP signaling frame configuration is:

cfgL2CAP = 

  bleL2CAPFrameConfig with properties:

          ChannelIdentifier: '0005'
                CommandType: 'Flow control credit'
           SignalIdentifier: '01'
    SourceChannelIdentifier: '0041'
                    Credits: 25

   Read-only properties:
    No properties.

Decoding B-frame
[bFrameDecodeStatus, cfgL2CAP, payload] = bleL2CAPFrameDecode(bFrame);
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% Observe the outputs

% Decoding is successful
if strcmp(bFrameDecodeStatus, 'Success')
    fprintf('L2CAP decoding status is: %s\n\n', bFrameDecodeStatus);
    fprintf('Received L2CAP B-frame configuration is:\n');
    cfgL2CAP
    fprintf('Payload carried by L2CAP B-frame is:\n');
    payload
% Decoding failed
else
    fprintf('L2CAP decoding status is: %s\n', bFrameDecodeStatus);
end

L2CAP decoding status is: Success

Received L2CAP B-frame configuration is:

cfgL2CAP = 

  bleL2CAPFrameConfig with properties:

    ChannelIdentifier: '0004'

   Read-only properties:
    No properties.

Payload carried by L2CAP B-frame is:

payload =

  5x2 char array

    '04'
    '01'
    '00'
    'FF'
    'FF'

Decoding LE-frame

[leFrameDecodeStatus, cfgL2CAP, payload] = bleL2CAPFrameDecode(leFrame);

% Observe the outputs

% Decoding is successful
if strcmp(leFrameDecodeStatus, 'Success')
    fprintf('L2CAP decoding status is: %s\n\n', leFrameDecodeStatus);
    fprintf('Received L2CAP LE-frame configuration is:\n');
    cfgL2CAP
    fprintf('Payload carried by L2CAP LE-frame is:\n');
    payload
% Decoding failed
else
    fprintf('L2CAP decoding status is: %s\n', leFrameDecodeStatus);
end
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L2CAP decoding status is: Success

Received L2CAP LE-frame configuration is:

cfgL2CAP = 

  bleL2CAPFrameConfig with properties:

    ChannelIdentifier: '0035'

   Read-only properties:
    No properties.

Payload carried by L2CAP LE-frame is:

payload =

  2x2 char array

    '01'
    '02'

Exporting to a PCAP File

This example uses blePCAPWriter object to export the generated PDUs to a file with .pcap
extension or .pcapng extension. To analyze and visualize this file, use a third part packet analyzer
such as Wireshark.

The PCAP format expects L2CAP frame to be enclosed within Link Layer packet and also expects the
generated packet to be prepended with the access address. The helperBLEPrependAccessAddress
helper function prepends the access address to the generated packet. The following commands
generate a PCAP file for the L2CAP frames generated in this example.

% Create a cell array of L2CAP frames
l2capFrames = {sigFrame, bFrame, leFrame};
llPackets = cell(1, numel(l2capFrames));
for i = 1:numel(llPackets)
    % Add Link Layer header to the generated L2CAP frame
    cfgLLData = bleLLDataChannelPDUConfig('LLID', 'Data (start fragment/complete)');
    llDataPDU = bleLLDataChannelPDU(cfgLLData, l2capFrames{i});
    % Prepend access address. A 4-byte access address is used in this example
    llPackets{i} = helperBLEPrependAccessAddress(llDataPDU, '01234567');
end

Export to a PCAP file

Create an object of type blePCAPWriter and specify the packet capture file name.

% Create the BLE PCAP Writer file object
pcapObj = blePCAPWriter("FileName", "BLEL2CAPFrames");

Use the write function to write all the BLE LL PDUs to a PCAP file. The constant timestamp
specifies the capture time of a PDU. In this example, the capture time is same for all the PDUs.

timestamp = 124800; % timestamp (in microseconds)

% Write all the LL PDUs to the PCAP file
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for idx = 1:numel(llPackets)
    write(pcapObj, llPackets{idx}, timestamp, "PacketFormat", "bits");
end

% Clear the object
clear pcapObj;

Visualization of the Generated L2CAP Frames

You can open the PCAP file containing the generated L2CAP frames in a packet analyzer. The L2CAP
frames decoded by the packet analyzer match the standard compliant L2CAP frames generated by
the Communications Toolbox™ Library for the Bluetooth Protocol. The captured analysis of the
L2CAP frames is shown below.

• Signaling frame (flow control credit)

• B-frame (carrying ATT PDU)

• LE-frame (carrying dynamic channel payload)
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Conclusion

This example demonstrated generation and decoding of L2CAP frames specified in the Bluetooth [ 1 ]
standard. You can use a packet analyzer to view the generated L2CAP frames.

Appendix

The example uses these features:

• bleL2CAPFrameConfig: Create configuration object for a BLE L2CAP frame
• bleL2CAPFrame: BLE L2CAP frame generation
• bleL2CAPFrameDecode: BLE L2CAP frame decoder
• blePCAPWriter: Create BLE PCAP or PCAPNG file writer object

The example uses this helper:

• helperBLEPrependAccessAddress: Prepends the link layer PDU with the access address
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BLE Link Layer Packet Generation and Decoding
This example shows how to generate and decode Bluetooth® Low Energy (BLE) link layer packets
using the Communications Toolbox™ Library for the Bluetooth® Protocol.

Background

The Bluetooth Core Specification [ 1 ] includes a Low Energy version for low-rate wireless personal
area networks, that is referred to as Bluetooth Low Energy (BLE) or Bluetooth Smart. The BLE stack
consists of: Generic Attribute Profile (GATT), Attribute Protocol (ATT), Security Manager Protocol
(SMP), Logical Link Control and Adaptation Protocol (L2CAP), link layer (LL) and physical layer. BLE
was added to the standard for low energy devices generating small amounts of data, such as
notification alerts used in such applications as home automation, health-care, fitness, and Internet of
Things (IoT).

Packet Formats

Bluetooth core specification [ 1 ] defines two kinds of PHYs for BLE. Each PHY has its own packet
format.

(i) Uncoded PHYs (1 Mbps and 2 Mbps)

(ii) Coded PHYs (125 Kbps and 500 Kbps)

3 Bluetooth Toolbox Examples

3-258



Coded PHYs use Forward Error Correction (FEC) encoding (with coding scheme S = 8 or S = 2) for
the packets. The figures show the uncoded and coded PHY packet formats.

Format of LE Air Interface Packet for Uncoded PHY

Format of LE Air Interface Packet for Coded PHY

The Communications Toolbox™ Library for the Bluetooth Protocol generates LL packets that consist
of Protocol Data Unit (PDU) and the Cyclic Redundancy Check (CRC) shown in the PHY packet.

BLE classifies 40 RF channels into three advertising channels (Channel indices: 37, 38, 39) and thirty-
seven data channels (Channel indices: 0 to 36). BLE link layer defines two categories of PDUs,
advertising channel PDUs and data channel PDUs. There are different PDU types within these two
categories of PDUs. The access address field in the air interface packet format differentiates between
a data channel PDU and an advertising channel PDU. Each category of PDU has its own format.

Advertising Channel PDUs

The advertising channel PDUs (see Section 2.3, Part-B, Vol-6 in [ 1 ]) are used before a LL connection
is created. These PDUs are transmitted only on the advertising channels and used in establishing the
LL connection. The advertising channel PDU has a 16-bit header and a variable size payload.

The advertising channel PDU has the following packet format:

This example illustrates generation and decoding of advertising indication PDU. For a list of other
advertising channel PDUs supported, see the PDUType property of
bleLLAdvertisingChannelPDUConfig object.

Advertising indication: The advertising indication PDU is used when a device wants to advertise itself.
This PDU contains the advertising data related to the application profile of the device.
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Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Advertising Channel PDUs Generation

You can use the bleLLAdvertisingChannelPDU function to generate an advertising channel PDU.
This function accepts a configuration object bleLLAdvertisingChannelPDUConfig. This object
configures the fields required for generating an advertising channel PDU.

Advertising Indication Generation

To generate an 'Advertising indication' PDU, create a bleLLAdvertisingChannelPDUConfig
object with PDUType set to 'Advertising indication'.

cfgLLAdv = bleLLAdvertisingChannelPDUConfig('PDUType', ...
    'Advertising indication');

Configure the fields:

% Advertiser address
cfgLLAdv.AdvertiserAddress = '012345ABCDEF';
% Advertising data
cfgLLAdv.AdvertisingData = '0201060D09426174746572792056312E30'

cfgLLAdv = 

  bleLLAdvertisingChannelPDUConfig with properties:

                  PDUType: 'Advertising indication'
         ChannelSelection: 'Algorithm1'
    AdvertiserAddressType: 'Random'
        AdvertiserAddress: '012345ABCDEF'
          AdvertisingData: [17x2 char]

   Read-only properties:
    No properties.

Generate an 'Advertising indication' PDU.

llAdvPDU = bleLLAdvertisingChannelPDU(cfgLLAdv);

Decoding Advertising Channel PDUs

You can use the bleLLAdvertisingChannelPDUDecode function to decode an advertising channel
PDU. This function outputs the following information:

1 status: An enumeration of type blePacketDecodeStatus, specifying whether the LL
decoding was successful.

2 cfgLLAdv: A LL advertising channel PDU configuration object of type
bleLLAdvertisingChannelPDUConfig, which contains the decoded LL properties.

Provide the advertising channel PDU and an optional name-value pair specifying the format of the
input data PDU to the bleLLAdvertisingChannelPDUDecode function. Default input format is 'bits'.
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Decoding Advertising Indication

[llAdvDecodeStatus, cfgLLAdv] = bleLLAdvertisingChannelPDUDecode(llAdvPDU);

% Observe the outputs

% Decoding is successful
if strcmp(llAdvDecodeStatus, 'Success')
    fprintf('Link layer decoding status is: %s\n\n', llAdvDecodeStatus);
    fprintf('Received Advertising channel PDU configuration is:\n');
    cfgLLAdv
% Decoding failed
else
    fprintf('Link layer decoding status is: %s\n', llAdvDecodeStatus);
end

Link layer decoding status is: Success

Received Advertising channel PDU configuration is:

cfgLLAdv = 

  bleLLAdvertisingChannelPDUConfig with properties:

                  PDUType: 'Advertising indication'
         ChannelSelection: 'Algorithm1'
    AdvertiserAddressType: 'Random'
        AdvertiserAddress: '012345ABCDEF'
          AdvertisingData: [17x2 char]

   Read-only properties:
    No properties.

Data Channel PDUs

The data channel PDUs (see Section 2.4, Part-B, Vol-6 in [ 1 ]) are used after a LL connection is
created. The data channel PDUs consist of two sub-categories: LL data PDUs and LL control PDUs.
The LL control PDUs are used for managing the LL connection and the LL data PDUs are used to
carry the upper-layer data. The data channel PDU has a 16-bit header and a variable size payload.

The data channel PDUs have the following packet format:

This example illustrates generation and decoding of the following PDUs. For a list of other control
PDU types and data PDU types supported see Opcode and LLID properties of
bleLLControlPDUConfig and bleLLDataChannelPDUConfig objects, respectively.

1 Channel map indication: This LL control PDU is used to update the channel map at the peer
device. This PDU contains the updated channel map indicating good and bad channels.
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1 Data (start fragment/complete): This LL data PDU is used to carry L2CAP data to the peer device.

Data Channel PDUs Generation

You can use the bleLLDataChannelPDU function to generate a data channel PDU. This function
accepts a configuration object bleLLDataChannelPDUConfig, which configures the fields required
for generating a data channel PDU. The bleLLControlPDUConfig is a sub-configuration object
within bleLLDataChannelPDUConfig, control PDU payload fields are populated using the settings
of this configuration object.

Data channel PDUs use the CRC initialization value obtained in the 'Connection indication' packet.
The CRC initialization value used in the generation and decoding of packets.

% CRC initialization value
crcInit = 'ED321C';

LL Data PDU Generation

To generate a data PDU, create a bleLLDataChannelPDUConfig object with LLID set to 'Data
(start fragment/complete)'.

cfgLLData = bleLLDataChannelPDUConfig('LLID', ...
    'Data (start fragment/complete)');

Configure the fields:

% CRC initialization value
cfgLLData.CRCInitialization = crcInit;
% Sequence number
cfgLLData.SequenceNumber = 0;
% Next expected sequence number
cfgLLData.NESN = 1

cfgLLData = 

  bleLLDataChannelPDUConfig with properties:

                 LLID: 'Data (start fragment/complete)'
                 NESN: 1
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: 'ED321C'

   Read-only properties:
    No properties.

A data PDU is used to transmit a payload from upper-layer. A 18-byte payload is used in this example.

% Payload
payload = '0E00050014010A001F004000170017000000';

Generate a data PDU using payload and configuration.

llDataPDU = bleLLDataChannelPDU(cfgLLData, payload);

LL Control PDU Generation
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To generate a control PDU, create a bleLLDataChannelPDUConfig object with LLID set to
'Control'.

cfgLLData = bleLLDataChannelPDUConfig('LLID', 'Control');

Configure the fields:

% CRC initialization value
cfgLLData.CRCInitialization = crcInit

cfgLLData = 

  bleLLDataChannelPDUConfig with properties:

                 LLID: 'Control'
                 NESN: 0
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: 'ED321C'
        ControlConfig: [1x1 bleLLControlPDUConfig]

   Read-only properties:
    No properties.

You can configure the contents of an LL control PDU using bleLLControlPDUConfig.

Create a control PDU configuration object with Opcode set to 'Channel map indication'.

cfgControl = bleLLControlPDUConfig('Opcode', 'Channel map indication');

Configure the fields:

% Used channels
cfgControl.UsedChannels = [9, 10, 12, 24, 28, 32];
% Connection event instant
cfgControl.Instant = 245

cfgControl = 

  bleLLControlPDUConfig with properties:

          Opcode: 'Channel map indication'
         Instant: 245
    UsedChannels: [9 10 12 24 28 32]

   Read-only properties:
    No properties.

Assign the updated control PDU configuration object to the ControlConfig property in the data
channel PDU configuration object.

% Update the data channel PDU configuration
cfgLLData.ControlConfig = cfgControl;

Generate a control PDU with the updated configuration.
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llControlPDU = bleLLDataChannelPDU(cfgLLData);

Decoding Data Channel PDUs

You can use the bleLLDataChannelPDUDecode function to decode a data channel PDU. This
function outputs the following information:

1 status: An enumeration of type blePacketDecodeStatus, specifying whether the LL
decoding was successful.

2 cfgLLData: An LL data channel PDU configuration object of type
bleLLDataChannelPDUConfig, which contains the decoded LL properties.

3 payload: An n-by-2 character array representing the upper-layer payload carried by LL data
PDUs.

Provide the data channel PDU, CRC initialization value and an optional name-value pair specifying the
format of the input data PDU to the bleLLDataChannelPDUDecode function. Default input format is
'bits'.

Decoding LL Data PDU

[llDataDecodeStatus, cfgLLData, payload] = ...
    bleLLDataChannelPDUDecode(llDataPDU, crcInit);

% Observe the outputs

% Decoding is successful
if strcmp(llDataDecodeStatus, 'Success')
    fprintf('Link layer decoding status is: %s\n\n', llDataDecodeStatus);
    fprintf('Received Data channel PDU configuration is:\n');
    cfgLLData
    fprintf('Size of the received upper-layer payload is: %d\n', ...
        numel(payload)/2);
% Decoding failed
else
    fprintf('Link layer decoding status is: %s\n', llDataDecodeStatus);
end

Link layer decoding status is: Success

Received Data channel PDU configuration is:

cfgLLData = 

  bleLLDataChannelPDUConfig with properties:

                 LLID: 'Data (start fragment/complete)'
                 NESN: 1
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: '012345'

   Read-only properties:
    No properties.

Size of the received upper-layer payload is: 18

Decoding LL Control PDU
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[llControlDecodeStatus, cfgLLData] = ...
    bleLLDataChannelPDUDecode(llControlPDU, crcInit);

% Observe the outputs

% Decoding is successful
if strcmp(llControlDecodeStatus, 'Success')
    fprintf('Link layer decoding status is: %s\n\n', llControlDecodeStatus);
    fprintf('Received Data channel PDU configuration is:\n');
    cfgLLData
    fprintf('Received control PDU configuration is:\n');
    cfgControl = cfgLLData.ControlConfig
% Decoding failed
else
    fprintf('Link layer decoding status is: %s\n', llControlDecodeStatus);
end

Link layer decoding status is: Success

Received Data channel PDU configuration is:

cfgLLData = 

  bleLLDataChannelPDUConfig with properties:

                 LLID: 'Control'
                 NESN: 0
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: '012345'
        ControlConfig: [1x1 bleLLControlPDUConfig]

   Read-only properties:
    No properties.

Received control PDU configuration is:

cfgControl = 

  bleLLControlPDUConfig with properties:

          Opcode: 'Channel map indication'
         Instant: 245
    UsedChannels: [9 10 12 24 28 32]

   Read-only properties:
    No properties.

Exporting to a PCAP File

This example uses blePCAPWriter object to export the generated PDUs to a file with .pcap
extension or .pcapng extension. To analyze and visualize this file, use a third part packet analyzer
such as Wireshark.

Prepend access address
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The PCAP format expects access address to be prepended to the LL packet. The helper function
helperBLEPrependAccessAddress prepends access address to the generated LL packet.

% Advertising channel PDUs use the default access address
advAccessAddress = '8E89BED6';
% Data channel PDUs use the access address obtained from 'Connection
% indication' packet. A random access address is used for this example
connAccessAddress = 'E213BC42';
% Prepend access address
llPkts{1} = helperBLEPrependAccessAddress(llAdvPDU, advAccessAddress);
llPkts{2} = helperBLEPrependAccessAddress(llDataPDU, connAccessAddress);
llPkts{3} = helperBLEPrependAccessAddress(llControlPDU, connAccessAddress);

Export to a PCAP file

Create an object of type blePCAPWriter and specify the packet capture file name.

% Create the BLE PCAP Writer file object
pcapObj = blePCAPWriter("FileName", "bleLLPackets");

Use the write function to write all the BLE LL PDUs to a PCAP file. The constant timestamp
specifies the capture time of a PDU. In this example, the capture time is same for all the PDUs.

timestamp = 124800; % timestamp (in microseconds)

% Write all the LL PDUs to the PCAP file
for idx = 1:numel(llPkts)
    write(pcapObj, llPkts{idx}, timestamp, 'PacketFormat', 'bits');
end

% Clear the object
clear pcapObj;

Visualization of the Generated Link Layer Packets

You can open the PCAP file containing the generated LL packets in a packet analyzer. The packets
decoded by the packet analyzer match the standard compliant LL packets generated by the
Communications Toolbox™ Library for the Bluetooth Protocol. The captured analysis of the packets is
shown below.

• Advertising indication
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• LL data PDU (carrying L2CAP payload)

• LL control PDU (channel map indication)
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Conclusion

This example demonstrated generation and decoding of LL packets specified in the Bluetooth
standard [ 1 ]. You can use a packet analyzer to view the generated LL packets.

Appendix

The example uses these feature:

• bleLLAdvertisingChannelPDU: Generate LL advertising channel PDU
• bleLLAdvertisingChannelPDUDecode: Decode LL advertising channel PDU
• bleLLAdvertisingChannelPDUConfig: Create a configuration object for generation and

decoding of LL advertising channel PDU
• bleLLDataChannelPDU: Generate LL data channel PDU
• bleLLDataChannelPDUDecode: Decode LL data channel PDU
• bleLLDataChannelPDUConfig: Create a configuration object for generation and decoding of LL

data channel PDU
• bleLLControlPDUConfig: Create a sub-configuration object used in generation and decoding of

data channel PDU
• blePCAPWriter: Create BLE PCAP or PCAPNG file writer object

This example uses this helper:

• helperBLEPrependAccessAddress: Prepends the link layer PDU with the access address

Selected Bibliography

1 Bluetooth® Technology Website. "Bluetooth Technology Website | The Official Website of
Bluetooth Technology." Accessed July 8, 2020. https://www.bluetooth.com/.

2 "Development/LibpcapFileFormat - The Wireshark Wiki." Accessed July 8, 2020. https://
wiki.wireshark.org/Development/LibpcapFileFormat.

3 Group, The Tcpdump. "Tcpdump/Libpcap Public Repository." Accessed July 8, 2020. https://
www.tcpdump.org.

See Also

More About
• “Bluetooth Protocol Stack” on page 13-7
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Bluetooth Low Energy Waveform Generation and Visualization
This example shows how the Communications Toolbox™ Library for the Bluetooth® Protocol can be
used to generate waveforms for different modes of Bluetooth Low Energy (BLE) physical layer (PHY)
[ 1 ].

Background

Bluetooth special interest group (SIG) introduced BLE for low power short range communications.
BLE devices operate in the globally unlicensed industrial, scientific and medical (ISM) band in the
frequency range 2.4 GHz to 2.485 GHz. BLE specifies a channel spacing of 2 MHz, which results in
40 RF channels as shown in the figure below. The BLE standard [ 1 ] specifies the Link layer which
includes both PHY and MAC layers. BLE finds applications in transfer of files such as images and
MP3 between mobile phones, home automation and internet of things (IoT) trend.

The Bluetooth standard [ 1 ] specifies the following physical layer modes:

• LE1M - Uncoded PHY with data rate of 1 Mbps
• LE2M - Uncoded PHY with data rate of 2 Mbps
• LE500K - Coded PHY with data rate of 500 Kbps
• LE125K - Coded PHY with data rate of 125 Kbps

The air interface packet formats for these modes include the following fields:

• Preamble: The preamble depends on which PHY mode is used. LE1M mode uses an 8-bit
sequence of alternate zeros and ones, '01010101'. LE2M uses a 16-bit sequence of alternate zeros
and ones, '0101...'. LE500K and LE125K modes use an 80-bit sequence of zeros and ones obtained
by repeating '00111100' ten times.

• Access Address: Specifies the connection address shared between two BLE devices using a 32-bit
sequence.

• Coding Indicator: 2-bit sequence used for differentiating two coded modes (LE125K, LE500K).
• Payload: Input message bits including both PDU and CRC. The maximum message size is 2080

bits.
• Termination Fields: Two 3-bit vectors of zeros, used in Forward Error Correction encoding. The

termination fields are present for coded modes (LE500K and LE125K) only.
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Packet format for uncoded PHY (LE1M and LE2M) modes is shown in the figure below:

Packet format for coded PHY (LE500K and LE125K) modes is shown in the figure below:

Introduction

This example shows how to generate BLE waveforms for all the physical layer modes as per the
Bluetooth specification [ 1 ]. The generated BLE waveforms are visualized in both time-domain and
frequency-domain using time scope and spectrum analyzer respectively.

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Initialize Parameters for Waveform Generation

% Specify the input parameters for generating BLE waveform
numPackets = 10;    % Number of packets to generate
sps = 16;           % Samples per symbol
messageLen = 2000;  % Length of message in bits
phyMode = 'LE1M';   % Select one mode from the set {'LE1M','LE2M','LE500K','LE125K'};
channelBW = 2e6;    % Channel spacing (Hz) as per standard
% Define symbol rate based on the PHY mode
if any(strcmp(phyMode,{'LE1M','LE500K','LE125K'}))
    symbolRate = 1e6;
else
    symbolRate = 2e6;
end

Create Objects for Visualization

% Create a spectrum analyzer object
specAn = dsp.SpectrumAnalyzer('SpectrumType','Power density');
specAn.SampleRate = symbolRate*sps;

% Create a time scope object
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timeScope = timescope('SampleRate', symbolRate*sps,'TimeSpanSource','Auto',...
     'ShowLegend',true);

Waveform Generation and Visualization

% Loop over the number of packets, generating a BLE waveform and plotting
% the waveform spectrum
rng default;
for packetIdx = 1:numPackets
    message = randi([0 1],messageLen,1);    % Message bits generation
    chanIndex = randi([0 39],1,1);          % Channel index decimal value

    if(chanIndex >=37)
        % Default access address for periodic advertising channels
        accessAdd = [0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 ...
                            1 0 0 0 1 0 1 1 1 0 0 0 1]';
    else
        % Random access address for data channels
        % Ideally, this access address value should meet the requirements
        % specified in Section 2.1.2 of volume 6 of the Bluetooth Core
        % Specification.
        accessAdd = [0 0 0 0 0 0 0 1 0 0 1 0 0 ...
            0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1]';
    end

    waveform = bleWaveformGenerator(message,...
                                    'Mode',phyMode,...
                                    'SamplesPerSymbol',sps,...
                                    'ChannelIndex',chanIndex,...
                                    'AccessAddress',accessAdd);

    specAn.FrequencyOffset = channelBW*chanIndex;
    specAn.Title = ['Spectrum of ',phyMode,' Waveform for Channel Index = ', num2str(chanIndex)];

    tic
    while toc < 0.5 % To hold the spectrum for 0.5 seconds
        specAn(waveform);
    end

    % Plot the generated waveform
    timeScope.Title = ['BLE ',phyMode,' Waveform for Channel Index = ', num2str(chanIndex)];
    timeScope(waveform);
end

% Release objects
release(specAn);
release(timeScope);
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Appendix

The feature used in this example is:

• bleWaveformGenerator: Generates BLE physical layer waveform

Selected Bibliography

1 Volume 6 of the Bluetooth Core Specification, Version 5.0 Core System Package [Low Energy
Controller Volume].
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End-to-End Bluetooth Low Energy PHY Simulation with RF
Impairments and Corrections

This example shows how the Communications Toolbox™ Library for the Bluetooth® Protocol can be
used to measure the bit error rate (BER) and packet error rate (PER) for different modes of Bluetooth
Low Energy (BLE) [ 1 ] physical layer (PHY) packet transmissions that have radio front-end (RF)
impairments and additive white gaussian noise (AWGN) added to them.

Introduction

Bluetooth special interest group (SIG) introduced BLE for low power short range communications.
BLE devices operate in the globally unlicensed industrial, scientific and medical (ISM) band in the
frequency range 2.4 GHz to 2.485 GHz. BLE specifies a channel spacing of 2 MHz, which results in
40 RF channels. The BLE standard specifies the Link layer which includes both PHY and MAC
layers. BLE applications include image and video file transfers between mobile phones, home
automation, and the internet of things (IoT).

This end-to-end BLE PHY simulation determines BER and PER performance of the four BLE PHY
transmission modes with RF impairments and AWGN added to the transmission packets. Nested for
loops are used to compute error rates for each transmission mode at several bit energy to noise
density ratio (Eb/No) settings. Inside the Eb/No loop, multiple transmission packets are generated
using the bleWaveformGenerator function and altered with RF impairments and AWGN to
accumulate the error rate statistics. Each packet is distorted by these RF impairments:

• DC offset
• Carrier frequency offset
• Carrier phase offset
• Timing drift

White gaussian noise is added to the transmitted BLE waveforms. The noisy packets are processed
through a practical BLE receiver that performs the following operations:

• Automatic gain control (AGC)
• DC removal
• Carrier frequency offset correction
• Matched filtering
• Packet detection
• Timing error correction
• Demodulation and decoding
• Dewhitening

The processing steps for each packet are summarized in the following diagram:
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The synchronized packets are then demodulated and decoded to recover the data bits. These
recovered data bits are compared with the transmitted data bits to determine the BER and PER. BER
and PER curves are generated for the following four PHY transmission throughput modes supported
in BLE:

• Uncoded PHY with data rate of 1 Mbps (LE1M)
• Uncoded PHY with data rate of 2 Mbps (LE2M)
• Coded PHY with data rate of 500 Kbps (LE500K)
• Coded PHY with data rate of 125 Kbps (LE125K)

Check for Support Package Installation

% Check if the 'Communications Toolbox Library for the Bluetooth Protocol'
% support package is installed or not.
commSupportPackageCheck('BLUETOOTH');

Initialize the Simulation Parameters

EbNo = 2:4:10;                       % Eb/No in dB
sps = 4;                             % Samples per symbol, must be greater than 1
dataLen = 42;                        % Data length in bytes, includes header, payload and CRC
simMode = {'LE1M','LE2M','LE500K','LE125K'}; % PHY modes considered for the simulation

The number of packets tested at each Eb/No point is controlled by two parameters:

1 maxNumErrors is the maximum number of bit errors simulated at each Eb/No point. When the
number of bit errors reaches this limit, the simulation at this Eb/No point is complete.
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2 maxNumPackets is the maximum number of packets simulated at each Eb/No point and limits
the length of the simulation if the bit error limit is not reached.

The numbers chosen for maxNumErrors and maxNumPackets in this example will lead to a very
short simulation. For meaningful results we recommend increasing these numbers.

maxNumErrors = 100; % Maximum number of bit errors at an Eb/No point
maxNumPackets = 10; % Maximum number of packets at an Eb/No point

Simulating for Each Eb/No Point

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each Eb/No point to speed up a simulation. parfor, as part of the “Parallel Computing
Toolbox”, executes processing for each Eb/No point in parallel to reduce the total simulation time. To
enable the use of parallel computing for increased speed, comment out the 'for' statement and
uncomment the 'parfor' statement below. If Parallel Computing Toolbox (TM) is not installed, 'parfor'
will default to the normal 'for' statement.

numMode = numel(simMode);          % Number of modes
ber = zeros(numMode,length(EbNo)); % Pre-allocate to store BER results
per = zeros(numMode,length(EbNo)); % Pre-allocate to store PER results
bitsPerByte = 8;                   % Number of bits per byte

% Fixed access address Ideally, this access address value should meet the
% requirements specified in Section 2.1.2 of the Bluetooth specification.
accessAdd = [0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 ...
                            1 0 0 0 1 0 1 1 1 0 0 0 1]';
for iMode = 1:numMode

    phyMode = simMode{iMode};

    % Set signal to noise ratio (SNR) points based on mode.
    % For Coded PHYs (LE500K and LE125K), the code rate factor is included
    % in SNR calculation as 1/2 rate FEC encoder is used.
    if any(strcmp(phyMode,{'LE1M','LE2M'}))
        snrVec = EbNo - 10*log10(sps);
    else
        codeRate = 1/2;
        snrVec = EbNo + 10*log10(codeRate) - 10*log10(sps);
    end

%     parfor iSnr = 1:length(snrVec)  % Use 'parfor' to speed up the simulation
    for iSnr = 1:length(snrVec)   % Use 'for' to debug the simulation

        % Set random substream index per iteration to ensure that each
        % iteration uses a repeatable set of random numbers
        stream = RandStream('combRecursive','Seed',0);
        stream.Substream = iSnr;
        RandStream.setGlobalStream(stream);

        % Create an instance of error rate
        errorRate = comm.ErrorRate('Samples','Custom',...
                        'CustomSamples',1:(dataLen*bitsPerByte-1));

        % Create and configure the System objects for impairments
        initImp = helperBLEImpairmentsInit(phyMode,sps);
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        % Create and configure the receiver System objects
        initRxParams = helperBLEReceiverInit(phyMode,sps,accessAdd);

        % Initialize error computation parameters
        [numErrs,perCnt] = deal(0);
        numPkt = 1;

        % Loop to simulate multiple packets
        while numErrs <= maxNumErrors && numPkt <= maxNumPackets

            % Generate BLE waveform
            txBits = randi([0 1],dataLen*bitsPerByte,1,'int8'); % Data bits generation
            chanIndex = randi([0 39],1,1); % Random channel index value for each packet
            txWaveform = bleWaveformGenerator(txBits,'Mode',phyMode,...
                                            'SamplesPerSymbol',sps,...
                                            'ChannelIndex',chanIndex,...
                                            'AccessAddress',accessAdd);

            % Define the RF impairment parameters
            initImp.pfo.FrequencyOffset = randsrc(1,1,-50e3:10:50e3); % In Hz, Max range is +/- 150 KHz
            initImp.pfo.PhaseOffset = randsrc(1,1,-10:5:10);          % In degrees
            initoff = 0.15*sps; % Static timing offset
            stepsize = 20*1e-6; % Timing drift in ppm, Max range is +/- 50 ppm
            initImp.vdelay = (initoff:stepsize:initoff+stepsize*(length(txWaveform)-1))'; % Variable timing offset
            initImp.dc = 20;     % Percentage w.r.t maximum amplitude value

            % Pass the generated waveform through RF impairments
            txImpairedWfm = helperBLEImpairmentsAddition(txWaveform,initImp);

            % Pass the transmitted waveform through AWGN channel
            rxWaveform = awgn(txImpairedWfm,snrVec(iSnr));

            % Recover data bits using practical receiver
            [rxBits,accessAddress] = helperBLEPracticalReceiver(rxWaveform,initRxParams,chanIndex);

            % Determine the BER and PER
            if(length(txBits) == length(rxBits))
                errors = errorRate(txBits,rxBits); % Outputs the accumulated errors
                ber(iMode,iSnr) = errors(1);       % Accumulated BER
                currentErrors = errors(2)-numErrs; % Number of errors in current packet
                if(currentErrors) % Check if current packet is in error or not
                    perCnt  = perCnt + 1;          % Increment the PER count
                end
                numErrs = errors(2);               % Accumulated errors
                numPkt = numPkt + 1;
            end
        end
        per(iMode,iSnr) = perCnt/(numPkt-1);

    disp(['Mode ' phyMode ', '...
        'Simulating for Eb/No = ', num2str(EbNo(iSnr)), ' dB' ', '...
        'BER:',num2str(ber(iMode,iSnr)), ', '...
        'PER:',num2str(per(iMode,iSnr))])
    end
end

Mode LE1M, Simulating for Eb/No = 2 dB, BER:0.079104, PER:1
Mode LE1M, Simulating for Eb/No = 6 dB, BER:0.0083582, PER:0.9
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Mode LE1M, Simulating for Eb/No = 10 dB, BER:0, PER:0
Mode LE2M, Simulating for Eb/No = 2 dB, BER:0.1194, PER:1
Mode LE2M, Simulating for Eb/No = 6 dB, BER:0.0065672, PER:0.5
Mode LE2M, Simulating for Eb/No = 10 dB, BER:0, PER:0
Mode LE500K, Simulating for Eb/No = 2 dB, BER:0.20746, PER:1
Mode LE500K, Simulating for Eb/No = 6 dB, BER:0.0020896, PER:0.2
Mode LE500K, Simulating for Eb/No = 10 dB, BER:0, PER:0
Mode LE125K, Simulating for Eb/No = 2 dB, BER:0.0077612, PER:0.5
Mode LE125K, Simulating for Eb/No = 6 dB, BER:0, PER:0
Mode LE125K, Simulating for Eb/No = 10 dB, BER:0, PER:0

Simulation Results

This section presents the BER and PER results w.r.t the input Eb/No range for the considered PHY
modes

markers = 'ox*s';
color = 'bmcr';
dataStr = {zeros(numMode,1)};
for iMode = 1:numMode
    subplot(2,1,1),semilogy(EbNo,ber(iMode,:).',['-' markers(iMode) color(iMode)]);
    hold on;
    dataStr(iMode) = simMode(iMode);

    subplot(2,1,2),semilogy(EbNo,per(iMode,:).',['-' markers(iMode) color(iMode)]);
    hold on;
    dataStr(iMode) = simMode(iMode);
end
subplot(2,1,1),
grid on;
xlabel('Eb/No (dB)');
ylabel('BER');
legend(dataStr);
title('BER of BLE under RF impairments');

subplot(2,1,2),
grid on;
xlabel('Eb/No (dB)');
ylabel('PER');
legend(dataStr);
title('PER of BLE under RF impairments');
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Reference Results

This section generates the reference BER, PER and Eb/No values for each PHY mode based on the
receiver sensitivity and corresponding BER as specified in section 4.1 of the Bluetooth specification
[ 1 ].

[refBER,refPER,refEbNo] = deal(zeros(numMode,1));
headerLen = 2; % Header length in bytes
crcLen = 3; % CRC length in bytes
payloadLen = dataLen-headerLen-crcLen; % Payload length in bytes
for iMode = 1:numMode
    [refBER(iMode),refPER(iMode),refEbNo(iMode)] = ...
                        helperBLEReferenceResults(simMode(iMode),payloadLen);
    disp(['Mode ' simMode{iMode} ', '...
        'Reference Eb/No = ', num2str(refEbNo(iMode)), ' dB' ', '...
        'BER = ',num2str(refBER(iMode)), ', '...
        'PER = ',num2str(refPER(iMode)), ', '...
        'for payload length of ',num2str(payloadLen), ' bytes'])
end

Mode LE1M, Reference Eb/No = 34.919 dB, BER = 0.001, PER = 0.30801, for payload length of 37 bytes
Mode LE2M, Reference Eb/No = 34.919 dB, BER = 0.001, PER = 0.30801, for payload length of 37 bytes
Mode LE500K, Reference Eb/No = 31.9087 dB, BER = 0.001, PER = 0.30801, for payload length of 37 bytes
Mode LE125K, Reference Eb/No = 31.9087 dB, BER = 0.001, PER = 0.30801, for payload length of 37 bytes
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Further Exploration

The number of packets tested at each Eb/No value is controlled by maxNumErrors and
maxNumPackets parameters. For statistically meaningful results these values should be larger than
those presented in this example. To generate the figure below, the simulation ran using a data length
of 128 bytes, maxNumErrors = 1e3, and maxNumPackets = 1e4 for all the four transmission
modes.

The figure shows that the reference BER and PER can be obtained at lower Eb/No points compared to
the reference Eb/No value given in the Bluetooth specification. In this example, only the following
impairments are added and passed through AWGN channel.

• DC offset
• Carrier frequency offset
• Carrier phase offset
• Timing drift
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The reference Eb/No values generated based on the BLE specification include margin for RF
impairments and fading channel conditions that are not modeled in this simulation. As a result, the
simulation results here outperform the standard reference results. If you modify this example to
include additional impairments such as frequency drift, fading, and interference in the simulation the
BER and PER curves will move right towards the reference Eb/No values generated based on the BLE
standard receiver characteristics in [ 1 ], Volume 6, Section 4.1.

Appendix

The helpers used in this example are:

• helperBLEImpairmentsAddition.m: Adds RF impairments to the BLE waveform
• helperBLEPracticalReceiver.m: Demodulate and decodes the received signal
• helperBLEReceiverInit.m: Initializes BLE receiver parameters
• helperBLEImpairmentsInit.m: Initializes RF impairment parameters
• helperBLEReferenceResults.m: Generates reference BER, PER and Eb/No values

Summary

This example simulates a BLE PHY packet transmissions that have RF impairments and AWGN added
to them. It shows how to generate BLE waveforms, demodulate and decode data bits using practical
receiver and compute the BER and PER.

Selected Bibliography

1 Volume 6 of the Bluetooth Core Specification, Version 5.0 Core System Package [Low Energy
Controller Volume].

See Also

More About
• “Generate BLE Waveform and Add RF Impairments” on page 13-103
• “Bluetooth Low Energy Transmitter” on page 3-207
• “Bluetooth Low Energy Receiver” on page 3-212

3 Bluetooth Toolbox Examples

3-282



Shared deeplearning_shared Examples
(comm/deeplearning)

4



Spectrum Sensing with Deep Learning to Identify 5G and LTE
Signals

This example shows how to train a semantic segmentation network using deep learning for spectrum
monitoring. One of the uses of spectrum monitoring is to characterize spectrum occupancy. The
neural network in this example is trained to identify 5G NR and LTE signals in a wideband
spectrogram.

Introduction

Computer vision uses the semantic segmentation technique to identify objects and their locations in
an image or a video. In wireless signal processing, the objects of interest are wireless signals, and the
locations of the objects are the frequency and time occupied by the signals. In this example we apply
the semantic segmentation technique to wireless signals to identify spectral content in a wideband
spectrogram.

In the following, you will:

1 Generate training signals.
2 Apply transfer learning to a semantic segmentation network to identify 5G NR and LTE signals in

time and frequency.
3 Test the trained network with synthetic signals.
4 Use an SDR to test the network with over the air (OTA) signals.

Generate Training Data

One advantage of wireless signals in the deep learning domain is the fact that the signals are
synthesized. Also, we have highly reliable channel and RF impairment models. As a result, instead of
collecting and manually labeling signals, you can generate 5G NR signals using 5G Toolbox™ and LTE
signals using LTE Toolbox™ functions. You can pass these signals through standards-specified
channel models to create the training data.

Train the network with frames that contain only 5G NR or LTE signals and then shift these signals in
frequency randomly within the band of interest. Each frame is 40 ms long, which is the duration of 40
subframes. The network assumes that the 5G NR or LTE signal occupies the same band for the whole
frame duration. To test the network performance, create frames that contain both 5G NR and LTE
signals on distinct random bands within the band of interest.

Use a sampling rate of 61.44 MHz. This rate is high enough to process most of the latest standard
signals and several low-cost software defined radio (SDR) systems can sample at this rate providing
about 50 MHz of useful bandwidth. To monitor a wider band, you can increase the sample rate,
regenerate training frames and retrain the network.

Use the helperSpecSenseTrainingData function to generate training frames. This function
generates 5G NR signals using the helperSpecSenseNRSignal function and LTE signals using the
helperSpecSenseLTESignal function. This table lists 5G NR variable signal parameters.
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This table lists LTE variable signal parameters.

Use the nrCDLChannel (5G Toolbox) and the lteFadingChannel (LTE Toolbox) functions to add
channel impairments. For details of the channel configurations, see the
helperSpecSenseTrainingData function. This table lists channel parameters.

The helperSpecSenseTrainingData function uses the helperSpecSenseSpectrogramImage
function to create spectrogram images from complex baseband signals. Calculate the spectrograms
using an FFT length of 4096. Generate 256 by 256 RGB images. This Image size allows a large
enough batch of images to fit in memory during training while providing enough resolution in time
and frequency. If your GPU does not have sufficient memory, you can resize the images to smaller
sizes or reduce the training batch size.

The generateTrainData variable determines whether training data is to be downloaded or
generated. Choosing "Use downloaded data" sets the generateTrainData variable to false.
Choosing "Generate training data" sets the generateTrainData variable to true to generate the
training data from scratch. Data generation may take several hours depending on the configuration of
your computer. Using a PC with Intel® Xeon® W-2133 CPU @ 3.60GHz and creating a parallel pool
with six workers with the Parallel Computing Toolbox, training data generation takes about an hour.
Choose "Train network now" to train the network. This process takes about 20 minutes with the same
PC and NVIDIA® Titan V GPU. Choose "Use trained network" to skip network training. Instead, the
example downloads the trained network.

Use 900 frames from each set of signals: 5G NR only, LTE only and 5G NR and LTE both. If you
increase the number of possible values for the system parameters, increase the number of training
frames .

imageSize = [256 256];    % pixels
sampleRate = 61.44e6;     % Hz
numSubFrames = 40;        % corresponds to 40 ms
frameDuration = numSubFrames*1e-3;    % seconds
trainDir = fullfile(pwd,'TrainingData');
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generateTrainData = ;

trainNow = ;
if ~generateTrainData || ~trainNow
  helperSpecSenseDownloadData()
end

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/SpectrumSensing/SpectrumSenseTrainingDataNetwork.tar.gz
Download complete. Extracting files.
Extract complete.

if generateTrainData
  numFramesPerStandard = 900;
  helperSpecSenseTrainingData(numFramesPerStandard,imageSize,trainDir,numSubFrames,sampleRate);
end

Load Training Data

Use the imageDatastore function to load training images with the spectrogram of 5G NR and LTE
signals. The imageDatastore function enables you to efficiently load a large collection of images
from disk. Spectrogram images are stored in .png files.

imds = imageDatastore(trainDir,'IncludeSubfolders',false,'FileExtensions','.png');

Use the pixelLabelDatastore (Computer Vision Toolbox) function to load spectrogram pixel label
image data. Each pixel is labeled as one of "NR", "LTE" or "Noise". A pixel label datastore
encapsulates the pixel label data and the label ID to a class name mapping. Pixel labels are stored
in .hdf files.

classNames = ["NR" "LTE" "Noise"];
pixelLabelID = [127 255 0];
pxdsTruth = pixelLabelDatastore(trainDir,classNames,pixelLabelID,...
  'IncludeSubfolders',false,'FileExtensions','.hdf');

Analyze Dataset Statistics

To see the distribution of class labels in the training dataset, use the countEachLabel (Computer
Vision Toolbox) function to count the number of pixels by class label, and plot the pixel counts by
class.

tbl = countEachLabel(pxdsTruth);
frequency = tbl.PixelCount/sum(tbl.PixelCount);
figure
bar(1:numel(classNames),frequency)
grid on
xticks(1:numel(classNames)) 
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')
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Ideally, all classes would have an equal number of observations. However, with wireless signals it is
common for the classes in the training set to be imbalanced. 5G NR signals may have larger
bandwidth than LTE signals, and noise fills the background. Because the learning is biased in favor of
the dominant classes, imbalance in the number of observations per class can be detrimental to the
learning process. In the Balance Classes Using Class Weighting on page 4-0  section, class
weighting is used to mitigate bias caused by imbalance in the number of observations per class.

Prepare Training, Validation, and Test Sets

The deep neural network uses 80% of the single signal images from the dataset for training and, 20%
of the images for validation. The helperSpecSensePartitionData function randomly splits the
image and pixel label data into training and validation sets.

[imdsTrain,pxdsTrain,imdsVal,pxdsVal] = helperSpecSensePartitionData(imds,pxdsTruth,[80 20]);
cdsTrain = pixelLabelImageDatastore(imdsTrain,pxdsTrain,'OutputSize',imageSize);
cdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal,'OutputSize',imageSize);

Train Deep Neural Network

Use the deeplabv3plusLayers (Computer Vision Toolbox) function to create a semantic
segmentation neural network. Choose resnet50 (Deep Learning Toolbox) as the base network and
specify the input image size (number of pixels used to represent time and frequency axes) and the
number of classes. If the Deep Learning Toolbox™ Model for ResNet-50 Network support package is
not installed, then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install. Check that the
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installation is successful by typing resnet50 at the command line. If the required support package is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

baseNetwork = ;
lgraph = deeplabv3plusLayers(imageSize,numel(classNames),baseNetwork);

Balance Classes Using Class Weighting

To improve training when classes in the training set are not balanced, you can use class weighting to
balance the classes. Use the pixel label counts computed earlier with the countEachLabel function
and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;

Specify the class weights using a pixelClassificationLayer (Computer Vision Toolbox).

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

Select Training Options

Configure training using the trainingOptions (Deep Learning Toolbox) function to specify the
stochastic gradient descent with momentum (SGDM) optimization algorithm and the hyper-
parameters used for SGDM. To get the best performance from the network, you can use the
Experiment Manager (Deep Learning Toolbox) to optimize training options.

opts = trainingOptions("sgdm",...
  MiniBatchSize = 40,...
  MaxEpochs = 20, ...
  LearnRateSchedule = "piecewise",...
  InitialLearnRate = 0.02,...
  LearnRateDropPeriod = 10,...
  LearnRateDropFactor = 0.1,...
  ValidationData = cdsVal,...
  ValidationPatience = 5,...
  Shuffle="every-epoch",...
  OutputNetwork = "best-validation-loss",...
  Plots = 'training-progress')

opts = 
  TrainingOptionsSGDM with properties:

                        Momentum: 0.9000
                InitialLearnRate: 0.0200
               LearnRateSchedule: 'piecewise'
             LearnRateDropFactor: 0.1000
             LearnRateDropPeriod: 10
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 20
                   MiniBatchSize: 40
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: [1×1 pixelLabelImageDatastore]
             ValidationFrequency: 50
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              ValidationPatience: 5
                         Shuffle: 'every-epoch'
                  CheckpointPath: ''
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'best-validation-loss'

Train the network using the combined training data store, cdsTrain. The combined training data
store contains single signal frames and true pixel labels.

if trainNow
  [net,trainInfo] = trainNetwork(cdsTrain,lgraph,opts); %#ok<UNRCH> 
else
  load specSenseTrainedNet net
end

Test with Synthetic Signals

Test the network signal identification performance using signals that contain both 5G NR and LTE
signals. Use the semanticseg (Computer Vision Toolbox) function to get the pixel estimates of the
spectrogram images in the test data set. Use the evaluateSemanticSegmentation (Computer
Vision Toolbox) function to compute various metrics to evaluate the quality of the semantic
segmentation results.

dataDir = fullfile(trainDir,'LTE_NR');
imds = imageDatastore(dataDir,'IncludeSubfolders',false,'FileExtensions','.png');
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 900 images.

pxdsTruth = pixelLabelDatastore(dataDir,classNames,pixelLabelID,...
  'IncludeSubfolders',false,'FileExtensions','.hdf');
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 900 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.88609          0.87117       0.79066      0.79601        0.65624  

Plot the normalized confusion matrix for all test frames as a heat map.
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normConfMatData = metrics.NormalizedConfusionMatrix.Variables;
figure
h = heatmap(classNames,classNames,100*normConfMatData);
h.XLabel = 'Predicted Class';
h.YLabel = 'True Class';
h.Title = 'Normalized Confusion Matrix (%)';

Plot the histogram of the per-image intersection over union (IoU). For each class, IoU is the ratio of
correctly classified pixels to the total number of ground truth and predicted pixels in that class.

imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
grid on
xlabel('IoU')
ylabel('Number of Frames')
title('Frame Mean IoU')
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Inspecting low SNR frames shows that the spectrogram images do not contain visual features that
can help the network identify the low SNR frames correctly. Repeat the same process, considering
only the frames with average SNR of 50dB or 100dB and ignoring the frames with average SNR of
40dB.

files = dir(fullfile(dataDir,'*.mat'));
dataFiles = {};
labelFiles = {};
for p=1:numel(files)
  load(fullfile(files(p).folder,files(p).name),'params');
  if params.SNRdB > 40
    [~,name] = fileparts(files(p).name);
    dataFiles = [dataFiles; fullfile(files(p).folder,[name '.png'])]; %#ok<AGROW>
    labelFiles = [labelFiles; fullfile(files(p).folder,[name '.hdf'])]; %#ok<AGROW>
  end
end
imds = imageDatastore(dataFiles);
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 608 images.

pxdsTruth = pixelLabelDatastore(labelFiles,classNames,pixelLabelID);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
----------------------------------------
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* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 608 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.94487          0.94503       0.89799      0.89582        0.74699  

Considering only the set of frames with higher SNR, replot the normalized confusion matrix and
observe the improved network accuracy.

normConfMatData = metrics.NormalizedConfusionMatrix.Variables;
figure
h = heatmap(classNames,classNames,100*normConfMatData);
h.XLabel = 'Predicted Class';
h.YLabel = 'True Class';
h.Title = 'Normalized Confusion Matrix (%)';

Considering only the set of frames with higher SNR, replot the per-image IoU histogram and observe
the improved distribution.

imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
grid on
xlabel('IoU')
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ylabel('Number of Frames')
title('Frame Mean IoU')

Identify 5G NR and LTE Signals in Spectrogram

Visualize the received spectrum, true labels, and predicted labels for the image with index 602.

imgIdx = 602;
rcvdSpectrogram = readimage(imds,imgIdx);
trueLabels = readimage(pxdsTruth,imgIdx);
predictedLabels = readimage(pxdsResults,imgIdx);
figure
helperSpecSenseDisplayResults(rcvdSpectrogram,trueLabels,predictedLabels, ...
  classNames,sampleRate,0,frameDuration)
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figure
helperSpecSenseDisplayIdentifiedSignals(rcvdSpectrogram,predictedLabels, ...
  classNames,sampleRate,0,frameDuration)
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Test with Over-the-Air Signals

Test the performance of the trained network using over-the-air signal captures. Find a nearby base
station and tune the center frequency of your radio to cover the band of the signals you want to
identify. This example sets the center frequency to 2.35 GHz. If you have at least one ADALM-PLUTO
radio and have installed Communication Toolbox Support Package for ADALM-PLUTO Radio, you can
run this section of the code. In case you do not have access to an ADALM-PLUTO radio, this example
shows results of a test conducted using captured signals.

runSDRSection = false;
if helperIsPlutoSDRInstalled()  
  radios = findPlutoRadio();
  if length(radios) >= 1
    runSDRSection = true;
  else
    disp("At least one ADALM-PLUTO radios is needed. Skipping SDR test.")
  end
else
    disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
    disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
    disp("Skipping SDR test.")
end

Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.

Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.

Skipping SDR test.
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if runSDRSection
  % Set up PlutoSDR receiver
  rx = sdrrx('Pluto');
  rx.CenterFrequency = 2.35e9;
  rx.BasebandSampleRate = sampleRate;
  rx.SamplesPerFrame = frameDuration*rx.BasebandSampleRate;
  rx.OutputDataType = 'single';
  rx.EnableBurstMode = true;
  rx.NumFramesInBurst = 1;
  Nfft = 4096;
  overlap = 10;

  meanAllScores = zeros([imageSize numel(classNames)]);
  segResults = zeros([imageSize 10]);
  for frameCnt=1:10
    rxWave = rx();
    rxSpectrogram = helperSpecSenseSpectrogramImage(rxWave,Nfft,sampleRate,imageSize);

    [segResults(:,:,frameCnt),scores,allScores] = semanticseg(rxSpectrogram,net);
    meanAllScores = (meanAllScores*(frameCnt-1) + allScores) / frameCnt;
  end
  release(rx)

  [~,predictedLabels] = max(meanAllScores,[],3);
  figure
  helperSpecSenseDisplayResults(rxSpectrogram,[],predictedLabels,classNames,...
    sampleRate,rx.CenterFrequency,frameDuration)
  figure
  freqBand = helperSpecSenseDisplayIdentifiedSignals(rxSpectrogram,predictedLabels,...
    classNames,sampleRate,rx.CenterFrequency,frameDuration)
else
  figure
  imshow('lte_capture_result1.png')
  figure
  imshow('lte_capture_result2.png')
  figure
  imshow('nr_capture_result1.png')
  figure
  imshow('nr_capture_result2.png')
end
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Conclusions and Further Exploration

The trained network can distinguish 5G NR and LTE signals including two example captures from
real base stations. The network may not be able to identify every captured signal correctly. In such
cases, enhance the training data either by generating more representative synthetic signals or
capturing over-the-air signals and including these in the training set.

You can use the LTE “Cell Search, MIB and SIB1 Recovery” (LTE Toolbox) and the “NR Cell Search
and MIB and SIB1 Recovery” (5G Toolbox) examples to identify LTE and 5G NR base stations
manually to capture training data, respectively.

If you need to monitor wider bands of spectrum, increase the sampleRate, regenerate the training
data and retrain the network.

See Also
classificationLayer | featureInputLayer | fullyConnectedLayer | reluLayer |
softmaxLayer | pixelLabelDatastore | countEachLabel | pixelClassificationLayer
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More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Autoencoders for Wireless Communications
This example shows how to model an end-to-end communications system with an autoencoder to
reliably transmit information bits over a wireless channel.

Introduction

A traditional autoencoder is an unsupervised neural network that learns how to efficiently compress
data, which is also called encoding. The autoencoder also learns how to reconstruct the data from the
compressed representation such that the difference between the original data and the reconstructed
data is minimal.

Traditional wireless communication systems are designed to provide reliable data transfer over a
channel that impairs the transmitted signals. These systems have multiple components such as
channel coding, modulation, equalization, synchronization, etc. Each component is optimized
independently based on mathematical models that are simplified to arrive at closed form expressions.
On the contrary, an autoencoder jointly optimizes the transmitter and the receiver as a whole. This
joint optimization has the potential of providing a better performance than the traditional systems [1]
on page 4-0 ,[2] on page 4-0 .

Traditional autoencoders are usually used to compress images, in other words remove redundancies
in an image and reduce its dimension. A wireless communication system on the other hand uses
channel coding and modulation techniques to add redundancy to the information bits. With this added
redundancy, the system can recover the information bits that are impaired by the wireless channel.
So, a wireless autoencoder actually adds redundancy and tries to minimize the number of errors in
the received information for a given channel while learning to apply both channel coding and
modulation in an unsupervised way.

Basic Autoencoder System

The following is the block diagram of a wireless auto encoder system. The encoder (transmitter) first
maps k information bits into a message s such that s ∈ {1, …, M}, where M = 2k. Then message s is
mapped to n real number to create x = f (s) ∈ ℝn. The last layer of the encoder imposes constraints on
x to further restrict the encoded symbols. The following are possible such constraints and are
implemented using the normalization layer:

• Energy constraint: ‖x‖2
2 ≤ n

• Average power constraint: E[ |xi |2 ] ≤ 1, ∀i
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Define the communication rate of this system as R = k/n [bits/channel use], where (n,k) means that
the system sends one of M = 2k messages using n channel uses. The channel impairs encoded (i.e.
transmitted) symbols to generate y ∈ ℝn. The decoder (i.e. receiver) produces an estimate, s, of the
transmitted message, s.

The input message is defined as a one-hot vector 1s ∈ ℝM, which is defined as a vector whose
elements are all zeros except the sth one. The channel is additive white Gaussian noise (AWGN) that
adds noise to achieve a given energy per bit to noise power density ratio, Eb/No.

Define a (7,4) autoencoder network with energy normalization and a training Eb/No of 3 dB. In [1] on
page 4-0 , authors showed that two fully connected layers for both the encoder (transmitter) and
the decoder (receiver) provides the best results with minimal complexity. Input layer
(featureInputLayer (Deep Learning Toolbox)) accepts a one-hot vector of length M. The encoder
has two fully connected layers (fullyConnectedLayer (Deep Learning Toolbox)). The first one has
M inputs and M outputs and is followed by an ReLU layer (reluLayer (Deep Learning Toolbox)). The
second fully connected layer has M inputs and n outputs and is followed by the normalization layer
(helperAEWNormalizationLayer.m). The encoder layers are followed by the AWGN channel layer
(helperAEWAWGNLayer.m). The output of the channel is passed to the decoder layers. The first
decoder layer is a fully connected layer that has n inputs and M outputs and is followed by an ReLU
layer. Second fully connected layer has M inputs and M outputs and is followed by a softmax layer
(softmaxLayer (Deep Learning Toolbox)), which outputs the probability of each M symbols. The
classification layer (classificationLayer (Deep Learning Toolbox)) outputs the most probable
transmitted symbol from 0 to M-1.

k = 4;    % number of input bits
M = 2^k;  % number of possible input symbols
n = 7;    % number of channel uses
EbNo = 3; % Eb/No in dB

wirelessAutoencoder = [
  featureInputLayer(M,"Name","One-hot input","Normalization","none")
  
  fullyConnectedLayer(M,"Name","fc_1")
  reluLayer("Name","relu_1")
  
  fullyConnectedLayer(n,"Name","fc_2")
  
  helperAEWNormalizationLayer("Method", "Energy", "Name", "wnorm")
  
  helperAEWAWGNLayer("Name","channel",...
    "NoiseMethod","EbNo",...
    "EbNo",EbNo,...
    "BitsPerSymbol",2,...
    "SignalPower",1)
  
  fullyConnectedLayer(M,"Name","fc_3")
  reluLayer("Name","relu_2")
  
  fullyConnectedLayer(M,"Name","fc_4")
  softmaxLayer("Name","softmax")
  
  classificationLayer("Name","classoutput")]

wirelessAutoencoder = 
  11×1 Layer array with layers:
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     1   'One-hot input'   Feature Input            16 features
     2   'fc_1'            Fully Connected          16 fully connected layer
     3   'relu_1'          ReLU                     ReLU
     4   'fc_2'            Fully Connected          7 fully connected layer
     5   'wnorm'           Wireless Normalization   Energy normalization layer
     6   'channel'         AWGN Channel             AWGN channel with EbNo = 3
     7   'fc_3'            Fully Connected          16 fully connected layer
     8   'relu_2'          ReLU                     ReLU
     9   'fc_4'            Fully Connected          16 fully connected layer
    10   'softmax'         Softmax                  softmax
    11   'classoutput'     Classification Output    crossentropyex

The helperAEWTrainWirelessAutoencoder.m function defines such a network based on the (n,k),
normalization method and the Eb/No values. The Wireless Autoencoder Training Function section on
page 4-0  shows the contents of the helperAEWTrainWirelessAutoencoder.m function.

Train Autoencoder

Run the helperAEWTrainWirelessAutoencoder.m function to train a (2,2) autoencoder with
energy normalization. This function uses the trainingOptions (Deep Learning Toolbox) function to
select

• Adam (adaptive moment estimation) optimizer,
• Initial learning rate of 0.01,
• Maximum epochs of 15,
• Minibatch size of 20*M,
• Piecewise learning schedule with drop period of 10 and drop factor of 0.1.

Then, the helperAEWTrainWirelessAutoencoder.m function runs the trainNetwork (Deep
Learning Toolbox) function to train the autoencoder network with the selected options. Finally, this
function separates the network into encoder and decoder parts. Encoder starts with the input layer
and ends after the normalization layer. Decoder starts after the channel layer and ends with the
classification layer. A feature input layer is added at the beginning of the decoder.

Train the autoencoder with an Eb/No value that is low enough to result in some errors but not too low
such that the training algorithm cannot extract any useful information from the received symbols, y.
Set Eb/No to 3 dB.

Training an autoencoder may take several minutes. Set trainNow to false to use saved networks.

trainNow = ; %#ok<*NASGU>

n = 2;                      % number of channel uses
k = 2;                      % bits per data symbol
EbNo = 3;                   % dB
normalization = "Energy";   % Normalization "Energy" | "Average power"

if trainNow
  [txNet22e,rxNet22e,info22e,wirelessAutoEncoder22e] = ...
    helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo); %#ok<*UNRCH>
else
  load trainedNet_n2_k2_energy txNet rxNet info trainedNet
  txNet22e = txNet;
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  rxNet22e = rxNet;
  info22e = info;
  wirelessAutoEncoder22e = trainedNet;
end

Plot the traning progress. The validation accuracy quickly reaches more than 90% while the
validation loss keeps slowly decreasing. This behavior shows that the training Eb/No value was low
enough to cause some errors but not too low to avoid convergence. For definitions of validation
accuracy and validation loss, see “Monitor Deep Learning Training Progress” (Deep Learning
Toolbox) section.

figure
helperAEWPlotTrainingPerformance(info22e)

Use the plot object function of the trained network objects to show the layer graphs of the full
autoencoder, the encoder network, i.e. the transmitter, and the decoder network, i.e. the receiver.

figure
tiledlayout(2,2)
nexttile([2 1])
plot(wirelessAutoEncoder22e)
title('Autoencoder')
nexttile
plot(txNet22e)
title('Encoder/Tx')
nexttile
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plot(rxNet22e)
title('Decoder/Rx')

Plot Transmitted and Received Constellation

Plot the constellation learned by the autoencoder to send symbols through the AWGN channel
together with the received constellation. For a (2,2) configuration, autoencoder learns a QPSK
(M = 2k = 4) constellation with a phase rotation. The received constellation is basically the activation
values at the output of the channel layer obtained using the activations (Deep Learning Toolbox)
function and treated as interleaved complex numbers.

subplot(1,2,1)
helperAEWPlotConstellation(txNet22e)
title('Learned Constellation')
subplot(1,2,2)
helperAEWPlotReceivedConstellation(wirelessAutoEncoder22e)
title('Received Constellation')
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Simulate BLER Performance

Simulate the block error rate (BLER) performance of the (2,2) autoencoder. Setup simulation
parameters.

simParams.EbNoVec = 0:0.5:8;
simParams.MinNumErrors = 10;
simParams.MaxNumFrames = 300;
simParams.NumSymbolsPerFrame = 10000;
simParams.SignalPower = 1;

Generate random integers in the [0 M-1] range that represents k random information bits. Encode
these information bits into complex symbols with helperAEWEncode.m function. The
helperAEWEncode function runs the encoder part of the autoencoder then maps the real valued x
vector into a complex valued xc vector such that the odd and even elements are mapped into the in-
phase and the quadrature component of a complex symbol, respectively, where
xc = x(1:2:end) + jx(2:2:end). In other words, treat the x array as an interleaved complex array.

Pass the complex symbols through an AWGN channel. Decode the channel impaired complex symbols
with the helperAEWDecode.m function. The following code runs the simulation for each Eb/No point
for at least 10 block errors. To obtain more accurate results, increase minimum number of errors to
at least 100. If Parallel Computing Toolbox™ is installed and a license is available, the simulation will
run on a parallel pool. Compare the results with that of an uncoded QPSK system with block length 2.

EbNoVec = simParams.EbNoVec;
R = k/n;
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M = 2^k;
BLER = zeros(size(EbNoVec));
parfor EbNoIdx = 1:length(EbNoVec)
  EbNo = EbNoVec(EbNoIdx) + 10*log10(R);
  chan = comm.AWGNChannel("BitsPerSymbol",2, ...
    "EbNo", EbNo, "SamplesPerSymbol", 1, "SignalPower", 1);

  numBlockErrors = 0;
  frameCnt = 0;
  while (numBlockErrors < simParams.MinNumErrors) ...
      && (frameCnt < simParams.MaxNumFrames) %#ok<PFBNS>

    d = randi([0 M-1],simParams.NumSymbolsPerFrame,1);    % Random information bits
    x = helperAEWEncode(d,txNet22e);                      % Encoder
    y = chan(x);                                          % Channel
    dHat = helperAEWDecode(y,rxNet22e);                   % Decoder

    numBlockErrors = numBlockErrors + sum(d ~= dHat);
    frameCnt = frameCnt + 1;
  end
  BLER(EbNoIdx) = numBlockErrors / (frameCnt*simParams.NumSymbolsPerFrame);
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

figure
semilogy(simParams.EbNoVec,BLER,'-')
hold on
qpsk22BLER = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^2;
semilogy(simParams.EbNoVec,qpsk22BLER,'--')
hold off
ylim([1e-4 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend('AE (2,2)','QPSK (2,2)')
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The well formed constellation together with the BLER results show that training for 15 epochs is
enough to get a satisfactory convergence.

Compare Constellation Diagrams

Compare learned constellations of several autoencoders normalized to unit energy and unit average
power. Train (2,4) autoencoder normalized to unit energy.

n = 2;      % number of channel uses
k = 4;      % bits per data symbol
EbNo = 3;   % dB
normalization = "Energy";
if trainNow
  [txNet24e,rxNet24e,info24e,wirelessAutoEncoder24e] = ...
    helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
else
  load trainedNet_n2_k4_energy txNet rxNet info trainedNet
  txNet24e = txNet;
  rxNet24e = rxNet;
  info24e = info;
  wirelessAutoEncoder24e = trainedNet;
end

Train (2,4) autoencoder normalized to unit average power.

n = 2;      % number of channel uses
k = 4;      % bits per data symbol
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EbNo = 3;   % dB
normalization = "Average power";
if trainNow
  [txNet24p,rxNet24p,info24p,wirelessAutoEncoder24p] = ...
    helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
else
  load trainedNet_n2_k4_power txNet rxNet info trainedNet
  txNet24p = txNet;
  rxNet24p = rxNet;
  info24p = info;
  wirelessAutoEncoder24p = trainedNet;
end

Train (7,4) autoencoder normalized to unit energy.

n = 7;      % number of channel uses
k = 4;      % bits per data symbol
EbNo = 3;   % dB
normalization = "Energy";
if trainNow
  [txNet74e,rxNet74e,info74e,wirelessAutoEncoder74e] = ...
    helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
else
  load trainedNet_n7_k4_energy txNet rxNet info trainedNet
  txNet74e = txNet;
  rxNet74e = rxNet;
  info74e = info;
  wirelessAutoEncoder74e = trainedNet;
end

Plot the constellation using the helperAEWPlotConstellation.m function. The trained (2,2)
autoencoder converges on a QPSK constellation with a phase shift as the optimal constellation for the
channel conditions experienced. The (2,4) autoencoder with energy normalization converges to a
16PSK constellation with a phase shift. Note that, energy normalization forces every symbol to have
unit energy and places the symbols on the unit circle. Given this constraint, best constellation is a
PSK constellation with equal angular distance between symbols. The (2,4) autoencoder with average
power normalization converges to a three-tier constellation of 1-6-9 symbols. Average power
normalization forces the symbols to have unity average power over time. This constraint results in an
APSK constellation, which is different than the conventional QAM or APSK schemes. Note that, this
network configuration may also converge to a two-tier constellation with 7-9 symbols based on the
random initial condition used during training. The last plot shows the 2-D mapping of the 7-D
constellation generated by the (7,4) autoencoder with energy constraint. 2-D mapping is obtained
using the t-Distributed Stochastic Neighbor Embedding (t-SNE) method (see tsne (Statistics and
Machine Learning Toolbox) function).

figure
subplot(2,2,1)
helperAEWPlotConstellation(txNet22e)
title('(2,2) Energy')
subplot(2,2,2)
helperAEWPlotConstellation(txNet24e)
title('(2,4) Energy')
subplot(2,2,3)
helperAEWPlotConstellation(txNet24p)
title('(2,4) Average Power')
subplot(2,2,4)
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helperAEWPlotConstellation(txNet74e,'t-sne')
title('(7,4) Energy')

Compare BLER Performance of Autoencoders with Coded and Uncoded QPSK

Simulate the BLER performance of a (7,4) autoencoder with that of (7,4) Hamming code with QPSK
modulation for both hard decision and maximum likelihood (ML) decoding. Use uncoded (4,4) QPSK
as a baseline. (4,4) uncoded QPSK is basically a QPSK modulated system that sends blocks of 4 bits
and measures BLER. The data for the following figures is obtained using
helperAEWSimulateBLER.mlx and helperAEWPrepareAutoencoders.mlx files.

load codedBLERResults.mat
figure
qpsk44BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^4;
semilogy(simParams.EbNoVec,qpsk44BLERTh,':*')
hold on
semilogy(simParams.EbNoVec,qpsk44BLER,':o')
semilogy(simParams.EbNoVec,hammingHard74BLER,'--s')
semilogy(simParams.EbNoVec,ae74eBLER,'-')
semilogy(simParams.EbNoVec,hammingML74BLER,'--d')
hold off
ylim([1e-5 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend('Theoretical Uncoded QPSK (4,4)','Uncoded QPSK (4,4)','Hamming (7,4) Hard Decision',...
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  'Autoencoder (7,4)','Hamming (7,4) ML','Location','southwest')
title('BLER comparison of (7,4) Autoencoder')

As expected, hard decision (7,4) Hamming code with QPSK modulation provides about 0.6 dB Eb/No
advantage over uncoded QPSK, while the ML decoding of (7,4) Hamming code with QPSK modulation
provides another 1.5 dB advantage for a BLER of 10−3. The (7,4) autoencoder BLER performance
approaches the ML decoding of (7,4) Hamming code, when trained with 3 dB Eb/No. This BLER
performance shows that the autoencoder is able to learn not only modulation but also channel coding
to achieve a coding gain of about 2 dB for a coding rate of R=4/7.

Next, simulate the BLER performance of autoencoders with R=1 with that of uncoded QPSK systems.
Use uncoded (2,2) and (8,8) QPSK as baselines. Compare BLER performance of these systems with
that of (2,2), (4,4) and (8,8) autoencoders.

load uncodedBLERResults.mat
qpsk22BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^2;
semilogy(simParams.EbNoVec,qpsk22BLERTh,':*')
hold on
semilogy(simParams.EbNoVec,qpsk88BLER,'--*')
qpsk88BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^8;
semilogy(simParams.EbNoVec,qpsk88BLERTh,':o')
semilogy(simParams.EbNoVec,ae22eBLER,'-o')
semilogy(simParams.EbNoVec,ae44eBLER,'-d')
semilogy(simParams.EbNoVec,ae88eBLER,'-s')
hold off
ylim([1e-5 1])
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grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend('Uncoded QPSK (2,2)','Uncoded QPSK (8,8)','Theoretical Uncoded QPSK (8,8)',...
  'Autoencoder (2,2)','Autoencoder (4,4)','Autoencoder (8,8)','Location','southwest')
title('BLER performance of R=1 Autoencoders')

Bit error rate of QPSK is the same for both (8,8) and (2,2) cases. However, the BLER depends on the
block length, n, and gets worse as n increases as given by BLER = 1− (1− BER)n. As expected, BLER
performance of (8,8) QPSK is worse than the (2,2) QPSK system. The BLER performance of (2,2)
autoencoder matches the BLER performance of (2,2) QPSK. On the other hand, (4,4) and (8,8)
autoencoders optimize the channel coder and the constellation jointly to obtain a coding gain with
respect to the corresponding uncoded QPSK systems.

Effect of Training Eb/No on BLER Performance

Train the (7,4) autoencoder with energy normalization under different Eb/No values and compare the
BLER performance.

n = 7;
k = 4;
normalization = 'Energy';

EbNoVec = 1:3:10;
if trainNow
  for EbNoIdx = 1:length(EbNoVec)
    EbNo = EbNoVec(EbNoIdx);
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    [txNetVec{EbNoIdx},rxNetVec{EbNoIdx},infoVec{EbNoIdx},trainedNetVec{EbNoIdx}] = ...
      helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
    BLERVec{EbNoIdx} = helperAEWAutoencoderBLER(txNetVec{EbNoIdx},rxNetVec{EbNoIdx},simParams);
  end
else
  load ae74TrainedEbNo1to10 BLERVec trainParams simParams txNetVec rxNetVec infoVec trainedNetVec EbNoVec
end

Plot the BLER performance together with theoretical upper bound for hard decision decoded
Hamming (7,4) code and simulated BLER of maximum likelihood decoded (MLD) Hamming (7,4)
code. The BLER performance of the (7,4) autoencoder gets closer to the Hamming (7,4) code with
MLD as the training Eb/No decreases from 10 dB to 1 dB, at which point it almost matches the MLD
Hamming (7,4) code.

berHamming = bercoding(simParams.EbNoVec,'hamming','hard',7);
blerHamming = 1-(1-berHamming).^7;
load codedBLERResults hammingML74BLER
figure
semilogy(simParams.EbNoVec,blerHamming,':k')
hold on
linespec = {'-*','-d','-o','-s',};
for EbNoIdx=length(EbNoVec):-1:1
  semilogy(simParams.EbNoVec,BLERVec{EbNoIdx},linespec{EbNoIdx})
end
semilogy(simParams.EbNoVec,hammingML74BLER,'--vk')
hold off
ylim([1e-5 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend('(7,4) Hamming HDD Upper','(7,4) AE - Eb/No=10','(7,4) AE - Eb/No=7',...
  '(7,4) AE - Eb/No=4','(7,4) AE - Eb/No=1','Hamming (7,4) MLD','location','southwest')
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Conclusions and Further Exploration

The BLER results show that it is possible for autoencoders to learn joint coding and modulation
schemes in an unsupervised way. It is even possible to train an autoencoder with R=1 to obtain a
coding gain as compared to traditional methods. The example also shows the effect of
hyperparameters such as Eb/No on the BLER performance.

The results are obtained using the following default settings for training and BLER simulations:

trainParams.Plots = 'none';
trainParams.Verbose = false;
trainParams.MaxEpochs = 15;
trainParams.InitialLearnRate = 0.01;
trainParams.LearnRateSchedule = 'piecewise';
trainParams.LearnRateDropPeriod = 10;
trainParams.LearnRateDropFactor = 0.1;
trainParams.MiniBatchSize = 20*2^k;

simParams.EbNoVec = -2:0.5:8;
simParams.MinNumErrors = 100;
simParams.MaxNumFrames = 300;
simParams.NumSymbolsPerFrame = 10000;
simParams.SignalPower = 1;

Vary these parameters to train different autoencoders and test their BLER performance. Experiment
with different n, k, normalization and Eb/No values. See the help for
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helperAEWTrainWirelessAutoencoder.m, helperAEWPrepareAutoencoders.mlx and
helperAEWAutoencoderBLER.m for more information.

List of helper functions

• helperAEWAWGNLayer.m
• helperAEWNormalizationLayer.m
• helperAEWEncode.m
• helperAEWDecode.m
• helperAEWTrainWirelessAutoencoder.m
• helperAEWPlotConstellation.m
• helperAEWPlotTrainingPerformance.m
• helperAEWAutoencoderBLER.m
• helperAEWPrepareAutoencoders.mlx
• helperAEWSimulateBLER.mlx
• helperAEWPlotReceivedConstellation.m

Wireless Autoencoder Training Function

This section shows the content of the helperAEWTrainWirelessAutoencoder function. To open the
runnable version of the function in the MATLAB editor, click helperAEWTrainWirelessAutoencoder.m.

type helperAEWTrainWirelessAutoencoder

function [txNet,rxNet,info,trainedNet] = ...
  helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo,varargin)
%helperAEWTrainWirelessAutoencoder Train wireless autoencoder
%   [TX,RX,INFO,AE] = helperAEWTrainWirelessAutoencoder(N,K,NORM,EbNo)
%   trains an autoencoder, AE, with (N,K), where K is the number of input
%   bits and N is the number of channel uses. The autoencoder employs NORM
%   normalization. NORM must be one of 'Energy' and 'Average power'. The
%   channel is an AWGN channel with Eb/No set to EbNo. TX and Rx are the
%   encoder and decoder parts of the autoencoder that can be used in the
%   helperAEWEncoder and helperAEWDecoder functions, respectively. INFO is
%   the training information that can be used to check the convergence
%   behavior of the training process.
%
%   [TX,RX,INFO,AE] = helperAEWTrainWirelessAutoencoder(...,TP) provides
%   training parameters as follows:
%     TP.Plots: Plots to display during network training defined as one of
%               'none' (default) or 'training-progress'.
%     TP.Verbose: Indicator to display training progress information
%               defined as 1 (true) (default) or 0 (false).
%     TP.MaxEpochs: Maximum number of epochs defined as a positive integer.
%               The default is 15.
%     TP.InitialLearnRate: Initial learning rate as a floating point number
%               between 0 and 1. The default is 0.01;
%     TP.LearnRateSchedule: Learning rate schedule defined as one of
%               'piecewise' (default) or 'none'.
%     TP.LearnRateDropPeriod: Number of epochs for dropping the learning 
%               rate as a positive integer. The default is 10.
%     TP.LearnRateDropFactor: Factor for dropping the learning rate,
%               defined as a scalar between 0 and 1. The default is 0.1.
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%     TP.MiniBatchSize: Size of the mini-batch to use for each training
%               iteration, defined as a positive integer. The default is 
%               20*M.
%
%   See also AutoencoderForWirelessCommunicationsExample, helperAEWEncode,
%   helperAEWDecode, helperAEWNormalizationLayer, helperAEWAWGNLayer.

%   Copyright 2020 The MathWorks, Inc.

% Derived parameters
M = 2^k;
R = k/n;

if nargin > 4
  trainParams = varargin{1};
else
  % Set default training options. Set maximum epochs to 15. SGD requires a
  % representative mini-batch that has enough symbols to achieve
  % convergence. Therefore, increase the mini-batch size with M. Set the
  % initial learning rate to 0.01 and reduce the learning rate by a factor
  % of 10 every 10 epochs. Do not plot or print training progress.
  trainParams.MaxEpochs = 15;
  trainParams.MiniBatchSize = 20*M;
  trainParams.InitialLearnRate = 0.01;
  trainParams.LearnRateSchedule = 'piecewise';
  trainParams.LearnRateDropPeriod = 10;
  trainParams.LearnRateDropFactor = 0.1;
  trainParams.Plots = 'none';
  trainParams.Verbose = false;
end

% Convert Eb/No to channel Eb/No values using the code rate
EbNoChannel = EbNo + 10*log10(R);

% As the number of possible input symbols increase, we need to increase the
% number of training symbols to give the network a chance to experience a
% large number of possible input combinations. The same is true for number
% of validation symbols.
numTrainSymbols = 2500 * M;
numValidationSymbols = 100 * M;

% Define autoencoder network. Input is a one-hot vector of length M. The
% encoder has two fully connected layers. The first one has M inputs and M
% outputs and is followed by an ReLU layer. The second fully connected
% layer has M inputs and n outputs and is followed by the normalization
% layer. Normalization layer imposes constraints on the encoder output and
% available methods are energy and average power normalization. The encoder
% layers are followed by the AWGN channel layer. Set BitsPerSymbol to 2
% since two output values are mapped onto a complex symbol. Set the signal
% power to 1 since the normalization layer outputs signals with unity
% power. The output of the channel is passed to the decoder layers. The
% first decoder layer is a fully connected layer that has n inputs and M
% outputs and is followed by an ReLU layer. Second fully connected layer
% has M inputs and M outputs and is followed by a softmax layer. The output
% of the decoder is chosen as the most probable transmitted symbol from 0
% to M-1.
wirelessAutoEncoder = [
  featureInputLayer(M,"Name","One-hot input","Normalization","none")
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  fullyConnectedLayer(M,"Name","fc_1")
  reluLayer("Name","relu_1")
  
  fullyConnectedLayer(n,"Name","fc_2")
  
  helperAEWNormalizationLayer("Method", normalization)
  
  helperAEWAWGNLayer("NoiseMethod","EbNo",...
    "EbNo",EbNoChannel,...
    "BitsPerSymbol",2,...
    "SignalPower",1)
  
  fullyConnectedLayer(M,"Name","fc_3")
  reluLayer("Name","relu_2")
  
  fullyConnectedLayer(M,"Name","fc_4")
  softmaxLayer("Name","softmax")
  
  classificationLayer("Name","classoutput")];

% Generate random training data. Create one-hot input vectors and labels. 
d = randi([0 M-1],numTrainSymbols,1);
trainSymbols = zeros(numTrainSymbols,M);
trainSymbols(sub2ind([numTrainSymbols, M],...
  (1:numTrainSymbols)',d+1)) = 1;
trainLabels = categorical(d);

% Generate random validation data. Create one-hot input vectors and labels. 
d = randi([0 M-1],numValidationSymbols,1);
validationSymbols = zeros(numValidationSymbols,M);
validationSymbols(sub2ind([numValidationSymbols, M],...
  (1:numValidationSymbols)',d+1)) = 1;
validationLabels = categorical(d);

% Set training options
options = trainingOptions('adam', ...
  'InitialLearnRate',trainParams.InitialLearnRate, ...
  'MaxEpochs',trainParams.MaxEpochs, ...
  'MiniBatchSize',trainParams.MiniBatchSize, ...
  'Shuffle','every-epoch', ...
  'ValidationData',{validationSymbols,validationLabels}, ...
  'LearnRateSchedule', trainParams.LearnRateSchedule, ...
  'LearnRateDropPeriod', trainParams.LearnRateDropPeriod, ...
  'LearnRateDropFactor', trainParams.LearnRateDropFactor, ...
  'Plots', trainParams.Plots, ...
  'Verbose', trainParams.Verbose);

% Train the autoencoder network
[trainedNet,info] = trainNetwork(trainSymbols,trainLabels,wirelessAutoEncoder,options);

% Separate the network into encoder and decoder parts. Encoder starts with
% the input layer and ends after the normalization layer.
for idxNorm = 1:length(trainedNet.Layers)
  if isa(trainedNet.Layers(idxNorm), 'helperAEWNormalizationLayer')
    break
  end
end
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lgraph = addLayers(layerGraph(trainedNet.Layers(1:idxNorm)), ...
  regressionLayer('Name', 'txout'));
lgraph = connectLayers(lgraph,'wnorm','txout');
txNet = assembleNetwork(lgraph);

% Decoder starts after the channel layer and ends with the classification
% layer. Add a feature input layer at the beginning. 
for idxChan = idxNorm:length(trainedNet.Layers)
  if isa(trainedNet.Layers(idxChan), 'helperAEWAWGNLayer')
    break
  end
end
firstLayerName = trainedNet.Layers(idxChan+1).Name;
n = trainedNet.Layers(idxChan+1).InputSize;
lgraph = addLayers(layerGraph(featureInputLayer(n,'Name','rxin')), ...
  trainedNet.Layers(idxChan+1:end));
lgraph = connectLayers(lgraph,'rxin',firstLayerName);
rxNet = assembleNetwork(lgraph);
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Training and Testing a Neural Network for LLR Estimation
This example shows how to generate signals and channel impairments to train a neural network,
called LLRNet, to estimate exact log likelihood ratios (LLR).

Most modern communication systems, such as 5G New Radio (NR) and Digital Video Broadcasting for
Satellite, Second Generation (DVB-S.2) use forward error correction algorithms that benefit from soft
demodulated bit values. These systems calculate soft bit values using the LLR approach. LLR is
defined as the log of the ratio of probability of a bit to be 0 to the probability of a bit to be 1 or

li ≜ log
Pr(ci = 0|s)
Pr(ci = 1|s) , i = 1, . . . , k

where s is an k-bit received symbol, and ci is the ithbit of the symbol. Assuming an additive white
Gaussian noise (AWGN) channel, the exact computation of the LLR expression is

li ≜ log
∑s ∈ ci

0exp −
‖s− s‖2

2

σ2

∑s ∈ ci
1exp −

‖s− s‖2
2

σ2

where σ2 is the noise variance. Exponential and logarithmic calculations are very costly especially in
embedded systems. Therefore, most practical systems use the max-log approximation. For a given
array x, the max-log approximation is

log ∑
j

exp − x j
2 ≈ max

j
− x j

2 .

Substituting this in the exact LLR expression results in the max-log LLR approximation [1] on page 4-
0

li ≈
1
σ2 min

s ∈ Ci
1
‖s− s‖2

2− min
s ∈ Ci

0
‖s− s‖2

2 .

LLRNet uses a neural network to estimate the exact LLR values given the baseband complex received
symbol for a given SNR value. A shallow network with a small number of hidden layers has the
potential to estimate the exact LLR values at a complexity similar to the approximate LLR algorithm
[1] on page 4-0 .

Compare Exact LLR, Max-Log Approximate LLR and LLRNet for M-ary QAM

5G NR uses M-ary QAM modulation. This section explores the accuracy of LLRNet in estimating the
LLR values for 16-, 64-, and 256-QAM modulation. Assume an M-ary QAM system that operates under
AWGN channel conditions. This assumption is valid even when the channel is frequency selective but
symbols are equalized. The following shows calculated LLR values for the following three algorithms:

• Exact LLR
• Max-log approximate LLR
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• LLRNet

16-QAM LLR Estimation Performance

Calculate exact and approximate LLR values for symbol values that cover the 99.7% (±3σ) of the
possible received symbols. Assuming AWGN, 99.7% (±3σ) of the received signals will be in the range

max
s ∈ C

Re(s) + 3σ min
s ∈ C

Re(s)− 3σ + i max
s ∈ C

Im(s) + 3σ min
s ∈ C

Im(s)− 3σ . Generate uniformly

distributed I/Q symbols over this space and use qamdemod function to calculate exact LLR and
approximate LLR values.

M = 16;             % Modulation order
k = log2(M);        % Bits per symbols
SNRValues = -5:5:5; % in dB
numSymbols = 1e4;
numSNRValues = length(SNRValues);
symOrder = llrnetQAMSymbolMapping(M);

const = qammod(0:15,M,symOrder,'UnitAveragePower',1);
maxConstReal = max(real(const));
maxConstImag = max(imag(const));

numBits = numSymbols*k;
exactLLR = zeros(numBits,numSNRValues);
approxLLR = zeros(numBits,numSNRValues);
rxSym = zeros(numSymbols,numSNRValues);
for snrIdx = 1:numSNRValues
    SNR = SNRValues(snrIdx);
    noiseVariance = 10^(-SNR/10);
    sigma = sqrt(noiseVariance);
    
    maxReal = maxConstReal + 3*sigma;
    minReal = -maxReal;
    maxImag = maxConstImag + 3*sigma;
    minImag = -maxImag;
    
    r = (rand(numSymbols,1)*(maxReal-minReal)+minReal) + ...
        1i*(rand(numSymbols,1)*(maxImag-minImag)+minImag);
    rxSym(:,snrIdx) = r;
    
    exactLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','llr','NoiseVariance',noiseVariance);
    approxLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','approxllr','NoiseVariance',noiseVariance);
end

Set up and Train Neural Network

Set up a shallow neural network with one input layer, one hidden layer, and one output layer. Input a
received symbol to the network and train it to estimate the exact LLR values. Since the network
expects real inputs, create a two column vector, where the first column is the real values of the
received symbol and the second column is the imaginary values of the received symbol. Also, the
output must be a k × N vector, where k is the number of bits per symbol and N is the number of
symbols.

nnInput = zeros(numSymbols,2,numSNRValues);
nnOutput = zeros(numSymbols,k,numSNRValues);
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for snrIdx = 1:numSNRValues
    rxTemp = rxSym(:,snrIdx);
    rxTemp = [real(rxTemp) imag(rxTemp)];
    nnInput(:,:,snrIdx) = rxTemp;
    
    llrTemp = exactLLR(:,snrIdx);
    nnOutput(:,:,snrIdx) = reshape(llrTemp, k, numSymbols)';
end

For 16-QAM symbols, the hidden layer has 8 neurons and the output layer has 4 neurons, which
corresponds to the number of bits per symbol. The llrnetNeuralNetwork function returns
preconfigured neural network. Train the neural network for three different SNR values. Use the exact
LLR values calculated using the qamdemod function as the expected output values.

hiddenLayerSize = 8;
trainedNetworks = cell(1,numSNRValues);
for snrIdx=1:numSNRValues
    fprintf('Training neural network for SNR = %1.1fdB\n', ...
        SNRValues(snrIdx))
    x = nnInput(:,:,snrIdx)';
    y = nnOutput(:,:,snrIdx)';
    
    MSExactLLR = mean(y(:).^2);
    fprintf('\tMean Square LLR = %1.2f\n', MSExactLLR)
    
    % Train the Network. Use parallel pool, if available. Train three times
    % and pick the best one.
    mse = inf;
    for p=1:3
        netTemp = llrnetNeuralNetwork(hiddenLayerSize);
        if parallelComputingLicenseExists()
            [netTemp,tr] = train(netTemp,x,y,'useParallel','yes');
        else
            [netTemp,tr] = train(netTemp,x,y);
        end
        % Test the Network
        predictedLLRSNR = netTemp(x);
        mseTemp = perform(netTemp,y,predictedLLRSNR);
        fprintf('\t\tTrial %d: MSE = %1.2e\n', p, mseTemp)
        if mse > mseTemp
            mse = mseTemp;
            net = netTemp;
        end
    end
    
    % Store the trained network
    trainedNetworks{snrIdx} = net;
    fprintf('\tBest MSE = %1.2e\n', mse)
end

Training neural network for SNR = -5.0dB

    Mean Square LLR = 4.42

        Trial 1: MSE = 1.95e-06
        Trial 2: MSE = 1.22e-04
        Trial 3: MSE = 4.54e-06

    Best MSE = 1.95e-06
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Training neural network for SNR = 0.0dB

    Mean Square LLR = 15.63

        Trial 1: MSE = 1.90e-03
        Trial 2: MSE = 5.03e-03
        Trial 3: MSE = 8.95e-05

    Best MSE = 8.95e-05

Training neural network for SNR = 5.0dB

    Mean Square LLR = 59.29

        Trial 1: MSE = 2.25e-02
        Trial 2: MSE = 2.23e-02
        Trial 3: MSE = 7.40e-02

    Best MSE = 2.23e-02

Performance metric for this network is mean square error (MSE). The final MSE values show that the
neural network converges to an MSE value that is at least 40 dB less than the mean square exact LLR
values. Note that, as SNR increases so do the LLR values, which results in relatively higher MSE
values.

Results for 16-QAM

Compare the LLR estimates of LLRNet to that of exact LLR and approximate LLR. Simulate 1e4 16-
QAM symbols and calculate LLR values using all three methods. Do not use the symbols that we
generated in the previous section so as not to give LLRNet an unfair advantage, since those symbols
were used to train the LLRNet.

numBits = numSymbols*k;
d = randi([0 1], numBits, 1);

txSym = qammod(d,M,symOrder,'InputType','bit','UnitAveragePower',1);

exactLLR = zeros(numBits,numSNRValues);
approxLLR = zeros(numBits,numSNRValues);
predictedLLR = zeros(numBits,numSNRValues);
rxSym = zeros(length(txSym),numSNRValues);
for snrIdx = 1:numSNRValues
    SNR = SNRValues(snrIdx);
    sigmas = 10^(-SNR/10);
    r = awgn(txSym,SNR);
    rxSym(:,snrIdx) = r;
    
    exactLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','llr','NoiseVariance',sigmas);
    approxLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','approxllr','NoiseVariance',sigmas);
    
    net = trainedNetworks{snrIdx};
    x = [real(r) imag(r)]';
    tempLLR = net(x);
    predictedLLR(:,snrIdx) = reshape(tempLLR, numBits, 1);
end

qam16Results.exactLLR = exactLLR;

 Training and Testing a Neural Network for LLR Estimation

4-41



qam16Results.approxLLR = approxLLR;
qam16Results.predictedLLR = predictedLLR;
qam16Results.RxSymbols = rxSym;
qam16Results.M = M;
qam16Results.SNRValues = SNRValues;
qam16Results.HiddenLayerSize = hiddenLayerSize;
qam16Results.NumSymbols = numSymbols;

The following figure shows exact LLR, max-log approximate LLR, and LLRNet estimate of LLR values
versus the real part of the received symbol for odd bits. LLRNet matches the exact LLR values even
for low SNR values.

llrnetPlotLLR(qam16Results,'16-QAM LLR Comparison')

64-QAM and 256-QAM LLR Estimation Performance

Check if the LLRNet can estimate the LLR values for higher order QAM. Repeat the same process you
followed for 16-QAM for 64-QAM and 256-QAM using the llrnetQAMLLR helper function. The
following figures show exact LLR, max-log approximate LLR, and LLRNet estimate of LLR values
versus the real part of the received symbol for odd bits.
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trainNow = ;
if trainNow
    % Parameters for 64-QAM
    simParams(1).M = 64; %#ok<UNRCH>
    simParams(1).SNRValues = 0:5:10;
    simParams(1).HiddenLayerSize = 16;
    simParams(1).NumSymbols = 1e4;
    simParams(1).UseReLU = false;
    
    % Parameters for 256-QAM
    simParams(2).M = 256;
    simParams(2).SNRValues = 0:10:20;
    simParams(2).HiddenLayerSize = 32;
    simParams(2).NumSymbols = 1e4;
    simParams(2).UseReLU = false;
    
    simResults = llrnetQAMLLR(simParams);
    llrnetPlotLLR(simResults(1),sprintf('%d-QAM LLR Comparison',simResults(1).M))
    llrnetPlotLLR(simResults(2),sprintf('%d-QAM LLR Comparison',simResults(2).M))
else
    load('llrnetQAMPerformanceComparison.mat', 'simResults')
    for p=1:length(simResults)
        llrnetPlotLLR(simResults(p),sprintf('%d-QAM LLR Comparison',simResults(p).M))
    end
end
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DVB-S.2 Packet Error Rate

DVB-S.2 system uses a soft demodulator to generate inputs for the LDPC decoder. Simulate the
packet error rate (PER) of a DVB-S.2 system with 16-APSK modulation and 2/3 LDPC code using
exact LLR, approximate LLR, and LLRNet using llrNetDVBS2PER function. This function uses the
comm.PSKDemodulator System object and the dvbsapskdemod function to calculate exact and
approximate LLR values and the comm.AWGNChannel System object to simulate the channel.

Set simulateNow to true (or select "Simulate" in the dropdown) to run the PER simulations for the
values of subsystemType, EsNoValues, and numSymbols using the llrnetDVBS2PER function. If
Parallel Computing Toolbox™ is installed, this function uses the parfor command to run the
simulations in parallel. On an Intel® Xeon® W-2133 CPU @ 3.6GHz and running a “Run Code on
Parallel Pools” (Parallel Computing Toolbox) of size 6, the simulation takes about 40 minutes. Set
simulateNow to false (or select "Plot saved results" in the dropdown), to load the PER results for
the values of subsystemType='16APSK 2/3', EsNoValues=8.6:0.1:8.9, and
numSymbols=10000.

Set trainNow to true (or select "Train LLRNet" in the dropdown) to train LLR neural networks for
each value of EsNoValues, for the given subsystemType and numSymbols. If Parallel Computing
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Toolbox™ is installed, the train function can be called with the optional name-value pair
'useParallel' set to 'yes' to run the simulations in parallel. On an Intel® Xeon® W-2133 CPU @
3.6GHz and running a “Run Code on Parallel Pools” (Parallel Computing Toolbox) of size 6, the
simulation takes about 21 minutes. Set trainNow to false (or select "Use saved networks" in the
dropdown) to load LLR neural networks trained for subsystemType='16APSK 2/3',
EsNoValues=8.6:0.1:8.9.

For more information on the DVB-S.2 PER simulation, see the “DVB-S.2 Link, Including LDPC Coding
in Simulink” on page 8-372 example. For more information on training the network, refer to the
llrnetTrainDVBS2LLRNetwork function and [1] on page 4-0 .

simulateNow = ;
if simulateNow
    subsystemType = '16APSK 2/3'; %#ok<UNRCH>
    EsNoValues = 8.6:0.1:8.9;     % in dB
    numFrames = 10000;
    numErrors = 200;
    

    trainNow = ;
    if trainNow && (~strcmp(subsystemType,'16APSK 2/3') || ~isequal(EsNoValues,8.6:0.1:9))
        % Train the networks for each EsNo value
        numTrainSymbols = 1e4;
        hiddenLayerSize = 64;
        llrNets = llrnetTrainDVBS2LLRNetwork(subsystemType, EsNoValues, numTrainSymbols, hiddenLayerSize);
    else
        load('llrnetDVBS2Networks','llrNets','subsystemType','EsNoValues');
    end
    
    % Simulate PER with exact LLR, approximate LLR, and LLRNet
    [perLLR,perApproxLLR,perLLRNet] = llrnetDVBS2PER(subsystemType,EsNoValues,llrNets,numFrames,numErrors);
    llrnetPlotLLRvsEsNo(perLLR,perApproxLLR,perLLRNet,EsNoValues,subsystemType)
else
    load('llrnetDVBS2PERResults.mat','perApproxLLR','perLLR','perLLRNet',...
        'subsystemType','EsNoValues');
    llrnetPlotLLRvsEsNo(perLLR,perApproxLLR,perLLRNet,EsNoValues,subsystemType)
end
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The results show that the LLRNet almost matches the performance of exact LLR without using any
expensive operations such as logarithm and exponential.

Further Exploration

Try different modulation and coding schemes for the DVB-S.2 system. The full list of modulation types
and coding rates are given in the “DVB-S.2 Link, Including LDPC Coding in Simulink” on page 8-372
example. You can also try different sizes for the hidden layer of the network to reduce the number of
operations and measure the performance loss as compared to exact LLR.

The example uses these helper functions. Examine these files to learn about details of the
implementation.

• llrnetDVBS2PER.m: Simulate DVB-S.2 PER using exact LLR, approximate LLR, and LLRNet LLR
• llrnetTrainDVBS2LLRNetwork.m: Train neural networks for DVB-S.2 LLR estimation
• llrnetQAMLLR.m: Train neural networks for M-ary QAM LLR estimation and calculate exact LLR,

approximate LLR, and LLRNet LLR
• llrnetNeuralNetwork.m: Configure a shallow neural network for LLR estimation
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Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation

This example shows how to design a radio frequency (RF) fingerprinting convolutional neural
network (CNN) with simulated data. You train the CNN with simulated wireless local area network
(WLAN) beacon frames from known and unknown routers for RF fingerprinting. You then compare
the media access control (MAC) address of received signals and the RF fingerprint detected by the
CNN to detect WLAN router impersonators.

For more information on how to test the designed neural network with signals captured from real Wi-
Fi routers, see the “Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation” on page 4-63 example.

Detect Router Impersonation Using RF Fingerprinting

Router impersonation is a form of attack on a WLAN network where a malicious agent tries to
impersonate a legitimate router and trick network users to connect to it. Security identification
solutions based on simple digital identifiers, such as MAC addresses, IP addresses, and SSID, are not
effective in detecting such an attack. These identifiers can be easily spoofed. Therefore, a more
secure solution uses other information, such as the RF signature of the radio link, in addition to these
simple digital identifiers.

A wireless transmitter-receiver pair creates a unique RF signature at the receiver that is a
combination of the channel and RF impairments. RF Fingerprinting is the process of distinguishing
transmitting radios in a shared spectrum through these signatures. In [1] on page 4-0 , authors
designed a deep learning (DL) network that consumes raw baseband in-phase/quadrature (IQ)
samples and identifies the transmitting radio. The network can identify the transmitting radios if the
RF impairments are dominant or the channel profile stays constant during the operation time. Most
WLAN networks have fixed routers that create a static channel profile when the receiver location is
also fixed. In such a scenario, the deep learning network can identify router impersonators by
comparing the received signal's RF fingerprint and MAC address pair to that of the known routers.

This example simulates a WLAN system with several fixed routers and a fixed observer using the
WLAN Toolbox™ and trains a neural network (NN) with the simulated data using Deep Learning
Toolbox™.

System Description

Assume an indoor space with a number of trusted routers with known MAC addresses, which we will
refer to as known routers. Also, assume that unknown routers may enter the observation area, some
of which may be router impersonators. The class "Unknown" represents any transmitting device that
is not contained in the known set. The following figure shows a scenario where there are three known
routers. The observer collects non-high throughput (non-HT) beacon signals from these routers and
uses the (legacy) long training field (L-LTF) to identify the RF fingerprint. Transmitted L-LTF signals
are the same for all routers that enables the algorithm to avoid any data dependency. Since the
routers and the observer are fixed, the RF fingerprints (combination of multipath channel profile and
RF impairments) RF1, RF2, and RF3 do not vary in time. Unknown router data is a collection of
random RF fingerprints, which are different than the known routers.
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The following figure shows a user connected to a router and a mobile hot spot. After training, the
observer receives beacon frames and decodes the MAC address. Also, the observer extracts the L-LTF
signal and uses this signal to classify the RF fingerprint of the source of the beacon frame. If the MAC
address and the RF fingerprint matches, as in the case of Router 1, Router 2, and Router3, then the
observer declares the source as a "known" router. If the MAC address of the beacon is not in the
database and the RF fingerprint does not match any of the known routers, as in the case of a mobile
hot spot, then the observer declares the source as an "unknown" router.
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The following figure shows a router impersonator in action. A router impersonator (a.k.a. evil twin)
can replicate the MAC address of a known router and transmit beacon frames. Then, the hacker can
jam the original router and force the user to connect to the evil twin. The observer receives the
beacon frames from the evil twin too and decodes the MAC address. The decoded MAC address
matches the MAC address of a known router but the RF fingerprint does not match. The observer
declares the source as a router impersonator.

Set System Parameters

Generate a dataset of 5,000 Non-HT WLAN beacon frames for each router. Use MAC addresses as
labels for the known routers; the remaining are be labeled as "Unknown". A NN is trained to classify
the known routers as well as to detect any unknown ones. Split the dataset into training, validation
and test, where the splitting ratios are 80%, 10%, and 10%, respectively. Consider an SNR of 20 dB,
working on the 5 GHz band. The number of simulated devices is set to 4 but it can be modified by
choosing a different value for numKnownRouters. Set the number of unknown routers more than the
known ones to represent in the dataset the variability in the unknown router RF fingerprints.

numKnownRouters = 4;
numUnknownRouters = 10;
numTotalRouters = numKnownRouters+numUnknownRouters;
SNR = 20;                 % dB
channelNumber = 153;      % WLAN channel number
channelBand = 5;          % GHz
frameLength = 160;        % L-LTF sequence length in samples

By default, this example downloads training data and trained network from https://
www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData.tar.gz. If you
do not have an Internet connection, you can download the file manually on a computer that is
connected to the Internet and save to the same directory as the current example files.

To run this example quickly, download the pretrained trained network and generate a small number
of frames, for example 10. To train the network on your computer, choose the "Train network now"
option (i.e. set trainNow to true). Generating 5000 frames of data takes about 50 minutes on an
Intel(R) Xeon(R) W-2133 CPU @ 3.6 GHz with 64 MB memory. Training this network takes about 5
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minutes with an Nvidia(R) Titan Xp GPU. Training on a CPU may result in a very long training
duration.

trainNow = ;

if trainNow
  numTotalFramesPerRouter = 5000; %#ok<UNRCH>
else
  numTotalFramesPerRouter = 10;
  rfFingerprintingDownloadData('simulated')
end

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData.tar.gz
Download and extracting files done

  numTrainingFramesPerRouter = numTotalFramesPerRouter*0.8;
  numValidationFramesPerRouter = numTotalFramesPerRouter*0.1;
  numTestFramesPerRouter = numTotalFramesPerRouter*0.1;

Generate WLAN Waveforms

Wi-Fi routers that implement 802.11a/g/n/ac protocols transmit beacon frames in the 5 GHz band to
broadcast their presence and capabilities using the OFDM non-HT format. The beacon frame consists
of two main parts: preamble (SYNC) and payload (DATA). The preamble has two parts: short training
and long training. In this example, the payload contains the same bits except the MAC address for
each router. The CNN uses the L-LTF part of the preamble as training units. Reusing the L-LTF signal
for RF fingerprinting provides an overhead-free fingerprinting solution. Use wlanMACFrameConfig
(WLAN Toolbox), wlanMACFrame (WLAN Toolbox), wlanNonHTConfig (WLAN Toolbox), and
wlanWaveformGenerator (WLAN Toolbox) functions to generate WLAN beacon frames.

% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon', ...
  "ManagementConfig", frameBodyConfig);

% Generate Beacon frame bits
[~, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

% Create a wlanNONHTConfig object, 20 MHz bandwidth and MCS 1 are used
nonHTConfig = wlanNonHTConfig(...
  'ChannelBandwidth', "CBW20",...
  "MCS", 1,...
  "PSDULength", mpduLength);

The rfFingerprintingNonHTFrontEnd object performs front-end processing including extracting the
L-LTF signal. The object is configured with a channel bandwidth of 20 MHz to process non-HT
signals.

rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');

fc = helperWLANChannelFrequency(channelNumber, channelBand);
fs = wlanSampleRate(nonHTConfig);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-52



Setup Channel and RF Impairments

Pass each frame through a channel with

• Rayleigh multipath fading
• Radio impairments, such as phase noise, frequency offset and DC offset
• AWGN

Rayleigh Multipath and AWGN

The channel passes the signals through a Rayleigh multipath fading channel using the
comm.RayleighChannel System object. Assume a delay profile of [0 1.8 3.4] samples with
corresponding average path gains of [0 -2 -10] dB. Since the channel is static, set maximum Doppler
shift to zero to make sure that the channel does not change for the same radio. Implement the
multipath channel with these settings. Add noise using the awgn function,

multipathChannel = comm.RayleighChannel(...
  'SampleRate', fs, ...
  'PathDelays', [0 1.8 3.4]/fs, ...
  'AveragePathGains', [0 -2 -10], ...
  'MaximumDopplerShift', 0);

Radio Impairments

The RF impairments, and their corresponding range of values are:

• Phase noise [0.01, 0.3] rms (degrees)
• Frequency offset [-4, 4] ppm
• DC offset: [-50, -32] dBc

See helperRFImpairments on page 4-0  function for more details on RF impairment simulation. This
function uses comm.PhaseFrequencyOffset and comm.PhaseNoise System objects.

phaseNoiseRange = [0.01, 0.3];
freqOffsetRange = [-4, 4];
dcOffsetRange = [-50, -32];

rng(123456)  % Fix random generator

% Assign random impairments to each simulated radio within the previously
% defined ranges
radioImpairments = repmat(...
  struct('PhaseNoise', 0, 'DCOffset', 0, 'FrequencyOffset', 0), ...
  numTotalRouters, 1);
for routerIdx = 1:numTotalRouters
  radioImpairments(routerIdx).PhaseNoise = ...
    rand*(phaseNoiseRange(2)-phaseNoiseRange(1)) + phaseNoiseRange(1);
  radioImpairments(routerIdx).DCOffset = ...
    rand*(dcOffsetRange(2)-dcOffsetRange(1)) + dcOffsetRange(1);
  radioImpairments(routerIdx).FrequencyOffset = ...
    fc/1e6*(rand*(freqOffsetRange(2)-freqOffsetRange(1)) + freqOffsetRange(1));
end

Apply Channel Impairments and Generate Data Frames for Training

Apply the RF and channel impairments defined previously. Reset the channel object for each radio to
generate an independent channel. Use rfFingerprintingNonHTFrontEnd function to process the
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received frames. Finally, extract the L-LTF from every transmitted WLAN frame. Split the received L-
LTF signals into training, validation and test sets.

% Create variables that will store the training, validation and testing
% datasets
xTrainingFrames = zeros(frameLength, numTrainingFramesPerRouter*numTotalRouters);
xValFrames = zeros(frameLength, numValidationFramesPerRouter*numTotalRouters);
xTestFrames = zeros(frameLength, numTestFramesPerRouter*numTotalRouters);

% Index vectors for train, validation and test data units
trainingIndices = 1:numTrainingFramesPerRouter;
validationIndices = 1:numValidationFramesPerRouter;
testIndices = 1:numTestFramesPerRouter;

tic
generatedMACAddresses = strings(numTotalRouters, 1);
rxLLTF = zeros(frameLength, numTotalFramesPerRouter);     % Received L-LTF sequences
for routerIdx = 1:numTotalRouters
  
  % Generate a 12-digit random hexadecimal number as a MAC address for
  % known routers. Set the MAC address of all unknown routers to
  % 'AAAAAAAAAAAA'.
  if (routerIdx<=numKnownRouters)
    generatedMACAddresses(routerIdx) = string(dec2hex(bi2de(randi([0 1], 12, 4)))');
  else
    generatedMACAddresses(routerIdx) = 'AAAAAAAAAAAA';
  end
  
  fprintf('%s - Generating frames for router %d with MAC address %s\n', ...
    datestr(toc/86400,'HH:MM:SS'), routerIdx, generatedMACAddresses(routerIdx))

  % Set MAC address into the wlanFrameConfig object
  beaconFrameConfig.Address2 = generatedMACAddresses(routerIdx);
  
  % Generate beacon frame bits
  beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');
  
  txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);
  
  txWaveform = helperNormalizeFramePower(txWaveform);
  
  % Add zeros to account for channel delays
  txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>
  
  % Reset multipathChannel object to generate a new static channel
  reset(multipathChannel)
  
  frameCount= 0;
  while frameCount<numTotalFramesPerRouter
    
    rxMultipath = multipathChannel(txWaveform);
    
    rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);
    
    rxSig = awgn(rxImpairment,SNR,0);
    
    % Detect the WLAN packet and return the received L-LTF signal using
    % rfFingerprintingNonHTFrontEnd object
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    [valid, ~, ~, ~, ~, LLTF] = rxFrontEnd(rxSig);
    
    % Save successfully received L-LTF signals
    if valid
      frameCount=frameCount+1;
      rxLLTF(:,frameCount) = LLTF;
    end
    
    if mod(frameCount,500) == 0
      fprintf('%s - Generated %d/%d frames\n', ...
        datestr(toc/86400,'HH:MM:SS'), frameCount, numTotalFramesPerRouter)
    end
  end
  
  rxLLTF = rxLLTF(:, randperm(numTotalFramesPerRouter));
  
  % Split data into training, validation and test
  xTrainingFrames(:, trainingIndices+(routerIdx-1)*numTrainingFramesPerRouter) ...
    = rxLLTF(:, trainingIndices);
  xValFrames(:, validationIndices+(routerIdx-1)*numValidationFramesPerRouter)...
    = rxLLTF(:, validationIndices+ numTrainingFramesPerRouter);
  xTestFrames(:, testIndices+(routerIdx-1)*numTestFramesPerRouter)...
    = rxLLTF(:, testIndices + numTrainingFramesPerRouter+numValidationFramesPerRouter);
end

00:00:00 - Generating frames for router 1 with MAC address 71153FFD7ACA
00:00:01 - Generating frames for router 2 with MAC address 5F4A8EAD6AD2
00:00:01 - Generating frames for router 3 with MAC address A91A85793DAA
00:00:01 - Generating frames for router 4 with MAC address 841F1BE784B0
00:00:02 - Generating frames for router 5 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 6 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 7 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 8 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 9 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 10 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 11 with MAC address AAAAAAAAAAAA
00:00:04 - Generating frames for router 12 with MAC address AAAAAAAAAAAA
00:00:04 - Generating frames for router 13 with MAC address AAAAAAAAAAAA
00:00:04 - Generating frames for router 14 with MAC address AAAAAAAAAAAA

% Label received frames. Label the first numKnownRouters with their MAC
% address. Label the rest with "Unknown”.
labels = generatedMACAddresses;
labels(generatedMACAddresses == generatedMACAddresses(numTotalRouters)) = "Unknown";

yTrain = repelem(labels, numTrainingFramesPerRouter);
yVal = repelem(labels, numValidationFramesPerRouter);
yTest = repelem(labels, numTestFramesPerRouter);

Create Real-Valued Input Matrices

The Deep Learning model only works on real numbers. Thus, I and Q are split into two separate
columns. Then, the data is rearranged into a 2 x frameLength x 1 x numFrames matrix, as required
by the Deep Learning Toolbox. Additionally, the training set is shuffled, and the label variables are
saved as categorical variables.
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% Rearrange datasets into a one-column vector
xTrainingFrames = xTrainingFrames(:);
xValFrames = xValFrames(:);
xTestFrames = xTestFrames(:);

% Separate between I and Q
xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
xValFrames = [real(xValFrames), imag(xValFrames)];
xTestFrames = [real(xTestFrames), imag(xTestFrames)];

% Reshape training data into a 2 x frameLength x 1 x
% numTrainingFramesPerRouter*numTotalRouters matrix
xTrainingFrames = permute(...
  reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numTotalRouters, 2, 1]),...
  [1 3 4 2]);

% Shuffle data
vr = randperm(numTotalRouters*numTrainingFramesPerRouter);
xTrainingFrames = xTrainingFrames(:,:,:,vr);

% Create label vector and shuffle
yTrain = categorical(yTrain(vr));

% Reshape validation data into a 2 x frameLength x 1 x
% numValidationFramesPerRouter*numTotalRouters matrix
xValFrames = permute(...
  reshape(xValFrames,[frameLength,numValidationFramesPerRouter*numTotalRouters, 2, 1]),...
  [1 3 4 2]);

% Create label vector
yVal = categorical(yVal);

% Reshape test dataset into a numTestFramesPerRouter*numTotalRouter matrix
xTestFrames = permute(...
  reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numTotalRouters, 2, 1]),...
  [1 3 4 2]); %#ok<NASGU>

% Create label vector
yTest = categorical(yTest); %#ok<NASGU>

Train the Neural Network

This example uses a neural network (NN) architecture that consists of two convolutional and three
fully connected layers. The intuition behind this design is that the first layer will learn features
independently in I and Q. Note that the filter sizes are 1x7. Then, the next layer will use a filter size of
2x7 that will extract features combining I and Q together. Finally, the last three fully connected layers
will behave as a classifier using the extracted features in the previous layers [1] on page 4-0 .

poolSize = [2 1];
strideSize = [2 1];
layers = [
  imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')
  
  convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
  batchNormalizationLayer('Name', 'BN1')
  leakyReluLayer('Name', 'LeakyReLu1')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')
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  convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
  batchNormalizationLayer('Name', 'BN2')
  leakyReluLayer('Name', 'LeakyReLu2')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')
  
  fullyConnectedLayer(256, 'Name', 'FC1')
  leakyReluLayer('Name', 'LeakyReLu3')
  dropoutLayer(0.5, 'Name', 'DropOut1')
  
  fullyConnectedLayer(80, 'Name', 'FC2')
  leakyReluLayer('Name', 'LeakyReLu4')
  dropoutLayer(0.5, 'Name', 'DropOut2')
  
  fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
  softmaxLayer('Name', 'SoftMax')
  classificationLayer('Name', 'Output')
  ]

layers = 
  18×1 Layer array with layers:

     1   'Input Layer'   Image Input             160×2×1 images
     2   'CNN1'          Convolution             50 7×1 convolutions with stride [1  1] and padding [1  1  0  0]
     3   'BN1'           Batch Normalization     Batch normalization
     4   'LeakyReLu1'    Leaky ReLU              Leaky ReLU with scale 0.01
     5   'MaxPool1'      Max Pooling             2×1 max pooling with stride [2  1] and padding [0  0  0  0]
     6   'CNN2'          Convolution             50 7×2 convolutions with stride [1  1] and padding [1  1  0  0]
     7   'BN2'           Batch Normalization     Batch normalization
     8   'LeakyReLu2'    Leaky ReLU              Leaky ReLU with scale 0.01
     9   'MaxPool2'      Max Pooling             2×1 max pooling with stride [2  1] and padding [0  0  0  0]
    10   'FC1'           Fully Connected         256 fully connected layer
    11   'LeakyReLu3'    Leaky ReLU              Leaky ReLU with scale 0.01
    12   'DropOut1'      Dropout                 50% dropout
    13   'FC2'           Fully Connected         80 fully connected layer
    14   'LeakyReLu4'    Leaky ReLU              Leaky ReLU with scale 0.01
    15   'DropOut2'      Dropout                 50% dropout
    16   'FC3'           Fully Connected         5 fully connected layer
    17   'SoftMax'       Softmax                 softmax
    18   'Output'        Classification Output   crossentropyex

Configure the training options to use the ADAM optimizer with a mini-batch size of 256. By default,
'ExecutionEnvironment' is set to 'auto', which uses a GPU for training if one is available.
Otherwise, trainNetwork (Deep Learning Toolbox) uses a CPU for training. To explicitly set the
execution environment, set 'ExecutionEnvironment' to one of 'cpu', 'gpu', 'multi-gpu', or
'parallel'. Choosing 'cpu' may result in a very long training duration.

if trainNow
  
  miniBatchSize = 256; %#ok<UNRCH>
  
  % Training options
  options = trainingOptions('adam', ...
    'MaxEpochs',100, ...
    'ValidationData',{xValFrames, yVal}, ...
    'ValidationFrequency',floor(numTrainingFramesPerRouter*numTotalRouters/miniBatchSize/3), ...
    'Verbose',false, ...
    'L2Regularization', 0.0001, ...
    'InitialLearnRate', 0.0001, ...
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    'MiniBatchSize', miniBatchSize, ...
    'ValidationPatience', 3, ...
    'Plots','training-progress', ...
    'Shuffle','every-epoch');
  
  % Train the network
  simNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
  % Load trained network (simNet), testing dataset (xTestFrames and
  % yTest) and the used MACAddresses (generatedMACAddresses)
  load('rfFingerprintingSimulatedDataTrainedNN.mat',...
    'generatedMACAddresses',...
    'simNet',...
    'xTestFrames',...
    'yTest')
end

As the plot of the training progress shows, the network converges in about 2 epochs to almost 100%
accuracy.

Classify test frames and calculate the final accuracy off the neural network.

% Obtain predicted classes for xTestFrames
yTestPred = classify(simNet,xTestFrames);

% Calculate test accuracy
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testAccuracy = mean(yTest == yTestPred);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 100%

Plot the confusion matrix for the test frames. As mentioned before, perfect classification accuracy is
achieved with the synthetic dataset.

figure
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

Detect Router Impersonator

Generate beacon frames with the known MAC addresses and one unknown MAC address. Generate a
new set of RF impairments and multipath channel. Since the impairments are all new, the RF
fingerprint for these frames should be classified as "Unknown". The frames with known MAC
addresses represent router impersonators while the frames with unknown MAC addresses are simply
unknown routers.

framesPerRouter = 4;
knownMACAddresses = generatedMACAddresses(1:numKnownRouters);

% Assign random impairments to each simulated radio within the previously
% defined ranges
for routerIdx = 1:numTotalRouters
  radioImpairments(routerIdx).PhaseNoise = rand*( phaseNoiseRange(2)-phaseNoiseRange(1) ) + phaseNoiseRange(1);
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  radioImpairments(routerIdx).DCOffset = rand*( dcOffsetRange(2)-dcOffsetRange(1) ) + dcOffsetRange(1);
  radioImpairments(routerIdx).FrequencyOffset = fc/1e6*(rand*( freqOffsetRange(2)-freqOffsetRange(1) ) + freqOffsetRange(1));
end
% Reset multipathChannel object to generate a new static channel
reset(multipathChannel)

% Run for all known routers and one unknown
for macIndex = 1:(numKnownRouters+1)
  
  beaconFrameConfig.Address2 = generatedMACAddresses(macIndex);
  
  % Generate Beacon frame bits
  beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');
  
  txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);
  
  txWaveform = helperNormalizeFramePower(txWaveform);
  
  % Add zeros to account for channel delays
  txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>
  
  % Create an unseen multipath channel. In other words, create an unseen
  % RF fingerprint.
  reset(multipathChannel)
  
  frameCount= 0;
  while frameCount<framesPerRouter
    
    rxMultipath = multipathChannel(txWaveform);
    
    rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);
    
    rxSig = awgn(rxImpairment,SNR,0);
    
    % Detect the WLAN packet and return the received L-LTF signal using
    % rfFingerprintingNonHTFrontEnd object
    [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
      rxFrontEnd(rxSig);
    
    if payloadFull
      frameCount = frameCount+1;
      recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
        noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');
      
      % Decode and evaluate recovered bits
      mpduCfg = wlanMPDUDecode(recBits, cfgNonHT);
      
      % Separate I and Q and reshape for neural network
      LLTF= [real(LLTF), imag(LLTF)];
      LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);
      
      ypred = classify(simNet, LLTF);
      
      if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
        if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
          disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
        else
          disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
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        end
      else
        disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"))
      end
    end

    % Reset multipathChannel object to generate a new static channel
    reset(multipathChannel)
  end
end

MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device

Further Exploration

You can test the system under different channel and RF impairments by modifying the

• Multipath profile (PathDelays and AveragePathGains properties of Rayleigh channel object),
• Channel noise level (SNR input of awgn function),
• RF impairments (phaseNoiseRange, freqOffsetRange, and dcOffsetRange variables).

You can also modify the neural network structure by changing

• Convolutional layer parameters (filter size, number of filters, padding),
• Number of fully connected layers,
• Number of convolutional layers.

Appendix: Helper Functions

function [impairedSig] = helperRFImpairments(sig, radioImpairments, fs)
% helperRFImpairments Apply RF impairments
%   IMPAIREDSIG = helperRFImpairments(SIG, RADIOIMPAIRMENTS, FS) returns signal
%   SIG after applying the impairments defined by RADIOIMPAIRMENTS
%   structure at the sample rate FS.

% Apply frequency offset
fOff = comm.PhaseFrequencyOffset('FrequencyOffset', radioImpairments.FrequencyOffset,  'SampleRate', fs);
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% Apply phase noise
phaseNoise = helperGetPhaseNoise(radioImpairments);
phNoise = comm.PhaseNoise('Level', phaseNoise, 'FrequencyOffset', abs(radioImpairments.FrequencyOffset));

impFOff = fOff(sig);
impPhNoise = phNoise(impFOff);

% Apply DC offset
impairedSig = impPhNoise + 10^(radioImpairments.DCOffset/10);

end

function [phaseNoise] = helperGetPhaseNoise(radioImpairments)
% helperGetPhaseNoise Get phase noise value
load('Mrms.mat','Mrms','MyI','xI');
[~, iRms] = min(abs(radioImpairments.PhaseNoise - Mrms));
[~, iFreqOffset] = min(abs(xI - abs(radioImpairments.FrequencyOffset)));
phaseNoise = -abs(MyI(iRms, iFreqOffset));
end
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Test a Deep Neural Network with Captured Data to Detect
WLAN Router Impersonation

This example shows how to train a radio frequency (RF) fingerprinting convolutional neural network
(CNN) with captured data. You capture wireless local area network (WLAN) beacon frames from real
routers using a software defined radio (SDR). You program a second SDR to transmit unknown
beacon frames and capture them. You train the CNN using these captured signals. You then program
a software-defined radio (SDR) as a router impersonator that transmits beacon signals with the media
access control (MAC) address of one of the known routers and use the CNN to identify it as an
impersonator.

For more information on router impersonation and validation of the network design with simulated
data, see the “Design a Deep Neural Network with Simulated Data to Detect WLAN Router
Impersonation” on page 4-49 example.

Train with Captured Data

Collect a dataset of 802.11a/g/n/ac OFDM non-high throughput (non-HT) beacon frames from real
WLAN routers. As described in the “Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation” on page 4-49 example, only the legacy long training field (L-LTF) field
present in preambles are used as training units in order to avoid any data dependency.

In this example, the data was collected using the scenario depicted in the following figure. The
observer is a stationary ADALM-PLUTO radio. Known router data was collected as follows:

1 Set the observer's center frequency based on the WLAN channel used by the routers
2 Receive a beacon frame
3 Extract the L-LTF signal
4 Decode the MAC address to use as the label
5 Save the L-LTF signal together with its label
6 Repeat steps 2-5 to collect numFramesPerRouter frames from numKnownRouters routers.

Unknown router beacon frames are simulated using a mobile ADALM-PLUTO radio as a transmitter.
This radio repeatedly transmits beacon frames with a random MAC address. Unknown router data
was collected as follows:

1 Generate beacon frames with a random MAC address
2 Start transmitting the beacon frames repeatedly using the ADALM-PLUTO radio
3 Collect NUMFRAMES beacon frames
4 Extract the L-LTF signal
5 Save the L-LTF frames with label "Unknown"
6 Move the radio to another location
7 Repeat steps 3-6 to collect data from NUMLOC locations

This combined dataset of known and unknown routers is used to train the same DL model as in the
“Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation” on
page 4-49 example.
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This example downloads training data and trained network from https://www.mathworks.com/
supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData.tar.gz. If you do not have an
Internet connection, you can download the file manually on a computer that is connected to the
Internet and save to the same directory as the current example files. For privacy reasons, MAC
addresses have been anonymized in the downloaded data. To replicate the results of this example,
capture your own data as described in Appendix: Known and Unknown Router Data Collection on
page 4-0 .

rfFingerprintingDownloadData('captured')

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData.tar.gz
Download and extracting files done

To run this example quickly, use the downloaded pretrained network. To train the network on your
computer, choose the "Train network now" option (i.e. set trainNow to true). Training this network
takes about 5 minutes with an Nvidia(R) Titan Xp GPU. Training on a CPU may result in a very long
training duration.

trainNow = ;  %#ok<*UNRCH> 

This example uses data from four known routers. The dataset contains 3600 frames per router, where
90% is used as training frames and 10% is used as test frames.

numKnownRouters = 4;
numFramesPerRouter = 3600;
numTrainingFramesPerRouter = numFramesPerRouter * 0.9;
numTestFramesPerRouter = numFramesPerRouter * 0.1;
frameLength = 160;
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Preprocess Known and Unknown Router Data

Separate collected complex baseband data into its in-phase and quadrature components and reshape
it into a 2 x frameLength x 1 x numFramesPerRouter*numKnownRouters matrix. Repeat the same
process for the unknown router data. The following code uses previously collected and pre-processed
data. To use your own data, first collect data as described in Appendix: Known and Unknown Router
Data Collection on page 4-0 . Copy the new data files named
rfFingerprintingCapturedDataUser.mat and
rfFingerprintingCapturedUnknownFramesUser.mat to the same directory as this example.
Then update the load commands to load these files.

if trainNow
  % Load known router data
  load('rfFingerprintingCapturedData.mat')
  
  % Create label vectors
  yTrain = repelem(MACAddresses, numTrainingFramesPerRouter);
  yTest = repelem(MACAddresses, numTestFramesPerRouter);
  
  % Separate between I and Q
  numTrainingSamples = numTrainingFramesPerRouter*numKnownRouters*frameLength;
  xTrainingFrames = xTrainingFrames(1:numTrainingSamples,1);
  xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
  numTestSamples = numTestFramesPerRouter*numKnownRouters*frameLength;
  xTestFrames = xTestFrames(1:numTestSamples,1);
  xTestFrames = [real(xTestFrames), imag(xTestFrames)];
  
  % Reshape dataset into an 2 x frameLength x 1 x numTrainingFramesPerRouter*numKnownRouters matrix
  xTrainingFrames = permute(...
    reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numKnownRouters, 2, 1]),...
    [1 3 4 2]);
  
  % Reshape dataset into an 2 x frameLength x 1 x numTestFramesPerRouter*numKnownRouters matrix
  xTestFrames = permute(...
    reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numKnownRouters, 2, 1]),...
    [1 3 4 2]);
  
  % Load unknown router data
  load('rfFingerprintingCapturedUnknownFrames.mat')
  
  % Number of training units
  numUnknownFrames = size(unknownFrames, 4);
  
  % Split data into 90% training and 10% test
  numUnknownTrainingFrames = floor(numUnknownFrames*0.9);
  numUnknownTest = numUnknownFrames - numUnknownTrainingFrames;
  
  % Add ADALM-PLUTO data into training and test datasets
  xTrainingFrames(:,:,:,(1:numUnknownTrainingFrames) + numTrainingFramesPerRouter*numKnownRouters) ...
    = unknownFrames(:,:,:, 1:numUnknownTrainingFrames);
  xTestFrames(:,:,:,(1:numUnknownTest) + numTestFramesPerRouter*numKnownRouters) ...
    = unknownFrames(:,:,:, (1:numUnknownTest) + numUnknownTrainingFrames);
  
  % Shuffle data
  vr = randperm(numKnownRouters*numTrainingFramesPerRouter+numUnknownTrainingFrames);
  xTrainingFrames = xTrainingFrames(:,:,:,vr);
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  % Add "unknown" label and shuffle
  yTrain = [yTrain, repmat("Unknown", [1, numUnknownTrainingFrames])];
  yTrain = categorical(yTrain(vr));
  
  yTest = [yTest, repmat("Unknown", [1, numUnknownTest])];
  yTest = categorical(yTest);
end

Train the CNN

Use the same NN architecture and training options as in the training with simulated data example.

poolSize = [2 1];
strideSize = [2 1];
% Create network architecture
layers = [
  imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')
  
  convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
  batchNormalizationLayer('Name', 'BN1')
  leakyReluLayer('Name', 'LeakyReLu1')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')
  
  convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
  batchNormalizationLayer('Name', 'BN2')
  leakyReluLayer('Name', 'LeakyReLu2')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')
  
  fullyConnectedLayer(256, 'Name', 'FC1')
  leakyReluLayer('Name', 'LeakyReLu3')
  dropoutLayer(0.5, 'Name', 'DropOut1')
  
  fullyConnectedLayer(80, 'Name', 'FC2')
  leakyReluLayer('Name', 'LeakyReLu4')
  dropoutLayer(0.5, 'Name', 'DropOut2')
  
  fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
  softmaxLayer('Name', 'SoftMax')
  classificationLayer('Name', 'Output')
  ];

Configure the training options to use ADAM optimizer with a mini-batch size of 128. Use test frames
for validation since optimization of hyperparameters were done in [1] on page 4-0 .

By default, ExecutionEnvironment is set to 'auto', which uses a GPU for training if one is
available. Otherwise, trainNetwork (Deep Learning Toolbox) uses the CPU for training. To explicitly
set the execution environment, set ExecutionEnvironment to one of 'cpu', 'gpu', 'multi-gpu',
or 'parallel'. Choosing 'cpu' may result in a very long training duration.

if trainNow
  miniBatchSize = 128;
  
  % Training options
  options = trainingOptions('adam', ...
    'MaxEpochs',30, ...
    'ValidationData',{xTestFrames, yTest}, ...
    'ValidationFrequency',floor((numTrainingFramesPerRouter*numKnownRouters + numUnknownTrainingFrames)/miniBatchSize/3), ...
    'Verbose',false, ...
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    'L2Regularization', 0.0001, ...
    'InitialLearnRate', 0.0001, ...
    'MiniBatchSize', miniBatchSize, ...
    'ValidationPatience', 5, ...
    'Plots','training-progress', ...
    'Shuffle', 'every-epoch');
  
  % Train the network
  capturedDataNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
  load('rfFingerprintingCapturedDataTrainedNN.mat','capturedDataNet','xTestFrames','yTest','MACAddresses')
end

The following plot shows the training progress of the network run on a computer with a single Nvidia
Titan Xp GPU, where the network converged in about 10 epochs to almost 100% accuracy. The final
accuracy of the network is 100%.

Generate the confusion matrix.

figure
yTestPred = classify(capturedDataNet,xTestFrames);
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';
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Test with SDR

Test the performance of the trained network on the class "Unknown". Generate beacon frames with
MAC addresses of the known routers and one unknown router. Transmit these frames using an
ADALM-PLUTO radio and receive using another ADALM-PLUTO radio. Since the channel and RF
impairments created between these two radios are different than the ones created between the real
routers and the observer, the neural network should classify all of the received signals as "Unknown".
If the received MAC address is a known one, then the system declares the source as a router
impersonator. If the received MAC address is an unknown one, then the system declares the source
as an unknown router. To perform this test, you need two ADALM-PLUTO radios for transmission and
reception. Also, you need to install Communication Toolbox Support Package for ADALM-PLUTO
Radio.

Waveform Generation

Generate a transmission waveform consisting of beacon frames with different MAC addresses. The
transmitter repeatedly transmits these WLAN frames. The receiver captures the WLAN frames and
determines if it is a router impersonator using the received MAC address and RF fingerprint detected
by the trained NN.

chanBW='CBW20';     % Channel Bandwidth
osf = 2;            % Oversampling Factor
frameLength=160;    % Frame Length in samples
% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;
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% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon');
beaconFrameConfig.ManagementConfig = frameBodyConfig;

% Create interpolation and decimation objects
decimator = dsp.FIRDecimator('DecimationFactor',osf);

% Save known MAC addresses
knownMACAddresses = MACAddresses;
MACAddressesToSimulate = [MACAddresses, "ABCDEFABCDEF"];

% Create WLAN waveform with the MAC addresses of known routers and an
% unknown router
txWaveform = zeros(1540,5);
for i = 1:length(MACAddressesToSimulate)
  
  % Set MAC Address
  beaconFrameConfig.Address2 = MACAddressesToSimulate(i);
  
  % Generate Beacon frame bits
  [beacon, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');
  
  nonHTcfg = wlanNonHTConfig(...
    'ChannelBandwidth', chanBW,...
    "MCS", 1,...
    "PSDULength", mpduLength);
  txWaveform(:,i) = [wlanWaveformGenerator(beacon, nonHTcfg); zeros(20,1)];
end

txWaveform = txWaveform(:);

% Get center frequency for channel 153 in 5 GHz band
fc = helperWLANChannelFrequency(153, 5);
fs = wlanSampleRate(nonHTcfg);

txSig  = resample(txWaveform,osf,1);

% Samples per frame in Burst Mode
spf = length(txSig)/length(MACAddressesToSimulate);

runSDRSection = false;
if helperIsPlutoSDRInstalled()  
  radios = findPlutoRadio();
  if length(radios) >= 2
    runSDRSection = true;
  else
    disp("Two ADALM-PLUTO radios are needed. Skipping SDR test.")
  end
else
    disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
    disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
    disp("Skipping SDR test.")
end

if runSDRSection
  % Set up PlutoSDR transmitter
  deviceNameSDR = 'Pluto';
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  txGain = 0;
  txSDR = sdrtx(deviceNameSDR);
  txSDR.RadioID = 'usb:0';
  txSDR.BasebandSampleRate = fs*osf;
  txSDR.CenterFrequency = fc;
  txSDR.Gain = txGain;
  
  % Set up PlutoSDR Receiver
  rxSDR = sdrrx(deviceNameSDR);
  rxSDR.RadioID = 'usb:1';
  rxSDR.BasebandSampleRate = txSDR.BasebandSampleRate;
  rxSDR.CenterFrequency = txSDR.CenterFrequency;
  rxSDR.GainSource ='Manual';
  rxSDR.Gain = 30;
  rxSDR.OutputDataType = 'double';
  rxSDR.EnableBurstMode=true;
  rxSDR.NumFramesInBurst = 20;
  rxSDR.SamplesPerFrame = osf*spf;
end

L-LTF for Classification

The L-LTF sequence present in each beacon frame preamble is used as input units to the NN.
rfFingerprintingNonHTFrontEnd System object is used to detect the WLAN packets, perform
synchronization tasks and, extract the L-LTF sequences and data. In addition, the MAC address is
also decoded. In addition, the data is pre-processed and classified using the trained network.

if runSDRSection
  numLLTF = 20;       % Number of L-LTF captured for Testing
  
  rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');
  
  disp("The known MAC addresses are:");
  disp(knownMACAddresses)
  
  % Set PlutoSDR to transmit repeatedly
  disp('Starting transmitter')
  transmitRepeat(txSDR, txSig);
  
  % Captured Frames counter
  numCapturedFrames = 0;
  
  disp('Starting receiver')
  % Loop until numLLTF frames are collected
  while numCapturedFrames < numLLTF
    
    % Receive data using PlutoSDR
    rxSig = rxSDR();
    rxSig = decimator(rxSig);
    
    % Perform front-end processing and payload buffering
    [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
      rxFrontEnd(rxSig);
    
    if payloadFull
      
      % Recover payload bits
      recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
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        noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');
      
      % Decode and evaluate recovered bits
      [mpduCfg, ~, success] = wlanMPDUDecode(recBits, cfgNonHT);
      
      if success == wlanMACDecodeStatus.Success
        % Update counter
        numCapturedFrames = numCapturedFrames+1;
        
        % Create real-valued input
        LLTF = [real(LLTF), imag(LLTF)];
        LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);
        
        ypred = classify(capturedDataNet, LLTF);
        
        if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
          if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
            disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
          else
            disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
          end
        else
          disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"));
        end
      end
    end
  end
  release(txSDR)
end

The known MAC addresses are:

    "71B63A2D0B83"    "A3F8AC0F2253"    "EF11D125044A"    "F636A97E07E7"

Starting transmitter

## Establishing connection to hardware. This process can take several seconds.
## Waveform transmission has started successfully and will repeat indefinitely. 
## Call the release method to stop the transmission.

Starting receiver

## Establishing connection to hardware. This process can take several seconds.

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

4-71



MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

Further Exploration

Capture data from your own routers as explained in Appendix: Known and Unknown Router Data
Collection, on page 4-0  train the neural network with this data, and test the performance of the
network.

Appendix: Helper Functions

• rfFingerprintingRouterDataCollection
• rfFingerprintingUnknownClassDataCollectionTx
• rfFingerprintingUnknownClassDataCollectionRx
• rfFingerprintingNonHTFrontEnd
• rfFingerprintingNonHTReceiver

Appendix: Known and Unknown Router Data Collection

Use rfFingerprintingRouterDataCollection to collect data from known (i.e. trusted) routers.
This function extracts L-LTF signals present in 802.11a/g/n/ac OFDM Non-HT beacons frames
transmitted from commercial 802.11 hardware. For more information see the “IEEE® 802.11™
WLAN - OFDM Beacon Receiver with USRP® Hardware” (Communications Toolbox Support Package
for USRP Radio) example. L-LTF signals and corresponding router MAC addresses are used to train
the RF fingerprinting neural network. This method works best if the routers and their antennas are
fixed and hard to move unintentionally. For example, in most office environments, routers are
mounted on the ceiling. Follow these steps:

1 Connect an ADALM-PLUTO radio to your PC to use as the observer radio.
2 Place the radio in a central location where it can receive signals from as many routers as

possible. Fix the radio so that it does not move. If possible, place the observer radio on the
ceiling or high on a wall.

3 Determine the channel number of the routers. You can use a Wi-Fi analyzer app on your phone to
find out the channel numbers.

4 Start data collection by running "rfFingerprintingRouterDataCollection(channel)"
where channel is the Wi-Fi channel number

5 Monitor the "max(abs(LLTF))" value. If it is above 1.2 or smaller than 0.01, adjust the gain of the
receiver using the GAIN input of rfFingerprintingRouterDataCollection function.

Use the helper functions rfFingerprintingUnknownClassDataCollectionTx and
rfFingerprintingUnknownClassDataCollectionRx to collect data from unknown routers.
These functions set two ADALM-PLUTO radios to transmit and receive L-LTF signals. The received
signals are combined with the known router signals to train the neural network. You need two
ADALM-PLUTO radios, preferably connected to two separate PCs. Follow these steps:
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1 Connect an ADALM-PLUTO radio to a stationary PC to act as the unknown router
2 Start transmissions by running "rfFingerprintingUnknownClassDataCollectionTx"
3 Connect another ADALM-PLUTO radio to a mobile PC to act as the observer
4 Start data collection by running "rfFingerprintingUnknownClassDataCollectionRx". This

function by default collects 200 frames per location. Each location represents a different
unknown router.

5 When the function instructs you to move to a new location, move the observer radio to a new
location. By default, this function collects data from 10 locations.

6 If the observer does not receive any beacons or it rarely receives beacons, move the observer
closer to the transmitter.

7 Once the data collection is done, call "release(sdrTransmitter)" in the transmitting radio's
MATLAB session.

Selected Bibliography
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Modulation Classification with Deep Learning
This example shows how to use a convolutional neural network (CNN) for modulation classification.
You generate synthetic, channel-impaired waveforms. Using the generated waveforms as training
data, you train a CNN for modulation classification. You then test the CNN with software-defined
radio (SDR) hardware and over-the-air signals.

Predict Modulation Type Using CNN

The trained CNN in this example recognizes these eight digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• Quadrature phase shift keying (QPSK)
• 8-ary phase shift keying (8-PSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 64-ary quadrature amplitude modulation (64-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modulationTypes = categorical(["BPSK", "QPSK", "8PSK", ...
  "16QAM", "64QAM", "PAM4", "GFSK", "CPFSK", ...
  "B-FM", "DSB-AM", "SSB-AM"]);

First, load the trained network. For details on network training, see the Training a CNN on page 4-
0  section.

load trainedModulationClassificationNetwork
trainedNet

trainedNet = SeriesNetwork with properties:
         Layers: [28×1 nnet.cnn.layer.Layer]
     InputNames: {'Input Layer'}
    OutputNames: {'Output'}

The trained CNN takes 1024 channel-impaired samples and predicts the modulation type of each
frame. Generate several PAM4 frames that are impaired with Rician multipath fading, center
frequency and sampling time drift, and AWGN. Use following function to generate synthetic signals to
test the CNN. Then use the CNN to predict the modulation type of the frames.

• randi: Generate random bits
• pammod PAM4-modulate the bits
• rcosdesign: Design a square-root raised cosine pulse shaping filter
• filter: Pulse shape the symbols
• comm.RicianChannel: Apply Rician multipath channel
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• comm.PhaseFrequencyOffset: Apply phase and/or frequency shift due to clock offset
• interp1: Apply timing drift due to clock offset
• awgn: Add AWGN

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(123456)
% Random bits
d = randi([0 3], 1024, 1);
% PAM4 modulation
syms = pammod(d,4);
% Square-root raised cosine filter
filterCoeffs = rcosdesign(0.35,4,8);
tx = filter(filterCoeffs,1,upsample(syms,8));

% Channel
SNR = 30;
maxOffset = 5;
fc = 902e6;
fs = 200e3;
multipathChannel = comm.RicianChannel(...
  'SampleRate', fs, ...
  'PathDelays', [0 1.8 3.4] / 200e3, ...
  'AveragePathGains', [0 -2 -10], ...
  'KFactor', 4, ...
  'MaximumDopplerShift', 4);

frequencyShifter = comm.PhaseFrequencyOffset(...
  'SampleRate', fs);

% Apply an independent multipath channel
reset(multipathChannel)
outMultipathChan = multipathChannel(tx);

% Determine clock offset factor
clockOffset = (rand() * 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1e6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift
t = (0:length(tx)-1)' / fs;
newFs = fs * C;
tp = (0:length(tx)-1)' / newFs;
outTimeDrift = interp1(t, outFreqShifter, tp);

% Add noise
rx = awgn(outTimeDrift,SNR,0);

% Frame generation for classification
unknownFrames = helperModClassGetNNFrames(rx);

% Classification
[prediction1,score1] = classify(trainedNet,unknownFrames);
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Return the classifier predictions, which are analogous to hard decisions. The network correctly
identifies the frames as PAM4 frames. For details on the generation of the modulated signals, see
helperModClassGetModulator function.

prediction1

prediction1 = 7×1 categorical
     PAM4 
     PAM4 
     PAM4 
     PAM4 
     PAM4 
     PAM4 
     PAM4 

The classifier also returns a vector of scores for each frame. The score corresponds to the probability
that each frame has the predicted modulation type. Plot the scores.

helperModClassPlotScores(score1,modulationTypes)

Before we can use a CNN for modulation classification, or any other task, we first need to train the
network with known (or labeled) data. The first part of this example shows how to use
Communications Toolbox features, such as modulators, filters, and channel impairments, to generate
synthetic training data. The second part focuses on defining, training, and testing the CNN for the
task of modulation classification. The third part tests the network performance with over-the-air
signals using software defined radio (SDR) platforms.

Waveform Generation for Training

Generate 10,000 frames for each modulation type, where 80% is used for training, 10% is used for
validation and 10% is used for testing. We use training and validation frames during the network
training phase. Final classification accuracy is obtained using test frames. Each frame is 1024
samples long and has a sample rate of 200 kHz. For digital modulation types, eight samples represent
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a symbol. The network makes each decision based on single frames rather than on multiple
consecutive frames (as in video). Assume a center frequency of 902 MHz and 100 MHz for the digital
and analog modulation types, respectively.

To run this example quickly, use the trained network and generate a small number of training frames.
To train the network on your computer, choose the "Train network now" option (i.e. set trainNow to
true).

trainNow = ;
if trainNow == true
  numFramesPerModType = 10000;
else
  numFramesPerModType = 200;
end
percentTrainingSamples = 80;
percentValidationSamples = 10;
percentTestSamples = 10;

sps = 8;                % Samples per symbol
spf = 1024;             % Samples per frame
symbolsPerFrame = spf / sps;
fs = 200e3;             % Sample rate
fc = [902e6 100e6];     % Center frequencies

Create Channel Impairments

Pass each frame through a channel with

• AWGN
• Rician multipath fading
• Clock offset, resulting in center frequency offset and sampling time drift

Because the network in this example makes decisions based on single frames, each frame must pass
through an independent channel.

AWGN

The channel adds AWGN with an SNR of 30 dB. Implement the channel using awgn function.

Rician Multipath

The channel passes the signals through a Rician multipath fading channel using the
comm.RicianChannel System object. Assume a delay profile of [0 1.8 3.4] samples with
corresponding average path gains of [0 -2 -10] dB. The K-factor is 4 and the maximum Doppler shift is
4 Hz, which is equivalent to a walking speed at 902 MHz. Implement the channel with the following
settings.

Clock Offset

Clock offset occurs because of the inaccuracies of internal clock sources of transmitters and
receivers. Clock offset causes the center frequency, which is used to downconvert the signal to
baseband, and the digital-to-analog converter sampling rate to differ from the ideal values. The
channel simulator uses the clock offset factor C, expressed as C = 1 +

Δclock
106 , where Δclock is the clock

offset. For each frame, the channel generates a random Δclock value from a uniformly distributed set
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of values in the range [−maxΔclock maxΔclock], where maxΔclock is the maximum clock offset. Clock
offset is measured in parts per million (ppm). For this example, assume a maximum clock offset of 5
ppm.

maxDeltaOff = 5;
deltaOff = (rand()*2*maxDeltaOff) - maxDeltaOff;
C = 1 + (deltaOff/1e6);

Frequency Offset

Subject each frame to a frequency offset based on clock offset factor C and the center frequency.
Implement the channel using comm.PhaseFrequencyOffset.

Sampling Rate Offset

Subject each frame to a sampling rate offset based on clock offset factor C. Implement the channel
using the interp1 function to resample the frame at the new rate of C × fs.

Combined Channel

Use the helperModClassTestChannel object to apply all three channel impairments to the frames.

channel = helperModClassTestChannel(...
  'SampleRate', fs, ...
  'SNR', SNR, ...
  'PathDelays', [0 1.8 3.4] / fs, ...
  'AveragePathGains', [0 -2 -10], ...
  'KFactor', 4, ...
  'MaximumDopplerShift', 4, ...
  'MaximumClockOffset', 5, ...
  'CenterFrequency', 902e6)

channel = helperModClassTestChannel with properties:
                    SNR: 30
        CenterFrequency: 902000000
             SampleRate: 200000
             PathDelays: [0 9.0000e-06 1.7000e-05]
       AveragePathGains: [0 -2 -10]
                KFactor: 4
    MaximumDopplerShift: 4
     MaximumClockOffset: 5

You can view basic information about the channel using the info object function.

chInfo = info(channel)

chInfo = struct with fields:
               ChannelDelay: 6
     MaximumFrequencyOffset: 4510
    MaximumSampleRateOffset: 1

Waveform Generation

Create a loop that generates channel-impaired frames for each modulation type and stores the frames
with their corresponding labels in MAT files. By saving the data into files, you eliminate the need to
generate the data every time you run this example. You can also share the data more effectively.
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Remove a random number of samples from the beginning of each frame to remove transients and to
make sure that the frames have a random starting point with respect to the symbol boundaries.

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(1235)
tic

numModulationTypes = length(modulationTypes);

channelInfo = info(channel);
transDelay = 50;
dataDirectory = fullfile(tempdir,"ModClassDataFiles");
disp("Data file directory is " + dataDirectory)

Data file directory is C:\TEMP\ModClassDataFiles

fileNameRoot = "frame";

% Check if data files exist
dataFilesExist = false;
if exist(dataDirectory,'dir')
  files = dir(fullfile(dataDirectory,sprintf("%s*",fileNameRoot)));
  if length(files) == numModulationTypes*numFramesPerModType
    dataFilesExist = true;
  end
end

if ~dataFilesExist
  disp("Generating data and saving in data files...")
  [success,msg,msgID] = mkdir(dataDirectory);
  if ~success
    error(msgID,msg)
  end
  for modType = 1:numModulationTypes
    elapsedTime = seconds(toc);
    elapsedTime.Format = 'hh:mm:ss';
    fprintf('%s - Generating %s frames\n', ...
      elapsedTime, modulationTypes(modType))
    
    label = modulationTypes(modType);
    numSymbols = (numFramesPerModType / sps);
    dataSrc = helperModClassGetSource(modulationTypes(modType), sps, 2*spf, fs);
    modulator = helperModClassGetModulator(modulationTypes(modType), sps, fs);
    if contains(char(modulationTypes(modType)), {'B-FM','DSB-AM','SSB-AM'})
      % Analog modulation types use a center frequency of 100 MHz
      channel.CenterFrequency = 100e6;
    else
      % Digital modulation types use a center frequency of 902 MHz
      channel.CenterFrequency = 902e6;
    end
    
    for p=1:numFramesPerModType
      % Generate random data
      x = dataSrc();
      
      % Modulate
      y = modulator(x);
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      % Pass through independent channels
      rxSamples = channel(y);
      
      % Remove transients from the beginning, trim to size, and normalize
      frame = helperModClassFrameGenerator(rxSamples, spf, spf, transDelay, sps);
      
      % Save data file
      fileName = fullfile(dataDirectory,...
        sprintf("%s%s%03d",fileNameRoot,modulationTypes(modType),p));
      save(fileName,"frame","label")
    end
  end
else
  disp("Data files exist. Skip data generation.")
end

Generating data and saving in data files...

00:00:00 - Generating BPSK frames
00:00:01 - Generating QPSK frames
00:00:02 - Generating 8PSK frames
00:00:04 - Generating 16QAM frames
00:00:05 - Generating 64QAM frames
00:00:06 - Generating PAM4 frames
00:00:08 - Generating GFSK frames
00:00:09 - Generating CPFSK frames
00:00:11 - Generating B-FM frames
00:00:12 - Generating DSB-AM frames
00:00:13 - Generating SSB-AM frames

% Plot the amplitude of the real and imaginary parts of the example frames
% against the sample number
helperModClassPlotTimeDomain(dataDirectory,modulationTypes,fs)
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% Plot the spectrogram of the example frames
helperModClassPlotSpectrogram(dataDirectory,modulationTypes,fs,sps)

Create a Datastore

Use a signalDatastore object to manage the files that contain the generated complex waveforms.
Datastores are especially useful when each individual file fits in memory, but the entire collection
does not necessarily fit.

frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"]);

Transform Complex Signals to Real Arrays

The deep learning network in this example expects real inputs while the received signal has complex
baseband samples. Transform the complex signals into real valued 4-D arrays. The output frames
have size 1-by-spf-by-2-by-N, where the first page (3rd dimension) is in-phase samples and the second
page is quadrature samples. When the convolutional filters are of size 1-by-spf, this approach ensures
that the information in the I and Q gets mixed even in the convolutional layers and makes better use
of the phase information. See helperModClassIQAsPages for details.

frameDSTrans = transform(frameDS,@helperModClassIQAsPages);

Split into Training, Validation, and Test

Next divide the frames into training, validation, and test data. See helperModClassSplitData for
details.

splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Import Data Into Memory

Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. If the data fits into the memory of your
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computer, importing the data from the files into the memory enables faster training by eliminating
this repeated read from file and transform process. Instead, the data is read from the files and
transformed once. Training this network using data files on disk takes about 110 minutes while
training using in-memory data takes about 50 min.

Import all the data in the files into memory. The files have two variables: frame and label and each
read call to the datastore returns a cell array, where the first element is the frame and the second
element is the label. Use the transform functions helperModClassReadFrame and
helperModClassReadLabel to read frames and labels. Use readall with "UseParallel" option set
to true to enable parallel processing of the transform functions, in case you have Parallel Computing
Toolbox license. Since readall function, by default, concatenates the output of the read function
over the first dimension, return the frames in a cell array and manually concatenate over the 4th
dimension.

% Read the training and validation frames into the memory
pctExists = parallelComputingLicenseExists();
trainFrames = transform(trainDSTrans, @helperModClassReadFrame);
rxTrainFrames = readall(trainFrames,"UseParallel",pctExists);
rxTrainFrames = cat(4, rxTrainFrames{:});
validFrames = transform(validDSTrans, @helperModClassReadFrame);
rxValidFrames = readall(validFrames,"UseParallel",pctExists);
rxValidFrames = cat(4, rxValidFrames{:});

% Read the training and validation labels into the memory
trainLabels = transform(trainDSTrans, @helperModClassReadLabel);
rxTrainLabels = readall(trainLabels,"UseParallel",pctExists);
validLabels = transform(validDSTrans, @helperModClassReadLabel);
rxValidLabels = readall(validLabels,"UseParallel",pctExists);

Train the CNN

This example uses a CNN that consists of six convolution layers and one fully connected layer. Each
convolution layer except the last is followed by a batch normalization layer, rectified linear unit
(ReLU) activation layer, and max pooling layer. In the last convolution layer, the max pooling layer is
replaced with an average pooling layer. The output layer has softmax activation. For network design
guidance, see “Deep Learning Tips and Tricks” (Deep Learning Toolbox).

modClassNet = helperModClassCNN(modulationTypes,sps,spf);

Next configure TrainingOptionsSGDM (Deep Learning Toolbox) to use an SGDM solver with a mini-
batch size of 256. Set the maximum number of epochs to 12, since a larger number of epochs
provides no further training advantage. By default, the 'ExecutionEnvironment' property is set to
'auto', where the trainNetwork function uses a GPU if one is available or uses the CPU, if not. To
use the GPU, you must have a Parallel Computing Toolbox license. Set the initial learning rate to
2x10−2. Reduce the learning rate by a factor of 10 every 9 epochs. Set 'Plots' to 'training-
progress' to plot the training progress. On an NVIDIA Titan Xp GPU, the network takes
approximately 25 minutes to train. .

maxEpochs = 12;
miniBatchSize = 256;
options = helperModClassTrainingOptions(maxEpochs,miniBatchSize,...
  numel(rxTrainLabels),rxValidFrames,rxValidLabels);

Either train the network or use the already trained network. By default, this example uses the trained
network.
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if trainNow == true
  elapsedTime = seconds(toc);
  elapsedTime.Format = 'hh:mm:ss';
  fprintf('%s - Training the network\n', elapsedTime)
  trainedNet = trainNetwork(rxTrainFrames,rxTrainLabels,modClassNet,options);
else
  load trainedModulationClassificationNetwork
end

As the plot of the training progress shows, the network converges in about 12 epochs to more than
95% accuracy.

Evaluate the trained network by obtaining the classification accuracy for the test frames. The results
show that the network achieves about 94% accuracy for this group of waveforms.

elapsedTime = seconds(toc);
elapsedTime.Format = 'hh:mm:ss';
fprintf('%s - Classifying test frames\n', elapsedTime)

00:01:25 - Classifying test frames

% Read the test frames into the memory
testFrames = transform(testDSTrans, @helperModClassReadFrame);
rxTestFrames = readall(testFrames,"UseParallel",pctExists);
rxTestFrames = cat(4, rxTestFrames{:});
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% Read the test labels into the memory
testLabels = transform(testDSTrans, @helperModClassReadLabel);
rxTestLabels = readall(testLabels,"UseParallel",pctExists);

rxTestPred = classify(trainedNet,rxTestFrames);
testAccuracy = mean(rxTestPred == rxTestLabels);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 95.4545%

Plot the confusion matrix for the test frames. As the matrix shows, the network confuses 16-QAM and
64-QAM frames. This problem is expected since each frame carries only 128 symbols and 16-QAM is a
subset of 64-QAM. The network also confuses QPSK and 8-PSK frames, since the constellations of
these modulation types look similar once phase-rotated due to the fading channel and frequency
offset.

figure
cm = confusionchart(rxTestLabels, rxTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';
cm.Parent.Position = [cm.Parent.Position(1:2) 740 424];

Test with SDR

Test the performance of the trained network with over-the-air signals using the
helperModClassSDRTest function. To perform this test, you must have dedicated SDRs for
transmission and reception. You can use two ADALM-PLUTO radios, or one ADALM-PLUTO radio for
transmission and one USRP® radio for reception. You must install Communications Toolbox Support
Package for ADALM-PLUTO Radio. If you are using a USRP® radio, you must also install
Communications Toolbox Support Package for USRP® Radio. The helperModClassSDRTest
function uses the same modulation functions as used for generating the training signals, and then
transmits them using an ADALM-PLUTO radio. Instead of simulating the channel, capture the
channel-impaired signals using the SDR that is configured for signal reception (ADALM-PLUTO or
USRP® radio). Use the trained network with the same classify function used previously to predict
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the modulation type. Running the next code segment produces a confusion matrix and prints out the
test accuracy.

radioPlatform = ;

switch radioPlatform
  case "ADALM-PLUTO"
    if helperIsPlutoSDRInstalled() == true
      radios = findPlutoRadio();
      if length(radios) >= 2
        helperModClassSDRTest(radios);
      else
        disp('Selected radios not found. Skipping over-the-air test.')
      end
    end
  case {"USRP B2xx","USRP X3xx","USRP N2xx"}
    if (helperIsUSRPInstalled() == true) && (helperIsPlutoSDRInstalled() == true)
      txRadio = findPlutoRadio();
      rxRadio = findsdru();
      switch radioPlatform
        case "USRP B2xx"
          idx = contains({rxRadio.Platform}, {'B200','B210'});
        case "USRP X3xx"
          idx = contains({rxRadio.Platform}, {'X300','X310'});
        case "USRP N2xx"
          idx = contains({rxRadio.Platform}, 'N200/N210/USRP2');
      end
      rxRadio = rxRadio(idx);
      if (length(txRadio) >= 1) && (length(rxRadio) >= 1)
        helperModClassSDRTest(rxRadio);
      else
        disp('Selected radios not found. Skipping over-the-air test.')
      end
    end
end

When using two stationary ADALM-PLUTO radios separated by about 2 feet, the network achieves
99% overall accuracy with the following confusion matrix. Results will vary based on experimental
setup.

 Modulation Classification with Deep Learning

4-85



Further Exploration

It is possible to optimize the hyperparameters parameters, such as number of filters, filter size, or
optimize the network structure, such as adding more layers, using different activation layers, etc. to
improve the accuracy.

Communication Toolbox provides many more modulation types and channel impairments. For more
information see “Modulation” and “Propagation and Channel Models” sections. You can also add
standard specific signals with LTE Toolbox, WLAN Toolbox, and 5G Toolbox. You can also add radar
signals with Phased Array System Toolbox.

helperModClassGetModulator function provides the MATLAB functions used to generate modulated
signals. You can also explore the following functions and System objects for more details:

• helperModClassGetModulator.m
• helperModClassTestChannel.m
• helperModClassGetSource.m
• helperModClassFrameGenerator.m
• helperModClassCNN.m
• helperModClassTrainingOptions.m
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Massive MIMO Hybrid Beamforming
This example shows how hybrid beamforming is employed at the transmit end of a massive MIMO
communications system, using techniques for both multi-user and single-user systems. The example
employs full channel sounding for determining the channel state information at the transmitter. It
partitions the required precoding into digital baseband and analog RF components, using different
techniques for multi-user and single-user systems. Simplified all-digital receivers recover the multiple
transmitted data streams to highlight the common figures of merit for a communications system,
namely, EVM, and BER.

The example employs a scattering-based spatial channel model which accounts for the transmit/
receive spatial locations and antenna patterns. A simpler static-flat MIMO channel is also offered for
link validation purposes.

The example requires Communications Toolbox™ and Phased Array System Toolbox™.

Introduction

The ever-growing demand for high data rate and more user capacity increases the need to use the
available spectrum more efficiently. Multi-user MIMO (MU-MIMO) improves the spectrum efficiency
by allowing a base station (BS) transmitter to communicate simultaneously with multiple mobile
stations (MS) receivers using the same time-frequency resources. Massive MIMO allows the number
of BS antenna elements to be on the order of tens or hundreds, thereby also increasing the number of
data streams in a cell to a large value.

The next generation, 5G, wireless systems use millimeter wave (mmWave) bands to take advantage of
their wider bandwidth. The 5G systems also deploy large scale antenna arrays to mitigate severe
propagation loss in the mmWave band.

Compared to current wireless systems, the wavelength in the mmWave band is much smaller.
Although this allows an array to contain more elements within the same physical dimension, it
becomes much more expensive to provide one transmit-receive (TR) module, or an RF chain, for each
antenna element. Hybrid transceivers are a practical solution as they use a combination of analog
beamformers in the RF and digital beamformers in the baseband domains, with fewer RF chains than
the number of transmit elements [ 1 ].

This example uses a multi-user MIMO-OFDM system to highlight the partitioning of the required
precoding into its digital baseband and RF analog components at the transmitter end. Building on the
system highlighted in the “MIMO-OFDM Precoding with Phased Arrays” (Phased Array System
Toolbox) example, this example shows the formulation of the transmit-end precoding matrices and
their application to a MIMO-OFDM system.

s = rng(67);                  % Set RNG state for repeatability

System Parameters

Define system parameters for the example. Modify these parameters to explore their impact on the
system.

% Multi-user system with single/multiple streams per user
prm.numUsers = 4;                 % Number of users
prm.numSTSVec = [3 2 1 2];        % Number of independent data streams per user
prm.numSTS = sum(prm.numSTSVec);  % Must be a power of 2
prm.numTx = prm.numSTS*8;         % Number of BS transmit antennas (power of 2)
prm.numRx = prm.numSTSVec*4;      % Number of receive antennas, per user (any >= numSTSVec)
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% Each user has the same modulation
prm.bitsPerSubCarrier = 4;   % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10;     % Number of OFDM data symbols

% MS positions: assumes BS at origin
%   Angles specified as [azimuth;elevation] degrees
%   az in range [-180 180], el in range [-90 90], e.g. [45;0]
maxRange = 1000;            % all MSs within 1000 meters of BS
prm.mobileRanges = randi([1 maxRange],1,prm.numUsers);
prm.mobileAngles = [rand(1,prm.numUsers)*360-180; ...
                    rand(1,prm.numUsers)*180-90];

prm.fc = 28e9;               % 28 GHz system
prm.chanSRate = 100e6;       % Channel sampling rate, 100 Msps
prm.ChanType = 'Scattering'; % Channel options: 'Scattering', 'MIMO'
prm.NFig = 8;                % Noise figure (increase to worsen, 5-10 dB)
prm.nRays = 500;             % Number of rays for Frf, Fbb partitioning

Define OFDM modulation parameters used for the system.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NullCarrierIndices = [1:7 129 256-5:256]'; % Guards and DC
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232]';
nonDataIdx = [prm.NullCarrierIndices; prm.PilotCarrierIndices];
prm.CarriersLocations = setdiff((1:prm.FFTLength)', sort(nonDataIdx));

numSTS = prm.numSTS;
numTx = prm.numTx;
numRx = prm.numRx;
numSTSVec = prm.numSTSVec;
codeRate = 1/3;             % same code rate per user
numTails = 6;               % number of termination tail bits
prm.numFrmBits = numSTSVec.*(prm.numDataSymbols*prm.numCarriers* ...
                 prm.bitsPerSubCarrier*codeRate)-numTails;
prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
numPadSym = 3;          % number of symbols to zeropad
prm.numPadZeros = numPadSym*(prm.FFTLength+prm.CyclicPrefixLength);

Define transmit and receive arrays and positional parameters for the system.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;

% Get transmit and receive array information
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);

% Transmit antenna array definition
%   Array locations and angles
prm.posTx = [0;0;0];       % BS/Transmit array position, [x;y;z], meters
if isTxURA
    % Uniform Rectangular array
    txarray = phased.PartitionedArray(...
        'Array',phased.URA([expFactorTx numSTS],0.5*prm.lambda),...
        'SubarraySelection',ones(numSTS,numTx),'SubarraySteering','Custom');
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else
    % Uniform Linear array
    txarray = phased.ULA(numTx, 'ElementSpacing',0.5*prm.lambda, ...
        'Element',phased.IsotropicAntennaElement('BackBaffled',false));
end
prm.posTxElem = getElementPosition(txarray)/prm.lambda;

spLoss = zeros(prm.numUsers,1);
prm.posRx = zeros(3,prm.numUsers);
for uIdx = 1:prm.numUsers

    % Receive arrays
    if isRxURA(uIdx)
        % Uniform Rectangular array
        rxarray = phased.PartitionedArray(...
            'Array',phased.URA([expFactorRx(uIdx) numSTSVec(uIdx)], ...
            0.5*prm.lambda),'SubarraySelection',ones(numSTSVec(uIdx), ...
            numRx(uIdx)),'SubarraySteering','Custom');
        prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
    else
        if numRx(uIdx)>1
            % Uniform Linear array
            rxarray = phased.ULA(numRx(uIdx), ...
                'ElementSpacing',0.5*prm.lambda, ...
                'Element',phased.IsotropicAntennaElement);
            prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
        else
            rxarray = phased.IsotropicAntennaElement;
            prm.posRxElem = [0; 0; 0]; % LCS
        end
    end

    % Mobile positions
    [xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngles(1,uIdx)), ...
                             deg2rad(prm.mobileAngles(2,uIdx)), ...
                             prm.mobileRanges(uIdx));
    prm.posRx(:,uIdx) = [xRx;yRx;zRx];
    [toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx(:,uIdx));
    spLoss(uIdx) = fspl(toRxRange,prm.lambda);
end

Channel State Information

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first. The BS
sounds the channel by using a reference transmission, that the MS receiver uses to estimate the
channel. The MS transmits the channel estimate information back to the BS for calculation of the
precoding needed for the subsequent data transmission.

The following schematic shows the processing for the channel sounding modeled.
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For the chosen MIMO system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver antenna elements perform pre-
amplification, OFDM demodulation, and frequency domain channel estimation for all links.

% Generate the preamble signal
prm.numSTS = numTx;             % set to numTx to sound out all channels
preambleSig = helperGenPreamble(prm);

% Transmit preamble over channel
prm.numSTS = numSTS;            % keep same array config for channel
[rxPreSig,chanDelay] = helperApplyMUChannel(preambleSig,prm,spLoss);

% Channel state information feedback
hDp = cell(prm.numUsers,1);
prm.numSTS = numTx;             % set to numTx to estimate all links
for uIdx = 1:prm.numUsers

    % Front-end amplifier gain and thermal noise
    rxPreAmp = phased.ReceiverPreamp( ...
        'Gain',spLoss(uIdx), ...    % account for path loss
        'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
        'SampleRate',prm.chanSRate);
    rxPreSigAmp = rxPreAmp(rxPreSig{uIdx});
    %   scale power for used sub-carriers
    rxPreSigAmp = rxPreSigAmp * (sqrt(prm.FFTLength - ...
        length(prm.NullCarrierIndices))/prm.FFTLength);

    % OFDM demodulation
    rxOFDM = ofdmdemod(rxPreSigAmp(chanDelay(uIdx)+1: ...
        end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
        prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
        prm.NullCarrierIndices,prm.PilotCarrierIndices);

    % Channel estimation from preamble
    %       numCarr, numTx, numRx
    hDp{uIdx} = helperMIMOChannelEstimate(rxOFDM(:,1:numTx,:),prm);

end
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For a multi-user system, the channel estimate is fed back from each MS, and used by the BS to
determine the precoding weights. The example assumes perfect feedback with no quantization or
implementation delays.

Hybrid Beamforming

The example uses the orthogonal matching pursuit (OMP) algorithm [ 3 ] for a single-user system and
the joint spatial division multiplexing (JSDM) technique [ 2, 4 ] for a multi-user system, to determine
the digital baseband Fbb and RF analog Frf precoding weights for the selected system configuration.

For a single-user system, the OMP partitioning algorithm is sensitive to the array response vectors
At. Ideally, these response vectors account for all the scatterers seen by the channel, but these are
unknown for an actual system and channel realization, so a random set of rays within a 3-dimensional
space to cover as many scatterers as possible is used. The prm.nRays parameter specifies the
number of rays.

For a multi-user system, JSDM groups users with similar transmit channel covariance together and
suppresses the inter-group interference by an analog precoder based on the block diagonalization
method [ 5 ]. Here each user is assigned to be in its own group, thereby leading to no reduction in the
sounding or feedback overhead.

% Calculate the hybrid weights on the transmit side
if prm.numUsers==1
    % Single-user OMP
    %   Spread rays in [az;el]=[-180:180;-90:90] 3D space, equal spacing
    %   txang = [-180:360/prm.nRays:180; -90:180/prm.nRays:90];
    txang = [rand(1,prm.nRays)*360-180;rand(1,prm.nRays)*180-90]; % random
    At = steervec(prm.posTxElem,txang);
    AtExp = complex(zeros(prm.numCarriers,size(At,1),size(At,2)));
    for carrIdx = 1:prm.numCarriers
        AtExp(carrIdx,:,:) = At; % same for all sub-carriers
    end

    % Orthogonal matching pursuit hybrid weights
    [Fbb,Frf] = omphybweights(hDp{1},numSTS,numSTS,AtExp);

    v = Fbb;    % set the baseband precoder (Fbb)
    % Frf is same across subcarriers for flat channels
    mFrf = permute(mean(Frf,1),[2 3 1]);

else
    % Multi-user Joint Spatial Division Multiplexing
    [Fbb,mFrf] = helperJSDMTransmitWeights(hDp,prm);

    % Multi-user baseband precoding
    %   Pack the per user CSI into a matrix (block diagonal)
    steeringMatrix = zeros(prm.numCarriers,sum(numSTSVec),sum(numSTSVec));
    for uIdx = 1:prm.numUsers
        stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
        steeringMatrix(:,stsIdx,stsIdx) = Fbb{uIdx};  % Nst-by-Nsts-by-Nsts
    end
    v = permute(steeringMatrix,[1 3 2]);

end

% Transmit array pattern plots
if isTxURA
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    % URA element response for the first subcarrier
    pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
            'ElementWeights',mFrf.'*squeeze(v(1,:,:)), ...
            'PropagationSpeed',prm.cLight);
else % ULA
    % Array response for first subcarrier
    wts = mFrf.'*squeeze(v(1,:,:));
    pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
            'Weights',wts(:,1),'PropagationSpeed',prm.cLight);
end
prm.numSTS = numSTS;                 % revert back for data transmission

For the wideband OFDM system modeled, the analog weights, mFrf, are the averaged weights over
the multiple subcarriers. The array response pattern shows distinct data streams represented by the
stronger lobes. These lobes indicate the spread or separability achieved by beamforming. The
“Introduction to Hybrid Beamforming” (Phased Array System Toolbox) example compares the
patterns realized by the optimal, fully digital approach, with those realized from the selected hybrid
approach, for a single-user system.

Data Transmission

The example models an architecture where each data stream maps to an individual RF chain and
each antenna element is connected to each RF chain. This is shown in the following diagram.
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Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
baseband precoding of the transmit streams, OFDM modulation with pilot mapping and RF analog
beamforming for all the transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder( ...
    'TrellisStructure',poly2trellis(7,[133 171 165]), ...
    'TerminationMethod','Terminated');

txDataBits = cell(prm.numUsers, 1);
gridData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for uIdx = 1:prm.numUsers
    % Generate mapped symbols from bits per user
    txDataBits{uIdx} = randi([0,1],prm.numFrmBits(uIdx),1);
    encodedBits = encoder(txDataBits{uIdx});

    % Bits to QAM symbol mapping
    mappedSym = qammod(encodedBits,prm.modMode,'InputType','bit', ...
    'UnitAveragePower',true);

    % Map to layers: per user, per symbol, per data stream
    stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:numSTSVec(uIdx));
    gridData(:,:,stsIdx) = reshape(mappedSym,prm.numCarriers, ...
        prm.numDataSymbols,numSTSVec(uIdx));
end

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
    for carrIdx = 1:prm.numCarriers
        Q = squeeze(v(carrIdx,:,:));
        normQ = Q * sqrt(numTx)/norm(Q,'fro');
        preData(carrIdx,symIdx,:) = squeeze(gridData(carrIdx,symIdx,:)).' ...
            * normQ;
    end
end

% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);
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% OFDM modulation of the data
txOFDM = ofdmmod(preData,prm.FFTLength,prm.CyclicPrefixLength,...
                 prm.NullCarrierIndices,prm.PilotCarrierIndices,pilots);
%   scale power for used sub-carriers
txOFDM = txOFDM * (prm.FFTLength/ ...
    sqrt((prm.FFTLength-length(prm.NullCarrierIndices))));

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];

% RF beamforming: Apply Frf to the digital signal
%   Each antenna element is connected to each data stream
txSig = txSigSTS*mFrf;

For the selected, fully connected RF architecture, each antenna element uses prm.numSTS phase
shifters, as given by the individual columns of the mFrf matrix.

The processing for the data transmission and reception modeled is shown below.

Signal Propagation

The example offers an option for spatial MIMO channel and a simpler static-flat MIMO channel for
validation purposes.

The scattering model uses a single-bounce ray tracing approximation with a parametrized number of
scatterers. For this example, the number of scatterers is set to 100. The 'Scattering' option models
the scatterers placed randomly within a sphere around the receiver, similar to the one-ring model
[ 6 ].

The channel models allow path-loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear or rectangular geometry.
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% Apply a spatially defined channel to the transmit signal
[rxSig,chanDelay] = helperApplyMUChannel(txSig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission. The data transmission has a
longer duration and is controlled by the number of data symbols parameter, prm.numDataSymbols.
The channel evolution between the sounding and transmission stages is modeled by prepending the
preamble signal to the data signal. The preamble primes the channel to a valid state for the data
transmission, and is ignored from the channel output.

For a multi-user system, independent channels per user are modeled.

Receive Amplification and Signal Recovery

The receiver modeled per user compensates for the path loss by amplification and adds thermal
noise. Like the transmitter, the receiver used in a MIMO-OFDM system contains many stages
including OFDM demodulation, MIMO equalization, QAM demapping, and channel decoding.

hfig = figure('Name','Equalized symbol constellation per stream');
scFact = ((prm.FFTLength-length(prm.NullCarrierIndices))...
         /prm.FFTLength^2)/numTx;
nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
decoder = comm.ViterbiDecoder('InputFormat','Unquantized', ...
    'TrellisStructure',poly2trellis(7, [133 171 165]), ...
    'TerminationMethod','Terminated','OutputDataType','double');

for uIdx = 1:prm.numUsers
    stsU = numSTSVec(uIdx);
    stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:stsU);

    % Front-end amplifier gain and thermal noise
    rxPreAmp = phased.ReceiverPreamp( ...
        'Gain',spLoss(uIdx), ...        % account for path loss
        'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
        'SampleRate',prm.chanSRate);
    rxSigAmp = rxPreAmp(rxSig{uIdx});

    % Scale power for occupied sub-carriers
    rxSigAmp = rxSigAmp*(sqrt(prm.FFTLength-length(prm.NullCarrierIndices)) ...
        /prm.FFTLength);

    % OFDM demodulation
    rxOFDM = ofdmdemod(rxSigAmp(chanDelay(uIdx)+1: ...
        end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
        prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
        prm.NullCarrierIndices,prm.PilotCarrierIndices);

    % Channel estimation from the mapped preamble
    hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

    % MIMO equalization
    %   Index into streams for the user of interest
    [rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD(:,stsIdx,:));

    % Soft demodulation
    rxSymbs = rxEq(:)/sqrt(numTx);
    rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
        'OutputType','approxllr','NoiseVariance',nVar);
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    % Apply CSI prior to decoding
    rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
        prm.numDataSymbols,stsU);
    csitmp = reshape(CSI,1,[],1,numSTSVec(uIdx));
    rxScaledLLR = rxLLRtmp.*csitmp;

    % Soft-input channel decoding
    rxDecoded = decoder(rxScaledLLR(:));

    % Decoded received bits
    rxBits = rxDecoded(1:prm.numFrmBits(uIdx));

    % Plot equalized symbols for all streams per user
    scaler = ceil(max(abs([real(rxSymbs(:)); imag(rxSymbs(:))])));
    for i = 1:stsU
        subplot(prm.numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
        plot(reshape(rxEq(:,:,i)/sqrt(numTx), [], 1), '.');
        axis square
        xlim(gca,[-scaler scaler]);
        ylim(gca,[-scaler scaler]);
        title(['U ' num2str(uIdx) ', DS ' num2str(i)]);
        grid on;
    end

    % Compute and display the EVM
    evm = comm.EVM('Normalization','Average constellation power', ...
        'ReferenceSignalSource','Estimated from reference constellation', ...
        'ReferenceConstellation', ...
        qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',1));
    rmsEVM = evm(rxSymbs);
    disp(['User ' num2str(uIdx)]);
    disp(['  RMS EVM (%) = ' num2str(rmsEVM)]);

    % Compute and display bit error rate
    ber = comm.ErrorRate;
    measures = ber(txDataBits{uIdx},rxBits);
    fprintf('  BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
        measures(1),measures(3),measures(2));
end

User 1
  RMS EVM (%) = 0.38361
  BER = 0.00000; No. of Bits = 9354; No. of errors = 0
User 2
  RMS EVM (%) = 1.0311
  BER = 0.00000; No. of Bits = 6234; No. of errors = 0
User 3
  RMS EVM (%) = 2.1462
  BER = 0.00000; No. of Bits = 3114; No. of errors = 0
User 4
  RMS EVM (%) = 1.0024
  BER = 0.00000; No. of Bits = 6234; No. of errors = 0

 Massive MIMO Hybrid Beamforming

5-11



For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits per user.

rng(s);         % restore RNG state

Conclusion and Further Exploration

The example highlights the use of hybrid beamforming for multi-user MIMO-OFDM systems. It allows
you to explore different system configurations for a variety of channel models by changing a few
system-wide parameters.

The set of configurable parameters includes the number of users, number of data streams per user,
number of transmit/receive antenna elements, array locations, and channel models. Adjusting these
parameters you can study the parameters' individual or combined effects on the overall system. As
examples, vary:

• the number of users, prm.numUsers, and their corresponding data streams, prm.numSTSVec, to
switch between multi-user and single-user systems, or

• the channel type, prm.ChanType, or
• the number of rays, prm.nRays, used for a single-user system.

Explore the following helper functions used by the example:

• helperApplyMUChannel.m
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• helperArrayInfo.m
• helperGenPreamble.m
• helperGenPilots.m
• helperJSDMTransmitWeights.m
• helperMIMOChannelEstimate.m
• helperMIMOEqualize.m
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MIMO-OFDM Precoding with Phased Arrays
This example shows how phased arrays are used in a MIMO-OFDM communication system employing
beamforming. Using components from Communications Toolbox™ and Phased Array System
Toolbox™, it models the radiating elements that comprise a transmitter and the front-end receiver
components, for a MIMO-OFDM communication system. With user-specified parameters, you can
validate the performance of the system in terms of bit error rate and constellations for different
spatial locations and array sizes.

The example uses functions and System objects™ from Communications Toolbox and Phased Array
System Toolbox and requires

• WINNER II Channel Model for Communications Toolbox

Introduction

MIMO-OFDM systems are the norm in current wireless systems (e.g. 5G NR, LTE, WLAN) due to their
robustness to frequency-selective channels and high data rates enabled. With ever-increasing
demands on data rates supported, these systems are getting more complex and larger in
configurations with increasing number of antenna elements, and resources (subcarriers) allocated.

With antenna arrays and spatial multiplexing, efficient techniques to realize the transmissions are
necessary [ 6 ]. Beamforming is one such technique, that is employed to improve the signal to noise
ratio (SNR) which ultimately improves the system performance, as measured here in terms of bit
error rate (BER) [ 1 ].

This example illustrates an asymmetric MIMO-OFDM single-user system where the maximum number
of antenna elements on transmit and receive ends can be 1024 and 32 respectively, with up to 16
independent data streams. It models a spatial channel where the array locations and antenna
patterns are incorporated into the overall system design. For simplicity, a single point-to-point link
(one base station communicating with one mobile user) is modeled. The link uses channel sounding to
provide the transmitter with the channel information it needs for beamforming.

The example offers the choice of a few spatially defined channel models, specifically a WINNER II
Channel model and a scattering-based model, both of which account for the transmit/receive spatial
locations and antenna patterns.

s = rng(61);        % Set RNG state for repeatability

System Parameters

Define parameters for the system. These parameters can be modified to explore their impact on the
system.

% Single-user system with multiple streams
prm.numUsers = 1;            % Number of users
prm.numSTS = 16;             % Number of independent data streams, 4/8/16/32/64
prm.numTx = 32;              % Number of transmit antennas
prm.numRx = 16;              % Number of receive antennas
prm.bitsPerSubCarrier = 6;   % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10;     % Number of OFDM data symbols

prm.fc = 4e9;                   % 4 GHz system
prm.chanSRate = 100e6;          % Channel sampling rate, 100 Msps
prm.ChanType = 'Scattering';    % Channel options: 'WINNER', 'Scattering',
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                                %           'ScatteringFcn', 'StaticFlat'
prm.NFig = 5;                   % Noise figure, dB

% Array locations and angles
prm.posTx = [0;0;0];            % BS/Transmit array position, [x;y;z], meters
prm.mobileRange = 300;          % meters
% Angles specified as [azimuth;elevation], az=[-90 90], el=[-90 90]
prm.mobileAngle = [33; 0];      % degrees
prm.steeringAngle = [30; -20];  % Transmit steering angle (close to mobileAngle)
prm.enSteering = true;          % Enable/disable steering

Parameters to define the OFDM modulation employed for the system are specified below.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NumGuardBandCarriers = [7 6];
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232];
nonDataIdx = [(1:prm.NumGuardBandCarriers(1))'; prm.FFTLength/2+1; ...
              (prm.FFTLength-prm.NumGuardBandCarriers(2)+1:prm.FFTLength)'; ...
              prm.PilotCarrierIndices.';];
prm.CarriersLocations = setdiff((1:prm.FFTLength)',sort(nonDataIdx));

numTx = prm.numTx;
numRx = prm.numRx;
numSTS = prm.numSTS;
prm.numFrmBits = numSTS*prm.numDataSymbols*prm.numCarriers* ...
                 prm.bitsPerSubCarrier*1/3-6; % Account for termination bits

prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
prm.numPadZeros = 3*(prm.FFTLength+prm.CyclicPrefixLength);

% Get transmit and receive array information
prm.numSTSVec = numSTS;
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);

The processing for channel sounding, data transmission and reception modeled in the example are
shown in the following block diagrams.

The free space path loss is calculated based on the base station and mobile station positions for the
spatially-aware system modeled.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;
% Mobile position
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[xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngle(1)),...
                         deg2rad(prm.mobileAngle(2)),prm.mobileRange);
prm.posRx = [xRx;yRx;zRx];
[toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx);
spLoss = fspl(toRxRange,prm.lambda);
gainFactor = 1;

Channel Sounding

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first, wherein
for a reference transmission, the receiver estimates the channel and feeds this information back to
the transmitter.

For the chosen system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver components perform pre-
amplification, OFDM demodulation, frequency domain channel estimation, and calculation of the
feedback weights based on channel diagonalization using singular value decomposition (SVD) per
data subcarrier.

% Generate the preamble signal
preambleSigSTS = helperGenPreamble(prm);
%   repeat over numTx
preambleSig = zeros(size(preambleSigSTS,1),numTx);
for i = 1:numSTS
    preambleSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
        repmat(preambleSigSTS(:,i),1,expFactorTx);
end

% Transmit preamble over channel
[rxPreSig,chanDelay] = helperApplyChannel(preambleSig,prm,spLoss);

% Front-end amplifier gain and thermal noise
rxPreAmp = phased.ReceiverPreamp( ...
    'Gain',gainFactor*spLoss, ... % account for path loss
    'NoiseFigure',prm.NFig, ...
    'ReferenceTemperature',290, ...
    'SampleRate',prm.chanSRate);
rxPreSigAmp = rxPreAmp(rxPreSig);
rxPreSigAmp = rxPreSigAmp * ...         % scale power
    (sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));

% OFDM Demodulation
demodulatorOFDM = comm.OFDMDemodulator( ...
     'FFTLength',prm.FFTLength, ...
     'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
     'RemoveDCCarrier',true, ...
     'PilotOutputPort',true, ...
     'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
     'CyclicPrefixLength',prm.CyclicPrefixLength, ...
     'NumSymbols',numSTS, ... % preamble symbols alone
     'NumReceiveAntennas',numRx);

rxOFDM = demodulatorOFDM( ...
    rxPreSigAmp(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));
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% Channel estimation from preamble
%       numCarr, numSTS, numRx
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

% Calculate the feedback weights
v = diagbfweights(hD);

For conciseness in presentation, front-end synchronization including carrier and timing recovery are
assumed. The weights computed using diagbfweights are hence fed back to the transmitter, for
subsequent application for the actual data transmission.

Data Transmission

Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
precoding of the transmit streams, OFDM modulation with pilot mapping and replication for the
transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder( ...
    'TrellisStructure',poly2trellis(7,[133 171 165]), ...
    'TerminationMethod','Terminated');

% Generate mapped symbols from bits
txBits = randi([0, 1],prm.numFrmBits,1);
encodedBits = encoder(txBits);

% Bits to QAM symbol mapping
mappedSym = qammod(encodedBits,prm.modMode,'InputType','Bit', ...
    'UnitAveragePower',true);

% Map to layers: per symbol, per data stream
gridData = reshape(mappedSym,prm.numCarriers,prm.numDataSymbols,numSTS);

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
    for carrIdx = 1:prm.numCarriers
        Q = squeeze(v(carrIdx,:,:));
        normQ = Q * sqrt(numTx)/norm(Q,'fro');
        preData(carrIdx,symIdx,:) = ...
            squeeze(gridData(carrIdx,symIdx,:)).' * normQ;
    end
end

% OFDM modulation of the data
modulatorOFDM = comm.OFDMModulator( ...
    'FFTLength',prm.FFTLength,...
    'NumGuardBandCarriers',prm.NumGuardBandCarriers.',...
    'InsertDCNull',true, ...
    'PilotInputPort',true,...
    'PilotCarrierIndices',prm.PilotCarrierIndices.',...
    'CyclicPrefixLength',prm.CyclicPrefixLength,...
    'NumSymbols',prm.numDataSymbols,...
    'NumTransmitAntennas',numSTS);

% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);
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txOFDM = modulatorOFDM(preData,pilots);
txOFDM = txOFDM * (prm.FFTLength/ ...
    sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)); % scale power

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];

% Repeat over numTx
txSig = zeros(size(txSigSTS,1),numTx);
for i = 1:numSTS
    txSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
        repmat(txSigSTS(:,i),1,expFactorTx);
end

For precoding, the preamble signal is regenerated to enable channel estimation. It is prepended to
the data portion to form the transmission packet which is then replicated over the transmit antennas.

Transmit Beam Steering

Phased Array System Toolbox offers components appropriate for the design and simulation of phased
arrays used in wireless communications systems.

For the spatially aware system, the signal transmitted from the base station is steered towards the
direction of the mobile, so as to focus the radiated energy in the desired direction. This is achieved by
applying a phase shift to each antenna element to steer the transmission.

The example uses a linear or rectangular array at the transmitter, depending on the number of data
streams and number of transmit antennas selected.

% Gain per antenna element
amplifier = phased.Transmitter('PeakPower',1/numTx,'Gain',0);

% Amplify to achieve peak transmit power for each element
for n = 1:numTx
    txSig(:,n) = amplifier(txSig(:,n));
end

% Transmit antenna array definition
if isTxURA
    % Uniform Rectangular array
    arrayTx = phased.URA([expFactorTx,numSTS],[0.5 0.5]*prm.lambda, ...
        'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
    % Uniform Linear array
    arrayTx = phased.ULA(numTx, ...
        'ElementSpacing',0.5*prm.lambda, ...
        'Element',phased.IsotropicAntennaElement('BackBaffled',true));
end

% For evaluating weights for steering
SteerVecTx = phased.SteeringVector('SensorArray',arrayTx, ...
    'PropagationSpeed',prm.cLight);

% Generate weights for steered direction
wT = SteerVecTx(prm.fc,prm.steeringAngle);
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% Radiate along the steered direction, without signal combining
radiatorTx = phased.Radiator('Sensor',arrayTx, ...
    'WeightsInputPort',true, ...
    'PropagationSpeed',prm.cLight, ...
    'OperatingFrequency',prm.fc, ...
    'CombineRadiatedSignals',false);

if prm.enSteering
    txSteerSig = radiatorTx(txSig,repmat(prm.mobileAngle,1,numTx), ...
        conj(wT));
else
    txSteerSig = txSig;
end

% Visualize the array
h = figure('Position',figposition([10 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Geometry';
viewArray(arrayTx);

% Visualize the transmit pattern and steering
h = figure('Position',figposition([32 55 22 30]),'MenuBar','none');
h.Name = 'Transmit Array Response Pattern';
pattern(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
h = figure('Position',figposition([54 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Azimuth Pattern';
patternAzimuth(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
if isTxURA
    h = figure('Position',figposition([76 55 22 35]),'MenuBar','none');
    h.Name = 'Transmit Array Elevation Pattern';
    patternElevation(arrayTx,prm.fc,'PropagationSpeed',prm.cLight, ...
        'Weights',wT);
end
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The plots indicate the array geometry and the transmit array response in multiple views. The
response shows the transmission direction as specified by the steering angle.
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The example assumes the steering angle known and close to the mobile angle. In actual systems, this
would be estimated from angle-of-arrival estimation at the receiver as a part of the channel sounding
or initial beam tracking procedures.

Signal Propagation

The example offers three options for spatial MIMO channels and a simpler static-flat MIMO channel
for evaluation purposes.

The WINNER II channel model [ 5 ] is a spatially defined MIMO channel that allows you to specify the
array geometry and location information. It is configured to use the typical urban microcell indoor
scenario with very low mobile speeds.

The two scattering based channels use a single-bounce path through each scatterer where the
number of scatterers is user-specified. For this example, the number of scatterers is set to 100. The
'Scattering' option models the scatterers placed randomly within a circle in between the transmitter
and receiver, while the 'ScatteringFcn' models their placement completely randomly.

The models allow path loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear geometry.

% Apply a spatially defined channel to the steered signal
[rxSig,chanDelay] = helperApplyChannel(txSteerSig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission, with the data transmission having
a longer duration controlled by the number of data symbols parameter, prm.numDataSymbols.

Receive Beam Steering

The receiver steers the incident signals to align with the transmit end steering, per receive element.
Thermal noise and receiver gain are applied. Uniform linear or rectangular arrays with isotropic
responses are modeled to match the channel and transmitter arrays.

rxPreAmp = phased.ReceiverPreamp( ...
    'Gain',gainFactor*spLoss, ... % accounts for path loss
    'NoiseFigure',prm.NFig, ...
    'ReferenceTemperature',290, ...
    'SampleRate',prm.chanSRate);

% Front-end amplifier gain and thermal noise
rxSigAmp = rxPreAmp(rxSig);
rxSigAmp = rxSigAmp * ...           % scale power
    (sqrt(prm.FFTLength - sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));

% Receive array
if isRxURA
    % Uniform Rectangular array
    arrayRx = phased.URA([expFactorRx,numSTS],0.5*prm.lambda, ...
        'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
    % Uniform Linear array
    arrayRx = phased.ULA(numRx, ...
        'ElementSpacing',0.5*prm.lambda, ...
        'Element',phased.IsotropicAntennaElement);
end
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% For evaluating receive-side steering weights
SteerVecRx = phased.SteeringVector('SensorArray',arrayRx, ...
    'PropagationSpeed',prm.cLight);

% Generate weights for steered direction towards mobile
wR = SteerVecRx(prm.fc,toRxAng);

% Steer along the mobile receive direction
if prm.enSteering
    rxSteerSig = rxSigAmp.*(wR');
else
    rxSteerSig = rxSigAmp;
end

% Visualize the array
h = figure('Position',figposition([10 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Geometry';
viewArray(arrayRx);

% Visualize the receive pattern and steering
h = figure('Position',figposition([32 20 22 30]));
h.Name = 'Receive Array Response Pattern';
pattern(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
h = figure('Position',figposition([54 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Azimuth Pattern';
patternAzimuth(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
if isRxURA
    figure('Position',figposition([76 20 22 35]),'MenuBar','none');
    h.Name = 'Receive Array Elevation Pattern';
    patternElevation(arrayRx,prm.fc,'PropagationSpeed',prm.cLight, ...
        'Weights',wR);
end
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The receive antenna pattern mirrors the transmission steering.

Signal Recovery

The receive antenna array passes the propagated signal to the receiver to recover the original
information embedded in the signal. Similar to the transmitter, the receiver used in a MIMO-OFDM
system contains many components, including OFDM demodulator, MIMO equalizer, QAM
demodulator, and channel decoder.

demodulatorOFDM = comm.OFDMDemodulator( ...
     'FFTLength',prm.FFTLength, ...
     'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
     'RemoveDCCarrier',true, ...
     'PilotOutputPort',true, ...
     'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
     'CyclicPrefixLength',prm.CyclicPrefixLength, ...
     'NumSymbols',numSTS+prm.numDataSymbols, ... % preamble & data
     'NumReceiveAntennas',numRx);

% OFDM Demodulation
rxOFDM = demodulatorOFDM( ...
    rxSteerSig(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));

% Channel estimation from the mapped preamble
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

% MIMO Equalization
[rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD);

% Soft demodulation
scFact = ((prm.FFTLength-sum(prm.NumGuardBandCarriers)-1) ...
         /prm.FFTLength^2)/numTx;
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nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
rxSymbs = rxEq(:)/sqrt(numTx);
rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
    'OutputType','approxllr','NoiseVariance',nVar);

% Apply CSI prior to decoding
rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
                   prm.numDataSymbols,numSTS);
csitmp = reshape(CSI,1,[],1,numSTS);
rxScaledLLR = rxLLRtmp.*csitmp;

% Soft-input channel decoding
decoder = comm.ViterbiDecoder(...
     'InputFormat','Unquantized', ...
     'TrellisStructure',poly2trellis(7, [133 171 165]), ...
     'TerminationMethod','Terminated', ...
     'OutputDataType','double');
rxDecoded = decoder(rxScaledLLR(:));

% Decoded received bits
rxBits = rxDecoded(1:prm.numFrmBits);

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits.

% Display received constellation
constDiag = comm.ConstellationDiagram( ...
    'SamplesPerSymbol',1, ...
    'ShowReferenceConstellation',true, ...
    'ReferenceConstellation', ...
    qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',true), ...
    'ColorFading',false, ...
    'Position',figposition([20 20 35 40]), ...
    'Title','Equalized Symbols', ...
    'EnableMeasurements',true, ...
    'MeasurementInterval',length(rxSymbs));
constDiag(rxSymbs);

% Compute and display bit error rate
ber = comm.ErrorRate;
measures = ber(txBits,rxBits);
fprintf('BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
    measures(1),measures(3),measures(2));

rng(s); % Restore RNG state

BER = 0.00000; No. of Bits = 74874; No. of errors = 0
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Conclusion and Further Exploration

The example highlighted the use of phased antenna arrays for a beamformed MIMO-OFDM system. It
accounted for the spatial geometry and location of the arrays at the base station and mobile station
for a single user system. Using channel sounding, it illustrated how precoding is realized in current
wireless systems and how steering of antenna arrays is modeled.

Within the set of configurable parameters, you can vary the number of data streams, transmit/receive
antenna elements, station or array locations and geometry, channel models and their configurations
to study the parameters' individual or combined effects on the system. E.g. vary just the number of
transmit antennas to see the effect on the main lobe of the steered beam and the resulting system
performance.

The example also made simplifying assumptions for front-end synchronization, channel feedback,
user velocity and path loss models, which need to be further considered for a practical system.
Individual systems also have their own procedures which must be folded in to the modeling [ 2, 3, 4 ].

Explore the following helper functions used:

• helperApplyChannel.m
• helperArrayInfo.m
• helperGenPilots.m
• helperGenPreamble.m
• helperGetP.m
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• helperMIMOChannelEstimate.m
• helperMIMOEqualize.m
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Airplane Tracking with ADS-B Captured Data
This example shows how to implement the Automatic Dependent Surveillance - Broadcast (ADS-B)
receiver for HDL code generation and hardware implementation. This example decodes ADS-B
extended squitter messages which can be used to track the airplane. The HDL-optimized model in
this example uses Simulink® blocks that support HDL code generation to implement the ADS-B
Receiver. This example model is used for real-time processing in “HW/SW Co-Design Implementation
of ADS-B Receiver Using Analog Devices AD9361/AD9364” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio), which requires the Communications Toolbox™ Support
Package for Xilinx® Zynq®-Based Radio.

Introduction

ADS-B is an air traffic management and control surveillance system. The broadcast messages
(approximately once per second) contain the flight information including position and velocity. For
introduction on ADS-B technology and modes of transmission, see [ 1 ]. The HDLRx subsystem is
optimized for HDL code generation. The captured received signal is streamed into the receiver
(HDLRx subsystem) front end. The streaming output of the receiver is buffered and passed to the
MapResults MATLAB® function to view the output.

Structure of the Example

The model supports both Normal and Accelerator modes. The top-level structure of the ADS-B
receiver model is shown in the following figure.

The receiver input data is captured using “HW/SW Co-Design Implementation of ADS-B Receiver
Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for Xilinx Zynq-
Based Radio) running on the Zynq® platform. The captured data represents the baseband received
signal with a sampling rate of 4 MHz. The data contains 8 frames of extended squitter messages. The
ADS-B transmitter modulates the 112-bit extended squitter messages using 2-bit pulse-position
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modulation, and adds a 16-bit prefix. Then, to generate 4 MHz data, each 240-bit message is zero-
padded and upsampled by 2.

This diagram shows the detailed structure of the HDLRx subsystem.

The subsystems listed here are described further in the following sections.

1. Magnitude Calculation - Finds the complex modulus of the received input signal

2. Threshold Calculation - Calculates the threshold value based on received input signal strength

3. Correlation with Preamble - Correlates the received signal with reference signal to detect the
preamble

4. Timing Control - Provides timing synchronization for the receiver

5. Bit Process - Decodes symbols using PPM demodulation

6. Compute CRC and Frame Validation - Validates the frame by checking for CRC errors

HDL Optimized ADS-B Receiver

1. Magnitude Calculation

The inputs to the Magnitude Calculation subsystem are the in-phase (real) and quadrature
(imaginary) phase samples. This subsystem outputs the modulus of the complex number. The
sqrt(I^2+Q^2) can be approximated by the "|L|+0.4*|S| algorithm" described on page 238 of [ 2 ].

where

| L | is the larger value of | I | or | Q |

| S | is the smaller value of | I | or | Q |.

The Gain block converts received input from 12-bit to 16-bit word length.
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For the implementation of "|L|+0.4|S| algorithm", see the following model.

2. Threshold Calculation

The Threshold Calculation subsystem calculates the signal energy and applies a scaling factor to
create a threshold for preamble detection. Moving Average Filter is a serial FIR filter architecture
with 32 coefficients that operates on the magnitude values. The coefficients of the FIR filter are
selected to find the average energy of the received signal. This example scales the signal energy by 5
to detect valid ADS-B preambles. For details on FIR filter, see Discrete FIR Filter (Simulink).

3. Correlation with Preamble

The Correlation with Preamble subsystem correlates the received signal with the ADS-B reference/
preamble sequence [1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0] using a peak detection filter. The peak detection
filter is a serial FIR Filter architecture, configured with coefficients that match the preamble
sequence. Preamble correlation identifies potential ADS-B transmissions and aligns our bit detection
algorithm with the first message bit. The preamble is detected if the peak amplitude exceeds the
scaled threshold value. Once the preamble is detected, the correlation value is passed on as
input(SyncCorr) to the Timing Control block.
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4. Timing Control

The Timing Control block is a state machine that detects the preamble and generates the control
signals ActivateBP and Reset, that indicate the start of frame, end of frame and reset status to the Bit
Process and Compute CRC and Frame Validation blocks.

5. Bit Process

The Bit Process subsystem demodulates and down converts the 4 MHz received signal to a 1 MHz
bit sequence. Each data bit is represented by four PPM bits. To demodulate, the block finds the sum
of the first two bits and the last two bits of each quadruplet. Then, it compares the sums to determine
the original bit value. The output valid signal is asserted every fourth cycle to align with 1 MHz bit
sequence.

6. Compute CRC and Frame Validation

This subsystem checks for mismatches in the 24-bit checksum of each 88-bit message. The CRC block
needs an indication of the frame boundaries to determine which bits are the checksum. The rising
edge of the ActivateBP signal generated from the Timing Control block indicates the start of frame,
and the falling edge indicates the end of the frame. The start signal is delayed to match the demod
latency. When the block output err signal is zero, the frame is a valid ADS-B message. The subsystem
buffers the message bits until the message is confirmed to have no CRC error.
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Launch Map and Log Data

You can launch the map and start text file logging using the two slider switches (Launch Map and
Data Logging).

Launch Map - Launch the map where the tracked flights can be viewed. NOTE: You must have a
Mapping Toolbox™ license to use this feature.

Data Logging - Save the captured data in a TXT file. You can use the saved data for later for post
processing.

Results and Displays

The HDLRx subsystem demodulates and decodes the ADS-B data and the output is streamed through
Deserializer1D block and MapResults MATLAB function, which produces hexadecimal output
information about the aircraft. Each extended squitter Mode S packet contains partial information
(any of Aircraft ID, Flight ID, Altitude, Speed, and Location) about the aircraft and the table is built
up from multiple messages. The output is obtained as shown in the following diagram. The packet
statistics include the number of detected packets, the number of correctly decoded packets, and
packet error rate (PER). These aircraft details match the transmitted values from the “HW/SW Co-
Design Implementation of ADS-B Receiver Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zynq-Based Radio) example.
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HDL Code Generation and Synthesis Results

Pipeline registers have been added to the model to make sure that HDLRx subsystem does not have a
long critical path. The HDL code generated from the HDLRx subsystem was synthesized using
Xilinx® Vivado® on a Zynq FPGA with the device 7z045ffg900-2, and the design achieves 264.2
MHz clock frequency, which is sufficient to decode the real-time ADS-B signals. The generated HDL
code is tested and verified in the real-time example “HW/SW Co-Design Implementation of ADS-B
Receiver Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for
Xilinx Zynq-Based Radio). To check and generate the HDL code referenced in this example, you must
have an HDL Coder™ license. The following table shows the synthesis results of this example.

You can use the commands makehdl and makehdltb to generate HDL code and a test bench for the
HDLRx subsystem. To generate the HDL code, use the following command:

makehdl('commadsbrxhdl/HDLRx')

To generate a test bench, use the following command:

makehdltb('commadsbrxhdl/HDLRx')
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HDL QAM Transmitter and Receiver
This example shows how to implement a 64-QAM transmitter and receiver for HDL code generation
and hardware implementation.

Overview

The HDL QAM Transmitter and Receiver example shows how to use Simulink® blocks that
support HDL code generation to implement the baseband processing of a digital communications
transmitter and receiver.

The HDL QAM Tx subsystem generates a complex valued, 64-QAM modulated constellation. A
floating point channel model, Channel, is used to add attenuation, channel noise, carrier frequency
offset and fractional delay in order to demonstrate the operation of the receiver subsystem. The HDL
QAM Rx subsystem implements a practical digital receiver to mitigate the channel impairments
using coarse frequency recovery, timing recovery, frame synchronization and magnitude and phase
recovery. The received data packets are then decoded and printed to the MATLAB® Command
Window by the Text Message Decoding subsystem.

Structure of the Example

The top-level structure of the QAM receiver model is shown in the following figure. The QAM Tx
HDL and QAM Rx HDL subsystems are optimized for HDL code generation.

The detailed structure of the QAM Tx HDL subsystem can be seen in the figure below.

 HDL QAM Transmitter and Receiver

6-9



The QAM Tx HDL subsystem contains the following components, which are described in more detail
in the HDL QAM Transmitter section.

• Data Generation & Packetization - Generates the packets to be transmitted, grouping the bits
for mapping to symbols

• Symbol Mapping - Maps the bits output from the Data Generation & Packetization subsystem
to QAM symbols

• Pulse Shaping - Performs pulse shaping and upsampling of the symbols using an interpolating
RRC (Root Raised Cosine) filter prior to transmission

The structure of the Channel can be seen below. As the Channel subsystem is intended to be a
rough approximation of a AWGN channel with attenuation and frequency offset it is intended to be
run in software. As a result blocks which are not supported for HDL code generation can be used
here, such as the Phase/Frequency Offset block. The Phase/Frequency Offset block does not
support fixed point data types, hence the conversion to double at the input of the Channel
subsystem. The signal is converted back to fixed point before being output from the Channel
subsystem. A fractional delay and AWGN are applied to the transmitted signal and the Gain block
attenuates the signal.

The detailed structure of the QAM Rx HDL subsystem can be seen in the figure below.

6 HDL Coder Featured Examples

6-10



The QAM Rx HDL subsystem contains the following components which are described in more detail
in the HDL QAM Receiver section.

• Automatic Gain Control (AGC) - Normalizes the received signal power

• Coarse Frequency Offset Correction - Estimates the approximate frequency offset and corrects.
The subsystem also contains the receive RRC filter which downsamples by 2

• Timing Recovery - Resamples the input signal according to a recovered timing strobe so that
symbol decisions are made at the optimum sampling instants

• Magnitude & Phase Recovery - Performs packet detection, fine grained phase and amplitude
correction

• Demodulate - Demodulates the signal, de-mapping symbols to bits

The structure of the Text Message Decoding subsystem is shown below.
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This subsystem is expected to be run in software, therefore, it is preferable to employ frame-based
signals to speed up the computation. The Text Message Decoding subsystem has eight sample-
based Boolean input signals: dValid, packetStart and signals bit1 to bit6. Conversion from sample-
based signals to frame-based counterparts is implemented by the dataframer MATLAB function
block. The demodulated bits are valid only when dValid is set high. The dataframer block uses the
dValid signal to fill up a delay line with the received bits and the newPacket signal to forward the
data stored in the delay line to the output and reset the delay line. The Descramble and Print
subsystem processes the received data only when its enable signal goes high. This occurs when either
the delay line accumulates 336 valid demodulated bits or the newPacket signal is high. This will cause
the dataframer to set the RxGo signal high. While the simulation is running, the Descramble and
Print subsystem outputs the string "Hello world! ~64QAM test string~ ###" to the MATLAB
command window, where '###' is a repeating sequence of '000', '001, '002', ..., '099'. Every 50
packets, the bit error rate of the data in the last 50 successfully received packets is also displayed in
the MATLAB Command Window.

HDL QAM Transmitter (HDL QAM Tx)

The HDL Transmitter contains the Data Generation & Packetization, Symbol Mapping, and
Pulse Shaping blocks which are described in detail in the following sections.

1 - Data Generation & Packetization

The Controller FSM (Finite State Machine) and Data Source generates the preamble bits, and the
data bits, performs scrambling and builds the packets. Each packet consists of an 84-bit Barker code
preamble and 252 bits of scrambled data. The Group Bits block converts the input data bit stream
into a six bit integer at 1/6th of the input sampling rate, as required by the symbol mapper.

The Data Source subsystem has a pipeline delay of 2 samples. In addition there is a pipeline delay
between the data source and the bit pairing subsystem. The valid signal is therefore delayed to match
the pipeline delay of the data path. The Group Bits subsystem reduces the sample rate by a factor of
6. Placing a downsample by 6 in the valid control path ensures that the sample rate matches that of
the signal path.

• Controller FSM - The Controller FSM implements a control state machine using a MATLAB™
function block. The FSM has two states - Pack_Preamble and Append_Data. The
Pack_Preamble state asserts the load_preamble signal and de-asserts the reset_preamble and
the load_data signals. The FSM will remain in this state for 84 clock cycles. Following this the
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FSM moves into the Append_Data state, asserting the load_data signal and the reset_preamble
signal while releasing the load_preamble signal. The FSM will remain in this state for 252 clock
cycles. The load_preamble and reset_preamble are boolean and are used to control the
Preamble Address Counter which manages the load of the preamble at the start of each packet.
The load_data signal is boolean and is used to enable the Data Address Counter which controls
the loading of data into the packet.

• Data Source - The Data Source Subsystem contains two LUTs, storing the preamble and data
bits. The preamble lookup LUT is addressed by the Preamble Address Counter, which is
controlled by the reset preamble and load preamble signals generated by the Controller FSM.
The data lookup LUT is addressed by the Data Address Counter, which is enabled by the
load_data signal generated by the Controller FSM. The Preamble Address Counter has a
reset signal, generated by the Controller FSM, as the same preamble is inserted at the start of
each packet. The Data Address Counter does not have a reset signal as the data address
sequence is much longer and will vary for each packet as different data bits are placed within
each packet. In addition to enabling the counter for the data LUT, the load data input is used to
control when the HDL Data Scrambler component should be enabled, and to control selection of
preamble or data bits via the Preamble Data Mux.

• HDL Data Scrambler - The HDL Data Scrambler is shown in the following figure. It is built
from first principles using XOR gates (for modulo 2 addition) and registers. An enabled subsystem
is used here to ensured that the scrambler is only enabled when there is new input data to be
processed.
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• Group Bits - The purpose of the Group Bits subsystem is to group six individual bits into a six-bit
unsigned integer output - the format expected by the symbol mapping component. A number of
delays are used to align 6 bits at the input of the Bit Concat block which concatenates into a six-
bit unsigned output. This output is then downsampled to select the correct grouping of bits.
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2 - Symbol Mapping

The Symbol Mapping subsystem uses the Rectangular QAM Modulator Baseband block to map
the integer input value onto the appropriate 64-QAM complex valued symbol. The block uses a Gray
Mapping scheme.

3 - Pulse Shaping

The Pulse Shaping subsystem uses an RRC Interpolation Filter block with an upsampling factor of
4. A matched filter is implemented in the receiver. The filter is pipelined (see HDL Block Properties).

HDL QAM Receiver (HDL QAM Rx)

The HDL Receiver contains the AGC, Coarse Frequency Offset Correction, Timing Recovery,
Magnitude & Phase Recovery, and Demodulate blocks, which are described in detail in the
following sections.

1 - AGC

The AGC ensures that the amplitude of the input of the Coarse Frequency Compensation is
normalized to the range 1 to -1.

The AGC structure is shown in the following diagram, with pipeline registers shown in green
throughout the model.
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2 - Coarse Frequency Offset Correction

The Coarse Frequency Offset Correction subsystem estimates and corrects for the frequency
offset using the Luise-Reggiannini algorithm [ 1 ]. The Frequency Offset Estimation subsystem
makes an estimate based on the output of the Root Raised Cosine Receive Filter, then frequency
offset correction based on this estimate is applied at the input to the Root Raised Cosine Receive
Filter. This ensures that the desired portion of the received signal bandwidth is better aligned with
the receiver filter frequency response, improving the SNR compared to correcting at the output of
the Root Raised Cosine Receive Filter.

As the estimation and correction algorithm is operating in a closed loop, making iterative updates to
the previous estimates of the frequency offset, the system will gradually converge towards a result. A
Loop Gain is included to implement averaging of the estimates. This architecture is described in
[ 1 ]. The Root Raised Cosine Receive Filter implements a downsampling operation so it is
necessary to upsample the feedback signal, using the repeat block, to match the rate at the input to
the filter.

Note that there is a residual frequency offset at the output of the Coarse Frequency Offset
Correction subsystem that varies over time, even if the frequency offset at the input to the
subsystem remains the same, as new estimates of the offset are made. Fine grained correction of the
residual offset is performed later in the receiver by the Magnitude and Phase Recovery subsystem.
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• Frequency Offset Estimation : The Frequency Offset Estimation subsystem implements the
Luise-Regiannini algorithm, described in [ 1 ]. The signal is first raised to the power four to
implement a 4th power phase estimator as described in [ 2 ]. This is implemented by 2 cascaded
product blocks, with pipelining added to improve hardware performance. The Discrete FIR Filter
implements the filter with rectangular weights, made up of all ones, described in [ 1 ]. The FIR
Scale scales the FIR output to account for the filter gain. The Complex To Magnitude-Angle
HDL Optimized block is used to implement the  function, as required by the Luise-
Reggiannini algorithm. This block computes the phase using the hardware friendly CORDIC
algorithm. For more information, see the Complex to Magnitude-Angle HDL Optimized block in
DSP System Toolbox™. Before the Frequency Offset Estimation subsystem output, the signal is
scaled as required by the Luise-Regiannini algorithm and, in addition, is scaled to match the word
length of the NCO.

3 - Timing Recovery

The Timing Recovery subsystem is shown in the following diagram.
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The Timing Recovery subsystem implements a PLL, described in Chapter 8 of [ 3 ], to correct the
timing error in the received signal. On average, the Timing Recovery subsystem generates one
output sample for every two input samples.

The Interpolation Control function block implements a decrementing modulo-1 counter, described
in Chapter 8.4.3 of [ 3 ], to generate the control signal to facilitate the selection of the interpolants of
the Interpolation Filter. This control signal also enables the Timing Error Detector (TED), so
that it calculates the timing errors at the correct timing instants. The Interpolation Control
subsystem updates the timing difference, mu, for the Interpolation Filter, generating interpolants
at optimum sampling instants.

The Interpolation Filter is a Farrow parabolic filter with  as described in Chapter 8.4.2 of
[ 3 ]. The filter uses an  of 0.5 so that all the filter coefficients become 1, -1/2 and 3/2, which
significantly simplifies the interpolator structure. Based on the interpolants, timing errors are
generated by a zero-crossing Timing Error Detector as described in Chapter 8.4.1 of [ 3 ].

The Interpolation Filter introduces a fractional delay to the signal in order to compensate for the
timing error. The fractional delay is controlled by the mu input signal. When the timing error (delay)
reaches symbol boundaries, there is one extra or missing interpolant in the output. The Timing
Error Detector implements bit stuffing or skipping to handle the extra or missing interpolants.

Refer to Chapter 8.4.4 of [ 3 ] for details of bit stuffing and skipping. The timing recovery loop
normally generates one output symbol for every two input samples. It also outputs a timing strobe
(validOut signal) that runs at the input sample rate. Under normal circumstances, the strobe value is
simply a sequence of alternating ones and zeros. However, this occurs only when the relative delay
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between transmitter and receiver contains some fractional part of one symbol period and the integer
part of the delay (in symbols) remains constant. If the integer part of the relative delay changes, the
strobe value can have two consecutive zeros or two consecutive ones.

4 - Magnitude & Phase Recovery

The Magnitude & Phase Recovery subsystem performs packet synchronization, fine grained
frequency recovery and fine grained amplitude recovery.

• Packet Synchronization: The Preamble Matched Filter subsystem uses the time-reversed
complex conjugate of the preamble as the filter weights. The modulus of the output of the
Preamble Matched Filter subsystem is calculated using the Modulus subsystem. The output of
the Modulus subsystem is then compared to a threshold to detect the preamble at the start of a
packet. The MATLAB function block generates a signal, isPreamble, which is held high for the
duration of the preamble of each packet. The MATLAB function block also generates the dvalid
signal which is set high for the duration of the packet when a preamble has been detected.

• Fine Grained Magnitude and Phase Recovery : The 1-Tap DLMS (Delayed Least Mean
Squares) filter subsystem, adapting over the preamble and using the reference signal generated
by Desired Signal Source, corrects for both phase and magnitude errors. The isPreamble
signal, generated by the MATLAB function block and set high for the 14 preamble symbols once a
packet has been detected, is used to enable the desired signal source and to enable the Adapt
input of the 1-Tap DLMS. When the isPreamble signal is low, the weight in the 1-Tap DLMS is
held and the Desired Signal Source is reset. The Delayed LMS (DLMS) [ 4 ] algorithm is used
here to allow for more pipelining to be introduced and, therefore, reduce the critical path in the
filter and increase the maximum clock rate achievable after being implemented in hardware.

The internal structure of the Desired Signal Source subsystem is shown below. The data lookup
LUT contains the preamble symbols.
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The internal structure of the 1-Tap DLMS subsystem is shown below.

5 - Demodulate

The Demodulate subsystem maps each 64-QAM input symbol to bits, outputting 6 bits for each input
symbol. To generate HDL for the Rectangular QAM Demodulator Baseband block, the minimum
distance between symbols must be set to 2. This is 8 times larger than the distance between the
symbols generated in the transmitter. As a result, the symbols input to the Demodulate subsystem
must be scaled up appropriately. This is done using the Shift Arithmetic block which shifts the
binary point left by 3 bits to achieve the required multiplication by 8.
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Results and Displays

During the simulation, the model displays successfully received packets in the MATLAB Command
Window. At every 50 packets, the bit error rate of the data in the last 50 successfully received packets
is also displayed in the MATLAB Command Window.

After running the simulation, the model displays six different figures illustrating different aspects of
the receiver performance. These are shown below, along with an explanation of each plot. The first
five plots show the adaption, over the simulation duration, of the Automatic Gain Control, the
Frequency Offset Estimation, the Timing Recovery position estimate, the real part of the
constellation at the output of the Timing Recovery subsystem, and at the output of the Magnitude
& Phase Recover subsystem. The last plot shows the constellation diagram at the output of
Magnitude & Phase Recovery subsystem after any adaption has taken place.

• AGC Gain Plot

The following plot illustrates the Automatic Gain Control subsystem adapting over time to
normalize the output. A balance must be struck between how quickly the AGC adapts and how much
ripple there is after the gain has reached a relatively constant level. Using a larger AGC loop gain
adapts faster but the amplitude after adaption varies more. Using a smaller loop gain slows the
adaption of the AGC, smoothing the level after adaption but taking longer to adapt.
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• Frequency Offset Estimate Plot

The following plot illustrates how the coarse frequency offset gradually adapts towards the frequency
offset introduced by the system (the blue horizontal line). It shows that while the estimate comes
close to the actual frequency offset, there is still a residual error that must be addressed later in the
system.
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• Timing Recovery Position Plot

The following plot shows the mu input to the Interpolation Filter. Note that mu converges to a
steady state (with some ripple) over time as the channel delay is not varying during the simulation.
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• Real Part of Timing Recovery Output Plot

The following plot illustrates how the real part of the Timing Recovery subsystem output is
beginning to converge towards the eight distinct amplitude levels expected for 64QAM. However, as
the residual frequency offset remaining after the coarse frequency recovery has not yet been
corrected at this point in the receiver, the quality of the signal varies with the distinct amplitude
levels more clearly visible at some points than at others. The constellation still has some rotation at
this point in the receiver.
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• Real Part of Symbol Estimates Plot

The following plot shows how the real part of output of the Magnitude & Phase Recovery
subsystem adapts over time. Unlike the previous plot, this diagram is generated after the fine
frequency recovery, therefore the constellation should not be rotating. There are no samples initially
as the output from the block is not valid, and then eight clear amplitude levels should be seen -
representing the eight real amplitude levels of the 64-QAM constellation.
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• Recovered Constellation Plot

The following plot shows the constellation at the output of the Magnitude & Phase Recovery
subsystem after the system has had time to adapt to the channel. Reducing the channel noise should
reduce the size of each of the constellation points; increasing the channel noise begins to merge the
distinct constellation points together. If the system has not successfully corrected for the frequency
offset, then rotation of the constellation is visible here.
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HDL QPSK Transmitter and Receiver
This example shows how to implement a QPSK transmitter and receiver in Simulink® that is
optimized for HDL code generation and hardware implementation.

The model shown in this example modulates data based on quadrature phase shift keying (QPSK).
The goal of this example is to model an HDL QPSK communication system that can transmit and
recover information for a real-time system. The receiver implements symbol timing synchronization
and carrier frequency and phase synchronization, which are essential in a single-carrier
communication system.

System Specifications

This section explains the specifications of the transmitter and receiver used in this example. The
frame format is packet based. Each packet has a preamble of length 26 bits. Each bit of the 13 bit
Barker sequence is repeated twice to generate a preamble sequence such that the same bit is
modulated in the in phase and quadrature phase by the QPSK Modulator. The preamble sequence is
followed by 2240 bits of payload data. The transmitter runs using a root raised cosine (RRC) pulse-
shaping filter with a roll-off factor of 0.5, resulting in a bandwidth of 1.5 times the symbol rate and
four samples per symbol (sample rate of four times the symbol rate). The RRC impulse response
spans over four adjacent symbols. The bit rate is twice the symbol rate. The effective average bit rate
is the bit rate times the frame efficiency. The frame efficiency is (2240/(2240+26)) = 0.9885.

The default symbol rate is set to 1.92 Mbaud, which results in a bandwidth of 1.5 times 1.92e6, which
equals 2.88 MHz, and a sample rate of 4 times 1.92e6, which equals 7.68 Msps, bit rate of 2 times
1.92e6, which equals 3.84 Mbps. The effective average bit rate supported by this system is 0.9885
times 3.84e6, which equals 3.7959 Mbps. These specifications change with a change in the symbol
rate.

Model Architecture

This section explains the high-level architecture of the QPSK transmitter and receiver as in the block
diagram. The QPSK transmitter samples the input at a bit rate of twice the symbol rate. The Data
Generator & Packetizer collects the data bits, generates the preamble bits, and forms the packet bits.
The HDL Data Scrambler scrambles the data bits of each packet to increase bit transitions and avoid
long running sequences of the same bit. The QPSK Modulator modulates the packet bits to generate
QPSK symbols. The RRC Transmit Filter upsamples and pulse-shapes the QPSK symbols to generate
the Tx Waveform at a sample rate of four times that of the symbol rate. The QPSK receiver samples
the input at the transmission rate. The Digital AGC performs gain control to the desired amplitude
level of the received waveform. The RRC Receive Filter performs matched filtering on the AGC
output. The Frequency and Time Synchronizer performs synchronization operations and generates
QPSK symbols for each packet. The QPSK Demodulator demodulates the QPSK symbols to generate
packet bits. The HDL Data Descrambler descrambles the packet data bits that stream out of the
receiver.
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File Structure

One Simulink model and three MATLAB® files construct this example.

• commhdlQPSKTxRx.slx — Top-level Simulink model
• commhdlQPSKTxRxParameters.m — Generates parameters for QPSK Tx and QPSK Rx required

for initialization
• commhdlQPSKTxRxModelInit.m — Initializes the model commhdlQPSKTxRx.slx
• generateHelloworldMsgBits.m — Generates "Hello world xxx " message bits. xxx refers to

any value from 000 to 100

System Interface

This figure shows the top-level model of the QPSK transmitter and receiver system.
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Transmitter Inputs

• dataIn — Input data, specified as a Boolean scalar.
• validIn — Control signal to validate the dataIn , specified as a Boolean scalar.

Transmitter Outputs

• dataOut — Output transmitted waveform, returned as 16-bit complex data at a sample rate four
times that of the symbol rate.

• validOut — Control signal to validate the dataOut , returned as a Boolean scalar.
• txDiagBus — Status signal with diagnostic outputs, returned as a Bus signal.
• dataReady — Signal to indicate a ready for the input signals, returned as a Boolean scalar.

The transmitter enables the dataReady signal to indicate that it is ready to accept input bits. The
transmitter constructs a packet after it accepts all the data bits corresponding to that packet. If all
the data bits corresponding to that packet are not received, the transmitter generates dummy
packets. For a dummy packet, the Barker sequence is not used for the preamble and the data bits are
generated randomly internally. As long as the input bit rate is less than or equal to the effective bit
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rate, the dataReady signal remains high so that the input does not get any back pressure from
dataReady.

Receiver Inputs

• dataIn — Input data, specified as a 16-bit complex data with sample rate as the transmitter
output.

• validIn — Control signal to validate the dataIn, specified as a Boolean scalar.

Receiver Outputs

• dataOut — Decoded output data bits, returned as a Boolean scalar.
• ctrlOut — Bus signal with start, end, and valid signals, returned as a bus signal.
• rxDiagBus — Status signal with diagnostic outputs, returned as a bus signal.

Transmitter Structure

This figure shows the top-level model of the QPSK Tx subsystem.

Bit Packetizer

The Bit Packetizer subsystem consists of a Packet Controller MATLAB function, a Bits Store, and a
Multiplexer subsystem. The preamble sequence is stored in an look up table (LUT) inside the
Preamble Bits Store subsystem. The data bits stream into the Bits Store subsystem and are stored in
a RAM inside the Data Bits Store subsystem. The Packet Controller MATLAB function reads the
preamble sequence followed by the data bits stored in the RAM for each packet. The Multiplexer
subsystem streamlines the preamble bits and the data bits.

 HDL QPSK Transmitter and Receiver

6-31



6 HDL Coder Featured Examples

6-32



The Data Bits Store subsystem consists of a RAM that can store two packets. This RAM provides the
flexibility to operate the transmitter with a discrete valid input. The Packet Controller MATLAB
function reads data from the RAM only if the RAM contains a minimum of one packet of the data bits.
The read and write logic is designed in such a way that the RAM does not overflows. When the RAM
does not contain a minimum of one packet of the data bits, the transmitter generates a dummy
packet. The Preamble does not use the Barker sequence for a dummy packet so that preamble
detection does not detect it.
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HDL Data Scrambler

The HDL Data Scrambler subsystem scrambles the data bits in each packet by using the control
signals generated by the Bits Generator subsystem.

QPSK Modulator

The QPSK Modulator subsystem uses the QPSK Modulator Baseband block to modulate the preamble
and data bits to generate QPSK symbols. It uses a gray mapping as described in this table.

    Bits         Mapping     
    ____    _________________
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     00     0.70711+0.70711i 
     01     -0.70711+0.70711i
     11     -0.70711-0.70711i
     10     0.70711-0.70711i 

RRC Transmit Filter

The RRC Transmit Filter subsystem upsamples the input by a factor of four and uses the Discrete FIR
Filter HDL Optimized block with an RRC impulse response to pulse-shape the transmitter waveform.
The receive filter in the QPSK Receiver forms a matched filter to this transmit filter.

Receiver Structure

This figure shows the top-level model of the QPSK Rx subsystem.

Automatic Gain Control
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As the input signal amplitude affects the symbol and carrier synchronizer PLL performance, the
Automatic Gain Control subsystem is placed ahead of them. The magnitude squared output is
compared with the AGC reference to generate an amplitude error. This error is multiplied with the
loop gain and passed through an integrator to calculate the required gain. The resulted gain is
multiplied with the AGC input to generate the AGC output. For more information, see Chapter 9.5 of
[ 1 ].

RRC Receive Filter

The RRC Receive Filter is a Discrete FIR Filter HDL Optimized block with matched filter coefficients
of the filter used for pulse-shaping in the transmitter. The RRC matched filtering generates an RC
pulse-shaped waveform, which has zero ISI characteristics at maximum eye opening in the eye
diagram of the waveform. Also, the matched filtering process maximizes the signal to noise power
ratio (SNR) of the filter output.

Frequency and Time Synchronizer

The Frequency and Time Synchronizer subsystem performs symbol synchronization, carrier
synchronization, and preamble detection for packet synchronization. It also estimates and resolves
the phase ambiguity that is left uncorrected in carrier synchronization.

The Symbol Synchronizer subsystem is a PLL-based implementation. It generates samples at the
optimum time instant (maximum eye opening instant) as described in Chapter 8.5 of [ 1 ]. The
subsystem generates one output sample for every four input samples. The Interpolation Filter
subsystem implements a piecewise parabolic interpolator with a hardware resource efficient farrow
structure as described in Chapter 8.4.2, and the farrow coefficients are tabulated in Table 8.4.1 (the

6 HDL Coder Featured Examples

6-36



free parameter  of the coefficients is taken as 0.5) of [ 1 ]. This filter introduces fractional delays in
the input waveform. The Gardner TED subsystem implements a Gardner timing error detector. The
timing error detector is described in Chapter 8.4.1 of [ 1 ]. The loop filter filters the timing error and
the timing error is passed on to the Interpolation Control MATLAB function block. This block
implements a mod-1 decrementing counter to calculate fractional delays based on the loop filtered
timing error as described in Chapter 8.4.3 of [ 1 ] to generate interpolants at optimum sampling
instants. The Rate Handle subsystem selects the required interpolant indicated by the strobe. This
sample corresponds to the maximum eye opening of the eye diagram before symbol synchronization.

The Carrier Synchronizer subsystem is a TYPE II PLL with a sinusoidal phase error detector, which
operates at a 45 degrees operating point. The phase error detector is described in Chapter 7.2.2, and
the design equations are described in the Appendix C of [ 1 ]. A detailed analysis of TYPE II PLL with
a zero operating point sinusoidal phase detector is described in Chapter 4 of [ 2 ]. The sign function
of the phase detector in the real and imaginary parts converts all of the angles in the 4 quadrants into
a first-quadrant angle (0 to 90 degrees), which creates an ambiguity of 90,180,270 degrees for
second (90 to 180 degrees), third (-180 to -90 degrees) and fourth (-90 to 0 degrees) quadrant angles,
respectively. The phase error is calculated as a deviation from the operating point (45 degrees) of the
phase detector. The proportional plus integrator filter in the Loop Filter subsystem filters the phase
error. The loop filter sets the normalized loop bandwidth (normalized by the sample rate) and the loop
damping factor. The default normalized loop bandwidth is set to 0.005, and the default damping
factor is set to 0.7071. The filtered error is given as a phase increment source to the Direct Digital
Synthesis subsystem, which uses the NCO HDL Optimized block for complex exponential phase
generation. The complex exponential phase is used to correct the frequency and phase of the input. A
detailed analysis of direct digital synthesis is described in Chapter 9.2.2 of [ 1 ].
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The Preamble Detector subsystem performs continuous correlation for the input with the Barker
sequence. The correlation is implemented as convolution with the reversed Barker sequence as
coefficients for the Discrete FIR Filter HDL Optimized block, and the magnitude of the correlated
output is found using the Complex to Magnitude-Angle HDL Optimized block inside the Correlator
subsystem. The magnitude of the correlation is compared with a threshold. The Peak Search
subsystem begins searching for the maximum correlation peak that exceeded the threshold for every
one frame duration and records the timing offset. The Timing Adjust subsystem synchronizes packet
timing based on the timing offset to generate syncPulse signal, which indicates a packet
synchronized sample to the subsequent subsystem.

The Phase Ambiguity Estimation and Correction subsystem works based on the unique word method
for phase ambiguity resolution described in Chapter 7.7.1 of [ 1 ]. This method uses the preamble
sequence as the reference sequence. The reference sequence is conjugated and multiplied with the
preamble sequence in the input, and the residual phase is extracted as the phase ambiguity estimate.
This estimate is used to correct the ambiguity by rotating the constellation in the opposite direction
of ambiguity.
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The Packet Controller subsystem generates control signals for the packet boundaries.

QPSK Demodulator

The QPSK Demodulator subsystem uses the QPSK Demodulator Baseband block to demodulate the
packet synchronized symbols and generate bits.

HDL Data Descrambler

The HDL Data Descrambler subsystem descrambles the demodulated bits to generate the user bits.
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Run the Model

The QPSKTxRxVerification.m script describes a procedure to initialize, generate inputs, run, and
verify the commhdlQPSKTxRx.slx model by using the commhdlQPSKTxRxModelInit.m
initialization script. You can assign custom data to the variables from the Custom Frame
Configuration section in this script and run the script to run the model. This verification script
generates a reference waveform within the script, compares the reference waveform with the
transmitter output, and compares the transmitted bits with the decoded user bits.

Verification and Results

Run QPSKTxRxVerification.m to run the model.

>> QPSKTxRxVerification

Tx:
Maximum QPSK Tx symbol error: Real:1.4496e-05 Imaginary:1.4496e-05

Maximum QPSK Tx waveform error: Real:7.8708e-05 Imaginary:7.8708e-05

Rx:
Number of packets missed = 0 out of 10

Number of packets false detected = 0 out of 10

Number of bits errored = 0 out of 20160
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HDL Code Generation

Pipeline registers (shown in cyan) are added throughout the model to make sure the transmitter and
receiver subsystems do not have a long critical path.

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product.

To generate the HDL code for transmitter and receiver subsystems, update the models and use the
following command:

  makehdl('commhdlQPSKTxRx/QPSK Tx')  and   makehdl('commhdlQPSKTxRx/QPSK Rx')

To generate test bench, use the following command:

  makehdltb('commhdlQPSKTxRx/QPSK Tx')  and   makehdltb('commhdlQPSKTxRx/QPSK Rx')

Test bench generation time depends on the simulation time.

The resulting HDL code is synthesized for the Xilinx® Zynq®-7000 ZC706 evaluation board. The post
place and route resource utilization is shown in this table. The maximum frequency of operation is
280 MHz for the transmitter and 215 MHz for the receiver.
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       Resources       Tx Usage    Rx Usage
    _______________    ________    ________

    Slice Registers      318         6231  
    Slice LUT            137         4506  
    RAMB36               0           8     
    RAMB18               1           0     
    DSP48                18          88    

Further Exploration

You can modify the channel conditions by tuning the variables listed in this table in the
QPSKTxRxVerification.m script and then running the script. The script applies the channel
conditions and runs the model.

        Variable Name                                               Description                                      
    ______________________    _______________________________________________________________________________________

    dataBits                  Data bits to the transmitter                                                           
    Rsym                      Symbol rate specified in symbols per second                                            
    fractionalTimingOffset    Normalized timing phase offset specified in the range >= 0 and < 1                     
    timingFrequencyOffset     Timing frequency offset specified in PPM                                               
    EbN0dB                    Energy per information bit to single sided noise power spectral density specified in dB
    CFO                       Carrier frequency offset specified in Hz                                               
    CPO                       Carrier phase offset specified in degrees                                              

References

1. Michael Rice, Digital Communications - A Discrete-Time Approach, Prentice Hall, April 2008.

2. Floyd M.Gardner, Phaselock Techniques, Third Edition, John Wiley & Sons, Inc., 2005

See Also
Blocks
QPSK Modulator Baseband | QPSK Demodulator Baseband
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UWB Ranging Using IEEE 802.15.4z
This example shows how to estimate distance between two devices as per the IEEE® 802.15.4z™
standard [ 2 ] on page 7-0  by using features in the Communications Toolbox™ Library for ZigBee®
and UWB add-on.

Overview

The IEEE 802.15.4z amendment [ 2 ] on page 7-0  of the IEEE® 802.15.4 standard [ 1 ] on page 7-
0  specifies the MAC and PHY layers, and associated ranging and localization using ultra wideband
(UWB) communication. The very short pulse durations of UWB allow a finer granularity in the time
domain and therefore more accurate estimates in the spatial domain.

The key ranging and localization functionality of the 802.15.4z amendment includes three MAC-level
techniques:

• Single-Sided Two-Way Ranging (SS-TWR) - One device estimates the distance between two devices
by using frame transmission in both directions of a wireless 802.15.4z link.

• Double-Sided Two-Way Ranging (DS-TWR) - Both devices estimate the distance between the two
devices by using frame transmission in both directions of a wireless 802.15.4z link.

• One-Way Ranging / Time-Difference of Arrival (OWR/TDOA) - Network-assisted localization
whereby one device communicates with a set of synchronized nodes to estimate the position of the
device. This technique is demonstrated in the “UWB Localization Using IEEE 802.15.4z” on page
7-9 example.

This example demonstrates the SS-TWR technique by using PHY frames that are compatible with the
IEEE 802.15.4 standard [ 1 ] on page 7-0  and the IEEE 802.15.4z amendment [ 2 ] on page 7-0 .
For more information on generating PHY-level IEEE 802.15.4z waveforms, see the “HRP UWB IEEE
802.15.4a/z Waveform Generation” on page 7-23 example.

Single-Sided Two-Way Ranging (SS-TWR)

Two-way ranging involves frame transmission in both directions of a wireless 802.15.4z link. Single-
sided ranging means that only one of the two devices estimates the distance between them.

Each frame is timed at its ranging marker (RMARKER), which is the time of the first symbol following
the start-of-frame delimiter (SFD). For more information on the fields in the transmitted frame, see
the “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-23 example. The ranging
responder device, transmits the response frame after a certain reply time (Treply). The ranging
initiator device computes the round-trip time (Tround) as the time-distance between the RMARKERs
of the transmitted and the response frames. Treply is communicated from the ranging responder
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device to the ranging initiator device, so that the latter estimates the propagation time (Tprop) as
Tprop = (Tround - Treply)/2.

The IEEE 802.15.4z amendment [ 2 ] on page 7-0  specifies multiple possibilities for sharing Treply:

• Communication of Treply from the responder to the initiator is deferred, and performed with
another message following the response frame.

• Embed Treply in the response frame.
• Set Treply to a fixed value known between the initiator and the responder.

This example considers the fixed reply time scenario between the two devices.

IEEE 802.15.4 [ 1 ] on page 7-0  specifies that the exchanged frames must be a Data frame and its
acknowledgement. The IEEE 802.15.4z amendment [ 2 ] on page 7-0  relaxes this specification and
allows the ranging measurement to be performed over any pair of transmitted and response frames.
However, for the fixed reply time scenario, the 802.15.4z amendment specifies exchange of scrambled
timestamp sequence packet configuration option three (SP3) frames. SP3 frames contain a scrambled
timestamp sequence (STS) and no PHY header (PHR) or payload.

This example focuses on the basic ranging exchange without demonstrating the preceding set-up and
following finish-up activities associated with the ranging procedure.

Setup

Confirm installation of the Communications Toolbox™ Library for ZigBee® and UWB add-on.

% Ensure that the ZigBee/UWB add-on is installed:
commSupportPackageCheck('ZIGBEE');

Determine the actual distance and Tprop, and initialize visualizations. Configure a timescope object
to plot the initiator and responder signals.

c = physconst('LightSpeed');    % Speed of light (m/s)
actualDistance = 5;             % In meters
actualTprop = actualDistance/c; % In seconds
SNR = 30;                       % Signal-to-Noise ratio
symbolrate = 499.2e6;           % Symbol rate for HRP PHY
sps = 10;                       % Samples per symbol
ts = timescope( ...
    SampleRate=sps*symbolrate, ...
    ChannelNames={'Initiator','Responder'}, ...
    LayoutDimensions=[2 1], ...
    Name='SS-TWR');
ts.YLimits = [-0.25 0.25];
ts.ActiveDisplay = 2;
ts.YLimits = [-0.25 0.25];

Transmitted Frame

Transmission from Initiator

Generate the waveform containing SP3 PHY frames (with no MAC frame/PSDU) to be transmitted
between the devices. Register the transmitted frame on the timeline of the initiator.

sp3Config = lrwpanHRPConfig( ...
    Mode='HPRF', ...
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    STSPacketConfiguration=3, ...
    PSDULength=0, ...
    Ranging=true);
sp3Wave = lrwpanWaveformGenerator([],sp3Config);
[transmitFrame,responseFrame] = deal(sp3Wave);

% start initiator time at the start of transmission
initiatorView = transmitFrame; 

Wireless Channel

Filter the transmission frame through an AWGN channel and add propagation delay. Then, update
timeline for both link endpoints.

samplesToDelay = actualTprop*sp3Config.SampleRate;
receivedTransmitted = lclDelayWithNoise( ...
    transmitFrame,samplesToDelay,SNR);

initiatorView = [initiatorView; zeros(ceil(samplesToDelay),1)];
responderView = receivedTransmitted;

Reception at Responder

At the responder side, detect the preamble of the 802.15.4z PHY frame, and then process the
transmitted frame. Preamble detection consists of determining the first instance of the preamble out
of Nsync = PreambleDuration. Plot the initiator and responder views on a timescope.

ind = lrwpanHRPFieldIndices(sp3Config); % length (start/end) of each field

sp3Preamble = sp3Wave(1:ind.SYNC(end)/sp3Config.PreambleDuration);
preamPos = helperFindFirstHRPPreamble( ...
    receivedTransmitted,sp3Preamble,sp3Config);

ts(initiatorView,responderView);
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Response Frame

Transmission from Responder

Set the Treply time to the length of three SP3 frames to specify when to transmit the response frame.
Set the first and last RMARKER sample indices on the responder side to be the beginning of first
post-SFD symbol and Treply samples later. After Treply samples, transmit the response frame from
the responder device.

Treply = 3*length(sp3Wave); % in samples

% Find RMARKERs at responder side
frameStart = 1+preamPos-ind.SYNC(end)/sp3Config.PreambleDuration;
sfdEnd = frameStart + ind.SYNC(end) + diff(ind.SFD);
RMARKER_R1 = sfdEnd+1;                                    
RMARKER_R2 = RMARKER_R1 + Treply;

% Transmit after Treply. Find how long the responder needs to remain idle.
idleResponderTime = Treply - diff(ind.STS)-1 - diff(ind.SHR)-1;
responderView = [responderView; zeros(idleResponderTime,1); responseFrame; zeros(ceil(samplesToDelay),1)];

initiatorView = [initiatorView; zeros(idleResponderTime, 1)];

Wireless Channel

Filter the transmission frame through an AWGN channel and add propagation delay. Then, update
timeline for both link endpoints.
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receivedResponse = lclDelayWithNoise( ...
    responseFrame,samplesToDelay,SNR);
initiatorView = [initiatorView; receivedResponse];

Reception at Initiator

Back at the initiator side, detect the preamble of the 802.15.4z PHY frame, and then process the
transmitted frame.

txFrameEnd = ind.STS(end);
preamPos = helperFindFirstHRPPreamble( ...
    initiatorView(txFrameEnd+1:end),sp3Preamble,sp3Config);

Range Estimation

Estimate the propagation delay and the distance between two devices. Set the first and last
RMARKER sample indices on the initiator side to be the start of transmission (which is known at t=0)
and the beginning of first post-SFD symbol. Use the RMARKERs, Tround, and Tprop to estimate the
distance between initiator and responder.

RMARKER_I1 = 1+ind.SFD(end);
frameStart = 1+preamPos-ind.SYNC(end)/sp3Config.PreambleDuration;
sfdEnd = txFrameEnd + frameStart + ind.SYNC(end) + diff(ind.SFD);
RMARKER_I2 = sfdEnd+1;

Tround = RMARKER_I2 - RMARKER_I1;                 % In samples
Tprop = (Tround-Treply)/(2*sp3Config.SampleRate); % In seconds
estimatedDistance = c*Tprop;                      % In meters

This timescope illustrates the frame exchange as in Fig. 6-47a in [ 2 ] on page 7-0  with X-axis
limit zoomed in to see the propagation delay between the transmitted and response frames.

reset(ts);
ts([initiatorView; zeros(ceil(samplesToDelay),1)],responderView);
release(ts);
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The estimated distance is a few centimeters different than the actual distance.

fprintf(['Actual distance = %d m.' ...
    '\nEstimated Distance = %0.2f m' ...
    '\nError = %0.3f m (%0.2f%%)\n'], ...
    actualDistance,estimatedDistance, ...
    estimatedDistance-actualDistance, ...
    100*(estimatedDistance-actualDistance)/actualDistance)

Actual distance = 5 m.
Estimated Distance = 5.01 m
Error = 0.015 m (0.29%)

For ranging methods that rely on estimating the time of flight (TOF), errors in the distance estimate
are primarily caused when the propagation time (Tprop) is not an integer multiple of the sample time.
The largest distance error for such ranging methods occurs when Tprop lasts half a sample time more
than an integer multiple of sample time. The smallest distance error occurs when Tprop is an integer
multiple of sample time. For the higher pulse repetition frequency (HRPF) mode of the high rate
pulse repetition frequency (HRP) PHY used in this example, the symbol rate is 499.2 MHz and the
number of samples per symbol is 10, which results in a maximum error in Tprop estimation of
0 . 5 × c/ 499 . 2 × 10 . So, the default ranging error lies between 0 and 3 cm.

In general, the larger channel bandwidth in UWB corresponds to shorter symbol duration and smaller
ranging error as compared to narrowband communication. For the narrowband communication as
specified in IEEE 802.11az, the channel bandwidth ranges from 20 MHz to 160 MHz. Considering the
maximum Tprop error for narrowband communication, estimates for the ranging error lie between 0
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and 10 cm for 160 MHz and between 0 and 75 cm for 20 MHz. For more information regarding
ranging with IEEE 802.11az, see the “802.11az Positioning Using Super-Resolution Time of Arrival
Estimation” (WLAN Toolbox) example.

Further Exploration

This example uses these objects and functions from the Communications Toolbox™ Library for
ZigBee® and UWB add-on.

• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform

These utilities are undocumented and their API or functionality may change in the future.

function received = lclDelayWithNoise(transmitted, samplesToDelay, SNR)
% lclDelayWithNoise Operations of wireless channel (propagation delay, AWGN)

  vfd = dsp.VariableFractionalDelay;
  % zero pad @ end, to get entire frame out of VFD
  delayedTransmitted = vfd( ...
      [transmitted; zeros(ceil(samplesToDelay), 1)],samplesToDelay);
  % add white gaussian noise:
  received = awgn(delayedTransmitted,SNR);
end

Selected Bibliography

1 - "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
Std 802.15.4-2015), pp.1-800, 23 July 2020, doi: 10.1109/IEEESTD.2020.9144691.

2 - "IEEE Standard for Low-Rate Wireless Networks--Amendment 1: Enhanced Ultra Wideband (UWB)
Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1-174, 25 Aug. 2020, doi: 10.1109/
IEEESTD.2020.9179124.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-8



UWB Localization Using IEEE 802.15.4z
This example shows how to estimate the location of a single device as per the IEEE® 802.15.4z™
standard [ 2 ] on page 7-0 , using the Communications Toolbox™ Library for ZigBee® and UWB
add-on.

Overview

The IEEE 802.15.4z amendment [ 2 ] on page 7-0  of the IEEE® 802.15.4 standard [ 1 ] on page 7-
0  is a MAC and PHY specification designed for ranging and localization using ultra wideband
(UWB) communication. The very short pulse durations of UWB allow a finer granularity in the time
domain and therefore more accurate estimates in the spatial domain.

The key ranging and localization functionality of the 802.15.4z amendment includes 3 MAC-level
techniques:

• Single-Sided Two-Way Ranging (SS-TWR) - One device estimates the distance between two devices
by using frame transmission in both directions of a wireless 802.15.4z link. This technique is
demonstrated in the “UWB Ranging Using IEEE 802.15.4z” on page 7-2 example.

• Double-Sided Two-Way Ranging (DS-TWR) - Both devices estimate the distance between the two
devices by using frame transmission in both directions of a wireless 802.15.4z link.

• One-Way Ranging / Time-Difference of Arrival (OWR/TDOA) - Network-assisted localization
whereby one device communicates with a set of synchronized nodes to estimate the position of the
device.

This example demonstrates the OWR/TDOA technique for uplink transmissions, by using MAC and
PHY frames are compatible with the IEEE 802.15.4 standard [ 1 ] on page 7-0  and the IEEE
802.15.4z amendment [ 2 ] on page 7-0 . For more information on generating PHY-level IEEE
802.15.4z waveforms, see the “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-23
example. For more information on generating IEEE 802.15.4 MAC frames, see the “IEEE 802.15.4 -
MAC Frame Generation and Decoding” on page 7-50 example.

One-Way Ranging / Time-Difference of Arrival (OWR/TDOA)

One-way ranging (OWR) involves frame transmission either in the uplink or in the downlink direction.
In the uplink case, the device to be localized periodically broadcasts short messages referred to as
blinks. The IEEE 802.15.4z amendment [ 2 ] on page 7-0  does not stipulate a specific frame format
for the blinks, however it states that blinks should be as short as possible. These blink messages are
received by a set of infrastructure nodes that are synchronized either through a wired backbone or
via an UWB wireless communications link. In the downlink case, the synchronized nodes periodically
transmit broadcast messages with a known time offset.

The time-difference of arrival (TDOA) between the periodic messages places the device in one
hyperbolic surface for each pair of synchronized nodes [ 3 ] on page 7-0 . The intersection of all
hyperbolic surfaces (for every pair of synchronized nodes) gives the location estimate for the device.

This example demonstrates the uplink OWR case.

Setup

Confirm installation of the Communications Toolbox™ Library for ZigBee® and UWB add-on.

% Check if the 'Communications Toolbox Library for ZigBee and UWB' support package is installed:
commSupportPackageCheck('ZIGBEE');
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Configure Network

Set up a network with 3 synchronized nodes and 1 device, in a 100x100 plane:

numNodes = 3;
deviceLoc = [50 50];  % place device at the center
nodeLoc = [40,41;
            62,83;
            87,24];
TDOA = nan(numNodes);
helperShowLocations(deviceLoc,nodeLoc);

Calculate the actual distance and time of flight (TOF) between nodes and the device.

actualDistances = sqrt(sum((nodeLoc - deviceLoc).^2, 2));
c = physconst('LightSpeed'); % speed of light (m/s)
actualTOF = actualDistances/c;

SNR = 30;

Configure Blinks

Use a short (IEEE 802.15.4 MAC) data frame as a blink.

numBlinks = 1;

% MAC layer:
payload = '00'; 
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cfg = lrwpan.MACFrameConfig( ...
    FrameType='Data', ...
    SourceAddressing='Short address', ...
  SourcePANIdentifier='AB12', ...
  SourceAddress='CD77');
blinkMAC = lrwpan.MACFrameGenerator(cfg,payload);

% PHY layer:
% Ensure the Ranging field is enabled. 
% Also set the proper PSDU length.
blinkPHYConfig = lrwpanHRPConfig( ...
    Mode='HPRF', ...
    STSPacketConfiguration=1, ...
    PSDULength=length(blinkMAC), ...
    Ranging=true);
blinkPHY = lrwpanWaveformGenerator( ...
    blinkMAC, ...
    blinkPHYConfig);

% Cache preamble, to use in preamble detection. 
% Get the 1st instance out of the Nsync=PreambleDuration repetitions.
ind = lrwpanHRPFieldIndices(blinkPHYConfig); % length (start/end) of each field
blinkPreamble = blinkPHY( ...
    1:ind.SYNC(end)/blinkPHYConfig.PreambleDuration); % 1 of the Nsync repetitions

Run Simulation

In the simulation loop, a blink propagates to each node with a propagation delay that is determined
by their distinct distance. Next, each pair of nodes calculates the difference of their blink arrival
times. As a result, the position of the device is estimated within a hyperbolic surface for each pair of
nodes. The intersection of all surfaces gives the position estimate for the device. Here, a plot of 2D
curves shows the intersection point to indicate the position estimate for the device.

vfd = dsp.VariableFractionalDelay;
arrivalTime = zeros(1,numNodes);

plotStr = {'r--','b--','g--'};
[x, y] = deal(cell(1, 3));

for idx = 1:numBlinks
  for node = 1:numNodes
    % Transmission and reception of blink
    % Each node receives a specifically delayed version of the blink
    tof = actualTOF(node);
    samplesToDelay = tof * blinkPHYConfig.SampleRate;
    reset(vfd);
    release(vfd);
    vfd.MaximumDelay = ceil(1.1*samplesToDelay);
    delayedBlink = vfd( ...
        [blinkPHY; zeros(ceil(samplesToDelay), 1)], ...
        samplesToDelay);

    % Add white Gaussian noise
    receivedBlink = awgn(delayedBlink,SNR);

    % Node receiver detection of preamble
    preamPos = helperFindFirstHRPPreamble( ...
        receivedBlink,blinkPreamble,blinkPHYConfig);
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    % Transmit each blink at t=0 of each period 
    arrivalTime(node) = ( ...
        preamPos - ind.SYNC(end) / ...
        blinkPHYConfig.PreambleDuration)/blinkPHYConfig.SampleRate;
  end

  % Localization: Estimate position at synchronized backbone for each pair
  % of nodes
  pairCnt = 1;
  for node1 = 1:numNodes
    for node2 = (node1+1):numNodes
      % Calculate Time Difference of Arrival (TDOA)
      TDOA(node1, node2) = arrivalTime(node1)-arrivalTime(node2);
      
      % Get hyperbolic surface for the TDOA between node1 and node2
      [x{pairCnt}, y{pairCnt}] = helperGetHyperbolicSurface( ...
          nodeLoc(node1,:), ...
          nodeLoc(node2,:), ...
          TDOA(node1,node2));

      plot(x{pairCnt},y{pairCnt},plotStr{pairCnt});
      pairCnt = pairCnt + 1;
    end
  end
  % Find intersection points between hyperbolic surfaces
  [xC,yC] = helperFindHyperbolicIntersection(x,y);
  plot(xC,yC,'rx')
  % Estimate location as the center of intersection triangle
  xO = mean(xC);
  yO = mean(yC);
  plot(xO,yO,'ro')
end
legend( ...
    'Device', ...
    'Synchronized nodes', ...
    'A-B', ...
    'A-C', ...
    'B-C', ...
    'Intersections', ...
    'Estimation', ...
    'location', ...
    'northwest')
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Zoom in to estimation area:

axis([deviceLoc(1) + 2e-2*[-1 1],deviceLoc(2) + 2e-2*[-1 1]])
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Calculate the localization error.

locError = sqrt(sum([xO yO]-deviceLoc).^2);
fprintf('Localization error = %0.3f m.\n',locError);

Localization error = 0.012 m.

For localization methods that rely on estimating the time of arrival, errors in the distance estimate
are primarily caused when the arrival time is not an integer multiple of the sample time. The largest
distance error for such localization methods occurs when the arrival time lasts half a sample time
more than an integer multiple of sample time. The smallest distance error occurs when the arrival
time is an integer multiple of sample time. For the higher pulse repetition frequency (HRPF) mode of
the high rate pulse repetition frequency (HRP) PHY used in this example, the symbol rate is 499.2
MHz and the number of samples per symbol is 10. The maximum distance estimation error is
0 . 5 × c/ 499 . 2 × 10 , which is approximately 3 cm.

In general, the larger channel bandwidth in UWB corresponds to shorter symbol duration and smaller
ranging error as compared to narrowband communication. For the narrowband communication as
specified in IEEE 802.11az, the channel bandwidth ranges from 20 MHz to 160 MHz. Considering the
maximum distance error for narrowband communication, estimates for the localization error lie
between 0 and 10 cm for 160 MHz and between 0 and 75 cm for 20 MHz. For more information
regarding positioning with IEEE 802.11az, see the “802.11az Positioning Using Super-Resolution
Time of Arrival Estimation” (WLAN Toolbox) example.
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Further Exploration

This example uses these objects and functions from the Communications Toolbox™ Library for
ZigBee® and UWB add-on.

• lrwpan.MACFrameConfig: Create configuration for 802.15.4 MAC frames
• lrwpan.MACFrameGenerator: Generate 802.15.4 MAC frames
• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform

These utilities are undocumented and their API or functionality may change in the future.
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End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY
This example performs end-to-end simulation over an additive white Gaussian noise (AWGN) channel
for the high rate pulse repetition frequency (HRP) ultra wideband (UWB) PHY of the IEEE®
802.15.4a/z™ standard ([ 1 ], [ 2 ]), using the Communications Toolbox™ Library for ZigBee® and
UWB add-on.

Background

The IEEE 802.15.4 standard specifies the PHY and MAC layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [ 1 ]. The IEEE 802.15.4 PHY and MAC layers are used by other higher-layer
standards, such as ZigBee®, WirelessHart®, 6LoWPAN, and MiWi.

These PHY schemes are specified in different amendments of the IEEE 802.15.4 standard:

• IEEE 802.15.4a introduced a high rate pulse repetition frequency (HRP) UWB PHY used for
ranging and localization [ 1 ].

• IEEE 802.15.4f introduced a low rate pulse repetition frequency (LRP) UWB PHY used for RFID,
ranging, and reduced energy consumption [ 1 ].

• IEEE 802.15.4z introduced new enhanced modes for both the HRP and LRP UWB IEEE
802.15.4a/f PHYs [ 2 ].

The HRP UWB PHY has a channel bandwidth of 0.5-1.3 GHz and a pulse duration of 2 ns. The extra
short pulse duration makes UWB PHYs suitable for ranging applications, because several ranging
techniques rely on calculating the time duration of packet transmission. A finer granularity in the
time domain translates to smaller errors in distance estimation.

This example performs end-to-end simulation, computes bit error rate (BER) curves, and
demonstrates a tradeoff between reliability and bit rate for these HRP IEEE 802.15.4a/z PHY modes:

1 Higher Pulse Repetition Frequency (HPRF) mode, which was introduced in IEEE 802.15.4z [ 2 ].
2 Base Pulse Repetition Frequency (BPRF) mode, which was introduced in IEEE 802.15.4z [ 2 ]

(but can reduce to IEEE 802.15.4a [ 1 ]).
3 IEEE 802.15.4a [ 1 ], which has a lower mean pulse repetition frequency (PRF) and lower data

rate than the HPRF and BPRF modes.

This table shows the different modulation schemes, data rates, and number of chips per payload
symbol used by these operational modes.

Common Processing Steps

As shown in this PHY chain, the various HRP modes share certain common components.
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The IEEE 802.15.4 and IEEE 802.15.4z standards only specify the transmitter operation ([ 1 ], [ 2 ]).
The receiver performs the inverse operations of the transmitter. The receiver implementation does
not perform frequency or timing recovery.

SECDED Coding: The PHY header (PHR) is encoded with a single-error-correction, double-error
detection (SECDED) Hamming block code. The BER calculation in this example does not use the PHR
bits.

RS Coding: The payload is encoded/decoded with a (63, 55) Reed-Solomon code.

Convolutional coding: The payload and the PHR are encoded/decoded with a rate 1/2 convolutional
code and a constraint length of 3. An optional rate 1/2 convolutional code with a constraint length 7 is
offered for the HPRF mode, but it is not used in this example.

Preamble insertion/removal: A selected code sequence is spread and repeated. The SYNC field
consists of this preamble with a start-of-frame delimiter (SFD) appended at the end. The receiver
expects the input waveform to begin with the preamble, without any delay that would necessitate
preamble detection.

Pulse shaper: The output of symbol mapping and preamble insertion are ternary symbols (-1,0,1).
The IEEE 802.15.4a/z standard allows multiple pulse shapes to represent the symbol sequence in the
analog domain. Section 15.4 in [ 1 ], [ 2 ] specify RF conformance specifications. In this example, the
ternary symbol sequence is passed to a Butterworth filter to create Butterworth pulses. On the
receiver side, an integrate-and-dump operation converts the pulses back to ternary symbols.

The main difference between the 3 different modes lies in the Symbol Mapper component (and the
respective demodulator). Other differences lie in the PHR format, as well as the length and value of
the preamble code sequence and SFD.

HPRF mode

In the HPRF mode, the mean pulse repetition frequency (PRF) is either 249.6 MHz or 124.8 MHz,
with data rates of 27.24 Mbps or 6.81 Mbps, respectively. In both cases, each symbol duration
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consists of alternating segments of transmitted chip sequences and guardbands. This code segment
generates a plot to show a payload symbol for the 249.6 MHz HPRF mode.

% Ensure ZigBee/UWB support package is installed:
commSupportPackageCheck('ZIGBEE');

msg = randi([0 1], 1000, 1);
cfgHPRF = lrwpanHRPConfig(Mode='HPRF',PSDULength=length(msg));
waveHPRF = lrwpanWaveformGenerator(msg,cfgHPRF);
fig = lrwpanPlotFrame(waveHPRF,cfgHPRF);
hZoomTo1stHPRFPayloadSymbol(fig,cfgHPRF)

Each convolutional codeword is 2 bits long (one parity bit for each systematic). These 2 bits map to 8
payload and 16 PHR bits for the 249.6 MHz mean PRF (see 8 pulses in above plot), and map to 16
payload and 32 PHR bits for the 124.8 MHz mean PRF.

BPRF mode

The BPRF mode uses burst-position BPSK modulation (BPM-BPSK). The symbol duration is split into a
set of candidate burst positions. Each burst contains a specified number of chips per burst (Ncpb).
One candidate burst contains a pattern. All other candidate bursts transmit zeros.

cfgBPRF = lrwpanHRPConfig(Mode='BPRF',CodeIndex=9);
waveBPRF = lrwpanWaveformGenerator(repmat([0; 1],508,1),cfgBPRF);
fig = lrwpanPlotFrame(waveBPRF,cfgBPRF);
hZoomToBPMBPSKSymbols(fig,cfgBPRF);
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In the BPRF mode, the mean PRF is 62.4 MHz and the payload data rate is 6.81 Mbps. The Ncpb for
each burst within a symbol is 8 chips, and the number candidate burst positions (Nhop) is 4. The
systematic bit reduces the set of candidate positions by 50%, and the active burst is selected among
the remaining 2 Nhop based on a spreading (burst-hopping) sequence.

IEEE 802.15.4a

The IEEE 802.15.4a HRP PHY also uses BPM-BPSK modulation, similar to the BPRF mode. The only
difference is that more values are allowed for the mean PRF and data rate combination.

Specifically, mean PRF can be 3.9, 15.6 or 62.4 MHz, while data rate can be 0.11, 0.85, 1.7, 6.81, or
27.24 Mbps. Ncpb can be 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 4096. Nhop is 2, 8 or 32. The range
of Ncpb values enables transmissions that can be either more aggressive or more conservative than
the BPRF mode.

BER Curve Calculation

For each of the three HRP PHY modes, the example calculates BER over the EcNo range [6,32] in dB
(mapped to equivalent SNR values) using end-to-end simulations over an AWGN channel.

For IEEE 802.15.4a, a 15.6 MHz mean PRF is used with a 0.11 Mbps data rate. This combination
enables Ncpb equal to 128 and Nhop equal to 8.

msgLen = 2^10 - 8;
msg = randi([0 1],msgLen,1);
EcNo = 9:2:35;
numSNR = length(EcNo);
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[berHPRF,berBPRF,ber4a] = deal(zeros(1,numSNR));

% Construct fixed configurations and waveforms for each mode:
cfgHPRF = lrwpanHRPConfig(Mode='HPRF',PSDULength=msgLen);
waveHPRF = lrwpanWaveformGenerator(msg,cfgHPRF);

cfgBPRF = lrwpanHRPConfig(Mode='BPRF',CodeIndex=9,PSDULength=msgLen);
waveBPRF = lrwpanWaveformGenerator(msg,cfgBPRF);

cfg4a = lrwpanHRPConfig( ...
    Mode='802.15.4a', ...
    MeanPRF='15.6MHz', ...
    DataRate='0.11Mbps', ...
    CodeIndex=1, ...
    PSDULength=msgLen);
wave4a = lrwpanWaveformGenerator(msg,cfg4a);

% Compute BER curve until required number of errors have been found or
% maximum number of bits have been simulated.
MAXBITS = msgLen*5;
MINERRORS = 10;
for idx = 1:numSNR
  fprintf('Calculating BER for EcNo=%d dB\n',EcNo(idx));
  errCnt = 0;
  bitCnt = 0;
  errHPRF = 0;
  errBPRF = 0;
  err4a = 0;
  while errCnt < MINERRORS && bitCnt < MAXBITS
    % HPRF mode
    SNR = EcNo(idx) - 10*log10(cfgHPRF.SamplesPerPulse);
    noisyHPRF = awgn(waveHPRF,SNR);
    psduHPRF = lrwpanWaveformDecoder(noisyHPRF,cfgHPRF);
    errHPRF = biterr(msg, psduHPRF)+errHPRF;

    % BPRF mode
    SNR = EcNo(idx) - 10*log10(cfgBPRF.SamplesPerPulse);
    noisyBPRF = awgn(waveBPRF,SNR);
    psduBPRF = lrwpanWaveformDecoder(noisyBPRF,cfgBPRF);
    errBPRF = biterr(msg,psduBPRF)+errBPRF;

    % Legacy 802.15.4a
    SNR = EcNo(idx) - 10*log10(cfg4a.SamplesPerPulse);
    noisy4a = awgn(wave4a,SNR);
    psdu4a = lrwpanWaveformDecoder(noisy4a,cfg4a);
    err4a = biterr(msg,psdu4a)+err4a;

    bitCnt = bitCnt + msgLen;
    errCnt = min([errHPRF errBPRF err4a]);
  end
  berHPRF(idx) = errHPRF/bitCnt;
  berBPRF(idx) = errBPRF/bitCnt;
  ber4a(idx) = err4a/bitCnt;
end

% Plot BER curve
figure
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semilogy(EcNo,berHPRF,'-o',EcNo,berBPRF,'-*',EcNo,ber4a,'-+')
legend('HPRF, 27.24 Mbps','BPRF, 6.81 Mbps', ...
    '15.4a, 0.11 Mbps','Location','southwest')
title('BER Curves for UWB IEEE 802.15.4a/z PHY')
xlabel('EcNo (dB)')
ylabel('BER')
grid on

Calculating BER for EcNo=9 dB
Calculating BER for EcNo=11 dB
Calculating BER for EcNo=13 dB
Calculating BER for EcNo=15 dB
Calculating BER for EcNo=17 dB
Calculating BER for EcNo=19 dB
Calculating BER for EcNo=21 dB
Calculating BER for EcNo=23 dB
Calculating BER for EcNo=25 dB
Calculating BER for EcNo=27 dB
Calculating BER for EcNo=29 dB
Calculating BER for EcNo=31 dB
Calculating BER for EcNo=33 dB
Calculating BER for EcNo=35 dB

The BER curve results demonstrate higher bit error rate for more aggressive modulation schemes
and lower BER for more conservative modulation schemes. Lower data rates use more chips for each
transmitted convolutional codeword. A higher number of transmitted chips provide more opportunity
for error correction, which is similar in concept to using more parity bits in channel coding.
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Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following object and
functions:

• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform
• lrwpanWaveformDecoder: Decode HRP IEEE 802.15.4a/z UWB waveform

These utilities are undocumented and their API or functionality may change in the future.
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HRP UWB IEEE 802.15.4a/z Waveform Generation
This example shows how to generate standard-compliant high rate pulse repetition frequency (HRP)
ultra wideband (UWB) waveforms of the IEEE® 802.15.4a/z™ standard ([ 1 ], [ 2 ]), using the
Communications Toolbox™ Library for ZigBee® and UWB add-on.

Background

The IEEE 802.15.4 standard specifies the PHY and MAC layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [ 1 ]. The IEEE 802.15.4 PHY and MAC layers are used by higher-layer
standards, such as ZigBee®, WirelessHart®, 6LoWPAN and MiWi.

Multiple PHY schemes are specified in different amendments of the IEEE 802.15.4 standard:

• IEEE 802.15.4a introduced a high rate pulse repetition frequency (HRP) UWB PHY used for
ranging (i.e., localization) [ 1 ].

• IEEE 802.15.4f introduced a low rate pulse repetition frequency (LRP) UWB PHY used for RFID,
ranging, and reduced energy consumption [ 1 ].

• IEEE 802.15.4z introduced new enhanced modes for both the HRP and LRP UWB IEEE
802.15.4a/f PHYs [ 2 ].

The HRP UWB PHY specifies a channel bandwidth of 0.5-1.3 GHz and a pulse duration of 2 ns. Since
the calculations used for ranging techniques rely on the time duration of packet transmission, the
extra short pulse duration makes UWB PHYs suitable for ranging applications. A finer granularity in
the time domain translates to smaller errors in distance estimation.

This example generates standard-compliant HRP UWB 802.15.4a/z waveforms for three pulse
repetition frequency (PRF) transmission modes (802.15.4a, and 802.15.4z BPRF and HPRF). For
IEEE 802.15.4a, the valid mean PRF values are 3.9, 15.6 or 62.4 MHz. The IEEE 802.15.4z
amendment defines these two PRF modes:

• Base pulse repetition frequency (BPRF), where the mean PRF is 62.4 MHz and the payload data
rate is 6.81 Mbps

• Higher pulse repetition frequency (HPRF), where the mean PRF is either 124.8 or 249.6 MHz.

The scrambled timestamp sequence (STS) field is another key feature introduced by 802.15.4z to
enhance data integrity. Transmission of the STS field is optional for the BRPF and HPRF modes.

Configuration for HRP Waveform Generation

The helper lrwpanHRPConfig object configures the waveform of each transmission mode. This table
lists the properties, conditions under which they apply and valid settings.
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The lrwpanWaveformGenerator helper function generates HRP UWB IEEE 802.15.4a/z waveforms
using lrwpanHRPConfig objects and the PHY service data unit (PSDU) as inputs.

HPRF mode in IEEE 802.15.4z

In the higher pulse repetition frequency (HPRF) mode of IEEE 802.15.4z, the mean PRF is either
124.8 or 249.6 MHz. Since HPRF mode uses higher PRFs than BPRF or IEEE 802.15.4a, the HPRF
mode can estimate range more accurately. The default mean PRF of the lrwpanHRPConfig object is
249.6 MHz.

% This code confirms the Communications Toolbox(TM) Library for ZigBee(R)
% and UWB add-on is installed.
commSupportPackageCheck('ZIGBEE');

msg = randi([0 1], 1000, 1);
cfgHPRF = lrwpanHRPConfig(Mode='HPRF', PSDULength=length(msg)) %#ok<NOPTS>
waveHPRF = lrwpanWaveformGenerator(msg, cfgHPRF);

lrwpanPlotFrame(waveHPRF, cfgHPRF);
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cfgHPRF = 

  lrwpanHRPConfig with properties:

                    Channel: 0
                       Mode: 'HPRF'
                    MeanPRF: '249.6MHz'
            SamplesPerPulse: 10
     STSPacketConfiguration: 1
             NumSTSSegments: 1
            ActiveSTSLength: 64
                  CodeIndex: 25
           PreambleDuration: 64
                  SFDNumber: 0
                    Ranging: 0
           ConstraintLength: 3
                 PSDULength: 1000

   Read-only properties:
                    PeakPRF: '499.2MHz'
             ChipsPerSymbol: [16 8]
        ConvolutionalCoding: 1
         PreambleCodeLength: 91
    PreambleSpreadingFactor: 4
                 SampleRate: 4.9920e+09
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The HPRF frame consists of the following fields:

Synchronization (SYNC) field: The SYNC field contains the specified number of repetitions (Nsync)
of a 91-symbol long code spread according to the PreambleSpreadingFactor property. The
CodeIndex property determines which code is used. (Nsync) is specified by the PreambleDuration
property.

Start-of-frame delimiter (SFD) field: The SFD field is a 4-, 8-, 16- or 32-symbol sequence spread
with the SYNC code corresponding to the CodeIndex property. The length of the starting SFD
sequence is determined by the SFDNumber property.

Scrambled timestamp sequence (STS) field: The STS field is explained in the next section.

PHY Header (PHR) field: The PHR field is a 19 bit sequence that contains 6 parity bits generated
by a single error correction, double error detection (SECDED) Hamming block code. The Ranging
property determines one of the 13 systematic PHR bits. Subsequently, the PHR is convolutionally
encoded with a rate 1/2 convolutional code. The ConstraintLength property (3 or 7) chooses
between two rate 1/2 convolutional encoders.

For the HPRF modulation scheme (Sec. 15.3.4 in [ 2 ]), each PHR convolutional codeword is mapped
to a sequence of 16 or 32 pulses (for mean PRF 249.6 and 124.8 MHz, respectively). Pulse sequences
are separated by guard intervals. The first element of the ChipsPerSymbol property conveys the
number of pulses in each PHR symbol.

Payload: The PSDU is encoded with a (63, 55) Reed-Solomon code. Subsequently, it is convolutionally
encoded (together with the PHR) with a rate 1/2 convolutional code. The ConstraintLength
property (3 or 7) chooses between two rate 1/2 convolutional encoders.

For the HPRF modulation scheme (Sec. 15.3.4 in [ 2 ]), each convolutional codeword of the payload is
mapped to a sequence of 8 or 16 pulses (for mean PRF 249.6 and 124.8 MHz, respectively). Pulse
sequences are separated by guard intervals. The last element of the ChipsPerSymbol property
conveys the number of pulses in each payload symbol. This figure illustrates a single payload symbol
at a 249.6 MHz Mean PRF.

fig = lrwpanPlotFrame(waveHPRF, cfgHPRF);
hZoomTo1stHPRFPayloadSymbol(fig, cfgHPRF)
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The second and the fourth quarter of the symbol are guard intervals. The first and third quarter
contain 4 chip transmissions each.

Scrambled Timestamp Sequence (STS)

The STS field can be used to ensure the authenticity of the ranging estimates. This field is optional
for the HPRF and BPRF modes. The STSPacketConfiguration property specifies the initial
configuration of the STS field. To omit the STS field, specify 0 for the STSPacketConfiguration
property. The other values determine the STS and PHR/payload placement within the PHY frame.

The STS field consists of multiple segments separated by a gap. The NumSTSSegments property
determines the number of segments (1 to 4) and the ActiveSTSLength property determines the
length of each segment (16, 32, 64, 128 or 256 in multiples of 512 chips).

This code configures, generates, and visualizes a waveform containing 2 STS segments with gaps
before and after each segment. A portion of the preceding SFD field is included.

msg = randi([0 1], 2000, 1);
cfgSTS = lrwpanHRPConfig( ...
    Mode='HPRF', ...
    NumSTSSegments=2, ...
    ActiveSTSLength=16, ...
    PSDULength=length(msg));
waveSTS = lrwpanWaveformGenerator(msg,cfgSTS);

lrwpanPlotFrame(waveSTS, cfgSTS);
ind = lrwpanHRPFieldIndices(cfgSTS);
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set(gca,'XLim',ind.STS - [5e3 0]) % portion of preceding field (SFD)
title('STS field with 2 segments')

The STS generation in this example creates the STS structure (including number of segments, gaps,
segment length, STS spreading, and pulse polarity), but does not perform AES-128 encryption.
Random bits are used in place of the AES-128 output. To implement AES-128, incorporate the
aes128Placeholder subfunction of this file. The aes128Placeholder subfunction includes the
counter and the 128-bit V value.

BPRF mode in IEEE 802.15.4a/z

In the base pulse repetition frequency (BPRF) mode, mean PRF is 62.4 MHz and data rate is 6.81
Mbps.

The key difference between the BPRF and the HPRF mode is that in BPRF the PHR and the payload
are modulated with the burst position modulation (BPM) BPSK technique.

msg = randi([0 1],1016,1);
cfgBPRF = lrwpanHRPConfig(Mode='BPRF',CodeIndex=9) %#ok<NOPTS>
waveBPRF = lrwpanWaveformGenerator(msg,cfgBPRF);
lrwpanPlotFrame(waveBPRF,cfgBPRF);

cfgBPRF = 

  lrwpanHRPConfig with properties:

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-28



                    Channel: 0
                       Mode: 'BPRF'
                PHRDataRate: '0.85Mbps'
            SamplesPerPulse: 10
     STSPacketConfiguration: 1
                  CodeIndex: 9
           PreambleDuration: 64
                  SFDNumber: 0
                    Ranging: 0
                 PSDULength: 1016

   Read-only properties:
                    PeakPRF: '499.2MHz'
            BurstsPerSymbol: 8
               NumHopBursts: 2
              ChipsPerBurst: [64 8]
             ChipsPerSymbol: [512 64]
        ConvolutionalCoding: 1
         PreambleCodeLength: 127
    PreambleSpreadingFactor: 4
                 SampleRate: 4.9920e+09

BPRF frames include the SYNC and SFD fields and is BPM-BPSK modulated.

*The SYNC field is constructed similar to HPRF mode, but the selected code can be 127 symbols long,
so the CodeIndex property setting can be as low as 9.
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*The SFD field is always 8 symbols long.

*Sec. 15.3 of [ 1 ] specifies the BPM-BPSK modulation scheme. As shown by this code, a single PHR
and a single payload symbol appear together under BPM-BPSK modulation for the BPRF mode.

fig = lrwpanPlotFrame(waveBPRF,cfgBPRF);
hZoomToBPMBPSKSymbols(fig,cfgBPRF);

In the plot, solid black vertical line separates the PHR and payload symbol durations, and dashed
lines separate different candidate burst positions. In BPM-BPSK modulation, each symbol duration is
divided in 4 quarters, and transmission can occur either in the 1st or the 3rd quarter. The systematic
bit of the convolutional codeword determines when transmissions occur. Each quarter is divided into
2, 8, or 32 candidate bursts as specified by the NumHopBursts property and determined by the mean
PRF. When the mean PRF is 62.4 MHz (BPRF), the number of candidate active bursts in a quarter
symbol is 2, which corresponds to a total of 8 burst durations per symbol. In the plotted PHR and
payload symbols, the active transmissions occupy 1/8 of their symbol durations. A PN sequence
determines the location of the single burst transmissions in the quarter symbol determined by the
systematic bit. Specifically, where the burst hopping occurs over time. Within the selected burst
position, Ncpb chips are transmitted, as specified by the ChipsPerBurst property. The first element
contains the PHR and the last element contains the payload. The number of chips per burst is
determined by the mean PRF and data rate combination.

PHR: The PHR data rate is either 850 kbps or 6.81 Mbps, as determined by the PHRDataRate
property. A PHR data rate of 850 kbps corresponds to 64 chips per burst and 512 chips per symbol. A
PHR data rate of 6.81 Mbps corresponds to 8 chips per burst and 64 chips per symbol. The PHR field
has the same length (19 bits) and encoding (SECDED and convolutional) as the HPRF mode.
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Payload: As shown in Table 15-9a of [ 2 ], for BPRF mode the payload data rate is 6.81 Mbps, which
corresponds to 8 chips per burst and 64 chips per symbol duration. Similar to HPRF mode, the
payload field uses rate 1/2 convolutional encoding, but for BPRF the constraint length can only be 3.

IEEE 802.15.4a

Similar to BPRF mode, IEEE 802.15.4a uses the BPM-BPSK modulation scheme. These are the key
differences between legacy 15.4a and the BPRF mode.

• IEEE 802.15.4a has no STS field.
• The mean PRF of the payload can be 3.9, 15.6, or 62.4 MHz. For mean PRF values of 3.9 or 15.6

MHz, the spreading factor of the SYNC codes (PreambleSpreadingFactor) is configurable by
the PreambleMeanPRF property.

• The payload data rate is dependent on the mean PRF and is not limited 6.81 Mbps. The data rate
and mean PRF values can enable different values for the number of hop bursts (NumHopBursts
can be 2, 8, or 32) and chips per burst (ChipsPerBurst can be 1, 2, 4, 8, 16, 32, 64, 128, or 512).

• The data rate of the PHR equals the minimum of 850 kbps and the data rate of the payload. The
data rate can be either 110 or 850 kbps.

• Convolutional coding is disabled for the highest data rates (6.81 and 27.24 Mbps) of the 3.9 and
15.6 MHz mean PRF, respectively.

In an 802.15.4a configuration, you can set the mean PRF to 62.4 MHz only when the data rate is not
6.81 Mbps. A data rate of 6.82 MHz corresponds to BPRF mode. When the mean PRF is 3.9 or 15.6
MHz, the code index must be in the range [1, 6]. When the mean PRF is 62.4 MHz, the code index
must be in the range [9, 16] or [21, 24].

msg = randi([0 1],800,1);
cfg4a = lrwpanHRPConfig( ...
    Mode='802.15.4a', ...
    MeanPRF='15.6MHz', ...
    Channel=3, ...
    CodeIndex=6, ...
    PSDULength=length(msg)) %#ok<NOPTS>
wave4a = lrwpanWaveformGenerator(msg,cfg4a);

lrwpanPlotFrame(wave4a,cfg4a);

cfg4a = 

  lrwpanHRPConfig with properties:

                    Channel: 3
                       Mode: '802.15.4a'
                    MeanPRF: '15.6MHz'
                   DataRate: '0.85Mbps'
            SamplesPerPulse: 10
                  CodeIndex: 6
            PreambleMeanPRF: '16.1MHz'
           PreambleDuration: 64
                    Ranging: 0
                 PSDULength: 800

   Read-only properties:
                    PeakPRF: '499.2MHz'
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            BurstsPerSymbol: 32
               NumHopBursts: 8
              ChipsPerBurst: 16
             ChipsPerSymbol: 512
        ConvolutionalCoding: 1
         PreambleCodeLength: 31
    PreambleSpreadingFactor: 16
                 SampleRate: 4.9920e+09

RF Conformance

All IEEE 802.15.4a/z waveforms generated in this example are repetitions of Butterworth pulses.
Such pulses are obtained by passing a sequence of ternary symbols (-1, 0 or 1) to a Butterworth filter.

The IEEE 802.15.4a/z HRP standard specifies a compliance check for HRP pulses (see Sec. 15.4.4 in
[ 1 ]). Specifically, the cross-correlation between the used pulse and a root raised cosine pulse with
a rolloff factor of 0.5, must be higher than 0.8 for 0.5 ns in the main (central) lobe, and all other side
lobes must have cross-correlation lower than 0.3. The cross-correlation result is shown in the figure
on the left.

The IEEE 802.15.4z amendment specifies that transmitted pulses conform to the time-domain mask
shown in Fig. 15-13a of [ 2 ]. As shown in the figure on the right, the Butterworth pulses used in this
example comply with the transmit mask recommendation.

lrwpanHRPPulseConformance(cfgHPRF);
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The IEEE 802.15.4 standard specifies a mask for the transmit power spectral density PSD (see Sec.
15.4.5 in [ 1 ]). The lrwpanHRPTxPSDMask helper function displays the spectral density of the
generated waveform and examines the conformance to the spectral mask.

lrwpanHRPTxPSDMask(waveHPRF, cfgHPRF)
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Similar results can be attained for the other generated waveforms, using these commands.

% lrwpanHRPTxPSDMask(waveBPRF,cfgBPRF)
% lrwpanHRPTxPSDMask(wave4a,cfg4a)

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following object and
functions:

• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform
• lrwpanHRPFieldIndices: Find starting and ending index for each field of PHY frame
• lrwpanPlotFrame: Visualize HRP UWB IEEE 802.15.4a/z waveform

These utilities are undocumented and their API or functionality may change in the future.

Selected Bibliography

1 "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
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EVM Measurements for a 802.15.4 (ZigBee®) System
This example shows how to use the comm.EVM System object™ to measure the error vector
magnitude (EVM) of a simulated IEEE® 802.15.4 [ 1 ] transmitter. IEEE 802.15.4 is the basis for the
ZigBee specifications.

Error Vector Magnitude (EVM)

The error vector magnitude (EVM) is a measure of the difference between a reference waveform,
which is the error-free modulated signal, and the actual transmitted waveform. EVM is used to
quantify the modulation accuracy of a transmitter. [ 1 ] requires that a 802.15.4 transmitter shall not
have an RMS EVM value worse than 35%.

System Parameters

An 802.15.4 system for 868 MHz band employs direct sequence spread spectrum (DSSS) with binary
phase-shift keying (BPSK) used for chip modulation and differential encoding used for data symbol
encoding.

dataRate = 20e3;   % Bit rate in Hz
M = 2;             % Modulation order (BPSK)
chipValues = [1;1;1;1;0;1;0;1;1;0;0;1;0;0;0];
                   % Chip values for bit 0.
                   % Chip values for 1 is the opposite.

Section 6.7.3 of [ 1 ] specifies that the measurements are performed over 1000 samples of I and Q
baseband outputs. To account for filter delays, we include 1 more bit in the simulation of the
transmitted symbols. We chose to oversample the transmitted signal by four. We assume an SNR of 60
dB to account for transmitter and test hardware imperfections.

numSymbols = 1000;          % Number of symbols required for one EVM value
numFrames = 100;            % Number of frames
nSamps = 4;                 % Number of samples that represents a symbol
filtSpan = 8;               % Filter span in symbols
gain = length(chipValues);  % Spreading gain (number of chips per symbol)
chipRate = gain*dataRate;   % Chip rate
sampleRate = nSamps*chipRate;    % Final sampling rate
numBits = ceil((numSymbols)/gain)+1;
                            % Number of bits required for one EVM value
SNR = 60;                   % Simulated signal-to-noise ratio in dB

Initialization

We can obtain BPSK modulated symbols with a simple mapping of 0 to +1 and 1 to -1. If we also map
the chip values, then we can modulate before bit-to-chip conversion and use matrix math to write
efficient MATLAB® code. ZigBee specifications also define the pulse shaping filter as having a raised
cosine pulse shape with rolloff factor of 1.

% Map chip values
chipValues = 1 - 2*chipValues;

% Design a raised cosine filter with rolloff factor 1
rctFilt = comm.RaisedCosineTransmitFilter('RolloffFactor', 1, ...
  'OutputSamplesPerSymbol', nSamps, ...
  'FilterSpanInSymbols', filtSpan);
rcrFilt = comm.RaisedCosineReceiveFilter('RolloffFactor', 1, ...
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  'InputSamplesPerSymbol', nSamps, ...
  'FilterSpanInSymbols', filtSpan, ...
  'DecimationFactor', nSamps);

EVM Measurements

The Communications Toolbox™ provides comm.EVM to calculate RMS EVM, Maximum EVM, and Xth
percentile EVM values. Section 6.7.3 of [ 1 ] defines the EVM calculation method, where the average
error of measured I and Q samples are normalized by the power of a symbol. For a BPSK system, the
power of both constellation symbols is the same. Therefore, we can use the 'Peak constellation power'
normalization option. Other available normalization options, which can be used with other
communications system standards, are average constellation power and average reference signal
power.

evm = comm.EVM('Normalization', 'Peak constellation power')

evm = 

  comm.EVM with properties:

                Normalization: 'Peak constellation power'
       PeakConstellationPower: 1
        ReferenceSignalSource: 'Input port'
    MeasurementIntervalSource: 'Input length'
          AveragingDimensions: 1
         MaximumEVMOutputPort: false
     XPercentileEVMOutputPort: false

Simulation

We first generate random data bits, differentially encode these bits using a
comm.DifferentialEncoder System object, and modulate using BPSK. We spread the modulated
symbols by employing a matrix multiplication with the mapped chip values. The spread symbols are
then passed through a pulse shaping filter. The EVM object assumes that received symbols, rd, and
reference symbols, c, are synchronized, and sampled at the same rate. We downsample the received
signal, r, and synchronize with the reference signal, c.

[ 1 ] requires that 1000 symbols be used in one RMS EVM calculation. To ensure we have enough
averaging, we simulate 100 frames of 1000 symbols and use the maximum of these 100 RMS EVM
measurements as the measurement result. We see that the simulated transmitter meets the criteria
mentioned in Error Vector Magnitude section above.

% Tx and Rx filter delays are identical and equal to half the filter span.
% Total delay is equal to the sum of two filter delays, which is the filter
% span of one filter.
refSigDelay = rctFilt.FilterSpanInSymbols;

% Simulated number of symbols in a frame
simNumSymbols = numBits*gain;

% Initialize peak RMS EVM
peakRMSEVM = -inf;

% Create a comm.DifferentialEncoder object to differentially encode data
diffenc = comm.DifferentialEncoder;
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% Create an comm.AWGNChannel System object and set its NoiseMethod property
% to 'Signal to noise ratio (SNR)'
chan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
  'SNR', SNR);

% Loop over bursts
for p=1:numFrames
    % Generate random data
    b = randi([0 M-1], numBits, 1);
    % Differentially encode
    d = diffenc(b);
    % Modulate
    x = 1-2*d;
    % Convert symbols to chips (spread)
    c = reshape(chipValues*x', simNumSymbols, 1);
    % Pulse shape
    cUp = rctFilt(c);
    % Calculate and set the 'SignalPower' property of the channel object
    chan.SignalPower = sum(cUp.^2)/length(cUp);
    % Add noise
    r = chan(cUp);
    % Downsample received signal.  Account for the filter delay.
    rd = rcrFilt(r);
    % Measure using the EVM System object
    rmsEVM = evm(complex(rd(refSigDelay+(1:numSymbols))), ...
      complex(c(1:numSymbols)));
    % Update peak RMS EVM calculation
    if (peakRMSEVM < rmsEVM)
        peakRMSEVM = rmsEVM;
    end
end

% Display results
fprintf(' Worst case RMS EVM (%%): %1.2f\n', peakRMSEVM)

 Worst case RMS EVM (%): 0.19

Comments

We showed how to utilize comm.EVM to test if a ZigBee transmitter complies with the standard
specified EVM values. We used a crude model that only introduces additive white Gaussian noise and
showed that the measured EVM is less than the standard specified 35%.
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End-to-End IEEE 802.15.4 PHY Simulation
This example shows how to generate waveforms, decode waveforms and compute BER curves for
different PHY specifications of the IEEE® 802.15.4™ standard [ 1], using the Communications
Toolbox™ Library for ZigBee and UWB.

Background

The IEEE 802.15.4 standard specifies the PHY and MAC layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [ 1 ]. The IEEE 802.15.4 PHY and MAC layers provide the basis of other
higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards find
application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

Physical Layer Implementations of IEEE 802.15.4

The original IEEE 802.15.4 standard and its amendments specify multiple PHY layers, which use
different modulation schemes and support different data rates. These physical layers were devised for
specific frequency bands and, to a certain extent, for specific countries. This example provides
functions that generate and decode waveforms for the physical layers proposed in the original IEEE
802.15.4 specification (OQPSK in 2.4 GHz, BPSK in 868/915 MHz), IEEE 802.15.4b (OQPSK and ASK
in 868/915 MHz), IEEE 802.15.4c (OQPSK in 780 MHz) and IEEE 802.15.4d (GFSK and BPSK in 950
MHz).

These physical layers specify a format for the PHY protocol data unit (PPDU) that includes a
preamble, a start-of-frame delimiter (SFD), and the length and contents of the MAC protocol data unit
(MPDU). The preamble and SFD are used for frame-level synchronization. In the following
description, the term symbol denotes the integer index of a chip sequence (as per the IEEE 802.15.4
standard), not a modulation symbol (i.e., a complex number).

• OQPSK PHY: All OQPSK PHYs map every 4 PPDU bits to one symbol. The 2.4 GHz OQPSK PHY
spreads each symbol to a 32-chip sequence, while the other OQPSK PHYs spread it to a 16-chip
sequence. Then, the chip sequences are OQPSK modulated and passed to a half-sine pulse shaping
filter (or a normal raised cosine filter, in the 780 MHz band). For a detailed description, see Clause
10 in [ 1 ].

• BPSK PHY: The BPSK PHY differentially encodes the PPDU bits. Each resulting bit is spread to a
15-chip sequence. Then, the chip sequences are BPSK modulated and passed to a normal raised
cosine filter. For a detailed description, see Clause 11 in [ 1 ].

• ASK PHY: The ASK PHY uses BPSK modulation for the preamble and the SFD only. The remaining
PPDU bits, i.e., the PHY header (PHR) and the MPDU, are first mapped to 20-bit symbols in the
868 MHz band and to 5-bit symbols in the 915 MHz band. Each symbol is spread to a 32-chip
sequence using a technique known as Parallel Sequence Spread Spectrum (PSSS) or Orthogonal
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Code Division Multiplexing (OCDM). The chip sequence is then ASK modulated and passed to a
root raised cosine filter. For a detailed description, see Clause 12 in [ 1 ].

• GFSK PHY: The GFSK PHY first whitens the PPDU bits using modulo-2 addition with a PN9
sequence. The whitened bits are then GFSK modulated. For a detailed description, see Clause 15
in [ 1 ].

Waveform Generation, Decoding and BER Curve Calculation

This code illustrates how to use the waveform generation and decoding functions for different
frequency bands and compares the corresponding BER curves.

EcNo = -25:2.5:17.5;                % Ec/No range of BER curves
spc = 4;                            % samples per chip
msgLen = 8*120;                     % length in bits
message = randi([0 1], msgLen, 1);  % transmitted message

% Preallocate vectors to store BER results:
[berOQPSK2450, berOQPSK780, berBPSK, berASK915, ...
 berASK868, berGFSK] = deal(zeros(1, length(EcNo)));

for idx = 1:length(EcNo) % loop over the EcNo range

  % O-QPSK PHY, 2450 MHz
  waveform = lrwpan.PHYGeneratorOQPSK(message, spc, '2450 MHz');
  K = 2;      % information bits per symbol
  SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
  received = awgn(waveform, SNR);
  bits     = lrwpan.PHYDecoderOQPSKNoSync(received,  spc, '2450 MHz');
  [~, berOQPSK2450(idx)] = biterr(message, bits);

  % O-QPSK PHY, 780MHz
  waveform = lrwpan.PHYGeneratorOQPSK(message, spc, '780 MHz'); % or '868 MHz'/'915 MHz'
  SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
  received = awgn(waveform, SNR);
  bits     = lrwpan.PHYDecoderOQPSKNoSync(received,  spc, '780 MHz'); % or '868 MHz'/'915 MHz'
  [~, berOQPSK780(idx)] = biterr(message, bits);
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  % BPSK PHY, 868/915/950 MHz
  waveform = lrwpan.PHYGeneratorBPSK(message, spc);
  K = 1;      % information bits per symbol
  SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
  received = awgn(waveform, SNR);
  bits     = lrwpan.PHYDecoderBPSK(received, spc);
  [~, berBPSK(idx)] = biterr(message, bits);

  % ASK PHY, 915 MHz
  waveform = lrwpan.PHYGeneratorASK(message, spc, '915 MHz');
  K = 1;      % information bits per symbol
  SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
  received = awgn(waveform, SNR);
  bits     = lrwpan.PHYDecoderASK(received,  spc, '915 MHz');
  [~, berASK915(idx)] = biterr(message, bits(1:msgLen));

  % ASK PHY, 868 MHz
  waveform = lrwpan.PHYGeneratorASK(message, spc, '868 MHz');
  K = 1;      % information bits per symbol
  SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
  received = awgn(waveform, SNR);
  bits     = lrwpan.PHYDecoderASK(received,  spc, '868 MHz');
  [~, berASK868(idx)] = biterr(message, bits(1:msgLen));

  % GFSK PHY, 950 MHz
  waveform = lrwpan.PHYGeneratorGFSK(message, spc);
  K = 1;      % information bits per symbol
  SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
  received = awgn(waveform, SNR);
  bits     = lrwpan.PHYDecoderGFSK(received, spc);
  [~, berGFSK(idx)] = biterr(message, bits);
end

% plot BER curve
figure
semilogy(EcNo, berOQPSK2450, '-o', EcNo, berOQPSK780, '-*', EcNo, berBPSK, '-+', ...
         EcNo, berASK915,    '-x', EcNo, berASK868,    '-s', EcNo, berGFSK, '-v')
legend('OQPSK, 2450 MHz', 'OQPSK, 780 MHz', 'BPSK, 868/915/950 MHz', 'ASK, 915 MHz', ...
       'ASK, 868 MHz', 'GFSK, 950 MHz', 'Location', 'southwest')
title('IEEE 802.15.4 PHY BER Curves')
xlabel('Chip Energy to Noise Spectral Density, Ec/No (dB)')
ylabel('BER')
axis([min(EcNo) max(EcNo) 10^-2 1])
grid on
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Further Exploration

You can further explore the following generator and decoding functions:

• lrwpan.PHYGeneratorOQPSK, lrwpan.PHYDecoderOQPSKNoSync and lrwpan.PHYDecoderOQPSK
• lrwpan.PHYGeneratorBPSK and lrwpan.PHYDecoderBPSK
• lrwpan.PHYGeneratorASK and lrwpan.PHYDecoderASK
• lrwpan.PHYGeneratorGFSK and lrwpan.PHYDecoderGFSK
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Recovery of IEEE 802.15.4 OQPSK Signals
This example shows how to implement a practical IEEE® 802.15.4™ PHY receiver decoding OQPSK
waveforms that may have been received from wireless radios, using the Communications Toolbox™
Library for for ZigBee and UWB. This practical receiver has decoded standard-compliant waveforms
received from commercial ZigBee radios enabling home automation in the 2.4 GHz band, using a
USRP® B200-mini radio and the Communications Toolbox Support Package for USRP® radio.

Background

The IEEE 802.15.4 standard specifies the MAC and PHY layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [ 1 ]. The IEEE 802.15.4 MAC and PHY layers provide the basis of other
higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards find
application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

Receiver Architecture

Overall, the receiver performs the following operations:

• Matched filtering
• Coarse frequency compensation
• Fine frequency compensation
• Timing Recovery
• Preamble detection
• Phase ambiguity resolution
• Despreading

Between these steps, the signal is visualized to illustrate the signal impairments and the corrections.

Matched Filtering

load lrwpanPHYCaptures % load OQPSK signals captured in the 2.4 GHz band
spc = 12;  % 12 samples per chip; the frame was captured at 12 x chiprate = 12 MHz

A matched filter improves the SNR of the signal. The 2.4 GHz OQPSK PHY uses half-sine pulses,
therefore the following matched filtering operation is needed.

% Matched filter for captured OQPSK signal:
halfSinePulse = sin(0:pi/spc:(spc)*pi/spc);
decimationFactor = 3; % reduce spc to 4, for faster processing
matchedFilter = dsp.FIRDecimator(decimationFactor, halfSinePulse);
filteredOQPSK = matchedFilter(capturedFrame1); % matched filter output

Frequency Offsets

Decoding a signal under the presence of frequency offsets is a challenge for any wireless receiver.
Frequency offsets up to 30 kHz were measured for signals transmitted from commercial ZigBee
radios and captured using a USRP® B200-mini radio.

Constellation diagrams can illustrate the quality of the received signal, but it is first important to note
that the trajectory of an ideal OQPSK signal follows a circle.
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% Plot constellation of ideal OQPSK signal
msgLen = 8*120;                     % length in bits
message = randi([0 1], msgLen, 1);  % transmitted message
idealOQPSK = lrwpan.PHYGeneratorOQPSK(message, spc, '2450 MHz');
constellation = comm.ConstellationDiagram('Name', 'Ideal OQPSK Signal', 'ShowTrajectory', true);
constellation.Position = [constellation.Position(1:2) 300 300];
constellation(idealOQPSK);

The above constellation also contains one radius corresponding to the frame start, and one radius
corresponding to the frame end. At the same time, frequency offsets circularly rotate constellations,
resulting in ring-shaped constellations as well. Therefore, it is more meaningful to observe the
constellation of a QPSK-equivalent signal that is obtained by delaying the in-phase component of the
OQPSK signal by half a symbol. When half-sine pulse filtering is used, and the oversampling factor is
greater than one, the ideal QPSK constellation resembles an 'X'-shaped region connecting the four
QPSK symbols (red crosses) with the origin.

% Plot constellation of ideal QPSK-equivalent signal
idealQPSK = complex(real(idealOQPSK(1:end-spc/2)), imag(idealOQPSK(spc/2+1:end))); % align I and Q
release(constellation);
constellation.Name = 'Ideal QPSK-Equivalent Signal';
constellation.ReferenceConstellation = [1+1i 1-1i 1i-1 -1i-1];
constellation(idealQPSK);
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However, the samples of the captured frame are dislocated from this 'X'-shaped region due to
frequency offsets:

% Plot constellation of QPSK-equivalent (impaired) received signal
filteredQPSK = complex(real(filteredOQPSK(1:end-spc/(2*decimationFactor))), imag(filteredOQPSK(spc/(2*decimationFactor)+1:end))); % align I and Q
constellation = comm.ConstellationDiagram('XLimits', [-7.5 7.5], 'YLimits', [-7.5 7.5], ...
                                          'ReferenceConstellation', 5*qammod(0:3, 4), 'Name', 'Received QPSK-Equivalent Signal');
constellation.Position = [constellation.Position(1:2) 300 300];
constellation(filteredQPSK);
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Coarse Frequency Compensation

Such frequency offsets are first coarsely corrected using an FFT-based method [ 2 ] that squares the
OQPSK signal and reveals two spectral peaks. The coarse frequency offset is obtained by averaging
and halving the frequencies of the two spectral peaks.

% Coarse frequency compensation of OQPSK signal
coarseFrequencyCompensator = comm.CoarseFrequencyCompensator('Modulation', 'OQPSK', ...
      'SampleRate', spc*1e6/decimationFactor, 'FrequencyResolution', 1e3);
[coarseCompensatedOQPSK, coarseFrequencyOffset] = coarseFrequencyCompensator(filteredOQPSK);
fprintf('Estimated frequency offset = %.3f kHz\n', coarseFrequencyOffset/1000);

% Plot QPSK-equivalent coarsely compensated signal
coarseCompensatedQPSK = complex(real(coarseCompensatedOQPSK(1:end-spc/(2*decimationFactor))), imag(coarseCompensatedOQPSK(spc/(2*decimationFactor)+1:end))); % align I and Q
release(constellation);
constellation.Name = 'Coarse frequency compensation (QPSK-Equivalent)';
constellation(coarseCompensatedQPSK);

Estimated frequency offset = 26.367 kHz

Some samples still lie outside the 'X'-shaped region connecting the origin with the QPSK symbols (red
crosses), as fine frequency compensation is also needed.

Fine Frequency Compensation

Fine frequency compensation follows the OQPSK carrier-recovery algorithm described in [ 3 ].
This algorithm is behaviorally different than its QPSK counterpart, which does not apply to OQPSK
signals even if their in-phase signal component is delayed by half a symbol.

% Fine frequency compensation of OQPSK signal
fineFrequencyCompensator = comm.CarrierSynchronizer('Modulation', 'OQPSK', 'SamplesPerSymbol', spc/decimationFactor);
fineCompensatedOQPSK = fineFrequencyCompensator(coarseCompensatedOQPSK);

% Plot QPSK-equivalent finely compensated signal
fineCompensatedQPSK = complex(real(fineCompensatedOQPSK(1:end-spc/(2*decimationFactor))), imag(fineCompensatedOQPSK(spc/(2*decimationFactor)+1:end))); % align I and Q
release(constellation);
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constellation.Name = 'Fine frequency compensation (QPSK-Equivalent)';
constellation(fineCompensatedQPSK);

The constellation is now closer to its ideal form, but still timing recovery is needed.

Timing Recovery

Symbol synchronization occurs according to the OQPSK timing-recovery algorithm described in [ 3 ].
In contrast to carrier recovery, the OQPSK timing recovery algorithm is equivalent to its QPSK
counterpart for QPSK-equivalent signals that are obtained by delaying the in-phase component of the
OQPSK signal by half a symbol.

% Timing recovery of OQPSK signal, via its QPSK-equivalent version
symbolSynchronizer = comm.SymbolSynchronizer('Modulation', 'OQPSK', 'SamplesPerSymbol', spc/decimationFactor);
syncedQPSK = symbolSynchronizer(fineCompensatedOQPSK);

% Plot QPSK symbols (1 sample per chip)
release(constellation);
constellation.Name = 'Timing Recovery (QPSK-Equivalent)';
constellation(syncedQPSK);
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Note that the output of the Symbol Synchronizer contains one sample per symbol. At this stage, the
constellation truly resembles a QPSK signal. The few symbols that gradually move away from the
origin correspond to the frame start and end.

Preamble Detection, Despreading and Phase Ambiguity Resolution:

Once the signal has been synchronized, the next step is preamble detection, which is more successful
if the signal has been despreaded. It is worth noting that fine frequency compensation results in a

/2-phase ambiguity, indicating the true constellation may have been rotated by 0, /2, , or /2
radians. Preamble detection resolves the phase ambiguity by considering all four possible
constellation rotations. The next function operates on the synchronized OQPSK signal, performs joint
despreading, resolution of phase ambiguity and preamble detection, and then outputs the MAC
protocol data unit (MPDU).

MPDU = lrwpan.PHYDecoderOQPSKAfterSync(syncedQPSK);

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• lrwpan.PHYDecoderOQPSKAfterSync and lrwpan.PHYDecoderOQPSK
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IEEE 802.15.4 - MAC Frame Generation and Decoding
This example shows how to generate and decode MAC frames of the IEEE® 802.15.4™ standard [ 1 ]
using the Communications Toolbox™ Library for ZigBee and UWB.

Background

The IEEE 802.15.4 standard specifies the MAC and PHY layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [ 1 ]. The IEEE 802.15.4 MAC and PHY layers provide the basis of other
higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards find
application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

Architecture

The IEEE 802.15.4 MAC layer inserts a MAC header and a MAC footer before and after a network-
layer frame, respectively. The MAC footer contains a CRC check.

A lrwpan.MACFrameConfig configuration object is used both in generating and decoding IEEE
802.15.4 MAC frames. Such objects describe a MAC frame and specify its frame type and all
applicable properties. The lrwpan.MACFrameGenerator function accepts a lrwpan.MACFrameConfig
object describing the frame, and optionally a MAC-layer payload (NET-layer frame) in bytes (two-
characters), and outputs the MAC frame in bits. The lrwpan.MACFrameDecoder function accepts a
MAC Protocol Data Unit (MPDU) in bits and outputs a lrwpan.MACFrameConfig object describing the
frame and possibly a NET-layer frame in bytes. Clause 5 in [ 1 ] describes the MAC frame formats.

Decoding MAC Frames of Home Automation ZigBee Radios

This section decodes MAC frames transmitted from commercial ZigBee radios enabling home
automation, and captured using a USRP® B200-mini radio and the Communications Toolbox Support
Package for USRP® radio. The PHY layer of the captured waveforms has been decoded according to
the methodology described in the “Recovery of IEEE 802.15.4 OQPSK Signals” on page 7-44 example.
The resulting MPDUs are stored into a MAT file:

load lrwpanMACCaptures

First, a data frame is decoded:

[dataFrameMACConfig, netFrame] = lrwpan.MACFrameDecoder(MPDU_data);
if ~isempty(dataFrameMACConfig)
  fprintf('CRC check passed for the MAC frame.\n');
  dataFrameMACConfig
end

CRC check passed for the MAC frame.

dataFrameMACConfig = 

  MACFrameConfig with properties:
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                       FrameType: 'Data'

   General MAC properties:
                  SequenceNumber: 244
           AcknowledgmentRequest: 1
           DestinationAddressing: 'Short address'
        DestinationPANIdentifier: '1E16'
              DestinationAddress: '35EA'
                SourceAddressing: 'Short address'
                   SourceAddress: '0000'
    PANIdentificationCompression: 1
                    FramePending: 0
                    FrameVersion: '2003'
                        Security: 0

   Security properties:
    No properties.

   Beacon properties:
    No properties.

   "MAC Command" properties:
    No properties.

Next, an acknowledgment frame is decoded:

ackFrameMACConfig = lrwpan.MACFrameDecoder(MPDU_ack)

ackFrameMACConfig = 

  MACFrameConfig with properties:

                FrameType: 'Acknowledgment'

   General MAC properties:
           SequenceNumber: 165
    DestinationAddressing: 'Not present'
         SourceAddressing: 'Not present'
             FramePending: 0
             FrameVersion: '2003'
                 Security: 0

   Security properties:
    No properties.

   Beacon properties:
    No properties.

   "MAC Command" properties:
    No properties.

Generating MAC Frames

The lrwpan.MACFrameGenerator function can generate all MAC frame types from the IEEE 802.15.4
standard [ 1 ], i.e., 'Beacon', 'Data', 'Acknowledgment', and 'MAC Command' frame types. The MAC
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Command frame types can be further specified as: 'Association request', 'Association response',
'Disassociation notification', 'Data request', 'PAN ID conflict notification', 'Orphan notification',
'Beacon request', and 'GTS request'.

This code illustrates how to generate frames for all frame types:

% Beacon
beaconConfig = lrwpan.MACFrameConfig('FrameType', 'Beacon');
beaconMACFrame = lrwpan.MACFrameGenerator(beaconConfig);

% Data
dataConfig = lrwpan.MACFrameConfig('FrameType', 'Data');
numOctets = 50;
payload = dec2hex(randi([0 2^8-1], numOctets, 1), 2);
dataMACFrame = lrwpan.MACFrameGenerator(dataConfig, payload);

% Acknowledgment
ackConfig = lrwpan.MACFrameConfig('FrameType', 'Acknowledgment');
ackFrame = lrwpan.MACFrameGenerator(ackConfig);

% MAC Command
commandConfig = lrwpan.MACFrameConfig('FrameType', 'MAC Command');
commandConfig.MACCommand = 'Association request';
% Valid settings for MACCommand also include: 'Association response',
% 'Disassociation notification', 'Data request', 'PAN ID conflict
% notification', 'Orphan notification', 'Beacon request', and 'GTS request'.
commandFrame = lrwpan.MACFrameGenerator(commandConfig);

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• lrwpan.MACFrameGenerator
• lrwpan.MACFrameDecoder
• lrwpan.MACFrameConfig

Selected Bibliography

1 IEEE 802.15.4-2011 - IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs)
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IEEE 802.15.4 - Asynchronous CSMA MAC
This example shows how to simulate the IEEE® 802.15.4™ asynchronous CSMA MAC [ 1 ] using the
Communications Toolbox™ Library for ZigBee and UWB.

Background

The IEEE 802.15.4 standard specifies the MAC and PHY layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [ 1 ]. The IEEE 802.15.4 MAC and PHY layers provide the basis of other
higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards find
application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

The IEEE 802.15.4 MAC [ 1 ] specifies two-basic MAC modes: (i) non-beacon-enabled, and (ii) beacon-
enabled MAC. The non-beacon enabled MAC is an asynchronous CSMA (Carrier-sense Multiple
Access) MAC, which is very similar to the IEEE 802.11 MAC. The beacon-enabled MAC allows two
different MAC periods: (i) a synchronized-CSMA MAC period, and (ii) a time-slotted, contention-free
MAC period. This example provides an extensive simulation of the non-beacon-enabled,
asynchronous, CSMA-based IEEE 802.15.4 MAC.

Network Setup

An IEEE 802.15.4 PAN (personal area network) is set up by a standard process between end devices
and PAN coordinators. First, devices that would like to join a network perform either active or passive
scanning. Active scanning means that a device first transmits a Beacon Request and later on it
performs passive scanning. Passive scanning means that the device sniffs to collect beacon frames
from PAN coordinators (who may have received their Beacon Request in the case of active scanning).
Upon the collection of beacons during passive scanning, the end device chooses the PAN with which
it would like to associate. Then it transmits an Association Request to the coordinator of this PAN
and the coordinator acknowledges it.
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In contrast to IEEE 802.11, the coordinator does not follow the acknowledgment of an Association
Request with an immediate transmission of an Association Response. Instead, the IEEE 802.15.4
coordinator first stores the Association Response locally; it is only transmitted when the end device
sends a Data Request and the coordinator acknowledges it. The IEEE 802.15.4 standard uses the
term indirect transmission to refer to this mechanism for transmitting frames. In general, this
mechanism is very useful for battery-powered devices of low-traffic networks (e.g., sensor networks).
Such devices may periodically activate their radios to check whether any frames are pending for
them, instead of continuously using their radios to receive a frame immediately.

Once the Association response is received and acknowledged, the end device is associated with the
PAN. At that time, data frames can be exchanged between the coordinator and the end device in any
direction. The data frames may be acknowledged, depending on their 'Acknowledgment Request'
indication.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-54



Asynchronous Medium-Access Control (MAC)

The asynchronous CSMA IEEE 802.15.4 MAC is similar to the generic CSMA operation and the IEEE
802.11 MAC. In this MAC scheme, acknowledgment frames are transmitted immediately, without
using the CSMA method. All other frames are transmitted using CSMA.

Specifically, once a device has a frame to transmit, it randomly chooses a backoff delay (number of
backoff periods) from the range [0 2^BE-1], where BE is the backoff exponent. The duration of each
backoff period is 20 symbols. For the OQPSK PHY in 2.4 GHz, this duration corresponds to 640 chips
and 0.32 ms. Once the device has waited for the chosen number of backoff periods, it performs
carrier sensing. If the medium is idle, the device begins transmission of its frame, until it is entirely
transmitted.

If the medium is busy during carrier sense, then the backoff exponent increments by 1 and a new
number of backoff periods is selected from the new [0 2^BE-1] range. When the backoff counter
expires again, carrier sensing is performed. If the maximum number of backoff countdowns is
reached without the medium being idle during any carrier sensing instance, then the device
terminates its attempts to transmit the frame.

Network Simulation Capabilities

This example offers an implementation for the described network setup process and the CSMA
method via the lrwpan.MACFullFunctionDevice and the lrwpan.MACReducedFunctionDevice classes.
Specifically, the following capabilities are enabled:

• Active and passive scanning
• Association Request and Association Response exchange
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• Indirect transmissions using Data Requests
• Frame acknowledgments and frame retransmissions if acknowledgments are not timely received
• Short and long interframe spacing (SIFS and LIFS)

• Binary exponential backoff
• Carrier sensing

Network Simulation

In this section, we create an IEEE 802.15.4 network of 3 nodes: one PAN coordinator and two end
devices. The network simulator is configured to process all devices at increments of a single backoff
duration (20 symbols, 0.32 ms).

First, the following code illustrates the association of the first device with the network.

symbolsPerStep = 20;
chipsPerSymbol = 32;
samplesPerChip = 4;
symbolRate = 65.5e3; % symbols/sec
time = 0;
stopTime = 5; % sec

% Create PAN Coordinator
panCoordinator = lrwpan.MACFullFunctionDevice('PANCoordinator', true, 'SamplesPerChip', 4, ....
  'PANIdentifier', '7777', 'ExtendedAddress', [repmat('0', 1, 8) repmat('7', 1, 8)], ...
  'ShortAddress', '1234');

% Create first end-device:
endDevice1 = lrwpan.MACReducedFunctionDevice('SamplesPerChip', 4, ...
  'ShortAddress', '0001', 'ExtendedAddress', [repmat('0', 1, 8) repmat('3', 1, 8)]);

% Initialize device inputs
received1 = zeros(samplesPerChip * chipsPerSymbol * symbolsPerStep/2, 1);
received2 = zeros(samplesPerChip * chipsPerSymbol * symbolsPerStep/2, 1);

while time < stopTime
  % Pass the received signals to the nodes for processing. Also, fetch what
  % they have to transmit:
  transmitted1 = panCoordinator(received1);
  transmitted2 = endDevice1(received2);

  % Ideal wireless channel, where both nodes are within range:
  received1 = transmitted2; % half-duplex radios, none receiving while transmitting
  received2 = transmitted1;

  time = time + symbolsPerStep/symbolRate; % update clock
end

0001: ********* Adding Beacon Request frame to the queue
0001: Passive scanning for 1584 steps
0001: Processing next frame from the queue
0001: Initializing transmission; backoff delay = 1 steps
0001: Backoff delay = 1 steps -> 0 steps
0001: Carrier sensing: Medium is idle.
0001: Clear to transmit
0001: Transmitting Beacon Request
0001: IFS offset = 0 samples
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0001: Transmitting 1-1280 of 2050
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: IFS offset = 0 samples
0001: Transmitting 1281-2050 of 2050
0001: Finished transmission
0001: Need to wait for SIFS (12) symbols. Offset = 12, next IFS = 4
0001: Entering passive scanning
1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = MAC command
1234: *********** Received MAC Command type = Beacon request
1234: Need to wait for SIFS (12) symbols. Offset = 12, next IFS = 4
1234: ********* Adding Beacon frame to the queue
1234: next IFS = 4
1234: Processing next frame from the queue
1234: Initializing transmission; backoff delay = 7 steps
1234: Backoff delay = 7 steps -> 6 steps
1234: Backoff delay = 6 steps -> 5 steps
1234: Backoff delay = 5 steps -> 4 steps
1234: Backoff delay = 4 steps -> 3 steps
1234: Backoff delay = 3 steps -> 2 steps
1234: Backoff delay = 2 steps -> 1 steps
1234: Backoff delay = 1 steps -> 0 steps
1234: Carrier sensing: Medium is idle.
1234: Clear to transmit
1234: IFS offset = 256 samples
1234: Transmitting 1-1024 of 2562
1234: IFS offset = 0 samples
1234: Transmitting 1025-2304 of 2562
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: IFS offset = 0 samples
1234: Transmitting 2305-2562 of 2562
1234: Finished transmission
1234: Need to wait for LIFS (40) symbols. Offset = 4, next IFS = 24
1234: Decreased wait time by 20 symbols to 4
0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = Beacon
0001: Need to wait for SIFS (12) symbols. Offset = 4, next IFS = -4
0001: next IFS = 0
0001: Scanning finished
0001: ********* Adding Association request frame to the queue
0001: Processing next frame from the queue
0001: Initializing transmission; backoff delay = 0 steps
0001: Carrier sensing: Medium is idle.
0001: Clear to transmit
0001: IFS offset = 0 samples
0001: Transmitting 1-1280 of 3458
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: IFS offset = 0 samples
0001: Transmitting 1281-2560 of 3458
0001: IFS offset = 0 samples
0001: Transmitting 2561-3458 of 3458
0001: Finished transmission
0001: will wait for ack for 54 symbols additional to IFS = 0
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1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = MAC command
1234: *********** Received MAC Command type = Association request
1234: Need to wait for LIFS (40) symbols. Offset = 14, next IFS = 34
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: ********* Adding Data response frame to the PENDING queue
1234: next IFS = 34
0001: Decreasing ack wait durations by 20 symbols to 34
1234: IFS offset = 896 samples
1234: Transmitting 1-384 of 1410
0001: Decreasing ack wait durations by 20 symbols to 14
1234: IFS offset = 0 samples
1234: Transmitting 385-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 16, next IFS = 8
0001: Decreasing ack wait durations by 20 symbols to -6
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = Acknowledgment
0001: Need to wait for SIFS (12) symbols. Offset = 16, next IFS = 8
0001: *********** Adding Data request frame to the queue
0001: next IFS = 1920
0001: Decreased wait time by 20 symbols to 1900
0001: Decreased wait time by 20 symbols to 1880
0001: Decreased wait time by 20 symbols to 1860
0001: Decreased wait time by 20 symbols to 1840
0001: Decreased wait time by 20 symbols to 1820
0001: Decreased wait time by 20 symbols to 1800
0001: Decreased wait time by 20 symbols to 1780
0001: Decreased wait time by 20 symbols to 1760
0001: Decreased wait time by 20 symbols to 1740
0001: Decreased wait time by 20 symbols to 1720
0001: Decreased wait time by 20 symbols to 1700
0001: Decreased wait time by 20 symbols to 1680
0001: Decreased wait time by 20 symbols to 1660
0001: Decreased wait time by 20 symbols to 1640
0001: Decreased wait time by 20 symbols to 1620
0001: Decreased wait time by 20 symbols to 1600
0001: Decreased wait time by 20 symbols to 1580
0001: Decreased wait time by 20 symbols to 1560
0001: Decreased wait time by 20 symbols to 1540
0001: Decreased wait time by 20 symbols to 1520
0001: Decreased wait time by 20 symbols to 1500
0001: Decreased wait time by 20 symbols to 1480
0001: Decreased wait time by 20 symbols to 1460
0001: Decreased wait time by 20 symbols to 1440
0001: Decreased wait time by 20 symbols to 1420
0001: Decreased wait time by 20 symbols to 1400
0001: Decreased wait time by 20 symbols to 1380
0001: Decreased wait time by 20 symbols to 1360
0001: Decreased wait time by 20 symbols to 1340
0001: Decreased wait time by 20 symbols to 1320
0001: Decreased wait time by 20 symbols to 1300
0001: Decreased wait time by 20 symbols to 1280
0001: Decreased wait time by 20 symbols to 1260

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-58



0001: Decreased wait time by 20 symbols to 1240
0001: Decreased wait time by 20 symbols to 1220
0001: Decreased wait time by 20 symbols to 1200
0001: Decreased wait time by 20 symbols to 1180
0001: Decreased wait time by 20 symbols to 1160
0001: Decreased wait time by 20 symbols to 1140
0001: Decreased wait time by 20 symbols to 1120
0001: Decreased wait time by 20 symbols to 1100
0001: Decreased wait time by 20 symbols to 1080
0001: Decreased wait time by 20 symbols to 1060
0001: Decreased wait time by 20 symbols to 1040
0001: Decreased wait time by 20 symbols to 1020
0001: Decreased wait time by 20 symbols to 1000
0001: Decreased wait time by 20 symbols to 980
0001: Decreased wait time by 20 symbols to 960
0001: Decreased wait time by 20 symbols to 940
0001: Decreased wait time by 20 symbols to 920
0001: Decreased wait time by 20 symbols to 900
0001: Decreased wait time by 20 symbols to 880
0001: Decreased wait time by 20 symbols to 860
0001: Decreased wait time by 20 symbols to 840
0001: Decreased wait time by 20 symbols to 820
0001: Decreased wait time by 20 symbols to 800
0001: Decreased wait time by 20 symbols to 780
0001: Decreased wait time by 20 symbols to 760
0001: Decreased wait time by 20 symbols to 740
0001: Decreased wait time by 20 symbols to 720
0001: Decreased wait time by 20 symbols to 700
0001: Decreased wait time by 20 symbols to 680
0001: Decreased wait time by 20 symbols to 660
0001: Decreased wait time by 20 symbols to 640
0001: Decreased wait time by 20 symbols to 620
0001: Decreased wait time by 20 symbols to 600
0001: Decreased wait time by 20 symbols to 580
0001: Decreased wait time by 20 symbols to 560
0001: Decreased wait time by 20 symbols to 540
0001: Decreased wait time by 20 symbols to 520
0001: Decreased wait time by 20 symbols to 500
0001: Decreased wait time by 20 symbols to 480
0001: Decreased wait time by 20 symbols to 460
0001: Decreased wait time by 20 symbols to 440
0001: Decreased wait time by 20 symbols to 420
0001: Decreased wait time by 20 symbols to 400
0001: Decreased wait time by 20 symbols to 380
0001: Decreased wait time by 20 symbols to 360
0001: Decreased wait time by 20 symbols to 340
0001: Decreased wait time by 20 symbols to 320
0001: Decreased wait time by 20 symbols to 300
0001: Decreased wait time by 20 symbols to 280
0001: Decreased wait time by 20 symbols to 260
0001: Decreased wait time by 20 symbols to 240
0001: Decreased wait time by 20 symbols to 220
0001: Decreased wait time by 20 symbols to 200
0001: Decreased wait time by 20 symbols to 180
0001: Decreased wait time by 20 symbols to 160
0001: Decreased wait time by 20 symbols to 140
0001: Decreased wait time by 20 symbols to 120
0001: Decreased wait time by 20 symbols to 100
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0001: Decreased wait time by 20 symbols to 80
0001: Decreased wait time by 20 symbols to 60
0001: Decreased wait time by 20 symbols to 40
0001: Decreased wait time by 20 symbols to 20
0001: Decreased wait time by 20 symbols to 0
0001: Processing next frame from the queue
0001: Initializing transmission; backoff delay = 2 steps
0001: Backoff delay = 2 steps -> 1 steps
0001: Backoff delay = 1 steps -> 0 steps
0001: Carrier sensing: Medium is idle.
0001: Clear to transmit
0001: IFS offset = 0 samples
0001: Transmitting 1-1280 of 3074
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: IFS offset = 0 samples
0001: Transmitting 1281-2560 of 3074
0001: IFS offset = 0 samples
0001: Transmitting 2561-3074 of 3074
0001: Finished transmission
0001: will wait for ack for 54 symbols additional to IFS = 0
1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = MAC command
1234: *********** Received MAC Command type = Data request
1234: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: Moving frame for 0000000033333333 from pending queue to the transmission queue
1234: next IFS = 0
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 1410
0001: Decreasing ack wait durations by 20 symbols to 34
1234: IFS offset = 0 samples
1234: Transmitting 1281-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: Decreasing ack wait durations by 20 symbols to 14
1234: Processing next frame from the queue
1234: Initializing transmission; backoff delay = 5 steps
1234: Backoff delay = 5 steps -> 4 steps
0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = Acknowledgment
0001: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6
0001: next IFS = 0
1234: Backoff delay = 4 steps -> 3 steps
1234: Backoff delay = 3 steps -> 2 steps
1234: Backoff delay = 2 steps -> 1 steps
1234: Backoff delay = 1 steps -> 0 steps
1234: Carrier sensing: Medium is idle.
1234: Clear to transmit
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 4226
1234: IFS offset = 0 samples
1234: Transmitting 1281-2560 of 4226
Found preamble of OQPSK PHY.
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Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: IFS offset = 0 samples
1234: Transmitting 2561-3840 of 4226
1234: IFS offset = 0 samples
1234: Transmitting 3841-4226 of 4226
1234: Finished transmission
1234: will wait for ack for 54 symbols additional to IFS = 0
1234: Decreasing ack wait durations by 20 symbols to 34
0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = MAC command
0001: *********** Received MAC Command type = Association response
0001: Need to wait for LIFS (40) symbols. Offset = 6, next IFS = 26
0001: *********** Association successful, changing short address to = 8CEC
8CEC: *********** Association successful, associated to PAN = 7777
8CEC: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
8CEC: next IFS = 26
1234: Decreasing ack wait durations by 20 symbols to 14
8CEC: IFS offset = 384 samples
8CEC: Transmitting 1-896 of 1410
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: Decreasing ack wait durations by 20 symbols to -6
8CEC: IFS offset = 0 samples
8CEC: Transmitting 897-1410 of 1410
8CEC: Finished transmission
8CEC: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Acknowledgment
1234: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
1234: next IFS = 0
8CEC: ********* (t=4.079360) Injecting data frame to the queue. From: 8CEC -> To: 1234 
8CEC: Processing next frame from the queue
8CEC: Initializing transmission; backoff delay = 6 steps
8CEC: Backoff delay = 6 steps -> 5 steps
8CEC: Backoff delay = 5 steps -> 4 steps
8CEC: Backoff delay = 4 steps -> 3 steps
8CEC: Backoff delay = 3 steps -> 2 steps
8CEC: Backoff delay = 2 steps -> 1 steps
8CEC: Backoff delay = 1 steps -> 0 steps
8CEC: Carrier sensing: Medium is idle.
8CEC: Clear to transmit
8CEC: IFS offset = 0 samples
8CEC: Transmitting 1-1280 of 8578
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
8CEC: IFS offset = 0 samples
8CEC: Transmitting 1281-2560 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 2561-3840 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 3841-5120 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 5121-6400 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 6401-7680 of 8578
8CEC: IFS offset = 0 samples
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8CEC: Transmitting 7681-8578 of 8578
8CEC: Finished transmission
8CEC: will wait for ack for 54 symbols additional to IFS = 0
1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Data
1234: Need to wait for SIFS (12) symbols. Offset = 14, next IFS = 6
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: next IFS = 6
1234: IFS offset = 384 samples
1234: Transmitting 1-896 of 1410
8CEC: Decreasing ack wait durations by 20 symbols to 34
1234: IFS offset = 0 samples
1234: Transmitting 897-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
8CEC: Decreasing ack wait durations by 20 symbols to 14
8CEC: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
8CEC: *********** Received frame type = Acknowledgment
8CEC: Need to wait for LIFS (40) symbols. Offset = 8, next IFS = 28
8CEC: next IFS = 28
8CEC: Decreased wait time by 20 symbols to 8
8CEC: ********* (t=4.795200) Injecting data frame to the queue. From: 8CEC -> To: 1234 
8CEC: Processing next frame from the queue
8CEC: Initializing transmission; backoff delay = 6 steps
8CEC: Backoff delay = 6 steps -> 5 steps
8CEC: Backoff delay = 5 steps -> 4 steps
8CEC: Backoff delay = 4 steps -> 3 steps
8CEC: Backoff delay = 3 steps -> 2 steps
8CEC: Backoff delay = 2 steps -> 1 steps
8CEC: Backoff delay = 1 steps -> 0 steps
8CEC: Carrier sensing: Medium is idle.
8CEC: Clear to transmit
8CEC: IFS offset = 512 samples
8CEC: Transmitting 1-768 of 8578
Found preamble of OQPSK PHY.
8CEC: IFS offset = 0 samples
8CEC: Transmitting 769-2048 of 8578
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
8CEC: IFS offset = 0 samples
8CEC: Transmitting 2049-3328 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 3329-4608 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 4609-5888 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 5889-7168 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 7169-8448 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 8449-8578 of 8578
8CEC: Finished transmission
8CEC: will wait for ack for 54 symbols additional to IFS = 0
1234: PHY decoded IEEE 802.15.4 frame
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CRC check passed for the MAC frame.
1234: *********** Received frame type = Data
1234: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: next IFS = 0
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 1410
8CEC: Decreasing ack wait durations by 20 symbols to 34
1234: IFS offset = 0 samples
1234: Transmitting 1281-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
8CEC: Decreasing ack wait durations by 20 symbols to 14
8CEC: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
8CEC: *********** Received frame type = Acknowledgment
8CEC: Need to wait for LIFS (40) symbols. Offset = 2, next IFS = 22
8CEC: next IFS = 22
8CEC: Decreased wait time by 20 symbols to 2
1234: ********* (t=5.001280) Injecting data frame to the queue. From: 1234 -> To: 8CEC 
1234: Processing next frame from the queue
1234: Initializing transmission; backoff delay = 1 steps
1234: Backoff delay = 1 steps -> 0 steps
1234: Carrier sensing: Medium is idle.
1234: Clear to transmit
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 1281-2560 of 8578
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: IFS offset = 0 samples
1234: Transmitting 2561-3840 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 3841-5120 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 5121-6400 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 6401-7680 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 7681-8578 of 8578
1234: Finished transmission
1234: will wait for ack for 54 symbols additional to IFS = 0
1234: Decreasing ack wait durations by 20 symbols to 34
8CEC: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
8CEC: *********** Received frame type = Data
8CEC: Need to wait for SIFS (12) symbols. Offset = 14, next IFS = 6
8CEC: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
8CEC: next IFS = 6
8CEC: IFS offset = 384 samples
8CEC: Transmitting 1-896 of 1410
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: Decreasing ack wait durations by 20 symbols to 14
8CEC: IFS offset = 0 samples
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8CEC: Transmitting 897-1410 of 1410
8CEC: Finished transmission
8CEC: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Acknowledgment
1234: Need to wait for LIFS (40) symbols. Offset = 8, next IFS = 28
1234: next IFS = 28
1234: Decreased wait time by 20 symbols to 8

Once the 1st end device has been associated, data frames are randomly injected into the link between
the end device and the PAN Coordinator.

Next, a third device joins the PAN and data frames are subsequently exchanged between the
coordinator and both end devices, in a star topology fashion (end devices must only transmit frames
to coordinators). In this case, the output is suppressed.

% Create second end-device:
endDevice2 = lrwpan.MACReducedFunctionDevice('SamplesPerChip', 4, ...
  'ShortAddress', '0002', 'ExtendedAddress', [repmat('0', 1, 8) repmat('4', 1, 8)], 'Verbosity', false);
% Suppress detailed output:
endDevice1.Verbosity = false;
panCoordinator.Verbosity = false;

% Initialize input
received3 = zeros(samplesPerChip * chipsPerSymbol * symbolsPerStep/2, 1);

stopTime = 10; % sec
while time < stopTime
  % Pass the received signals to the nodes for processing. Also, fetch what
  % they have to transmit:
  transmitted1 = panCoordinator(received1);
  transmitted2 = endDevice1(received2);
  transmitted3 = endDevice2(received3);

  % Ideal wireless channel, where all nodes are within range:
  received1 = transmitted2 + transmitted3; % half-duplex radios, none receiving while transmitting
  received2 = transmitted1 + transmitted3;
  received3 = transmitted1 + transmitted2;

  time = time + symbolsPerStep/symbolRate; % update clock
end

More nodes can be added to the network, as long as the channel relationship is established
accordingly (i.e., the received signals as a function of the transmitted signals).

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• lrwpan.MACFullFunctionDevice
• lrwpan.MACReducedFunctionDevice
• lrwpan.MACDevice
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ZigBee NET Frame Generation and Decoding
This example shows how to use the Communications Toolbox™ Library for ZigBee and UWB to
generate and decode NET frames of the ZigBee specification [ 1 ].

Background

The ZigBee standard specifies the network (NET or NWK) and application (APP or APL) layers for
low-rate wireless personal area networks. These NET- and APP-layer specifications build upon the
PHY and MAC specifications of IEEE® 802.15.4™ [ 2 ]. ZigBee devices find application in home
automation and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

Architecture

A zigbee.NETFrameConfig configuration object is used both in generating and decoding ZigBee NET
frames. Such objects describe a NET-layer frame and specify its frame type and all applicable
properties. The zigbee.NETFrameGenerator function accepts a zigbee.NETFrameConfig object
describing the frame, and optionally a NET-layer payload (APP-layer frame) in bytes (two-characters),
and outputs the NET frame in bytes. The zigbee.NETFrameDecoder function accepts a NET Protocol
Data Unit (NPDU) in bytes and outputs a zigbee.NETFrameConfig object describing the frame and
possibly a NET-layer frame in bytes. Clause 3.3 in [ 1 ] describes the NET frame formats.

Decoding NET Frames of Home Automation ZigBee Radios

This section decodes NET frames transmitted from a commercial ZigBee radio enabling home
automation, and captured using a USRP® B200-mini radio and the Communications Toolbox Support
Package for USRP® radio.

The zigbee.NETFrameDecoder function can decode NET-layer ZigBee data frames and the header of
net-command frame types.

load zigbeeNETCaptures % netFrame

[netConfig, netPayload] = zigbee.NETFrameDecoder(netFrame);
netConfig

netConfig = 

  NETFrameConfig with properties:

                FrameType: 'Data'
          ProtocolVersion: 'ZigBee 2007'
           SequenceNumber: 212

   Addressing:
            SourceAddress: '0000'
       DestinationAddress: '35EA'
           IEEEAddressing: 'None'

   Security:
                 Security: 1
           DataEncryption: 0
                MICLength: 0
            KeyIdentifier: 'Network'
            ExtendedNonce: 1
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             FrameCounter: 193458
    SecuritySourceAddress: '24FD5B00000014B6'
              KeySequence: 0

   Routing:
                   Radius: 30
            DiscoverRoute: 1
            SourceRouting: 1
               RelayIndex: 0
                RelayList: [0x4 char]

   Multicast:
                Multicast: 0

Note that NET-layer decoding indicates that the NET-layer payload is encrypted (Security = true).
Security can be used either in the network or the application layer; this frame uses network-layer
security. On the one hand, the DataEncryption field is false in the frame and the Message Integrity
Code (MIC) length is zero, which indicate that security level #0 is used and that the payload is not
encrypted. However, according to the ZigBee standard (Clause 4.4.1.2 in [ 1 ]), these two fields are
overwritten with values locally stored during network setup. In this case, this frame was secured
with security level #5, which means that the NET-payload is encrypted and that the MIC length is 32
bits.

Generating NET Frames

The zigbee.NETFrameGenerator function can generate unsecure NET-layer ZigBee data frames. The
configuration object can be further customized.

netConfig = zigbee.NETFrameConfig('SequenceNumber', 123, 'DestinationAddress', 'E568');
numOctets = 50;
payload = dec2hex(randi([0 2^8-1], numOctets, 1), 2);
netFrame = zigbee.NETFrameGenerator(netConfig, payload);

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• zigbee.NETFrameGenerator
• zigbee.NETFrameDecoder
• zigbee.NETFrameConfig

Selected Bibliography

1 ZigBee Alliance, ZigBee Specification Document 053474r17, 2007
2 IEEE 802.15.4-2011 - IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs)
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ZigBee Home Automation Frame Generation and Decoding
This example shows how to generate and decode application-layer frames for the Home Automation
application profile [ 1 ] of the ZigBee® specification [ 2 ] using the Communications Toolbox™ Library
for ZigBee and UWB.

Background

The ZigBee standard [ 2 ] specifies the network (NET or NWK) and application (APP or APL) layers
for low-rate wireless personal area networks. These NET- and APP-layer specifications build upon the
PHY and MAC specifications of IEEE® 802.15.4™ [ 3 ]. ZigBee devices find application in home
automation and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL). The APS sublayer follows a format that is common
for all application profiles and ZigBee clusters (see Clause 2.2.5 in [ 2 ]). The ZCL header follows a
format that is common for all clusters (see Clause 2.4 in [ 4 ]). The ZCL payload is used only by some
clusters and it follows a cluster-specific format.

Clusters and Frame Captures

Out of all the clusters used in the Home Automation application profile, this example decodes and
generates frames for: (i) the On/Off cluster (used by light devices), and (ii) the Intruder Alarm System
(IAS) Zone cluster (used by motion sensors) [ 4 ]. The On/Off cluster does not make use of a ZCL
payload, but the IAS Zone cluster does.

Frames of these clusters have been captured from commercial ZigBee radios enabling home
automation, using a USRP® B200-mini radio and the Communications Toolbox Support Package for
USRP® radio. ZigBee can employ security either at the network or the application layer. The
captured frames employed security at the network layer and were later on decrypted. This example
decodes the application layer of the decrypted NET-layer payloads.

load zigbeeAPPCaptures

Decoding APS Frames of Home Automation ZigBee Radios

A zigbee.APSFrameConfig configuration object is used both in generating and decoding ZigBee APS
frames. Such objects describe a APS-layer frame and specify its frame type and all applicable
properties. The zigbee.APSFrameDecoder function accepts a APS Protocol Data Unit (APDU) in bytes
and outputs a zigbee.APSFrameConfig object describing the frame and possibly a ZCL frame in bytes.
Clause 2.2.5.1 in [ 2 ] describes the APS frame formats.

Next, the APS sublayer of a captured IAS Zone frame is decoded:

[apsConfig, apsPayload] = zigbee.APSFrameDecoder(motionDetectedFrame);
apsConfig

apsConfig = 
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  APSFrameConfig with properties:

                FrameType: 'Data'
               APSCounter: 230
    AcknowledgmentRequest: 1

   Addressing:
             DeliveryMode: 'Unicast'
      DestinationEndpoint: '01'
                ClusterID: '0500'
                ProfileID: '0104'
           SourceEndpoint: '01'

   Extended header:
           ExtendedHeader: 0

   Security:
                 Security: 0

Decoding ZCL Header of Home Automation ZigBee Radios

A zigbee.ZCLFrameConfig configuration object is used both in generating and decoding ZigBee ZCL
headers. Such objects describe a ZCL-layer frame and specify its frame type and all applicable
properties.

The zigbee.ZCLFrameDecoder function accepts a ZCL frame in bytes and outputs a
zigbee.ZCLFrameConfig object describing the header and possibly a ZCL payload in bytes. Clause
2.4.1 in [ 4 ] describes the ZCL header frame formats. Note that the ZCL header may either specify a
'Library-wide' or a 'Cluster-specific' command type. In the latter case, the zigbee.ZCLFrameDecoder
also needs the cluster ID, which is present in the APS header, in order to decode the cluster-specific
command ID into a command type. For example, the next command decodes the ZCL header of a
captured IAS Zone frame.

[zclConfig, zclPayload] = zigbee.ZCLFrameDecoder(apsPayload, apsConfig.ClusterID);
zclConfig

zclConfig = 

  ZCLFrameConfig with properties:

                 FrameType: 'Cluster-specific'
               CommandType: 'Zone Status Change Notification'
            SequenceNumber: 9
       ManufacturerCommand: 0
                 Direction: 'Downlink'
    DisableDefaultResponse: 0

Decoding ZCL Payload of IAS Zone Frame from ZigBee Radio

In contrast to the On/Off cluster, the IAS Zone Cluster specifies a ZCL payload in addition to the ZCL
header. A zigbee.IASZoneFrameConfig configuration object is used both in generating and decoding
IAS Zone ZCL payloads. Such objects describe an IAS Zone payload and all applicable properties. The
zigbee.IASZoneFrameDecoder function accepts an IAS Zone payload in bytes and outputs a
zigbee.IASZoneFrameConfig object describing the IAZ Zone payload.

 ZigBee Home Automation Frame Generation and Decoding

7-69



iasZoneConfig = zigbee.IASZoneFrameDecoder(zclPayload)

iasZoneConfig = 

  IASZoneFrameConfig with properties:

        CommandType: 'Zone Status Change Notification'
             ZoneID: 0
             Alarm1: 'Not alarmed'
             Alarm2: 'Alarmed'
           Tampered: 0
         LowBattery: 0
    PeriodicReports: 0
     RestoreReports: 1
            Trouble: 0
            ACFault: 0
      BatteryDefect: 0
           TestMode: 0
              Delay: 0

Decoding Motion-Triggered Lighting Automation of ZigBee Radios

A lighting automation has been established for the commercial home-automation ZigBee radios
whose frames have been captured and decoded. Specifically, once a motion sensor detects motion, it
sends a signal to the ZigBee hub, which in turn sends a signal to a light bulb so that it turns on. When
the motion sensor detects that the motion has stopped (e.g., after 10 seconds without motion) it sends
a signal to the ZigBee hub, which in turn wirelessly triggers the light bulb to turn off. The following
video illustrates the lighting automation.

helperPlaybackVideo('LightingAutomation.mp4', 2/5);

The following code decodes the actual frames transmitted between the ZigBee radios. These were
captured with a USRP® device (also shown in the video).

apsFrames = {motionDetectedFrame; turnOnFrame; motionStoppedFrame; turnOffFrame};
for idx = 1:length(apsFrames)
  % APS decoding:
  [apsConfig, apsPayload] = zigbee.APSFrameDecoder(apsFrames{idx});
  % ZCL header decoding:
  [zclConfig, zclPayload] = zigbee.ZCLFrameDecoder(apsPayload, apsConfig.ClusterID);
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  zclConfig

  % On-off cluster (does not have ZCL payload)
  onOffClusterID = '0006';
  if strcmp(apsConfig.ClusterID, onOffClusterID)
    fprintf(['Turn light bulb ' lower(zclConfig.CommandType) '.\n']);
  end

  % Intruder Alarm System (IAS) Zone cluster has ZCL payload:
  iasZoneClusterID = '0500';
  if ~isempty(zclPayload) && strcmp(apsConfig.ClusterID, iasZoneClusterID)
    iasConfig = zigbee.IASZoneFrameDecoder(zclPayload)

    if any(strcmp('Alarmed', {iasConfig.Alarm1, iasConfig.Alarm2}))
      fprintf('Motion detected.\n');
    else
      fprintf('Motion stopped.\n');
    end
  end
end

zclConfig = 

  ZCLFrameConfig with properties:

                 FrameType: 'Cluster-specific'
               CommandType: 'Zone Status Change Notification'
            SequenceNumber: 9
       ManufacturerCommand: 0
                 Direction: 'Downlink'
    DisableDefaultResponse: 0

iasConfig = 

  IASZoneFrameConfig with properties:

        CommandType: 'Zone Status Change Notification'
             ZoneID: 0
             Alarm1: 'Not alarmed'
             Alarm2: 'Alarmed'
           Tampered: 0
         LowBattery: 0
    PeriodicReports: 0
     RestoreReports: 1
            Trouble: 0
            ACFault: 0
      BatteryDefect: 0
           TestMode: 0
              Delay: 0

Motion detected.

zclConfig = 

  ZCLFrameConfig with properties:
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                 FrameType: 'Cluster-specific'
               CommandType: 'On'
            SequenceNumber: 64
       ManufacturerCommand: 0
                 Direction: 'Uplink'
    DisableDefaultResponse: 0

Turn light bulb on.

zclConfig = 

  ZCLFrameConfig with properties:

                 FrameType: 'Cluster-specific'
               CommandType: 'Zone Status Change Notification'
            SequenceNumber: 10
       ManufacturerCommand: 0
                 Direction: 'Downlink'
    DisableDefaultResponse: 0

iasConfig = 

  IASZoneFrameConfig with properties:

        CommandType: 'Zone Status Change Notification'
             ZoneID: 0
             Alarm1: 'Not alarmed'
             Alarm2: 'Not alarmed'
           Tampered: 0
         LowBattery: 0
    PeriodicReports: 0
     RestoreReports: 1
            Trouble: 0
            ACFault: 0
      BatteryDefect: 0
           TestMode: 0
              Delay: 0

Motion stopped.

zclConfig = 

  ZCLFrameConfig with properties:

                 FrameType: 'Cluster-specific'
               CommandType: 'Off'
            SequenceNumber: 70
       ManufacturerCommand: 0
                 Direction: 'Uplink'
    DisableDefaultResponse: 0

Turn light bulb off.
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Generating IAS Zone ZCL Payloads

The zigbee.IASZoneFrameGenerator function accepts a zigbee.IASZoneFrameConfig object
describing the IAS Zone payload and outputs the payload in bytes. The following code creates two
ZCL payloads for this cluster indicating that intrusion has or has not been detected.

iasConfigIntrusion = zigbee.IASZoneFrameConfig('Alarm2', 'Alarmed');
zclPayloadIntrusion = zigbee.IASZoneFrameGenerator(iasConfigIntrusion);

iasConfigNoIntrusion = zigbee.IASZoneFrameConfig('Alarm2', 'Not alarmed');
zclPayloadNoIntrusion = zigbee.IASZoneFrameGenerator(iasConfigNoIntrusion);

Generating ZCL Frames

The zigbee.ZCLFrameGenerator function accepts a zigbee.ZCLFrameConfig object describing the
frame, and optionally a ZCL payload in bytes (two-characters), and outputs the ZCL frame in bytes.
The following code generates ZCL frames for the On/Off cluster (no payload) and the IAS Zone cluster
(payload needed).

% IAS Zone Cluster
zclConfigIntrusion = zigbee.ZCLFrameConfig('FrameType', 'Cluster-specific', ...
                                           'CommandType', 'Zone Status Change Notification', ...
                                           'SequenceNumber', 1, 'Direction', 'Downlink');
zclFrameIntrusion = zigbee.ZCLFrameGenerator(zclConfigIntrusion, zclPayloadIntrusion);

% On/Off Cluster
zclConfigOn = zigbee.ZCLFrameConfig('FrameType', 'Cluster-specific', ...
                                    'CommandType', 'On', ...
                                    'SequenceNumber', 2, 'Direction', 'Uplink');
zclFrameOn = zigbee.ZCLFrameGenerator(zclConfigOn);

Generating APS Frames

The zigbee.APSFrameGenerator function accepts a zigbee.APSFrameConfig object describing the
frame, and optionally a APS payload (ZCL-layer frame) in bytes (two-characters), and outputs the APS
frame in bytes. The following code illustrates how to generate APS frames for the ZCL frames created
in the previous section.

% IAS Zone Cluster
apsConfigIntrusion = zigbee.APSFrameConfig('FrameType', 'Data', ...
                                           'ClusterID', iasZoneClusterID, ...
                                           'ProfileID', zigbee.profileID('Home Automation'), ...
                                           'APSCounter', 1, ...
                                           'AcknowledgmentRequest', true);
apsFrameIntrusion = zigbee.APSFrameGenerator(apsConfigIntrusion, zclFrameIntrusion);

% On/Off cluster
apsConfigOn = zigbee.APSFrameConfig('FrameType', 'Data', ...
                                    'ClusterID', onOffClusterID, ...
                                    'ProfileID', zigbee.profileID('Home Automation'), ...
                                    'APSCounter', 2, ...
                                    'AcknowledgmentRequest', true);
apsFrameOn = zigbee.APSFrameGenerator(apsConfigOn, zclFrameOn);

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:
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• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder
• zigbee.IASZoneFrameConfig, zigbee.IASZoneFrameGenerator, zigbee.IASZoneFrameDecoder
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ZigBee Light Link Frame Generation and Decoding
This example shows how to generate and decode frames of the ZigBee® Light Link application profile
[ 1 ] using the Communications Toolbox™ Library for ZigBee and UWB.

Background

The ZigBee standard [ 2 ] specifies network (NET or NWK) and application (APP or APL) layers of
low-rate wireless personal area networks (LR-WPANs). These NET- and APP-layer specifications build
upon the PHY and MAC specifications of IEEE® 802.15.4™ [ 3 ]. ZigBee devices find application in
home automation and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL).

The APS and ZCL headers follow a format that is common for all application profiles and ZigBee
clusters (see Clauses 2.2.5 in [ 2 ] and 2.4 in [ 4 ], respectively). The ZCL payload is used only by
some clusters and it follows a cluster-specific format. The generic APS and ZCL header generation
and decoding is illustrated in the “ZigBee Home Automation Frame Generation and Decoding” on
page 7-68 example. This example illustrates the cluster-specific generation and decoding of ZigBee
Light Link ZCL payloads.

Clusters and Commands

Out of the 7 clusters specified in the Light Link application profile [ 1 ], this example generates and
decodes frames for the following clusters:

1 Identify cluster: This cluster sets a device into identification mode (e.g., flashing a light). This
example illustrates frame generation and decoding for the Identify command (described in
Clause 3.5 of [ 4 ]).

2 Color Control cluster: This cluster changes the color of a lighting device. This example
illustrates frame generation and decoding for the Move to Color command (described in Clause
5.2 of [ 4 ]).

3 Level Control cluster: This cluster modifies the level of a device, e.g., the intensity of a light
bulb, how closed a door is, or the intensity of a heater. This example illustrates frame generation
and decoding for the Move to Level command (described in Clause 3.10 of [ 4 ]).

4 Scenes cluster: The scenes cluster sets up and recalls scenes (i.e., sets of stored attribute
values for other clusters in the same device). This example illustrates frame generation and
decoding for the View Scene command (described in Clause 3.7 of [ 4 ]).

5 Group cluster: This cluster manages groups of devices, e.g., by creating or removing a group, or
by discovering group membership. This example illustrates frame generation and decoding for
the Add group command (described in Clause 3.6 of [ 4 ]).

In addition to the illustrated commands, this example provides an implementation for generating and
decoding frames for all commands of the five mentioned clusters (see Further Exploration for a
complete list).
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Generating and Decoding ZCL Payload of Identify Cluster

A zigbee.IdentifyFrameConfig configuration object is used both in generating and decoding ZCL
payloads of the Identify cluster. Such objects describe an Identify cluster payload and all applicable
properties. The zigbee.IdentifyFrameGenerator function accepts a zigbee.IdentifyFrameConfig object
describing the Identify cluster payload and outputs the generated payload in bytes. The following
code creates a ZCL payload for a command asking a device to identify for 4 seconds.

% Creation of configuration object for Identify cluster
identifyConfigTx = zigbee.IdentifyFrameConfig('CommandType', 'Identify', ...
                                              'IdentifyTime', 4);

% Frame generation (ZCL payload) for Identify cluster
identifyPayload = zigbee.IdentifyFrameGenerator(identifyConfigTx);

The zigbee.IdentifyFrameDecoder function accepts the command name and a Identify cluster payload
in bytes and outputs a zigbee.IdentifyFrameConfig object describing the Identify cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-68 example.

identifyConfigRx = zigbee.IdentifyFrameDecoder('Identify', identifyPayload)

identifyConfigRx = 

  IdentifyFrameConfig with properties:

     CommandType: 'Identify'
    IdentifyTime: 4

The following code visualizes a "software bulb" that illustrates the identification effect specified in the
received frame.

bulb = plotBulb('white');
zigbeeIdentifyBulb(bulb, identifyConfigRx.IdentifyTime);
close(bulb);

Generating and Decoding ZCL Payload of Color Control Cluster

A zigbee.ColorControlFrameConfig configuration object is used both in generating and decoding ZCL
payloads of the Color Control cluster. Such objects describe a Color Control cluster payload and all
applicable properties. The zigbee.ColorControlFrameGenerator function accepts a
zigbee.ColorControlFrameConfig object describing the Color Control cluster payload and outputs the
generated payload in bytes. The following code generates a Color Control cluster payload that
instructs a lighting device to progressively change its current color (red) to a different value (green)
within 50 deciseconds (i.e., 5 seconds). Color is described in terms of x, y values according to the CIE
1931 color space established by the International Commission on Illumination (CIE) [ 5 ].

bulb = plotBulb('red');
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% Creation of configuration object for Color Control cluster
colorCtrlConfigTx = zigbee.ColorControlFrameConfig('CommandType', 'Move to Color', ...
                                                   'ColorX', 16384, 'ColorY', 39322, 'Time', 50);

% Frame generation (ZCL payload) for Color Control cluster
colorControlPayload = zigbee.ColorControlFrameGenerator(colorCtrlConfigTx);

The zigbee.ColorControlFrameDecoder function accepts the command name and a Color Control
cluster payload in bytes and outputs a zigbee.ColorControlFrameConfig object describing the Color
Control cluster payload. The command name is retrieved from the decoding of the ZCL header. See
section 'Decoding ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation
Frame Generation and Decoding” on page 7-68 example.

colorCtrlConfigRx = zigbee.ColorControlFrameDecoder('Move to Color', colorControlPayload)

colorCtrlConfigRx = 

  ColorControlFrameConfig with properties:

    CommandType: 'Move to Color'
         ColorX: 16384
         ColorY: 39322
           Time: 50

The following command uses a "software bulb" to visualize the Color Control effect specified in the
received frame. Specifically, the color of a bulb progressively changes from red to green within 5
seconds.
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zigbeeMoveBulbColor(bulb, colorCtrlConfigRx.ColorX, colorCtrlConfigRx.ColorY, colorCtrlConfigRx.Time);

Next, the same effect occurs on a different color trajectory (from green to violet).

colorCtrlConfigTx2 = zigbee.ColorControlFrameConfig('CommandType', 'Move to Color', ...
                                                   'ColorX',  19661, 'ColorY', 6554, 'Time', 50);
colorControlPayload2 = zigbee.ColorControlFrameGenerator(colorCtrlConfigTx2);
colorCtrlConfigRx2 = zigbee.ColorControlFrameDecoder('Move to Color', colorControlPayload2);
zigbeeMoveBulbColor(bulb, colorCtrlConfigRx2.ColorX, colorCtrlConfigRx2.ColorY, colorCtrlConfigRx2.Time);

pause(1.5);
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Generating and Decoding ZCL Payload of Level Control Cluster

A zigbee.LevelControlFrameConfig configuration object is used both in generating and decoding
Level Control cluster ZCL payloads. Such objects describe a Level Control cluster payload and all
applicable properties. The zigbee.LevelControlFrameGenerator function accepts a
zigbee.LevelControlFrameConfig object describing the Level Control cluster payload and outputs the
generated payload in bytes. The following code creates a Level Control cluster payload that instructs
a device to change its current level to the specified value.

% Creation of Level Control cluster configuration object
levelCtrlConfigTx = zigbee.LevelControlFrameConfig('CommandType', 'Move to Level', ...
                                                   'Level', 20, 'TransitionTime', 1);

% Level Control cluster frame generation (ZCL payload)
levelControlPayload = zigbee.LevelControlFrameGenerator(levelCtrlConfigTx);

The zigbee.LevelControlFrameDecoder function accepts the command name and a Level Control
cluster payload in bytes and outputs a zigbee.LevelControlFrameConfig object describing the Level
Control cluster payload. The command name is retrieved from the decoding of the ZCL header. See
section 'Decoding ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation
Frame Generation and Decoding” on page 7-68 example.

levelCtrlConfigRx = zigbee.LevelControlFrameDecoder('Move to Level', levelControlPayload)

levelCtrlConfigRx = 

  LevelControlFrameConfig with properties:
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       CommandType: 'Move to Level'
             Level: 20
    TransitionTime: 1

While the Level Control cluster can be used to regulate the intensity of a light, the Color Control
cluster leaves it to the Level Control cluster to control the luminance of a lighting device's color. The
following example uses the received Level Control frame to increase the luminance level of a light
bulb.

zigbeeMoveBulbColor(bulb, colorCtrlConfigRx2.ColorX, colorCtrlConfigRx2.ColorY, 1, levelCtrlConfigRx.Level);

Generating and Decoding ZCL Payload of Scenes Cluster

A zigbee.SceneFrameConfig configuration object is used both in generating and decoding Scenes
cluster ZCL payloads. Such objects describe a Scenes cluster payload and all applicable properties.
The zigbee.ScenesFrameGenerator function accepts a zigbee.ScenesFrameConfig object describing
the Scenes cluster payload and outputs the generated payload in bytes. The following code generates
a Scenes cluster payload that requests a device to transmit a different frame (View Scene Response)
describing a scene.

% Creation of Scenes cluster configuration object
scenesConfigTx = zigbee.ScenesFrameConfig('CommandType', 'View Scene', ...
                                          'GroupID', '1234', 'SceneID', '56');

% Scenes cluster frame generation (ZCL payload)
scenesPayload = zigbee.ScenesFrameGenerator(scenesConfigTx);
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The zigbee.SceneFrameDecoder function accepts the command name and a Scenes cluster payload in
bytes and outputs a zigbee.SceneFrameConfig object describing the Scenes cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-68 example.

scenesConfigRx = zigbee.ScenesFrameDecoder('View Scene', scenesPayload)

scenesConfigRx = 

  ScenesFrameConfig with properties:

    CommandType: 'View Scene'
        GroupID: '1234'
        SceneID: '56'

Generating and Decoding ZCL Payload of Groups Cluster

A zigbee.GroupFrameConfig configuration object is used both in generating and decoding Groups
cluster ZCL payloads. Such objects describe a Groups cluster payload and all applicable properties.
The zigbee.GroupsFrameGenerator function accepts a zigbee.GroupsFrameConfig object describing
the Groups cluster payload and outputs the generated payload in bytes. The following code creates a
Groups cluster payload that instructs a device to add the specified group to its Group table.

% Creation of Groups cluster configuration object
groupsConfigTx = zigbee.GroupsFrameConfig('CommandType', 'Add group', ...
                        'GroupName', 'Dining Hall', 'GroupID', '1234');

% Groups cluster frame generation (ZCL payload)
groupsPayload = zigbee.GroupsFrameGenerator(groupsConfigTx);

The zigbee.GroupFrameDecoder function accepts the command name and a Groups cluster payload
in bytes and outputs a zigbee.GroupFrameConfig object describing the Groups cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-68 example.

groupsConfigRx = zigbee.GroupsFrameDecoder('Add group', groupsPayload)

groupsConfigRx = 

  GroupsFrameConfig with properties:

    CommandType: 'Add group'
        GroupID: '1234'
      GroupName: 'Dining Hall'

Wireshark Decoding

The generated frames can be converted to a PCAP format, which can be analyzed and visualized with
Wireshark [ 6 ]. This process can serve as an additional verification step advocating that the
Communications Toolbox Library for the ZigBee Protocol generates and decodes frames in a
standard-compliant manner.
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The PCAP file needs the ZCL payloads to be enclosed with headers from all other layers and
sublayers (MAC, NET, APS, ZCL). The following commands generate a PCAP file, for the ZCL payloads
generated in this example, that can be loaded with Wireshark.

% ZLL profile ID
zllProfileID = zigbee.profileID('Light Link');

payloadsWithInfo(1) = struct('Payload',   identifyPayload,       'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,            'ClusterID',   zigbee.clusterID('Identify'),       'CommandType', 'Identify',      'Direction', 'Uplink');
payloadsWithInfo(2) = struct('Payload',   colorControlPayload,   'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,            'ClusterID',   zigbee.clusterID('Color Control'),  'CommandType', 'Move to Color', 'Direction', 'Uplink');
payloadsWithInfo(3) = struct('Payload',   levelControlPayload,   'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,            'ClusterID',   zigbee.clusterID('Level Control'),  'CommandType', 'Move to Level', 'Direction', 'Uplink');
payloadsWithInfo(4) = struct('Payload',   scenesPayload,         'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,            'ClusterID',   zigbee.clusterID('Scenes'),         'CommandType', 'View Scene',    'Direction', 'Uplink');
payloadsWithInfo(5) = struct('Payload',   groupsPayload,         'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,            'ClusterID',   zigbee.clusterID('Groups'),         'CommandType', 'Add group',     'Direction', 'Uplink');

% Add headers from other layers/sublayers:
MPDUs = zigbeeAddProtocolHeaders(payloadsWithInfo);

% Export MPDUs to a PCAP format
zigbeeExportToPcap(MPDUs, 'zigbeeLightLink.pcap');

% Open PCAP file with Wireshark

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder
• zigbee.IdentifyFrameConfig, zigbee.IdentifyFrameGenerator, zigbee.IdentifyFrameDecoder
• zigbee.ColorControlFrameConfig, zigbee.ColorControlFrameGenerator,

zigbee.ColorControlFrameDecoder
• zigbee.LevelControlFrameConfig, zigbee.LevelControlFrameGenerator,

zigbee.LevelControlFrameDecoder
• zigbee.ScenesFrameConfig, zigbee.ScenesFrameGenerator, zigbee.ScenesFrameDecoder
• zigbee.GroupsFrameConfig, zigbee.GroupsFrameGenerator, zigbee.GroupsFrameDecoder

In addition to the commands illustrated in this example, the offered implementation also supports the
commands listed in the following table. The commands listed in the middle column can be exported to
a PCAP file that can be analyzed with Wireshark.
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ZigBee Frame Generation and Decoding for General Commands
This example shows how to generate and decode General Command frames of the ZigBee®
specification [ 1 ] using the Communications Toolbox™ Library for ZigBee and UWB.

Background

The ZigBee standard [ 1 ] specifies network (NET or NWK) and application (APP) layers of low-rate
wireless personal area networks. These NET- and APP-layer specifications build upon the PHY and
MAC specifications of IEEE® 802.15.4™ [ 2 ]. ZigBee devices find application in home automation
and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL).

The APS and ZCL headers follow a format that is common for all application profiles and ZigBee
clusters/commands (see Clauses 2.2.5 in [ 1 ] and 2.4 in [ 3 ], respectively). The APS header declares
the cluster of the frame and the ZCL header declares the command of the frame. The ZCL payload is
present only for some clusters/commands and follows a command-specific format.

Some commands only apply for a specific cluster, while some other (general) commands can be used
for all clusters. General command frames are used for manipulating attributes and other general
tasks that are not specific to an individual cluster (see Clause 2.5 in [ 3 ]). This example illustrates
how to generate and decode ZCL payloads for such general, library-wide ZigBee commands. The
generic APS and ZCL header generation and decoding is illustrated in the “ZigBee Home Automation
Frame Generation and Decoding” on page 7-68 example.

Commands

This examples illustrates frame generation and decoding for the following general commands:

1 Read Attributes: This command inquires an attribute value at a different device.
2 Read Attributes Response: This command responds with an attribute value.
3 Write Attributes: This command modifies an attribute value at a different device.
4 Write Attributes Response: This command responds with the result of a Write Attributes

command.

In addition, this example provides an implementation for the following commands (which are not
illustrated):

1 Write Attributes Undivided: This command is the same with "Write Attributes" with the only
exception that an attribute is updated only if all other specified attributes can also be updated.

2 Write Attributes No Response: This command is the same with "Write Attributes" with the only
exception that a response frame is not required.

3 Report Attributes: This command reports all attributes and their values.
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4 Default Response: This command generates response frames of generic format.

A zigbee.GeneralFrameConfig configuration object is used both in generating and decoding ZCL
payloads of General Commands. Such objects describe a General Commands payload and all
applicable properties.

Generating ZCL Payloads of General Commands

The zigbee.GeneralFrameGenerator function accepts a zigbee.GeneralFrameConfig object describing
the payload of the general command and generates the payload in bytes. The following code creates
the payload of the Read/Write Attribute commands and their responses.

% Read Attributes command:
readConfigTx = zigbee.GeneralFrameConfig('CommandType', 'Read Attributes', 'AttributeID', '0000')
readPayload = zigbee.GeneralFrameGenerator(readConfigTx);

% Read Attributes Response command:
readResponseConfigTx = zigbee.GeneralFrameConfig('CommandType', 'Read Attributes Response', ...
                            'AttributeID', '0000', 'Status', 'Success', 'AttributeType', 'boolean', 'AttributeValue', false)
readResponsePayload = zigbee.GeneralFrameGenerator(readResponseConfigTx);

% Write Attributes command:
writeConfigTx = zigbee.GeneralFrameConfig('CommandType', 'Write Attributes', 'AttributeID', '0000', 'AttributeType', 'boolean', 'AttributeValue', true)
writePayload = zigbee.GeneralFrameGenerator(writeConfigTx);

% % Write Attributes Response command:
writeResponseConfigTx = zigbee.GeneralFrameConfig('CommandType', 'Write Attributes Response', 'Status', 'Success')
writeResponsePayload = zigbee.GeneralFrameGenerator(writeResponseConfigTx);

readConfigTx = 

  GeneralFrameConfig with properties:

    CommandType: 'Read Attributes'
    AttributeID: '0000'

readResponseConfigTx = 

  GeneralFrameConfig with properties:

       CommandType: 'Read Attributes Response'
       AttributeID: '0000'
            Status: 'Success'
     AttributeType: 'Boolean'
    AttributeValue: 0

writeConfigTx = 

  GeneralFrameConfig with properties:

       CommandType: 'Write Attributes'
       AttributeID: '0000'
     AttributeType: 'Boolean'
    AttributeValue: 1
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writeResponseConfigTx = 

  GeneralFrameConfig with properties:

    CommandType: 'Write Attributes Response'
         Status: 'Success'

Decoding ZCL Payloads of General Commands Captured from ZigBee Radios

This section decodes ZCL payloads of general commands captured from commercial Home-
Automation ZigBee radios> with a USRP® B200-mini radio and the Communications Toolbox Support
Package for USRP® radio. For more information, see section 'Clusters and Frame Captures' in the
“ZigBee Home Automation Frame Generation and Decoding” on page 7-68 example.

% load captured payloads
load zigbeeGeneralCommandCaptures

The zigbee.GeneralFrameDecoder function accepts a general command name and its payload in bytes
and outputs a zigbee.GeneralFrameConfig object describing the payload of the general command.
The command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL
Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-68 example.

% Read Attributes :
readConfigRx = zigbee.GeneralFrameDecoder('Read Attributes', capturedReadPayload)

% Read Attributes Response:
readResponseRx = zigbee.GeneralFrameDecoder('Read Attributes Response', capturedReadResponsePayload)

% Default Response
defaultResponseRx = zigbee.GeneralFrameDecoder('Default Response', capturedDefaultResponsePayload)

readConfigRx = 

  GeneralFrameConfig with properties:

    CommandType: 'Read Attributes'
    AttributeID: '0000'

readResponseRx = 

  GeneralFrameConfig with properties:

       CommandType: 'Read Attributes Response'
       AttributeID: '0000'
            Status: 'Success'
     AttributeType: 'Boolean'
    AttributeValue: 1

defaultResponseRx = 

  GeneralFrameConfig with properties:
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         CommandType: 'Default Response'
              Status: 'Success'
    CommandToRespond: '01'

Decoding Generated ZCL Payloads of General Commands

This section illustrates the decoding of the remaining generated general commands (i.e., 'Write
Attributes', 'Write Attributes Response').

% Write Attributes :
writeConfigRx = zigbee.GeneralFrameDecoder('Write Attributes', writePayload)

% Write Attributes Response:
writeResponseRx = zigbee.GeneralFrameDecoder('Write Attributes Response', writeResponsePayload)

writeConfigRx = 

  GeneralFrameConfig with properties:

       CommandType: 'Write Attributes'
       AttributeID: '0000'
     AttributeType: 'Boolean'
    AttributeValue: 1

writeResponseRx = 

  GeneralFrameConfig with properties:

    CommandType: 'Write Attributes Response'
         Status: 'Success'

Wireshark Decoding

The generated frames can be converted to a PCAP format, which can be analyzed and visualized with
Wireshark [ 4 ]. This process can serve as an additional verification step advocating that the
Communications Toolbox Library for the ZigBee Protocol generates and decodes frames in a
standard-compliant manner.

The PCAP file needs the ZCL payloads to be enclosed with headers from all other layers and
sublayers (MAC, NET, APS, ZCL). The following commands generate a PCAP file, for the ZCL payloads
generated in this example, that can be loaded with Wireshark.

% Profile ID
profileID = zigbee.profileID('Home Automation');
onOffID      = zigbee.clusterID('On/Off');

payloadsWithInfo(1) = struct('Payload',   readPayload,           'ProfileID',  profileID, ...
                             'ClusterSpecific', false,           'ClusterID',  onOffID,      'CommandType', 'Read Attributes',            'Direction', 'Downlink');
payloadsWithInfo(2) = struct('Payload',   readResponsePayload,   'ProfileID',  profileID, ...
                             'ClusterSpecific', false,           'ClusterID',  onOffID,      'CommandType', 'Read Attributes Response',   'Direction', 'Uplink');
payloadsWithInfo(3) = struct('Payload',   writePayload,          'ProfileID',  profileID, ...
                             'ClusterSpecific', false,           'ClusterID',  onOffID,      'CommandType', 'Write Attributes',           'Direction', 'Downlink');
payloadsWithInfo(4) = struct('Payload',   writeResponsePayload,  'ProfileID',  profileID, ...
                             'ClusterSpecific', false,           'ClusterID',  onOffID,      'CommandType', 'Write Attributes Response',  'Direction', 'Uplink');
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% Add headers from other layers/sublayers:
MPDUs = zigbeeAddProtocolHeaders(payloadsWithInfo);

% Export MPDUs to a PCAP format
zigbeeExportToPcap(MPDUs, 'zigbeeGeneralCommands.pcap');

% Open PCAP file with Wireshark

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• zigbee.GeneralFrameConfig, zigbee.GeneralFrameGenerator, zigbee.GeneralFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder
• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
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ZigBee Smart Energy Frame Generation and Decoding
This example shows how to generate and decode ZigBee® Smart Energy frames using the
Communications Toolbox™ Library for ZigBee and UWB.

Background

The ZigBee standard [ 2 ] specifies network (NET or NWK) and application (APP or APL) layers of
low-rate wireless personal area networks (LR-WPANs). These NET- and APP-layer specifications build
upon the PHY and MAC specifications of IEEE® 802.15.4™ [ 3 ]. ZigBee devices find application in
home automation and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL).

The APS and ZCL headers follow a format that is common for all application profiles and ZigBee
clusters (see Clauses 2.2.5 in [ 2 ] and 2.4 in [ 4 ], respectively). The ZCL payload is used only by
some clusters and it follows a cluster-specific format. The generic APS and ZCL header generation
and decoding is illustrated in the “ZigBee Home Automation Frame Generation and Decoding” on
page 7-68 example. This example illustrates the cluster-specific generation and decoding of ZigBee
Smart Energy ZCL payloads.

Clusters and Commands

Out of the 7 clusters used in the Smart Energy application profile, this example generates and
decodes frames for the following clusters:

1 Demand Response and Load Control (DRLC) cluster: This cluster advertises changes to
energy demand and consumption. This example illustrates frame generation and decoding for the
Load Control Event command (described in Clause 10.3.2.3.1 of [ 4 ]).

2 Price cluster: This cluster communicates Energy, Gas or Water pricing information. This
example illustrates frame generation and decoding for the Get Current Price and Publish
Price commands (described in Clause 10.2.2.3.1 of [ 4 ]).

3 Messaging cluster: This cluster exchanges text messages between ZigBee devices. This
example illustrates frame generation and decoding for the Display Message command
(described in Clause 10.5.2.3.1 of [ 4 ]).

In addition to the illustrated commands, the implementation offered in this example also generates
and decodes frames of the following commands:
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Generating and Decoding ZCL Payload of DRLC Cluster

A zigbee.DRLCFrameConfig configuration object is used both in generating and decoding ZCL
payloads for the Demand Response and Load Control (DRLC) cluster. Such objects describe a DRLC
cluster payload and all applicable properties. The zigbee.DRLCFrameGenerator function accepts a
zigbee.DRLCFrameConfig object describing the DRLC cluster payload and outputs the payload in
bytes. The following code creates a ZCL payload for a command that sets the set point of heating
devices to 23.5 C.

% Creation of DRLC cluster configuration object
drlcConfigTx = zigbee.DRLCFrameConfig('CommandType', 'Load Control Event', ...
                                      'EventID', '00000001', 'DeviceClass', 'Strip Heaters/Baseboard Heaters', ...
                                      'HeatingSetPoint', 23.5);

% DRLC cluster frame generation (ZCL payload)
drlcPayload = zigbee.DRLCFrameGenerator(drlcConfigTx);

The zigbee.DRLCFrameDecoder function accepts the command name and a DRLC cluster payload in
bytes and outputs a zigbee.DRLCFrameConfig object describing the DRLC cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-68 example.

drlcConfigRx = zigbee.DRLCFrameDecoder('Load Control Event', drlcPayload)

drlcConfigRx = 

  DRLCFrameConfig with properties:

         CommandType: 'Load Control Event'
             EventID: '00000001'
         DeviceClass: 'Strip Heaters/Baseboard Heaters'
         DeviceGroup: '00'
                Time: 0
            Duration: 0
    CriticalityLevel: 'Green'
     HeatingSetPoint: 23.5000
         RandomStart: 1
           RandomEnd: 1

Generating and Decoding ZCL Payload of Price Cluster

A zigbee.PriceFrameConfig configuration object is used both in generating and decoding ZCL
payloads for the Price cluster. Such objects describe a Price cluster payload and all applicable

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-90



properties. The zigbee.PriceFrameGenerator function accepts a zigbee.PriceFrameConfig object
describing the Price cluster payload and outputs the payload in bytes. The following code creates a
ZCL payload for a command that requests the current price of a commodity.

% Creation of Price cluster configuration object
priceConfigTx = zigbee.PriceFrameConfig('CommandType', 'Get Current Price');

% Price cluster frame generation (ZCL payload)
pricePayload = zigbee.PriceFrameGenerator(priceConfigTx);

The zigbee.PriceFrameDecoder function accepts the command name and a Price cluster payload in
bytes and outputs a zigbee.PriceFrameConfig object describing the Price cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-68 example.

priceConfigRx = zigbee.PriceFrameDecoder('Get Current Price', pricePayload)

priceConfigRx = 

  PriceFrameConfig with properties:

      CommandType: 'Get Current Price'
    IdleReceiving: 0

Upon receiving a 'Get Current Price' command, a server replies with a 'Publish Price' command.

priceConfigTx = zigbee.PriceFrameConfig('CommandType', 'Publish Price', 'Price', 0.4899, 'Duration', 14400);
pricePayload = zigbee.PriceFrameGenerator(priceConfigTx);

The client device can then decode the published price:

priceConfigRx = zigbee.PriceFrameDecoder('Publish Price', pricePayload)

priceConfigRx = 

  PriceFrameConfig with properties:

       CommandType: 'Publish Price'
        ProviderID: 0
         RateLabel: ''
           EventID: 0
    GenerationTime: 0
              Unit: 'kW'
        UnitFormat: 'Binary'
          Currency: 840
         PriceTier: 1
      RegisterTier: 1
     NumPriceTiers: 0
         StartTime: 0
          Duration: 14400
             Price: 0.4899
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Generating and Decoding ZCL Payload of Messaging Cluster

A zigbee.MessagingFrameConfig configuration object is used both in generating and decoding ZCL
payloads for the Messaging cluster. Such objects describe a Messaging cluster payload and all
applicable properties. The zigbee.MessagingFrameGenerator function accepts a
zigbee.MessagingFrameConfig object describing the Messaging cluster payload and outputs the
payload in bytes. The following code creates a ZCL payload for a command that displays a message.

% Creation of messaging cluster configuration object
messageID = 1234;
messagingConfigTx = zigbee.MessagingFrameConfig('CommandType', 'Display Message', ...
                                      'MessageID', messageID, 'Message', 'This is a custom message', 'Duration', 90);

% Messaging cluster frame generation (ZCL payload)
displayMessagePayload = zigbee.MessagingFrameGenerator(messagingConfigTx);

The zigbee.MessagingFrameDecoder function accepts the command name and a Messaging cluster
payload in bytes and outputs a zigbee.MessagingFrameConfig object describing the Messagingcluster
payload. The command name is retrieved from the decoding of the ZCL header. See section 'Decoding
ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation
and Decoding” on page 7-68 example.

messagingConfigRx = zigbee.MessagingFrameDecoder('Display Message', displayMessagePayload)

messagingConfigRx = 

  MessagingFrameConfig with properties:

            CommandType: 'Display Message'
              MessageID: 1234
       TransmissionType: 'Normal Transmission Only'
               Priority: 'Low'
    MessageConfirmation: 0
               Duration: 90
                Message: 'This is a custom message'

A server that displays a message also has the ability to cancel the message using the "Cancel
Message" command:

cancelMsgConfig = zigbee.MessagingFrameConfig('CommandType', 'Cancel Message', ...
                                              'MessageID', messageID);
cancelMessagePayload = zigbee.MessagingFrameGenerator(messagingConfigTx);

Clients can then decode the Cancel Message command:

messagingConfigRx = zigbee.MessagingFrameDecoder('Cancel Message', cancelMessagePayload)

messagingConfigRx = 

  MessagingFrameConfig with properties:

            CommandType: 'Cancel Message'
              MessageID: 1234
       TransmissionType: 'Normal Transmission Only'
               Priority: 'Low'
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    MessageConfirmation: 0

Wireshark Decoding

The generated Messaging frames can be converted to a PCAP-formatted file that can be analyzed and
visualized with Wireshark [ 5 ]. This process can serve as an additional verification step advocating
that the Communications Toolbox Library for the ZigBee Protocol generates and decodes frames in a
standard-compliant manner.

The PCAP file needs the ZCL payloads to be enclosed with headers from all other layers and
sublayers (MAC, NET, APS, ZCL). This task is performed by the following commands.

zllProfileID = zigbee.profileID('Smart Energy'); % ZLL profile ID
msgClusterID = zigbee.clusterID('Messaging'); % Messaging cluster ID

payloadsWithInfo(1) = struct('Payload', displayMessagePayload,  'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,           'ClusterID',   msgClusterID, 'CommandType', 'Display Message', 'Direction', 'Downlink');
payloadsWithInfo(2) = struct('Payload', cancelMessagePayload,   'ProfileID',   zllProfileID, ...
                             'ClusterSpecific', true,           'ClusterID',   msgClusterID, 'CommandType', 'Cancel Message',  'Direction', 'Downlink');

% Add headers from other layers/sublayers:
MPDUs = zigbeeAddProtocolHeaders(payloadsWithInfo);

% Export MPDUs to a PCAP format
zigbeeExportToPcap(MPDUs, 'zigbeeSmartEnergy.pcap');

% Open PCAP file with Wireshark

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• zigbee.DRLCFrameConfig, zigbee.DRLCFrameGenerator, zigbee.DRLCFrameDecoder
• zigbee.PriceFrameConfig, zigbee.PriceFrameGenerator, zigbee.PriceFrameDecoder
• zigbee.MessagingFrameConfig, zigbee.MessagingFrameGenerator,

zigbee.MessagingFrameDecoder
• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder
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Simulate and Verify Power Amplifier Backoff
This example shows how to use backoff to scale a signal prior to inputting it to a table-based power
amplifier. It also shows how to examine the power distribution of the signal input to the amplifier, and
to verify that the actual behavior of the amplifier matches the specification. The Appendix on page 8-
0  lists helper functions used in the example.

System Setup

totalTime = 0;
M = 16; % Modulation order
fs = 1e6; % Sample rate, in Hz (also used for measurement bandwidth)
sigDuration = 0.01; % sec
msgLen = round(sigDuration*fs); % samples

Specify the amplifier as a table-based object. Using measured amplifier data stored in an Excel
spreadsheet, read the output power vs. input power and phase change vs. input power. The powers
are given in dBm, and the phase change in degrees. The reference impedance is used to convert the
signal's voltage values to power values.

table = table2array(readtable("PACharacteristic.xlsx", ...
  "PreserveVariableNames",true));
mnl = comm.MemorylessNonlinearity("Method","Lookup table", ...
  "Table",table,"ReferenceImpedance",1);

Determine the input power that results in the peak output power. That input power is the point from
which the signal will be backed off. Use the input backoff to determine the required signal power at
the input to the amplifier.

[pkOpPwr, idxPk] = max(mnl.Table(:,2));  % dBm
ipPwrAtPkOut = mnl.Table(idxPk,1);  % dBm
IBO = 6;  % input backoff set point, dB
rqdIpPwr = ipPwrAtPkOut - IBO;  % dBm

Plot AM/AM and AM/PM amplifier characteristics. The plotted values match those in the spreadsheet.

plot(mnl);
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System Simulation and Verification

Create a raised cosine transmit filter System object™ for pulse shaping.

txFilt = comm.RaisedCosineTransmitFilter(...
  'Shape','Square root', ...
  'RolloffFactor',0.2, ...
  'FilterSpanInSymbols',10, ...
  'OutputSamplesPerSymbol',4);

Create a power meter System object to measure power at multiple points in the processing chain. Set
the measurement window of the power meter to 10 ms.

pm = powermeter(...
  "Measurement","Average power", ...
  "WindowLength",round(sigDuration*fs), ...
  "ReferenceLoad",mnl.ReferenceImpedance, ...
  "PowerUnits","dBm");

Generate a modulated signal, filter it, scale it to -10 dBm, and measure powers. The filtered signal is
roughly constant amplitude throughout its duration, so the power measurement window can extend
over the entire duration.

filtTransient = txFilt.FilterSpanInSymbols*txFilt.OutputSamplesPerSymbol;
msg = randi([0 M-1],msgLen+filtTransient,1);
modOut = qammod(msg,M,'UnitAveragePower',true);  % 0 dBW (30 dBm)
filtOut = txFilt(modOut);
filtOut = filtOut(1+filtTransient:end);  % Truncate beginning transient
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PFiltOutdBm = pm(filtOut);
Pdesired = -10;  % dBm
scaleFactor = 10.^((Pdesired - PFiltOutdBm(end))/20);
filtOut = scaleFactor * filtOut;
reset(pm);
PFiltOutdBm = pm(filtOut);
fprintf('The filtered, scaled signal power is %4.2f dBm.\n',PFiltOutdBm(end))

The filtered, scaled signal power is -10.00 dBm.

PFiltOutdBW = PFiltOutdBm(end) - 30;

Scale the amplifier input power to the desired backoff. The measured power of the backed off signal
must be equal to the input power at peak output (5 dBm) less the input backoff (6 dB). The power
meter verifies that the signal has been properly backed off.

gain = helperBackoffGain(ipPwrAtPkOut,PFiltOutdBm(end),IBO);
ampIn = gain * filtOut;
reset(pm);
PAmpIndBm = pm(ampIn);
fprintf('The backed off signal power is %4.2f dBm.\n',PAmpIndBm(end))

The backed off signal power is -1.00 dBm.

Plot a histogram of instantaneous input power into the amplifier. The following figure shows that a
significant percentage of the amplifier input samples have a power that should cause gain
compression at the amplifier output. Many signal samples have powers above 0 dBm, where the
amplifier behaves nonlinearly.

PAmpInInst = abs(ampIn).^2 / mnl.ReferenceImpedance;
PAmpInInstdBm = 10*log10(PAmpInInst) + 30;
edges = -29:9;
histogram(PAmpInInstdBm,edges,"Normalization","probability")
title("Instantaneous Power Probability");
xlabel("Instantaneous P_i_n (dBm)");
ylabel("Probability");
xlim([-30 10]);
grid on;
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Pass the signal through the amplifier. The measured average power at the amplifier output closely
corresponds to the expected instantaneous power illustrated by the previous figure.

ampOut = mnl(ampIn);
PAmpOutdBm = pm(ampOut);
fprintf('The amplifier output power is %4.2f dBm.\n',PAmpOutdBm(end))

The amplifier output power is 40.63 dBm.

Calculate average amplifier gain.

ampGaindB = PAmpOutdBm(end) - PAmpIndBm(end);
fprintf('The amplifier gain is %4.2f dB.\n',ampGaindB)

The amplifier gain is 41.63 dB.

Plot the specified and actual instantaneous Pout vs. Pin to show that the actual behavior of the
amplifier matches the behavior specified by the table-based object.

figure;
hFig = helperPlotAMAM(mnl); % Specified Pout vs. Pin
hold on;
pAmpOutInst = abs(ampOut).^2 / mnl.ReferenceImpedance;
pAmpOutInstdBm = 10*log10(pAmpOutInst) + 30;  % Actual Pout vs Pin 
plot(PAmpInInstdBm,pAmpOutInstdBm,'r*');
grid on;
lines = hFig.Children.Children;
legend(lines([2 1]),"Specified","Actual","Location","Northwest");
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Create a constellation diagram to illustrate the amplifier input and output signals. The constellation
diagram of the 16QAM constellation shows the amplifier output has been slightly rotated (AM/PM
distortion), and the corner points have incurred some gain compression (AM/AM distortion).

constDiag = comm.ConstellationDiagram(...
  'ShowReferenceConstellation',false, ...
  'SamplesPerSymbol',txFilt.OutputSamplesPerSymbol, ...
  'ShowLegend',true, ...
  'ChannelNames',{'Amp Input','Amp Output'});

% Set plot limits
maxLim = 2 * max(real(filtOut));
constDiag.XLimits = [-maxLim maxLim];
constDiag.YLimits = [-maxLim maxLim];

magFiltOut = sqrt(mean(abs(filtOut).^2));
magAmpOut = sqrt(mean(abs(ampOut).^2));
gain = magAmpOut / magFiltOut;
constDiag([filtOut,ampOut/gain]);  % Scale amp output for plotting ease
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Exploring the Example

You can experiment with the example by trying different backoff levels or modulated signals (e.g.
64QAM or OFDM). You can load a spreadsheet with your own table-based Pout vs. Pincharacteristics
to apply this backoff technique to your PA characterization.

Summary

This example demonstrated how to apply backoff to the input signal of a nonlinear amplifier. The
technique was verified by comparing Pout vs. Pin behavior of the specified and actual data.

Appendix

These helper files are used in the example:
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• helperBackoffGain.m
• helperPlotAMAM.m
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Indoor MIMO-OFDM Communication Link Using Ray Tracing
This example shows how to perform ray tracing in an indoor environment and use the results to build
a channel model for a link level simulation with the MIMO-OFDM technique.

Introduction

Ray tracing [1] on page 8-0  has become a popular technique for radio frequency (RF) analysis, site
planning, channel modelling, and link level analysis due to the trend for modern communications
systems to operate at RF frequencies in the tens of GHz range. Unlike stochastic models, the ray
tracing method is 3-D environment and transceiver sites specific and can have high sensitivity in the
surrounding environment. Without a simple formula to calculate distance-based path losses, the ray
tracing method relies on numeric simulations, and is typically less costly than field measurements.
Results from ray tracing can be used to build multipath channel models for communication systems.
For example, a ray tracing based channel model has been specified in Section 8 of TR 38.901 [2] on
page 8-0  for 5G and in IEEE 802.11ay for WLAN [3] on page 8-0 .

This example starts with ray tracing analysis between one transmitter site and one receiver site in a
3-D conference room. Computed rays are used to construct a deterministic channel model which is
specific for the two sites. The channel model is used in the simulation of a MIMO-OFDM
communication link. This diagram characterizes the communication link.

The ray tracing is performed in an indoor environment. The same ray tracing methods can be applied
to build channel models for indoor or outdoor environments. For ray tracing analysis in an outdoor
urban setting, refer to the “Urban Link and Coverage Analysis Using Ray Tracing” on page 2-21
example.
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3-D Indoor Scenario

Specify the indoor 3-D map in STL format for a small conference room with one table and four chairs.
The STL format is one of the most common 3-D map formats and can often be converted from other 3-
D map formats in a variety of 3-D software.

mapFileName = "conferenceroom.stl";

Define carrier frequency at 5.8 GHz and calculate wavelength

fc = 5.8e9;
lambda = physconst('lightspeed')/fc;

The transmit antenna is a 4-element uniform linear array (ULA) which has twice of the wavelength
between the elements. The receive antenna is a 4x4 uniform rectangular array (URA) which has one
wavelength between the elements. Both antennas are specified by an arrayConfig object.

txArray = arrayConfig("Size",[4 1],'ElementSpacing',2*lambda);
rxArray = arrayConfig("Size",[4 4],'ElementSpacing',lambda);

Use the helperViewArray function to visualize the ULA and URA geometries where antenna elements
are numbered for input/output streams.

helperViewArray(txArray);

helperViewArray(rxArray);
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Specify a transmitter site close to the upper corner of the room, which can be a Wi-Fi access point.
Specify a receiver site slightly above the table and in front of a chair to represent a laptop or mobile
device.

tx = txsite("cartesian", ...
    "Antenna",txArray, ...
    "AntennaPosition",[-1.46; -1.42; 2.1], ...
    'TransmitterFrequency',5.8e9);

rx = rxsite("cartesian", ...
    "Antenna",rxArray, ...
    "AntennaPosition",[.3; .3; .85], ...
    "AntennaAngle",[0;90]);

Use the siteviewer function with the map file specified to view the scene in 3-D in Site Viewer. Use
the show function to visualize the transmitters and receivers.

siteviewer("SceneModel",mapFileName);
show(tx,'ShowAntennaHeight', false)
show(rx,'ShowAntennaHeight', false)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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Ray Tracing

Perform ray tracing analysis between the transmitter and receiver sites and return the comm.Ray
objects, using the shooting and bouncing rays (SBR) method. Specify the surface material of the
scene as wood and search for rays with up to 2 reflections. The SBR method supports up to 10 order
of reflections.

pm = propagationModel("raytracing", ...
    "CoordinateSystem","cartesian", ...
    "Method","sbr", ...
    "AngularSeparation","low", ...
    "MaxNumReflections",2, ...
    "SurfaceMaterial","wood");

rays = raytrace(tx,rx,pm);

Extract the computed rays from the cell array return.

rays = rays{1,1};
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Examine the ray tracing results by looking at the number of reflections, propagation distance and
path loss value of each ray. There are 25 rays found (one line-of-sight ray, 6 rays with one reflection,
and 18 rays with two reflections).

[rays.NumInteractions]

ans = 1×25

     0     1     1     1     1     1     1     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2

[rays.PropagationDistance]

ans = 1×25

    2.7602    2.8118    2.8487    2.8626    3.2029    4.6513    4.6719    2.8988    2.9125    2.9481    3.2475    3.2916    3.3243    4.6821    4.7247    4.7331    4.7433    4.7936    4.9269    4.9464    5.9868    5.9868    6.7170    8.0161    8.0460

[rays.PathLoss]

ans = 1×25

   56.5350   72.1633   70.0647   72.3180   73.3102   76.4133   76.4508   81.5418   83.8254   81.5531   83.6891   83.7784   85.7801   85.8271   83.7662   86.0508   91.6822   91.7764   86.5438   86.5283   91.2898   91.2969   94.8444   96.4455   96.4796

Use the plot function to plot the rays in the 3-D scene in Site Viewer. Each ray is colored based on
its path loss value. Click on a ray to view information about that ray.

plot(rays,'Colormap',jet,'ColorLimits',[50, 95])
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Deterministic Channel Model from Ray Tracing

Create a deterministic multipath channel model using the above ray tracing results. Specify the
instantaneous velocity of the receiver to reflect typical low mobility of a device in an indoor
environment.

rtChan = comm.RayTracingChannel(rays,tx,rx);
rtChan.SampleRate = 300e6;
rtChan.ReceiverVirtualVelocity = [0.1; 0.1; 0]

rtChan = 
  comm.RayTracingChannel with properties:

                      SampleRate: 300000000
                 PropagationRays: [1×25 comm.Ray]
        MinimizePropagationDelay: true
                   TransmitArray: [1×1 arrayConfig]
    TransmitArrayOrientationAxes: [3×3 double]
                    ReceiveArray: [1×1 arrayConfig]
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     ReceiveArrayOrientationAxes: [3×3 double]
         ReceiverVirtualVelocity: [3×1 double]
       NormalizeImpulseResponses: true
         NormalizeChannelOutputs: true
                ChannelFiltering: true

Use the showProfile object function to visualize the power delay profile (PDP), angle of departure
(AoD) and angle of arrival (AoA) of the rays in the channel. In the visualization, the PDP has taken
into account the transmit and receive array pattern gains in addition to the path loss for each ray.

showProfile(rtChan);

Use the info object function to obtain the number of transmit and receive elements.

rtChanInfo = info(rtChan)

rtChanInfo = struct with fields:
             CarrierFrequency: 5.8000e+09
             CoordinateSystem: 'Cartesian'
        TransmitArrayLocation: [3×1 double]
         ReceiveArrayLocation: [3×1 double]
          NumTransmitElements: 4
           NumReceiveElements: 16
           ChannelFilterDelay: 7
    ChannelFilterCoefficients: [25×21 double]
          NumSamplesProcessed: 0
                LastFrameTime: 0
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numTx = rtChanInfo.NumTransmitElements;
numRx = rtChanInfo.NumReceiveElements;

System Parameters

Configure a communications link that uses LDPC coding, 64-QAM and OFDM with 256 subcarriers.
Specify 4 LDPC codewords per frame, which results in 50 OFDM symbols per frame.

% Create LDPC encoder and decoder configuration objects
cfgLDPCEnc = ldpcEncoderConfig(dvbs2ldpc(1/2));
cfgLDPCDec = ldpcDecoderConfig(cfgLDPCEnc);
numCodewordsPerFrame = 4;
codewordLen = cfgLDPCEnc.BlockLength;

% Parameters for QAM modulation per subcarrier
bitsPerCarrier = 6;
modOrder = 2^bitsPerCarrier;
codeRate = cfgLDPCEnc.CodeRate;

% Create OFDM modulator and demodulator objects 
fftLen = 256; 
cpLen = fftLen/4; 
numGuardBandCarriers = [9; 8];
pilotCarrierIdx = [19:10:119, 139:10:239]';
numDataCarriers = ...
    fftLen - sum(numGuardBandCarriers) - length(pilotCarrierIdx) - 1;
numOFDMSymbols = ...
    numCodewordsPerFrame * codewordLen / ...
    bitsPerCarrier / numDataCarriers / numTx;
ofdmMod = comm.OFDMModulator( ...
    "FFTLength",fftLen, ....
    "NumGuardBandCarriers",numGuardBandCarriers, ...
    "InsertDCNull",true, ...
    "PilotInputPort",true, ...
    "PilotCarrierIndices",pilotCarrierIdx, ...
    "CyclicPrefixLength",cpLen, ...
    "NumSymbols",numOFDMSymbols, ...
    "NumTransmitAntennas",numTx);
ofdmDemod = comm.OFDMDemodulator(ofdmMod);
ofdmDemod.NumReceiveAntennas = numRx;

Create an error rate calculation object to compute bit error rate (BER).

errRate = comm.ErrorRate;

Assign Eb/No value and derive SNR value from it for AWGN.

EbNo = 30;                               % in dB
bitsPerSymbol = bitsPerCarrier*codeRate;
snr = 10^(EbNo/10) * bitsPerSymbol;      % Linear

Link Simulation

The helperIndoorRayTracingWaveformGen function generates a waveform consisting of one frame at
the transmitter site by performing these following steps:

1 Encode randomly generated bits by LDPC
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2 Modulate encoded bits by 64-QAM
3 Apply OFDM modulation to convert signals from frequency domain to time domain

rng(100); % Set RNG for repeatability
[txWave,srcBits] = ...
    helperIndoorRayTracingWaveformGen( ...
    numCodewordsPerFrame,cfgLDPCEnc,modOrder,ofdmMod);

Pass the waveform through the ray tracing channel model and add white noise. To account for
channel filtering delay, append an additional null OFDM symbol to the end of the waveform.

chanIn = [txWave; zeros(fftLen + cpLen,numTx)];
[chanOut,CIR] = rtChan(chanIn);
rxWave = awgn(chanOut,snr,numTx/numRx,'linear');

The helperIndoorRayTracingRxProcessing function decodes the channel-impaired waveform at the
receiver site by performing these following steps:

1 Perfect channel estimation using the channel impulse response (CIR) output and the channel
filter coefficients from the channel object's info method.

2 OFDM demodulation to bring the signals back into frequency domain
3 Symbol equalization on each subcarrier
4 Soft 64-QAM demodulation to get LLR
5 LDPC decoding

[decBits, eqSym] = ...
    helperIndoorRayTracingRxProcessing(rxWave,CIR, ...
    rtChanInfo,cfgLDPCDec,modOrder,ofdmDemod,snr);

Calculate BER:

ber = errRate(srcBits,double(decBits));
disp(ber(1));

    0.0140

To plot a BER curve against a range of EbNo values, use the helperIndoorRayTracingSimulationLoop
function to repeat the above single frame processing for up to 300 frames at each EbNo value.

EbNoRange = 27:36;
helperIndoorRayTracingSimulationLoop( ...
    cfgLDPCEnc,cfgLDPCDec,ofdmMod,ofdmDemod,rtChan,errRate, ...
    modOrder,numCodewordsPerFrame,EbNoRange);
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Conclusion and Further Exploration

This example shows how to build a deterministic channel model using ray tracing results in an indoor
conference room. Link-level simulations using LDPC and MIMO-OFDM techniques were performed
for the channel model and BER results were plotted.

Further exploration includes but not limits to:

• Different 3-D maps and/or surface materials
• Different transmitter and/or receiver site positions
• Different transmit and/or receive antenna array specifications
• Different transmit and/or receive antenna array orientations
• Higher number of reflections for the SBR ray tracing method
• Transmit and/or receive beamforming

Appendix

This example uses the following helper functions:
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• helperEqualize.m
• helperPerfectChannelEstimate.m
• helperIndoorRayTracingRxProcessing.m
• helperIndoorRayTracingSimulationLoop.m
• helperIndoorRayTracingWaveformGen.m
• helperViewArray.m
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See Also
Functions
propagationModel | raytrace

Objects
arrayConfig | siteviewer | comm.RayTracingChannel | ldpcEncoderConfig

Related Examples
• “Ray Tracing for Wireless Communications” on page 30-12
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Effect of a High-Power Interferer on ADC Performance
This example shows the effect of a high-power in-band or out-of-band interferer on the performance
of a communications system with an analog-to-digital converter (ADC).

Introduction

Ideal multiuser communication systems, that use orthogonal frequency division multiplexed (OFDM)
signals and forward error correction (FEC), are essentially immune to high-power narrowband
interference because the narrowband interference affects only one or two subcarriers. For in-band
interference, FEC can recover the bit errors caused by these jammed subcarriers. For out-of-band
interferers, bandpass filtering can remove the adjacent channel interference in these ideal multiuser
systems.

In practical systems, an ADC digitizes signals received at the antenna. Since the ADC has a fixed full-
scale voltage , the input signal is first scaled to the ,  range. If the ADC has N bits of
resolution, then the maximum quantization error is given by . In a system with sufficient
bits of resolution (for example N=16) and no interfering signal, this quantization error is negligible as
compared to other noise sources in the system and can be ignored.

In the presence of a high-power interferer, the automatic gain controller (AGC) scales the whole
signal to fit in the full-scale range of the ADC. The scaling effectively reduces the number of bits used
to represent the desired signal. Since the quantization error does not change, the effective signal to
noise ratio decreases. Depending on the power of the interfering signal and the number of ADC bits,
the system performance can be adversely affected.

Simulating Effect of Narrowband Interferer on OFDM Signals

Generate an OFDM signal with 128 subcarriers. Assign a 64-QAM modulated signal to each
subcarrier. To exaggerate the quantization error effects, set the number of ADC bits to 7. Assume an
AWGN channel with 30 dB SNR for simplicity.
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M = 64;           % Modulation order per subcarrier
numSC = 128;      % Number of OFDM subcarriers
SNR = 30;         % Signal-to-noise ratio in dB
numADCBits = 7;   % Number of ADC bits

OFDM with ADC Over AWGN Channel

Pass the generated OFDM signal through an AWGN channel. The AGC scales the received signal to
[-1 1] range. Pass the scaled signal through the bipolar ADC. Rescale the signal before applying
OFDM and QAM demodulation. The narrowbandInterfererAndOFDM function simulates this
system.

Run the simulation without interference. All the bits can be received without errors.

interfererAmp = 0;
ber = narrowbandInterfererAndOFDM(M,numSC,interfererAmp,numADCBits,SNR);
disp('BER:')
disp(ber)

BER:
     0
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OFDM with ADC Over AWGN Channel with High-Power Interferer

Use a tone to interfere with the 50th subcarrier of the OFDM signal. Set the amplitude of the
interferer to 2 corresponding to an SIR value of about -28 dB. The high amplitude of the interfering
signal forces the AGC to reduce its gain to avoid saturation. This scaling decreases the number of bits
assigned to the desired signal and reduces the effective power of the desired signal. Quantization
noise is a function of the fixed full-scale voltage and the number of bits properties of the ADC. As a
result, the effective signal to noise ratio (SNR) decreases and the system starts to introduce bit
errors.

interfererAmp = 2;
ber = narrowbandInterfererAndOFDM(M,numSC,interfererAmp,numADCBits,SNR);
disp('BER:')
disp(ber)

BER:
    0.0531
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Effect of Adjacent Channel Users on a Multiuser System

Modern communication systems define multiple signal bandwidths to provide flexibility in choosing
between highly reliable connections or high throughput. For example, 802.11 WLAN standard defines
channel bandwidths that range from 20 MHz to 160 MHz. This figure shows the available WLAN
channel bandwidths.

Typically, such systems are designed with fixed high bandwidth analog RF filters followed by
programmable digital filters. An AGC and ADC combo is used to digitize the analog signal. If one of
the users (i.e. channels) has much higher power than the rest of the users, the ADC quantization may
cause a low SNR value for the low power users. The following demonstrates such a scenario.

Consider a Wi-Fi like system where there are eight independent transmitters (Device 1-8) and eight
independent receivers (Device 1'-8'). Each transmitter-receiver pair is assigned one of the available
20 MHZ bands. 64-QAM modulated signals are OFDM modulated with 56 subcarriers in a bandwidth
of 20 MHz. As shown in this figure, eight possible users are carried over channels 36, 40, 44, 48, 52,
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56, 60, and 54, with corresponding carrier frequencies (5180:20:5320) MHz. The receivers employ
analog filters that pass through the whole available 160 MHz band then use channelizer filters to
select the desired user. To simplify the simulation, assume same path loss and thermal noise for each
device pair. Also, the simulator uses the multiband combiner to combine signals from the eight users
in the channel and channelizer to separate them in an efficient way. The dotted lines show the
multiband combiner and channelizer.

M = 64;           % Modulation order per subcarrier
noiseFigure = 7;  % Noise figure in dB
numADCBits = 7;   % Number of ADC bits

Multiuser System with ADC Over AWGN Channel

Generate OFDM modulated signals for all the active users and combine them using a
comm.MultibandCombiner System object. Apply a path loss equivalent to a nominal distance of 10
meters. Pass the signal through an RF front-end with a noise figure of 7 dB to mimic an AWGN
channel. The AGC scales the received signal to a [-1 1] range. Pass the scaled signal through the
bipolar ADC. Rescale the signal after passing through the channelizer filter, which separates the user
signals. Then apply OFDM and QAM demodulation. All the bits can be received without errors. The
multiuserInterferenceAndADC function simulates this system.

Set all users as active with all users 0 dB relative gain. Run the simulation. All users operate without
errors.

activeUsers = [1 1 1 1 1 1 1 1];
userGaindB = [0 0 0 0 0 0 0 0];

ber = multiuserInterferenceAndADC(M,noiseFigure,numADCBits,activeUsers,userGaindB);

disp('BER for each user:')
disp(ber)
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BER for each user:
     0     0     0     0     0     0     0     0

Multiuser System with ADC Over AWGN Channel with High Power User

Repeat the same experiment with a high-power user. Set the relative gain of the third user to 30 dB.
Due to the decrease in the effective signal power as compared to the quantization noise (except the
high-power user), the low power users experience bit errors and the BER performance degrades.

userGaindB = [0 0 30 0 0 0 0 0];
ber = multiuserInterferenceAndADC(M,noiseFigure,numADCBits,activeUsers,userGaindB);

disp('BER for each user:')
disp(ber)

BER for each user:
  Columns 1 through 7

    0.0369    0.0404         0    0.0408    0.0364    0.0383    0.0392

  Column 8

    0.0382

Further Exploration

The Narrowband Interferer and ADC Explorer app helps you quickly try different system settings to
explore the effect of a high-power narrowband interferer on the system performance due to the fixed
full-scale voltage and the quantization noise introduced by the ADC. Run the Narrowband
Interferer and ADC Explorer app.
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• Click "Simulation" switch to start the simulations.
• Change "QAM Modulation order" to 16
• Increase the interferer amplitude to 4. Subcarrier 50 experiences interference by the narrowband

interferer. "Bit errors in a Frame" gauge shows bit error between 0 and 4 bits since a single
subcarrier is affected

• Reduce the "Number of ADC Bits" in and observe the received spectrum and bit errors in a frame.
Around 7 bits, the ADC quantization errors start to degrade the system performance noticeably.

Experiment with different SNR and modulation order values and find out the limits of the system to
handle a high-power narrowband interferer.

The Multiuser Interference and ADC Explorer app helps you quickly try different system settings to
explore the effect of multiuser interference on the system performance due to the fixed full-scale
voltage and the quantization noise introduced by the ADC. Run the Multiuser Interference and
ADC Explorer app.
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• Click "Simulation" switch to start the simulations.
• Change "QAM Modulation order" to 64.
• Increase the gain of the 1st user to 40 dB.
• Decrease the number of ADC bits in small steps. The noise floor in the received spectrum starts

increasing. Around 10 bits, the low power users start to experience bit errors.
• Reducing the number of ADC bits to 5, raises the noise floor above the signal level.
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Impact of RF Effects on Communication System Performance
This example shows how to use Communications Toolbox™ blocks to model thermal noise, phase
noise, and nonlinearity impairments of an RF transceiver. The model measures the effects of the
impairments on the bit error rate (BER) of a communications system.

Overview

The model, shown in the following figure, includes blocks to simulate a transmitter, a channel, a
receiver, and to measure and visualize communications link performance.

The transmitter models:

• A 16QAM-modulated waveform of random bits
• A square root raised cosine (RRC) pulse-shaping filter to limit spectral leakage and minimize

interference (ISI)
• A memoryless power amplifier (PA) with an ideal (infinite) third order intercept (IIP3). The IIP3

value can be changed to model a more realistic PA. The transmitter PA models the third order
nonlinearity because it is the major source of degradation at that end of the link.

The channel models 138 dB of free space path loss.

The RF receiver front end models the analog portion of the receiver, prior to analog-to-digital
conversion. It includes:
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• A low noise amplifier (LNA) with an ideal noise figure (NF) of 0 dB and a power gain of 20 dB. The
NF can be changed to model a more realistic LNA. At this end of the link, noise is a much more
significant source of degradation than nonlinearity.

• An RF demodulator (RFD) with minimal phase noise. This value can also be changed to model a
more realistic RFD. The phase noise can be a significant source of degradation for a 16QAM link.

• An automatic gain control (AGC) to properly scale the signal prior to quantizing.

The remainder of the receiver models:

• An idealized analog-to-digital converter (ADC) with 12 bits of quantization
• An RRC filter for noise reduction and ISI minimization
• A hard decision 16QAM demodulator

The model testbench includes:

• Power meters before and after the transmitter PA
• Power spectrum scopes before and after the ADC, to illustrate the spectral effects of nonlinear
amplification, noise addition, phase noise, and quantization

• A constellation diagram after the receive filter, with error vector magnitude (EVM) calculation
turned on

• Resettable BER calculation

The model sets some parameter values by creating base workspace variables in its preload function.
It sets additional values by creating additional base workspace variables through the initialization of
the Model Parameters block.

Run the Simulation

The default model configuration has nonzero EVM and shows distortion of the signal in the
constellation diagram below, due to the finite lengths of the transmit and receive FIR filters.
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In this same default configuration, the received power spectrum below is noiseless and has no
nonlinear distortions. The sidelobes of the spectrum are from the transmit and receive filter
responses.
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The Error Rate Calculation (ERC) block computes the system BER. In the default configuration,
with the ERC block discarding transient effects at the beginning of the simulation, the BER is 0.

Exploring the Example

You can investigate multiple RF effects by using the Model Parameters block. By default the Model
Parameters block mask default settings applies distortionless values for transmitter IIP3, LNA noise
figure, RF Demodulator phase noise, and the ADC number of bits. Typical degraded value levels are
shown after the '%' for each of these parameters in the block mask. If you run the simulation with any
one of these degraded values set, you will see effects in the constellation, spectrum, and/or BER.

You can reset the following parameters in the Model Parameters block while the simulation is
running:

• Transmitter IIP3
• LNA noise figure
• ADC number of bits
• ADC full scale voltage

To specify new phase noise values, stop the model first.
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For example, if the transmitter IIP3 is set to 15 dBm, the signal spectrum and constellation diagram
show a degraded signal, and the BER degrades to approximately 2.8e-3.
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You can reset the BER counter while the simulation is running, by double-clicking on the manual
switch twice. This is useful to examine the BER effect when you change a parameter value during
simulation.

Summary

This example showed how various RF front end impairments, such as amplifier nonlinearities and
phase noise, can impact the spectrum, EVM, and BER of a communications system.

See Also
Blocks
AGC Block | Memoryless Nonlinearity | Phase Noise | Power Meter

Related Examples
• “Impact of Thermal Noise on Communication System Performance” (RF Blockset)
• “Idealized Baseband Amplifier with Nonlinearity and Noise” on page 1-2
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Interference Modeling
This example shows interference modeling in a bent pipe satellite communications link using
Communications Toolbox™.

Introduction

Signal interference is the addition of unwanted signals to a desired signal and is a common problem
in many communications systems. Some examples of interference are:

1 The coexistence of 5G and LTE waveforms in the same or similar frequency bands results in one
waveform interfering with another waveform

2 Signals from a secondary base station interfering with the signal from the primary base station at
a mobile device

3 Downlink adjacent satellite interference occurs when the ground receiving antenna receives
significant signal levels from beams of adjacent satellites

4 Interference occurs when a satellite receives and re-broadcasts a strong uplink signal from
secondary ground station

Modeling such interference scenarios allows you to analyze their impact on system performance and
to design mitigation strategies.

System Setup

This example models a bent pipe satellite communication link and illustrates how to model an uplink
interference scenario. A bent pipe link consists of an uplink from a ground station to a satellite, which
acts as a repeater, and downlinks to another ground station without performing any bit-level
processing. The satellite transponder receives a primary signal and an interfering signal from a
secondary ground station. The combined signal is re-broadcast by the satellite, received and
processed at the ground station.

A Multiband Combiner block provides an efficient approach to combine the primary and the
interfering signals at baseband. The Multiband Combiner block interpolates the two signals so that
the resulting sample rate of the signals guarantees no aliasing when the signals are frequency shifted
to model the interference scenario. Then it applies the specified frequency shifts to the signals and
combines them into one signal. The block allows modeling of various amounts of spectral overlap to
simulate varying severity of interference. For more information, see the Multiband Combiner block
reference page.

System Simulation

Each of the two baseband signals has a bandwidth of 500 kHz as seen in the Tx Signal Spectrum
scope. The Frequency offsets parameter of the Multiband Combiner block is set up to model
spectral overlap of 100 kHz. This spectral overlap is seen in the Rx Signal Spectrum that shows the
spectra of the signals received at the satellite transponder and ground station receiver.

A bit error rate of 0 shows that the system performance is not degraded by this amount of
interference. Also, the Received Signal Constellation at the ground station receiver is well clustered
around the reference QPSK constellation of the primary signal with a low RMS EVM.
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Increase the interference effect by increasing the spectral overlap between the two signals. The
increased interference degrades the system performance, as seen from the nonzero bit error rate and
a more spread out received signal constellation with higher RMS EVM.
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Summary and Further Exploration

This example illustrates a technique to model signal interference that is common in many wireless
communications systems. The Multiband Combiner block encompasses the necessary processing of
interpolation, frequency shift and signal combining required to simulate various interference
scenarios. Other ways to explore interference with this model include:
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1 Using baseband signals with different bandwidths
2 Activating and deactivating interference using the switch in 'Interfering Signal' subsystem
3 Modeling more than two baseband signals and more than one interfering signal
4 Modeling various amounts of interference by setting parameters of Signal Aggregator block

appropriately
5 Modeling various approaches to minimize the impact of interference at the satellite transponder

and ground station receiver

Experiment with the Multiband Combiner block and possibly alter the processing necessary for the
particular interference scenario. When the Output sample rate options parameter is set to 'Auto',
the Multiband Combiner block interpolates the input signals such that the frequency content of the
original signals is not distorted after they are frequency shifted. You can also interpolate the
baseband input signals to the rate you desire before using the Multiband Combiner block and set the
Output sample rate options parameter to 'Specify via property', set Output sample rate to the
same value as 'Input sample rate' which will turn off the builtin interpolation. This example uses two
signals, but the block can process any number of input signals once they are concatenated into a
matrix.

“Multiband Signal Generation” on page 8-43 example illustrates a comm.MultibandCombiner
System object™ to perform similar processing as the Multiband Combiner block in MATLAB®.

See “Adjacent and Co-Channel Interference” on page 8-179 example to model the effects of adjacent
and co-channel interference on a signal.
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Multiband Signal Generation
This example shows how to generate a multiband signal efficiently using the Communications
Toolbox™.

Introduction

The explosive growth of consumer demand for higher data rates in mobile applications leads to
higher transmission rates. Most modern wireless standards include a technique to enhance the data
capacity by combining two or more carriers into one data channel. This technique is called carrier
aggregation in 5G and LTE terminology, and channel bonding in Wi-Fi® terminology. This figure
illustrates three different types of carrier aggregation.

System Setup

This example demonstrates one approach to model carrier aggregation in a baseband simulation. Two
baseband signals are generated - one is a QPSK modulated signal and the other is a GMSK modulated
signal. Each signal occupies 60 kHz of bandwidth.

A MultibandCombiner System object™ performs the tasks necessary for carrier aggregation. If the
sample rate of the input signals is not high enough, the frequency content will be distorted when the
original signals are frequency shifted to produce the desired carrier aggregation. Setting the
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OutputSampleRateSource property to 'Auto' configures the object to automatically compute the
output sample rate and interpolate the two signals if necessary to ensure that the resulting signal
sample rate is high enough to avoid aliasing. The info method of the System object shows the
sample rate of the output signal. After the interpolation, the object applies the specified frequency
shifts to the signals and combines them into one signal. For more information about the algorithm
processing, see the comm.MultibandCombiner reference page.

System Simulation

nFrames = 10; % Number of data frames
M = 4;        % Modulation order (QPSK modulation)
Fs1 = 60e3;   % Input sample rate

qpskTxFilter = comm.RaisedCosineTransmitFilter(RolloffFactor = 0.3, ...
    OutputSamplesPerSymbol = 2);

gmskMod = comm.GMSKModulator(BitInput = true, SamplesPerSymbol = 2);

% Create multiband combiner object with specified frequency offsets for the
% intra-band contiguous aggregation
sigCombinerCB = comm.MultibandCombiner(InputSampleRate = Fs1, ...
    FrequencyOffsets = [-30e3, 30e3], OutputSampleRateSource = 'Auto');
Fs2 = info(sigCombinerCB).OutputSampleRate;

% Create multiband combiner object with specified frequency offsets for the
% intra-band noncontiguous aggregation
sigCombinerNCB = comm.MultibandCombiner(InputSampleRate = Fs1, ...
    FrequencyOffsets = [-60e3, 60e3], OutputSampleRateSource = 'Auto');
Fs3 = info(sigCombinerNCB).OutputSampleRate;

scopeSF = 0.7; % Scale factor for scope position
spectrumBB = dsp.SpectrumAnalyzer(Name = 'Baseband Signals', ...
    NumInputPorts = 2, SampleRate = 60e3, ...
    Method = 'Filter bank', AveragingMethod = 'Exponential', ...
    ShowLegend = true, ChannelNames = {'QPSK Signal', 'GMSK Signal'});
spectrumBB.Position = scopeSF * spectrumBB.Position;
spectrumBB.Position(1) = spectrumBB.Position(1) - ...
    spectrumBB.Position(3);

spectrumCB = dsp.SpectrumAnalyzer(Name = 'Intra-Band Contiguous', ...
    NumInputPorts = 1, SampleRate = Fs2, ...
    Method = 'Filter bank', AveragingMethod = 'Exponential');
spectrumCB.Position = scopeSF * spectrumCB.Position;

spectrumNCB = dsp.SpectrumAnalyzer(Name = 'Intra-Band Non-Contiguous', ...
    NumInputPorts = 1, SampleRate = Fs3, ...
    Method = 'Filter bank', AveragingMethod = 'Exponential');
spectrumNCB.Position = scopeSF * spectrumNCB.Position;
spectrumNCB.Position(1) = spectrumNCB.Position(1) + ...
    spectrumNCB.Position(3);

for k = 1:nFrames

    % Generate QPSK signal
    data = randi([0, M-1], 200, 1);
    modSig = pskmod(data, M, pi/4, 'gray');
    qpskSignal = qpskTxFilter(modSig);
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    % Generate GMSK signal
    data = randi([0, 1], 200, 1);
    gmskSignal = gmskMod(data);

    % Visualize the two signals
    spectrumBB(qpskSignal, gmskSignal)

    % Upsample, frequency shift and combine the two signals to model
    % intra-band contiguous carrier aggregation
    combinedSignal = sigCombinerCB([qpskSignal, gmskSignal]);

    % Visualize the resulting signal
    spectrumCB(combinedSignal)

    % Upsample, frequency shift and combine the two signals to model
    % intra-band non contiguous or inter-band non contiguous carrier
    % aggregation
    combinedSignal = sigCombinerNCB([qpskSignal, gmskSignal]);

    % Visualize the resulting signal
    spectrumNCB(combinedSignal)
end

release(spectrumBB)
release(spectrumCB)
release(spectrumNCB)
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Visualization

Intra-band contiguous aggregation results in a signal that has two original signals, each 60 kHz wide,
occupying two contiguous bands of 60 kHz each. In intra-band non-contiguous aggregation, the two
signals occupy non-contiguous bands as shown by the gap between the signal spectra in the Intra-
Band Non-Contiguous Spectrum Analyzer. Inter-band non-contiguous aggregation can be similarly
achieved by appropriate frequency shifts of the signals.

Summary and Further Exploration

This example illustrates a technique to model the carrier aggregation that is used by most modern
wireless communications standards to increase data rates. A System object is used to encapsulate the
necessary processing of interpolation, frequency shift and signal combining. You can explore further
in various ways:

1 Use baseband signals with different bandwidths. As MultibandCombiner System object
requires all input signals to have the same sample rate, resample one or more signals to bring all
baseband signals to the same rate before using MultibandCombiner System object.

2 Aggregate more than two baseband signals,
3 Use different aggregation bands and carriers to model inter-band non-contiguous aggregation.

Also, explore the MultibandCombiner System object to study and possibly alter the processing
necessary for carrier aggregation. Besides configuring the object to automatically compute the output
sample rate by setting the OutputSampleRateSource to 'Auto', you can also interpolate the
baseband input signals to the rate you desire before using the MultibandCombiner object, then set
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the OutputSampleRateSource to 'Property' and set the 'OutputSampleRate' equal to
'InputSampleRate' which configures the System object to not perform any interpolation.
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Ship Tracking Using AIS Signals
This example shows you how to track ships by processing Automatic Identification System (AIS)
signals using MATLAB® and Communications Toolbox™. You can either use captured signals or
receive signals in real time using the RTL-SDR Radio. The example can show the tracked ships on a
map, if you have the Mapping Toolbox™.

Required Hardware and Software

To run this example using captured signals, you need the Communications Toolbox™.

To receive signals in real time, you also need an RTL-SDR radio and the corresponding
Communications Toolbox Support Package for RTL-SDR Radio support package Add-On.

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Background

In marine transportation, vessel traffic services use AIS as a component of the overall marine traffic
monitoring system. AIS performs the following functions:

• Transmit vessel identifier, position, course, and speed.
• Receive and process specified interrogating calls.
• Operate continuously while under way or at anchor.

Specifications of AIS:

• Transmit Frequency Range: 156.025 MHz-162.025 MHz
• Modulation Scheme: Gaussian frequency shift keying
• Bit Rate: 9600 bits/sec
• Transmit Bandwidth Time Product: 0.4
• Receive Bandwidth Time Product: 0.5
• Modulation Index: 0.5

AIS transmission packets contain these fields:

• Training Sequence: 24-bit sequence of alternating zeros and ones (0101...).
• Start Flag: 8-bit sequence, 01111110.
• Data: The data portion is 168 bits long in the default transmission packet.
• Frame Check Sequence(FCS): Uses the cyclic redundancy check (CRC) 16-bit polynomial to

calculate the checksum.
• End Flag: Identical to the start flag.
• Buffer: The buffer is normally 24 bits long to account for bit stuffing (maximum 4 bits), distance

delay (14 bits) and synchronization jitter (6 bits).

This figure shows the AIS packet format
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Run the Example

You can open the example by selecting the Open script button. The default configuration runs for a
duration of 10 seconds, uses signal data from a captured data file, and outputs to a text file. To
provide input values from the command line, you must change cmdlineInput to 1, then you will be
prompted to enter the following information when you run the example:

1 Reception duration in seconds,
2 Signal source (Captured data file or RTL-SDR radio),
3 Optional output methods (map, text file, or both).

The example shows the information on the detected ships in a tabular form as shown in the following
figure.

If you have the Mapping Toolbox licensed, you can also observe AIS tracking of ships on a map.
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Receiver Structure

The following block diagram summarizes the receiver code structure. The processing has three main
parts: Signal Source, Physical Layer and Data Viewer.

Signal Source

Specify the signal source as "File" or "RTL-SDR".

1 ''File'': Uses the comm.BasebandFileReader to read a file that contains a previously signal
captured over-the-air.
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2 ''RTL-SDR'': Uses the RTL-SDR radio to receive a live signal.

The code uses a signal symbol rate of 9600 Hz and 24 samples per symbol.

If you assign ''RTL-SDR'' as the signal source, the example searches your computer for the RTL-SDR
radio at radio address '0' and uses it as the signal source.

Physical Layer

The baseband samples received from the signal source are processed by the physical layer (PHY) to
produce packets that contain the ship position information and raw message bytes. This figure shows
the PHY processing components.

• Packet Search: Searches for the strongest burst in the received signal by dividing into multiple
windows.

• DC Offset Removal: Removes DC offset from the detected signal.
• Frequency Compensation: Estimate and compensates for the carrier frequency offset.
• Matched Filtering: Performs filtering with Gaussian pulse generated as per AIS specifications.
• Synchronization and Demodulation: Performs timing synchronization by correlating the

received signal with known preamble and demodulates to produce bits.
• AIS Bit Parser: Detects the Start Flag and End Flags, then performs CRC detection. If CRC is

successful, then the ship information is decoded.

There are 64 specific message types in AIS. Ship position information is included in 11 of the message
types. This example decodes all 11 of the message types that contain position information.

As seen in the earlier figure, ship ID, latitude, longitude, date, and time are displayed by this
example. Messages contain additional information that can be decoded as described in [ 1 ].

Data Viewer

The data viewer shows the received messages on a graphical user interface (GUI). As data is
captured, the application lists information decoded from these messages in a tabular form.
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Example Code

The example steps are described below. To see the detailed operations look at the code run in the
helper functions called by the example. For the option to change default settings, set cmdlineInput
to 1.

cmdlineInput = 0;
if cmdlineInput
    % Request user input from the command-line for application parameters
    userInput = helperAISUserInput;
else
    load('defaultInputs.mat');
end
% Calculate AIS parameters based on the user input
[aisParam,sigSrc] = helperAISConfig(userInput);

% Create the data viewer object and configure based on user input
viewer = helperAISViewer('LogFileName',userInput.LogFilename, ...
                         'SignalSourceType',userInput.SignalSourceType);

% Launch map based on user input
if userInput.LaunchMap
    startMapUpdate(viewer);
end

% Log data based on user input
if userInput.LogData
    startDataLog(viewer);
end

% Start the viewer and initialize radio time
start(viewer)
radioTime = 0;

% Main loop for capturing and decoding the AIS samples
while radioTime < userInput.Duration
    if aisParam.isSourceRadio       % For RTL-SDR
        [rcv,~,lost,~] = sigSrc();
        lostFlag = logical(lost);
    else                            % For baseband file
        rcv = sigSrc();
        lostFlag = uint32(0);
    end

    % Recover the information by decoding AIS samples
    [info, pkt] = helperAISRxPhy(rcv,aisParam);

    % View decoded information on viewer
    update(viewer, info, pkt, lostFlag);

    % Update radio time
    radioTime = radioTime + aisParam.FrameDuration;
end

% Stop the viewer and release the signal source
stop(viewer)
release(sigSrc)
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Further Exploration

You can also type AISExampleApp in the MATLAB Command Window or click the link to use the
AISExampleApp user interface to explore AIS signals. The app interface allows you to select the
signal source and change the duration.

You can explore following functions and System objects for details of the physical layer
implementation:

• helperAISRxPhy.m
• helperAISRxPhyPacketSearch.m
• helperAISRxPhyFreqComp.m
• helperAISRxPhySyncDemod.m
• helperAISRxPhyBitParser.m

Selected Bibliography

1 Recommendation ITU-R M.1371-5, Technical characteristics for an automatic identification
system using time division multiple access in the VHF maritime mobile frequency band.
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Link Budget Analysis
In the design of wireless communications links between two sites, issues of range, throughput, and
received signal quality are of critical importance to the system engineer. Link budget analysis
accounts for all gains and losses in the communication link. Some factors and design choices, such as
propagation path length, signal polarization, and antenna feed cable, degrade signal quality, while
others, such as the power amplifier and antenna size, can increase transmitted signal strength.

This example uses linkBudgetAnalyzer app to tabulate system parameters and compute gains and
losses that impact system performance. Separate tabs specify settings for Uplink and Downlink.
After specifying the uplink and downlink settings, select Analyze to update the gains and losses
reported in the Results tab and the tabs with plots of free space path loss (FSPL) and G/T for uplink
and downlink.

Settings

The Uplink and Downlink tabs contain these collapsible input parameter sections:

• Link - Contains link level parameters, such as frequency, bandwidth, required Eb/N0
• Transmitter - Contains transmitter specific parameters
• Receiver - Contains the receiver specific parameters
• Propagation - Contains parameters to specify various atmospheric elements that are used to

compute losses in the signal propagation path.
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Results

The Results tab contains Uplink and Downlink collapsible sections that provide the link budget
results for uplink and downlink, respectively. The Appendix contains a list of functions used to
compute the results.

• Distance and Elevation are computed from the Latitude, Longitude and Altitude input
parameters for the transmitter and receiver.

• Tx Antenna gain and Rx Antenna gain are functions of the corresponding Antenna diameter,
Antenna efficiency, and Frequency input parameters.

• Tx EIRP is a function of the Amplifier power, Amplifier backoff loss, Feeder loss, Radome
loss, Other losses, and Tx Antenna gain input parameters. Tx EIRP, which represents
transmitted equivalent isotropically radiated power (EIRP), is the amount of power that would
have to be radiated by an isotropic antenna to produce the equivalent power density observed
from the actual antenna in a specified direction. Typically, EIRP is quoted for antenna boresight,
which is defined as the axis of maximum radiation.

• The transmitted signal power is diminished by geometric spreading of the wavefront. This loss is
represented by Free space path loss which is computed using the fspl function, Distance, and
Frequency.

• Rain attenuation is computed by the rainpl function using Distance, Frequency, Rain rate,
Elevation and Polarization tilt. The rainpl function applies the International
Telecommunication Union (ITU) rainfall attenuation model which applies only for frequencies at
1-1000 GHz [ 1 ].
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• The fogpl function computes Fog/Cloud attenuation using Distance, Frequency, Fog/Cloud
temperature and Fog/Cloud water density. The fogpl function applies the ITU cloud and fog
attenuation model which is valid only for frequencies at 10-1000 GHz [ 2 ].

• Atmospheric gas attenuation is a function of Distance, Frequency, Temperature,
Atmospheric pressure and Water vapor density and is calculated using the gaspl function
which applies ITU atmospheric gas attenuation model that is valid for frequencies at 1-1000 GHz
[ 3 ].

• Polarization loss is derived from Polarization mismatch angle.
• Total propagation losses consists of all the above-mentioned losses.

• Tx EIRP is diminished by Total propagation losses and receiver Radome loss to provide
Received isotropic power at the receiver.

• At the receiver, antenna amplifies the Received isotropic power by Rx Antenna gain while
Feeder loss and Other losses degrade the signal. Received signal power shows the net result.

• Rx G/T provides information on the performance of the receiver and is computed from Rx
Antenna gain and System temperature. The receiver performance improves as G/T increases.

• C/N represents SNR (Signal-to-Noise Ratio) and is a function of Received signal power, System
temperature, Bandwidth and Boltzmann's constant.

• C/No is computed from C/N and Bandwidth.
• Received Eb/No indicates energy per bit and is a function of C/No and Bit rate.
• Margin is computed from Received Eb/No, Required Eb/No, and Implementation loss. One

goal when performing a link budget analysis is to have a satisfactory margin for the chosen data
rate, bandwidth, EIRP and receiver figure of merit. Often some adjustment is needed to get the
desired link margin.

Visualization

For path loss and receiver performance plots, see the uplink and downlink FSPL and G/T tabs. Free
space path loss constitutes the largest component of propagation losses. It is proportional to distance
and frequency. Receiver figure of merit increases with antenna gain, which is proportional to antenna
diameter. The specified Frequency and receiver Antenna diameter are shown by the red * marker
in the plots.

Appendix

Following functions are used to compute the various parameters and losses mentioned in this
example:

• comm.internal.linkBudgetApp.computeAntennaGain.m
• comm.internal.linkBudgetApp.computeAtmGasAtt.m
• comm.internal.linkBudgetApp.computeCbyN0.m
• comm.internal.linkBudgetApp.computeCbyN.m
• comm.internal.linkBudgetApp.computeDistance.m
• comm.internal.linkBudgetApp.computeEbN0.m
• comm.internal.linkBudgetApp.computeEIRP.m
• comm.internal.linkBudgetApp.computeFigureOfMerit.m
• comm.internal.linkBudgetApp.computeFogAtt.m
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• comm.internal.linkBudgetApp.computeFSPL.m
• comm.internal.linkBudgetApp.computeMargin.m
• comm.internal.linkBudgetApp.computePolarizationLoss.m
• comm.internal.linkBudgetApp.computeRainAtt.m
• comm.internal.linkBudgetApp.computeWavelength.m

References

1 Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.

2 Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.840-6: Attenuation due to clouds and fog. 2013.

3 Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.676-10: Attenuation by atmospheric gases 2013.

8 Communications Toolbox Featured Examples

8-58



Parallel Concatenated Convolutional Coding: Turbo Codes
This example characterizes the performance of turbo codes over a noisy channel. It shows the basic
structure of turbo codes at the transmitter and receiver. We chose the Long Term Evolution (LTE)
specifications [ 4 ] for the constituent component parameters.

The invention of turbo codes [ 1 ], along with the development of iterative decoding principles with
near Shannon limit performance, has led to their absorption in a wide variety of applications some of
which include deep space communications, third generation wireless standards, and digital video
broadcasting [ 3 ].

Available Example Implementations

This example includes both MATLAB® and Simulink® implementations:

MATLAB script using System objects: commTurboCoding.m

Simulink model using System blocks: commpccc.slx

Simulink model using variable-sized code-blocks: commpcccvs.slx

Both the MATLAB and Simulink implementations of the system are set up so you can simulate the
system over a range of Eb/No values for user-specified system parameters like code block length and
number of decoding iterations. The following sections use the fixed-size code-block Simulink
implementation to describe the details of the coding scheme.

Turbo Encoder

A comm.TurboEncoder is a parallel concatenation scheme with multiple constituent Convolutional
encoders. The first encoder operates directly on the input bit sequence, while any others operate on
interleaved input sequences, obtained by interleaving the input bits over a block length.
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The System block based Turbo Encoder block uses two identical 8-state recursive systematic
convolutional encoders. The comm.ConvolutionalEncoder System object™ uses the "Terminated"
setting for the TerminationMethod property. This restores the encoders to the starting all-zeros
state for each frame of data the block processes. The internal block interleaver uses pre-computed
permutation indices, based on the user-specified Code block length parameter (see the Model
Parameters block ). The bit reordering subsystem removes the extra set of systematic bits from
the second encoder output and realizes the trellis termination as per [ 4 ].

Iterative Decoding

For iterative decoding of the parallel concatenated encoding scheme, the comm.TurboDecoder uses
the a posteriori probability (APP) decoder [ 2 ] as the constituent decoder component.

Each comm.APPDecoder System object corresponds to a constituent encoder which provides an
updated sequence of log-likelihood values for the uncoded bits from the received sequence of log-
likelihoods for the channel (coded) bits. For each set of received channel sequences, the decoder
iteratively updates the log-likelihoods for the uncoded bits until a stopping criterion is met. This
example uses a fixed number of decoding iterations, as specified by the Number of decoding
iterations parameter in the model's Model Parameters block. The default number of iterations is
six.

The TerminationMethod property for the APP Decoder System object is set to be "Terminated" to
match the encoders. The decoder does not assume knowledge of the tail bits and as a result, these
are excluded from the multiple iterations.

The internal interleaver of the decoder is identical to the one the encoder uses. It reorders the
sequences so that they are properly aligned at the two decoders.

BER Performance

The following figure shows the bit error rate performance of the parallel concatenated coding scheme
in an AWGN channel over a range of Eb/No values for two sets of code block lengths and number of
decoding iterations.
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As the figure shows, the iterative decoding performance improves with an increase in the number of
decoding iterations (at the expense of computational complexity) and larger block lengths (at the
expense of decoding latency).

Variable-sized Turbo Coding

The companion model commpcccvs.slx highlights turbo coding using variable-sized code-blocks
within a simulation run.
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The model is set up to run two user specified code-block lengths, which vary as per the selected
control signal. The interleaver indices per block length and the noise variance are calculated per time
step. Using the CRC syndrome detector, the model displays the code-block error rate in addition to
the bit error rate, as the former is the more relevant performance metric with variable-sized code
blocks.

CBER Performance

The following figure shows the code-block error rate performance of the parallel concatenated coding
scheme in an AWGN channel over a range of Eb/No values for a similar set up as used for BER.
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We observe similar improvements as before in performance with increase in the number of decoding
iterations and/or block lengths.

Further Exploration

The example allows you to explore the effects of different block lengths and number of decoding
iterations on the system performance. It supports all of the 188 code block sizes specified in [ 4 ] for a
user-specified fixed number of decoding iterations.
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Tail-Biting Convolutional Coding
This model shows how to use the Convolutional Encoder and Viterbi Decoder blocks to
simulate a tail-biting convolutional code. Terminating the trellis of a convolutional code is a key
parameter in the code's performance for packet-based communications. Tail-biting convolutional
coding is a technique of trellis termination which avoids the rate loss incurred by zero-tail
termination at the expense of a more complex decoder [ 1 ].

The example uses an ad-hoc suboptimal decoding method for tail-biting decoding and shows how the
encoding is achieved for a feed-forward encoder. Bit-Error-Rate performance comparisons are made
with the zero-tailed case for a standard convolutional code.

Tail-Biting Encoding

Tail-biting encoding ensures that the starting state of the encoder is the same as it's ending state (and
that this state value does not necessarily have to be the all-zero state). For a rate 1/n feed-forward
encoder, this is achieved by initializing the m memory elements of the encoder with the last m
information bits of a block of data of length L, and ignoring the output. All of the L bits are then input
to the encoder and the resultant L*n output bits are used as the codeword.

This is modeled by the Tail-biting Convolutional Encoder subsystem in the following model,
commtailbiting.slx:
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For a block length of 100 bits, the encoder subsystem outputs 200 bits for a rate 1/2 feed-forward
encoder with 6 memory elements. The Display block in the subsystem indicates the initial and final
states are identical for each block of processed data.

The Convolutional Encoder blocks use the "Truncated (reset every frame)" setting for the Operation
mode parameter to indicate the block-wise processing.

Refer to the “Tailbiting Encoding Using Feedback Encoders” on page 16-53 as per [ 2 ] on how to
achieve tail-biting encoding for a feedback encoder.

Zero-Tailed Encoding

In comparison, the zero-tail termination method appends m zeros to a block of data to ensure the
feed-forward encoder starts from and ends in the all-zero state for each block. This incurs a rate loss
due to the extra tail bits (i.e. non-informational bits) that are transmitted.

Referring to the following model, commterminatedcnv.slx,

observe that for the same block length of 100 bits, the encoder output now includes the zero-tail bits
resulting in an actual code rate of 100/212 which is less than that achieved by the tail-biting encoder.

The Convolutional Encoder block uses the "Terminate trellis by appending bits" setting for the
Operation mode parameter for this case, which works for feedback encoders as well.
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Tail-Biting Decoding

The maximum likelihood tail-biting decoder involves determining the best path in the trellis under the
constraint that it starts and ends in the same state. A way to implement this is to run M parallel
Viterbi algorithms where M is the number of states in the trellis, and select the decoded bits based on
the Viterbi algorithm that gives the best metric. However this makes the decoding M times more
complex than that for zero-tailed encoding.

This example uses an ad-hoc suboptimum scheme as per [ 3 ], which is much simpler than the
maximum likelihood approach and yet performs comparably. The scheme is based on the premise that
the tail-biting trellis can be considered circular as it starts and ends in the same state. This allows the
Viterbi algorithm to be continued past the end of a block by repeating the received codeword
circularly. As a result, the model repeats the received codeword from the demodulator and runs this
data set through the Viterbi decoder, performing the traceback from the best state at the end of the
repeated data set. Only a portion of the decoded bits from the middle are selected as the decoded
message bits.

The Operation mode parameter for the Viterbi Decoder block is set to be "Truncated" for the tail-
biting case while it is set to "Terminated" for the zero-tailed case.

BER Performance

The example compares the Bit-error-rate performance of the two termination methods for hard-
decision decoding in an AWGN channel over a range of Eb/No values. Note that the two models are
set such that they can be simulated over a range of Eb/No values using BERTool.
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As the figure shows the ad-hoc tail-biting decoding scheme performs comparatively close to the lower
bounded performance of the zero-tailed convolutional code for the chosen parameters.

Further Exploration

Upon loading, the models initialize a set of variables that control the simulation. These include the
block length, Eb/No and the maximum number of errors and bits simulated. You are encouraged to
play with the values of these variables to see their effects on the link performance.

Note that the ad-hoc decoding scheme's performance is sensitive to the block length used. Also the
performance of the code is dependent on the traceback decoding length used for the Viterbi
algorithm.
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Log-Likelihood Ratio (LLR) Demodulation
This example shows the BER performance improvement for QPSK modulation when using log-
likelihood ratio (LLR) instead of hard-decision demodulation in a convolutionally coded
communication link. With LLR demodulation, one can use the Viterbi decoder either in the
unquantized decoding mode or the soft-decision decoding mode. Unquantized decoding, where the
decoder inputs are real values, though better in terms of BER, is not practically viable. In the more
practical soft-decision decoding, the demodulator output is quantized before being fed to the decoder.
It is generally observed that this does not incur a significant cost in BER while significantly reducing
the decoder complexity. We validate this experimentally through this example.

For a Simulink™ version of this example, see “LLR vs. Hard Decision Demodulation in Simulink” on
page 8-105.

Initialization

Initialize simulation parameters.

M = 4;               % Modulation order
k = log2(M);         % Bits per symbol
bitsPerIter = 1.2e4; % Number of bits to simulate
EbNo = 3;            % Information bit Eb/No in dB

Initialize coding properties for a rate 1/2, constraint length 7 code.

codeRate = 1/2;          % Code rate of convolutional encoder
constLen = 7;            % Constraint length of encoder
codeGenPoly = [171 133]; % Code generator polynomial of encoder
tblen = 32;              % Traceback depth of Viterbi decoder
trellis = poly2trellis(constLen,codeGenPoly);

Create a comm.ConvolutionalEncoder System object™ by using trellis as an input.

enc = comm.ConvolutionalEncoder(trellis);

Modulator and Channel

Create a comm.QPSKModulator and two comm.QPSKDemodulator System objects. Configure the
first demodulator to output hard-decision bits. Configure the second to output LLR values.

qpskMod = comm.QPSKModulator('BitInput',true);
demodHard = comm.QPSKDemodulator('BitOutput',true,...
    'DecisionMethod','Hard decision');
demodLLR = comm.QPSKDemodulator('BitOutput',true,...
    'DecisionMethod','Log-likelihood ratio');

Create an comm.AWGNChannel object. The signal going into the AWGN channel is the modulated
encoded signal. To achieve the required noise level, adjust the Eb/No for coded bits and multi-bit
symbols. Set this as the EbNo of the channel object.

chan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...
    'BitsPerSymbol',k);
EbNoCoded = EbNo + 10*log10(codeRate);
chan.EbNo = EbNoCoded;

Viterbi Decoding
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Create comm.ViterbiDecoder objects to act as the hard-decision, unquantized, and soft-decision
decoders. For all three decoders, set the traceback depth to tblen.

decHard = comm.ViterbiDecoder(trellis,'InputFormat','Hard', ...
    'TracebackDepth',tblen);

decUnquant = comm.ViterbiDecoder(trellis,'InputFormat','Unquantized', ...
    'TracebackDepth',tblen);

decSoft = comm.ViterbiDecoder(trellis,'InputFormat','Soft', ...
    'SoftInputWordLength',3,'TracebackDepth',tblen);

Quantization for soft-decoding

Before using a comm.ViterbiDecoder object in the soft-decision mode, the output of the
demodulator needs to be quantized. This example uses a comm.ViterbiDecoder object with a
SoftInputWordLength of 3. This value is a good compromise between short word lengths and a
small BER penalty. Define parition points for 3-bit quantization.

snrdB = EbNoCoded + 10*log10(k);
NoiseVariance = 10.^(-snrdB/10);
demodLLR.Variance = NoiseVariance;
paritionPoints = (-1.5:0.5:1.5)/NoiseVariance;

Calculating the Error Rate

Create comm.ErrorRate objects to compare the decoded bits to the original transmitted bits. The
Viterbi decoder creates a delay in the decoded bit stream output equal to the traceback length. To
account for this delay, set the ReceiveDelay property of the comm.ErrorRate objects to tblen.

errHard = comm.ErrorRate('ReceiveDelay',tblen);
errUnquant = comm.ErrorRate('ReceiveDelay',tblen);
errSoft = comm.ErrorRate('ReceiveDelay',tblen);

System Simulation

Generate bitsPerIter message bits. Then convolutionally encode and modulate the data.

txData = randi([0 1],bitsPerIter,1); 
encData = enc(txData);
modData = qpskMod(encData);

Pass the modulated signal through an AWGN channel.

rxSig = chan(modData);

Demodulate the received signal and output hard-decision bits.

hardData = demodHard(rxSig);

Demodulate the received signal and output LLR values.

LLRData = demodLLR(rxSig);

Hard-decision decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.
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rxDataHard = decHard(hardData);
berHard = errHard(txData,rxDataHard);

Unquantized decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataUnquant = decUnquant(LLRData);
berUnquant = errUnquant(txData,rxDataUnquant);

Soft-decision decoding

Pass the demodulated data to the quantiz function. This data must be multiplied by -1 before being
passed to the quantizer, because, in soft-decision mode, the Viterbi decoder assumes that positive
numbers correspond to 1s and negative numbers to 0s. Pass the quantizer output to the Viterbi
decoder. Compute the error statistics.

quantizedValue = quantiz(-LLRData,paritionPoints);
rxDataSoft = decSoft(double(quantizedValue));
berSoft = errSoft(txData,rxDataSoft);

Running Simulation Example

Simulate the previously described communications system over a range of Eb/No values by executing
the simulation file simLLRvsHD. It plots BER results as they are generated. BER results for hard-
decision demodulation and LLR demodulation with unquantized and soft-decision decoding are
plotted in red, blue, and black, respectively. A comparison of simulation results with theoretical
results is also shown. Observe that the BER is only slightly degraded by using soft-decision decoding
instead of unquantized decoding. The gap between the BER curves for soft-decision decoding and the
theoretical bound can be narrowed by increasing the number of quantizer levels.

This example may take some time to compute BER results. If you have the Parallel Computing
Toolbox™ (PCT) installed, you can set usePCT to true to run the simulation in parallel. In this case,
the file LLRvsHDwithPCT is run.

To obtain results over a larger range of Eb/No values, modify the appropriate supporting files. Note
that you can obtain more statistically reliable results by collecting more errors.

usePCT = false;
if usePCT && license('checkout','Distrib_Computing_Toolbox') ...
        && ~isempty(ver('parallel'))
    LLRvsHDwithPCT(1.5:0.5:5.5,5);
else
    simLLRvsHD(1.5:0.5:5.5,5);
end
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Appendix

The following functions are used in this example:

• simLLRvsHD.m — Simulates system without PCT.
• LLRvsHDwithPCT.m — Simulates system with PCT.
• simLLRvsHDPCT.m — Helper function called by LLRvsHDwithPCT.
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FBMC vs. OFDM Modulation
This example compares Filter Bank Multi-Carrier (FBMC) with Orthogonal Frequency Division
Multiplexing (OFDM) and highlights the merits of the candidate modulation scheme for Fifth
Generation (5G) communication systems.

FBMC was considered as an alternate waveform to OFDM in the 3GPP RAN study phase I during
3GPP Release 14.

Introduction

This example compares Filter Bank Multi-Carrier (FBMC) modulation with generic OFDM
modulation. FBMC offers ways to overcome the known limitations of OFDM of reduced spectral
efficiency and strict synchronization requirements. These advantages have led it to being considered
as one of the modulation techniques for 5G communication systems [ 2 on page 8-0 , 4 on page 8-
0  ].

This example models Filter Bank Multi-Carrier modulation with configurable parameters and
highlights the basic transmit and receive processing.

s = rng(211);            % Set RNG state for repeatability

System Parameters

Define system parameters for the example. You can modify these parameters to explore their impact
on the system.

numFFT = 1024;           % Number of FFT points
numGuards = 212;         % Guard bands on both sides
K = 4;                   % Overlapping symbols, one of 2, 3, or 4
numSymbols = 100;        % Simulation length in symbols
bitsPerSubCarrier = 2;   % 2: 4QAM, 4: 16QAM, 6: 64QAM, 8: 256QAM
snrdB = 12;              % SNR in dB

Filter Bank Multi-Carrier Modulation

FBMC filters each subcarrier modulated signal in a multicarrier system. The prototype filter is the
one used for the zero frequency carrier and is the basis for the other subcarrier filters. The filters are
characterized by the overlapping factor, K which is the number of multicarrier symbols that overlap
in the time domain. The prototype filter order can be chosen as 2*K-1 where K = 2, 3, or 4 and is
selected as per the PHYDYAS project [ 1 on page 8-0  ].

The current FBMC implementation uses frequency spreading. It uses an N*K length IFFT with
symbols overlapped with a delay of N/2, where N is the number of subcarriers. This design choice
makes it easy to analyze FBMC and compare with other modulation methods.

To achieve full capacity, offset quadrature amplitude modulation (OQAM) processing is employed. The
real and imaginary parts of a complex data symbol are not transmitted simultaneously, as the
imaginary part is delayed by half the symbol duration.

The transmit-end processing is shown in the following diagram.
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% Prototype filter
switch K
    case 2
        HkOneSided = sqrt(2)/2;
    case 3
        HkOneSided = [0.911438 0.411438];
    case 4
        HkOneSided = [0.971960 sqrt(2)/2 0.235147];
    otherwise
        return
end
% Build symmetric filter
Hk = [fliplr(HkOneSided) 1 HkOneSided];

% Transmit-end processing
%   Initialize arrays
L = numFFT-2*numGuards;  % Number of complex symbols per OFDM symbol
KF = K*numFFT;
KL = K*L;
dataSubCar = zeros(L, 1);
dataSubCarUp = zeros(KL, 1);

sumFBMCSpec = zeros(KF*2, 1);
sumOFDMSpec = zeros(numFFT*2, 1);

numBits = bitsPerSubCarrier*L/2;    % account for oversampling by 2
inpData = zeros(numBits, numSymbols);
rxBits = zeros(numBits, numSymbols);
txSigAll = complex(zeros(KF, numSymbols));
symBuf = complex(zeros(2*KF, 1));

% Loop over symbols
for symIdx = 1:numSymbols
    
    % Generate mapped symbol data
    inpData(:, symIdx) = randi([0 1], numBits, 1);
    modData = qammod(inpData(:, symIdx), 2^bitsPerSubCarrier, ...
        'InputType', 'Bit', 'UnitAveragePower', true);
    
    % OQAM Modulator: alternate real and imaginary parts
    if rem(symIdx,2)==1     % Odd symbols
        dataSubCar(1:2:L) = real(modData);
        dataSubCar(2:2:L) = 1i*imag(modData);
    else                    % Even symbols
        dataSubCar(1:2:L) = 1i*imag(modData);
        dataSubCar(2:2:L) = real(modData);
    end
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    % Upsample by K, pad with guards, and filter with the prototype filter
    dataSubCarUp(1:K:end) = dataSubCar;
    dataBitsUpPad = [zeros(numGuards*K,1); dataSubCarUp; zeros(numGuards*K,1)];
    X1 = filter(Hk, 1, dataBitsUpPad);
    % Remove 1/2 filter length delay
    X = [X1(K:end); zeros(K-1,1)];
    
    % Compute IFFT of length KF for the transmitted symbol
    txSymb = fftshift(ifft(X));
    
    % Transmitted signal is a sum of the delayed real, imag symbols
    symBuf = [symBuf(numFFT/2+1:end); complex(zeros(numFFT/2,1))];
    symBuf(KF+(1:KF)) = symBuf(KF+(1:KF)) + txSymb;
    
    % Compute power spectral density (PSD)
    currSym = complex(symBuf(1:KF));
    [specFBMC, fFBMC] = periodogram(currSym, hann(KF, 'periodic'), KF*2, 1);
    sumFBMCSpec = sumFBMCSpec + specFBMC;
    
    % Store transmitted signals for all symbols
    txSigAll(:,symIdx) = currSym;
end

% Plot power spectral density
sumFBMCSpec = sumFBMCSpec/mean(sumFBMCSpec(1+K+2*numGuards*K:end-2*numGuards*K-K));
plot(fFBMC-0.5,10*log10(sumFBMCSpec));
grid on
axis([-0.5 0.5 -180 10]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['FBMC, K = ' num2str(K) ' overlapped symbols'])
set(gcf, 'Position', figposition([15 50 30 30]));
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The power spectral density of the FBMC transmit signal is plotted to highlight the low out-of-band
leakage.

OFDM Modulation with Corresponding Parameters

For comparison, we review the existing OFDM modulation technique, using the full occupied band,
however, without a cyclic prefix.

for symIdx = 1:numSymbols
    
    inpData2 = randi([0 1], bitsPerSubCarrier*L, 1);
    modData = qammod(inpData2, 2^bitsPerSubCarrier, ...
        'InputType', 'Bit', 'UnitAveragePower', true);
    
    symOFDM = [zeros(numGuards,1); modData; zeros(numGuards,1)];
    ifftOut = sqrt(numFFT).*ifft(ifftshift(symOFDM));
    
    [specOFDM,fOFDM] = periodogram(ifftOut, rectwin(length(ifftOut)), ...
        numFFT*2, 1, 'centered');
    sumOFDMSpec = sumOFDMSpec + specOFDM;
end

% Plot power spectral density (PSD) over all subcarriers
sumOFDMSpec = sumOFDMSpec/mean(sumOFDMSpec(1+2*numGuards:end-2*numGuards));
figure;
plot(fOFDM,10*log10(sumOFDMSpec));
grid on
axis([-0.5 0.5 -180 10]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['OFDM, numFFT = ' num2str(numFFT)])
set(gcf, 'Position', figposition([46 50 30 30]));
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Comparing the plots of the spectral densities for OFDM and FBMC schemes, FBMC has lower side
lobes. This allows a higher utilization of the allocated spectrum, leading to increased spectral
efficiency.

FBMC Receiver with No Channel

The example implements a basic FBMC demodulator and measures the BER for the chosen
configuration in the absence of a channel. The processing includes matched filtering followed by
OQAM separation to form the received data symbols. These are de-mapped to bits and the resultant
bit error rate is determined. In the presence of a channel, linear multi-tap equalizers may be used to
mitigate the effects of frequency-selective fading.

The receive-end processing is shown in the following diagram.

BER = comm.ErrorRate;

% Process symbol-wise
for symIdx = 1:numSymbols
    rxSig = txSigAll(:, symIdx);
    
    % Add WGN
    rxNsig = awgn(rxSig, snrdB, 'measured');
    
    % Perform FFT
    rxf = fft(fftshift(rxNsig));
    
    % Matched filtering with prototype filter
    rxfmf = filter(Hk, 1, rxf);
    % Remove K-1 delay elements
    rxfmf = [rxfmf(K:end); zeros(K-1,1)];
    % Remove guards
    rxfmfg = rxfmf(numGuards*K+1:end-numGuards*K);
    
    % OQAM post-processing
    %  Downsample by 2K, extract real and imaginary parts
    if rem(symIdx, 2)
        % Imaginary part is K samples after real one
        r1 = real(rxfmfg(1:2*K:end));
        r2 = imag(rxfmfg(K+1:2*K:end));
        rcomb = complex(r1, r2);
    else
        % Real part is K samples after imaginary one
        r1 = imag(rxfmfg(1:2*K:end));
        r2 = real(rxfmfg(K+1:2*K:end));
        rcomb = complex(r2, r1);
    end
    %  Normalize by the upsampling factor
    rcomb = (1/K)*rcomb;
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    % De-mapper: Perform hard decision
    rxBits(:, symIdx) = qamdemod(rcomb, 2^bitsPerSubCarrier, ...
        'OutputType', 'bit', 'UnitAveragePower', true);
end

% Measure BER with appropriate delay
BER.ReceiveDelay = bitsPerSubCarrier*KL;
ber = BER(inpData(:), rxBits(:));

% Display Bit error
disp(['FBMC Reception for K = ' num2str(K) ', BER = ' num2str(ber(1)) ...
    ' at SNR = ' num2str(snrdB) ' dB'])

FBMC Reception for K = 4, BER = 0 at SNR = 12 dB

% Restore RNG state
rng(s);

Conclusion and Further Exploration

The example presents the basic transmit and receive characteristics of the FBMC modulation
scheme. Explore this example by changing the number of overlapping symbols, FFT lengths, guard
band lengths, and SNR values.

Refer to “UFMC vs. OFDM Modulation” on page 8-87 for an example that describes the Universal
Filtered Multi-Carrier (UFMC) modulation scheme.

FBMC is considered advantageous in comparison to OFDM by offering higher spectral efficiency. Due
to the per subcarrier filtering, it incurs a larger filter delay (in comparison to UFMC) and also
requires OQAM processing, which requires modifications for MIMO processing.

Further explorations should include modifications for MIMO processing with more complete link-level
processing including channel estimation and equalization [ 2 on page 8-0  ].
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F-OFDM vs. OFDM Modulation
This example compares Orthogonal Frequency Division Multiplexing (OFDM) with Filtered-OFDM (F-
OFDM) and highlights the merits of the candidate modulation scheme for Fifth Generation (5G)
communication systems.

Introduction

This example compares Filtered-OFDM modulation with generic Cyclic Prefix OFDM (CP-OFDM)
modulation. For F-OFDM, a well-designed filter is applied to the time domain OFDM symbol to
improve the out-of-band radiation of the sub-band signal, while maintaining the complex-domain
orthogonality of OFDM symbols.

This example models Filtered-OFDM modulation with configurable parameters. It highlights the filter
design technique and the basic transmit/receive processing.

s = rng(211);       % Set RNG state for repeatability

System Parameters

Define system parameters for the example. These parameters can be modified to explore their impact
on the system.

numFFT = 1024;           % Number of FFT points
numRBs = 50;             % Number of resource blocks
rbSize = 12;             % Number of subcarriers per resource block
cpLen = 72;              % Cyclic prefix length in samples

bitsPerSubCarrier = 6;   % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
snrdB = 18;              % SNR in dB

toneOffset = 2.5;        % Tone offset or excess bandwidth (in subcarriers)
L = 513;                 % Filter length (=filterOrder+1), odd

Filtered-OFDM Filter Design

Appropriate filtering for F-OFDM satisfies the following criteria:

• Should have a flat passband over the subcarriers in the sub-band
• Should have a sharp transition band to minimize guard-bands
• Should have sufficient stop-band attenuation

A filter with a rectangular frequency response, i.e. a sinc impulse response, meets these criteria. To
make this causal, the low-pass filter is realized using a window, which, effectively truncates the
impulse response and offers smooth transitions to zero on both ends [ 3 on page 8-0  ].

numDataCarriers = numRBs*rbSize;    % number of data subcarriers in sub-band
halfFilt = floor(L/2);
n = -halfFilt:halfFilt;

% Sinc function prototype filter
pb = sinc((numDataCarriers+2*toneOffset).*n./numFFT);

% Sinc truncation window
w = (0.5*(1+cos(2*pi.*n/(L-1)))).^0.6;
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% Normalized lowpass filter coefficients
fnum = (pb.*w)/sum(pb.*w);

% Filter impulse response
h = fvtool(fnum, 'Analysis', 'impulse', ...
    'NormalizedFrequency', 'off', 'Fs', 15.36e6);
h.CurrentAxes.XLabel.String = 'Time (\mus)';
h.FigureToolbar = 'off';

% Use dsp filter objects for filtering
filtTx = dsp.FIRFilter('Structure', 'Direct form symmetric', ...
    'Numerator', fnum);
filtRx = clone(filtTx); % Matched filter for the Rx

F-OFDM Transmit Processing

In F-OFDM, the sub-band CP-OFDM signal is passed through the designed filter. As the filter's
passband corresponds to the signal's bandwidth, only the few subcarriers close to the edge are
affected. A key consideration is that the filter length can be allowed to exceed the cyclic prefix length
for F-OFDM [ 1 on page 8-0  ]. The inter-symbol interference incurred is minimized due to the filter
design using windowing (with soft truncation).

Transmit-end processing operations are shown in the following F-OFDM transmitter diagram.
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% Set up a figure for spectrum plot
hFig = figure('Position', figposition([46 50 30 30]), 'MenuBar', 'none');
axis([-0.5 0.5 -200 -20]);
hold on;
grid on
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['F-OFDM, ' num2str(numRBs) ' Resource blocks, '  ...
    num2str(rbSize) ' Subcarriers each'])

% Generate data symbols
bitsIn = randi([0 1], bitsPerSubCarrier*numDataCarriers, 1);

% QAM Symbol mapper
symbolsIn = qammod(bitsIn, 2^bitsPerSubCarrier, 'InputType', 'bit', ...
    'UnitAveragePower', true);

% Pack data into an OFDM symbol
offset = (numFFT-numDataCarriers)/2; % for band center
symbolsInOFDM = [zeros(offset,1); symbolsIn; ...
    zeros(numFFT-offset-numDataCarriers,1)];
ifftOut = ifft(ifftshift(symbolsInOFDM));

% Prepend cyclic prefix
txSigOFDM = [ifftOut(end-cpLen+1:end); ifftOut];

% Filter, with zero-padding to flush tail. Get the transmit signal
txSigFOFDM = filtTx([txSigOFDM; zeros(L-1,1)]);

% Plot power spectral density (PSD)
[psd,f] = periodogram(txSigFOFDM, rectwin(length(txSigFOFDM)), ...
    numFFT*2, 1, 'centered');
plot(f,10*log10(psd));
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% Compute peak-to-average-power ratio (PAPR)
PAPR = comm.CCDF('PAPROutputPort', true, 'PowerUnits', 'dBW');
[~,~,paprFOFDM] = PAPR(txSigFOFDM);
disp(['Peak-to-Average-Power-Ratio for F-OFDM = ' num2str(paprFOFDM) ' dB']);

Peak-to-Average-Power-Ratio for F-OFDM = 11.371 dB

OFDM Modulation with Corresponding Parameters

For comparison, we review the existing OFDM modulation technique, using the full occupied band,
with the same length cyclic prefix.

% Plot power spectral density (PSD) for OFDM signal
[psd,f] = periodogram(txSigOFDM, rectwin(length(txSigOFDM)), numFFT*2, ...
    1, 'centered');
hFig1 = figure('Position', figposition([46 15 30 30]));
plot(f,10*log10(psd));
grid on
axis([-0.5 0.5 -100 -20]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['OFDM, ' num2str(numRBs*rbSize) ' Subcarriers'])
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% Compute peak-to-average-power ratio (PAPR)
PAPR2 = comm.CCDF('PAPROutputPort', true, 'PowerUnits', 'dBW');
[~,~,paprOFDM] = PAPR2(txSigOFDM);
disp(['Peak-to-Average-Power-Ratio for OFDM = ' num2str(paprOFDM) ' dB']);

Peak-to-Average-Power-Ratio for OFDM = 9.721 dB

Comparing the plots of the spectral densities for CP-OFDM and F-OFDM schemes, F-OFDM has lower
side lobes. This allows a higher utilization of the allocated spectrum, leading to increased spectral
efficiency.

Refer to the comm.OFDMModulator System object™ which can also be used to implement the CP-
OFDM modulation.

F-OFDM Receiver with No Channel

The example next highlights the basic receive processing for F-OFDM for a single OFDM symbol. The
received signal is passed through a matched filter, followed by the normal CP-OFDM receiver. It
accounts for both the filtering ramp-up and latency prior to the FFT operation.

No fading channel is considered in this example but noise is added to the received signal to achieve
the desired SNR.

% Add WGN
rxSig = awgn(txSigFOFDM, snrdB, 'measured');

Receive processing operations are shown in the following F-OFDM receiver diagram.
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% Receive matched filter
rxSigFilt = filtRx(rxSig);

% Account for filter delay
rxSigFiltSync = rxSigFilt(L:end);

% Remove cyclic prefix
rxSymbol = rxSigFiltSync(cpLen+1:end);

% Perform FFT
RxSymbols = fftshift(fft(rxSymbol));

% Select data subcarriers
dataRxSymbols = RxSymbols(offset+(1:numDataCarriers));

% Plot received symbols constellation
switch bitsPerSubCarrier
    case 2  % QPSK
        refConst = qammod((0:3).', 4, 'UnitAveragePower', true);
    case 4  % 16QAM
        refConst = qammod((0:15).', 16,'UnitAveragePower', true);
    case 6  % 64QAM
        refConst = qammod((0:63).', 64,'UnitAveragePower', true);
    case 8  % 256QAM
        refConst = qammod((0:255).', 256,'UnitAveragePower', true);
end
constDiagRx = comm.ConstellationDiagram( ...
    'ShowReferenceConstellation', true, ...
    'ReferenceConstellation', refConst, ...
    'Position', figposition([20 15 30 40]), ...
    'EnableMeasurements', true, ...
    'MeasurementInterval', length(dataRxSymbols), ...
    'Title', 'F-OFDM Demodulated Symbols', ...
    'Name', 'F-OFDM Reception', ...
    'XLimits', [-1.5 1.5], 'YLimits', [-1.5 1.5]);
constDiagRx(dataRxSymbols);
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% Channel equalization is not necessary here as no channel is modeled

% BER computation
BER = comm.ErrorRate;

% Perform hard decision and measure errors
rxBits = qamdemod(dataRxSymbols, 2^bitsPerSubCarrier, 'OutputType', 'bit', ...
    'UnitAveragePower', true);
ber = BER(bitsIn, rxBits);

disp(['F-OFDM Reception, BER = ' num2str(ber(1)) ' at SNR = ' ...
    num2str(snrdB) ' dB']);

F-OFDM Reception, BER = 0.00083333 at SNR = 18 dB

% Restore RNG state
rng(s);

As highlighted, F-OFDM adds a filtering stage to the existing CP-OFDM processing at both the
transmit and receive ends. The example models the full-band allocation for a user, but the same
approach can be applied for multiple bands (one per user) for an uplink asynchronous operation.

Refer to the comm.OFDMDemodulator System object™ which can be used to implement the CP-
OFDM demodulation after receive matched filtering.
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Conclusion and Further Exploration

The example presents the basic characteristics of the F-OFDM modulation scheme at both transmit
and receive ends of a communication system. Explore different system parameter values for the
number of resource blocks, number of subcarriers per blocks, filter length, tone offset and SNR.

Universal Filtered Multi-Carrier (UFMC) modulation scheme is another approach to sub-band filtered
OFDM. For more information, see the “UFMC vs. OFDM Modulation” on page 8-87 example. This F-
OFDM example uses a single sub-band while the UFMC example uses multiple sub-bands.

F-OFDM and UFMC both use time-domain filtering with subtle differences in the way the filter is
designed and applied. For UFMC, the length of filter is constrained to be equal to the cyclic-prefix
length, while for F-OFDM, it can exceed the CP length.

For F-OFDM, the filter design leads to a slight loss in orthogonality (strictly speaking) which affects
only the edge subcarriers.
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UFMC vs. OFDM Modulation
This example compares Universal Filtered Multi-Carrier (UFMC) with Orthogonal Frequency Division
Multiplexing (OFDM) and highlights the merits of the candidate modulation scheme for Fifth
Generation (5G) communication systems.

UFMC was considered as an alternate waveform to OFDM in the 3GPP RAN study phase I during
3GPP Release 14.

Introduction

OFDM, as a multi-carrier modulation technique, has been widely adopted by 4G communication
systems, such as LTE and Wi-Fi®. It has many advantages: robustness to channel delays, single-tap
frequency domain equalization, and efficient implementation. What is often not highlighted are its
costs such as the loss in spectral efficiency due to higher side-lobes and the strict synchronization
requirements. New modulation techniques are, thus, being considered for 5G communication systems
to overcome some of these factors.

As an example, an LTE system at 20 MHz channel bandwidth uses 100 resource blocks of 12
subcarriers each, at an individual subcarrier spacing of 15 kHz. This utilizes only 18 MHz of the
allocated spectrum, leading to a 10 percent loss. Additionally, the cyclic prefix of 144 or 160 samples
per OFDM symbol leads to another ~7 percent efficiency loss, for an overall 17 percent loss in
possible spectral efficiency.

With the now defined ITU requirements for 5G systems, applications require higher data rates, lower
latency and more efficient spectrum usage. This example focuses on the new modulation technique
known as Universal Filtered Multi-Carrier (UFMC) and compares it with OFDM within a generic
framework.

s = rng(211);       % Set RNG state for repeatability

System Parameters

Define system parameters for the example. These parameters can be modified to explore their impact
on the system.

numFFT = 512;        % number of FFT points
subbandSize = 20;    % must be > 1 
numSubbands = 10;    % numSubbands*subbandSize <= numFFT
subbandOffset = 156; % numFFT/2-subbandSize*numSubbands/2 for band center

% Dolph-Chebyshev window design parameters
filterLen = 43;      % similar to cyclic prefix length
slobeAtten = 40;     % side-lobe attenuation, dB

bitsPerSubCarrier = 4;   % 2: 4QAM, 4: 16QAM, 6: 64QAM, 8: 256QAM
snrdB = 15;              % SNR in dB

Universal Filtered Multi-Carrier Modulation

UFMC is seen as a generalization of Filtered OFDM and FBMC (Filter Bank Multi-carrier)
modulations. The entire band is filtered in filtered OFDM and individual subcarriers are filtered in
FBMC, while groups of subcarriers (sub-bands) are filtered in UFMC.
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This subcarrier grouping allows one to reduce the filter length (when compared with FBMC). Also,
UFMC can still use QAM as it retains the complex orthogonality (when compared with FBMC), which
works with existing MIMO schemes.

The full band of subcarriers (N) is divided into sub-bands. Each subband has a fixed number of
subcarriers and not all sub-bands need to be employed for a given transmission. An N-pt IFFT for
each subband is computed, inserting zeros for the unallocated carriers. Each subband is filtered by a
filter of length L, and the responses from the different sub-bands are summed. The filtering is done to
reduce the out-of-band spectral emissions. Different filters per subband can be applied, however, in
this example, the same filter is used for each subband. A Chebyshev window with parameterized side-
lobe attenuation is employed to filter the IFFT output per subband [ 1 on page 8-0  ].

The transmit-end processing is shown in the following diagram.

% Design window with specified attenuation
prototypeFilter = chebwin(filterLen, slobeAtten);

% Transmit-end processing
%  Initialize arrays
inpData = zeros(bitsPerSubCarrier*subbandSize, numSubbands);
txSig = complex(zeros(numFFT+filterLen-1, 1));

hFig = figure;
axis([-0.5 0.5 -100 20]);
hold on; 
grid on

xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['UFMC, ' num2str(numSubbands) ' Subbands, '  ...
    num2str(subbandSize) ' Subcarriers each'])

%  Loop over each subband
for bandIdx = 1:numSubbands

    bitsIn = randi([0 1], bitsPerSubCarrier*subbandSize, 1);
    % QAM Symbol mapper
    symbolsIn = qammod(bitsIn, 2^bitsPerSubCarrier, 'InputType', 'bit', ...
    'UnitAveragePower', true);
    inpData(:,bandIdx) = bitsIn; % log bits for comparison
    
    % Pack subband data into an OFDM symbol
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    offset = subbandOffset+(bandIdx-1)*subbandSize; 
    symbolsInOFDM = [zeros(offset,1); symbolsIn; ...
                     zeros(numFFT-offset-subbandSize, 1)];
    ifftOut = ifft(ifftshift(symbolsInOFDM));
    
    % Filter for each subband is shifted in frequency
    bandFilter = prototypeFilter.*exp( 1i*2*pi*(0:filterLen-1)'/numFFT* ...
                 ((bandIdx-1/2)*subbandSize+0.5+subbandOffset+numFFT/2) );    
    filterOut = conv(bandFilter,ifftOut);
    
    % Plot power spectral density (PSD) per subband
    [psd,f] = periodogram(filterOut, rectwin(length(filterOut)), ...
                          numFFT*2, 1, 'centered'); 
    plot(f,10*log10(psd)); 
    
    % Sum the filtered subband responses to form the aggregate transmit
    % signal
    txSig = txSig + filterOut;     
end
set(hFig, 'Position', figposition([20 50 25 30]));
hold off;

% Compute peak-to-average-power ratio (PAPR)
PAPR = comm.CCDF('PAPROutputPort', true, 'PowerUnits', 'dBW');
[~,~,paprUFMC] = PAPR(txSig);
disp(['Peak-to-Average-Power-Ratio (PAPR) for UFMC = ' num2str(paprUFMC) ' dB']);

Peak-to-Average-Power-Ratio (PAPR) for UFMC = 8.2379 dB

OFDM Modulation with Corresponding Parameters

For comparison, we review the existing OFDM modulation technique, using the full occupied band,
however, without a cyclic prefix.

 UFMC vs. OFDM Modulation

8-89



symbolsIn = qammod(inpData(:), 2^bitsPerSubCarrier, 'InputType', 'bit', ...
    'UnitAveragePower', true);

% Process all sub-bands together
offset = subbandOffset; 
symbolsInOFDM = [zeros(offset, 1); symbolsIn; ...
                 zeros(numFFT-offset-subbandSize*numSubbands, 1)];
ifftOut = sqrt(numFFT).*ifft(ifftshift(symbolsInOFDM));

% Plot power spectral density (PSD) over all subcarriers
[psd,f] = periodogram(ifftOut, rectwin(length(ifftOut)), numFFT*2, ...
                      1, 'centered'); 
hFig1 = figure; 
plot(f,10*log10(psd)); 
grid on
axis([-0.5 0.5 -100 20]);
xlabel('Normalized frequency'); 
ylabel('PSD (dBW/Hz)')
title(['OFDM, ' num2str(numSubbands*subbandSize) ' Subcarriers'])
set(hFig1, 'Position', figposition([46 50 25 30]));

% Compute peak-to-average-power ratio (PAPR)
PAPR2 = comm.CCDF('PAPROutputPort', true, 'PowerUnits', 'dBW');
[~,~,paprOFDM] = PAPR2(ifftOut);
disp(['Peak-to-Average-Power-Ratio (PAPR) for OFDM = ' num2str(paprOFDM) ' dB']);

Peak-to-Average-Power-Ratio (PAPR) for OFDM = 8.8843 dB

Comparing the plots of the spectral densities for OFDM and UFMC schemes, UFMC has lower side-
lobes. This allows a higher utilization of the allocated spectrum, leading to increased spectral
efficiency. UFMC also shows a slightly better PAPR.
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UFMC Receiver with No Channel

The example next highlights the basic UFMC receive processing, which, like OFDM, is FFT-based.
The subband filtering extends the receive time window to the next power-of-two length for the FFT
operation. Every alternate frequency value corresponds to a subcarrier main lobe. In typical
scenarios, per-subcarrier equalization is used for equalizing the joint effect of the channel and the
subband filtering.

In this example, only the subband filter is equalized because no channel effects are modeled. Noise is
added to the received signal to achieve the desired SNR.

% Add WGN
rxSig = awgn(txSig, snrdB, 'measured');

The receive-end processing is shown in the following diagram.

% Pad receive vector to twice the FFT Length (note use of txSig as input)
%   No windowing or additional filtering adopted
yRxPadded = [rxSig; zeros(2*numFFT-numel(txSig),1)];

% Perform FFT and downsample by 2
RxSymbols2x = fftshift(fft(yRxPadded));
RxSymbols = RxSymbols2x(1:2:end);

% Select data subcarriers
dataRxSymbols = RxSymbols(subbandOffset+(1:numSubbands*subbandSize));

% Plot received symbols constellation
constDiagRx = comm.ConstellationDiagram('ShowReferenceConstellation', ...
    false, 'Position', figposition([20 15 25 30]), ...
    'Title', 'UFMC Pre-Equalization Symbols', ...
    'Name', 'UFMC Reception', ...
    'XLimits', [-150 150], 'YLimits', [-150 150]);
constDiagRx(dataRxSymbols);
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% Use zero-forcing equalizer after OFDM demodulation
rxf = [prototypeFilter.*exp(1i*2*pi*0.5*(0:filterLen-1)'/numFFT); ...
       zeros(numFFT-filterLen,1)];
prototypeFilterFreq = fftshift(fft(rxf));
prototypeFilterInv = 1./prototypeFilterFreq(numFFT/2-subbandSize/2+(1:subbandSize));

% Equalize per subband - undo the filter distortion
dataRxSymbolsMat = reshape(dataRxSymbols,subbandSize,numSubbands);
EqualizedRxSymbolsMat = bsxfun(@times,dataRxSymbolsMat,prototypeFilterInv);
EqualizedRxSymbols = EqualizedRxSymbolsMat(:);

% Plot equalized symbols constellation
constDiagEq = comm.ConstellationDiagram('ShowReferenceConstellation', ...
    false, 'Position', figposition([46 15 25 30]), ...
    'Title', 'UFMC Equalized Symbols', ...
    'Name', 'UFMC Equalization');
constDiagEq(EqualizedRxSymbols);
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% BER computation
BER = comm.ErrorRate;

% Perform hard decision and measure errors
rxBits = qamdemod(EqualizedRxSymbols, 2^bitsPerSubCarrier, 'OutputType', 'bit', ...
    'UnitAveragePower', true);
ber = BER(inpData(:), rxBits);

disp(['UFMC Reception, BER = ' num2str(ber(1)) ' at SNR = ' ...
    num2str(snrdB) ' dB']);

UFMC Reception, BER = 0 at SNR = 15 dB

% Restore RNG state
rng(s);

Conclusion and Further Exploration

The example presents the basic characteristics of the UFMC modulation scheme at both transmit and
receive ends of a communication system. Explore different system parameter values for the number
of sub-bands, number of subcarriers per subband, filter length, side-lobe attenuation, and SNR.

Refer to “FBMC vs. OFDM Modulation” on page 8-73 for an example that describes the Filter Bank
Multi-Carrier (FBMC) modulation scheme. The “F-OFDM vs. OFDM Modulation” on page 8-79
example describes the Filtered-OFDM modulation scheme.

UFMC is considered advantageous in comparison to OFDM by offering higher spectral efficiency.
Subband filtering has the benefit of reducing the guards between sub-bands and also reducing the
filter length, which makes this scheme attractive for short bursts. The latter property also makes it
attractive in comparison to FBMC, which suffers from much longer filter length.
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P25 Spectrum Sensing with Synthesized and Captured Data
This example shows how to use cyclostationary feature detection to distinguish signals with different
modulation schemes, including P25 signals [ 1 ]. It defines four cases of signals: noise only, C4FM,
CQPSK, and one arbitrary type. The example applies the detection algorithm to signals with different
SNR values, and to a captured real-world P25 signal, and then classifies the signals as one of the four
types. Graphical results show that the detection algorithm succeeds in all the cases.

Project 25 (P25)

Project 25 (P25 or APCO-25) is a suite of standards for digital radio communications for use by
federal, state, province and local public safety agencies in North America. When emergencies arise,
this protocol suite enables communication among government agencies and mutual aid response
teams. In this regard, P25 fills the same role as the European Terrestrial Trunked Radio (TETRA) [ 2 ]
protocol, although the two standards are not interoperable with each other. In North America, P25 is
widely used in public safety, security, public service, and commercial applications [ 1 ].

Project 25 is deployed in two phases. In Phase 1, P25 uses C4FM, an acronym for compatible 4 level
frequency modulation. In its simplest form, it is a special type of 4FSK modulation, which uses four
different frequencies to represent symbols. Phase 1 uses this modulation scheme to transmit digital
information over a 12.5 kHz channel.

Phase 2 transmits digital information over a 6.25 kHz channel using the compatible quadrature phase
shift keying (CQPSK) modulation format. CQPSK modulation is essentially pi/4 differential quadrature
phase shift keying (pi/4 DQPSK), where encoding is symmetric, using phase change values of -135
degrees, -45 degrees, +45 degrees and +135 degrees, as shown in the following figure.

In this figure, the next state of the red dots can only be green dots, and vice versa. Although the data
rate and bits per symbol are identical, the main difference between the two modulation schemes is
that C4FM uses a frequency shift to depict a symbol, which provides a fixed amplitude signal. In
contrast, CQPSK, uses a phase shift to depict a symbol, which imparts an amplitude component to the
signal.
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Cyclostationary Feature Detection

Modulation recognition and signal classification has been a subject of considerable research for over
two decades. Classification schemes can generally be separated into one of two broad categories:
likelihood-based (LB) approaches and feature-based (FB) approaches [ 3 ]. Cyclostationary feature
detection is an FB technique based on the fact that communications signals are not accurately
described as stationary, but rather more appropriately modeled as cyclostationary [ 4 ].

A cyclostationary process is a signal having statistical properties that vary cyclically with time [ 5 ].
These periodicities occur for signals in well defined manners due to processes such as sampling,
scanning, modulating, multiplexing, and coding. This resulting periodic nature of signals can be
exploited to determine the modulation scheme of the unknown signal [ 4 ].

Cyclostationary feature detection is a robust spectrum sensing technique because modulated
information is a cyclostationary process, while noise is not. As a result, cyclic detectors can
successfully operate even in low SNR environments.

Noise-only Case

For the noise-only case, generate a (4*N)-by-1 vector of white Gaussian noise with a power of 1 dBW.
1/(4*N) is the cyclic resolution used to calculate the spectral autocorrelation function (SAF) in
commP25ssca.m.

N = 4096;
input = wgn(4*N,1,1);

Use the time domain spectral autocorrelation function to analyze the cyclostationary features of the
signal x(t). Run the spectral autocorrelation function commP25ssca.m on the input signal. This
function estimates the ideal spectral autocorrelation function using the strip spectrum correlation
algorithm (SSCA) [ 3 ] temporal smoothing method. It is an FFT based time smoothing algorithm.
Refer to [ 6 ] for more information about the implementation of this algorithm.

Run the plot function commP25plot.m. This step illustrates the spectral autocorrelation function,
which is a three-dimensional figure. Its x-axis represents the cyclic frequency (alpha) from -1 to 1. Its
y-axis represents the spectral frequency (f) from -0.5 to 0.5, and its z-axis (Sx) represents the
corresponding magnitude of the spectral autocorrelation function for each (alpha , f) pair. Cyclic
resolution dalpha = 1/T, where T is the observation time of the data. Spectral resolution df = 1/Tw,
where Tw is the window time to calculate the complex demodulate [ 7 ]. Since T > Tw, dalpha < df.
Note that when alpha does not equal zero, the SAF values are approximately zero.

% 64 represents the window time Tw, 4*N represents the observation time T
[Sx,alphao,fo] = commP25ssca(input,1,1/64,1/(4*N));
fig1 = figure('Position',figposition([5 40 40 40]));
commP25plot(Sx,alphao,fo);
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commP25decision_noise.m determines if the input signal contains only noise.
commP25decision_c4fm.m determines if the input signal is a C4FM signal. And
commP25decision_cqpsk.m determines if the input signal is a CQPSK signal. These decisions are
based upon the location of the peaks in the SAF. In this example, the code correctly concludes that
there is no P25 signal present.

[c,d] = size(Sx);
[Ades,Index] = sort(Sx(:),'descend');   % sort Sx by its element and store in Ades
[Ridx,Cidx]  = ind2sub(size(Sx),Index); % corresponding row index and column index
leng = length(Ades);

noise_decision = commP25decision_noise(Ades,Ridx,Cidx,leng,c,d);
if noise_decision == 0
    c4fm_decision = commP25decision_c4fm(Ades,Ridx,leng,c);
    if c4fm_decision == 0
        commP25decision_cqpsk(Ades,Ridx,Cidx,leng,c,d);
    end
end

There is no P25 signal.

C4FM Case with Synthesized Data

According to [ 8 ], the following modulation structure generates a C4FM output signal.
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A normal raised cosine filter, which satisfies the Nyquist pulse shaping criterion, minimizes
intersymbol interference. The parameters of the raised cosine filter are chosen per the filter's
specifications in [ 8 ]. Specifically, this raised cosine filter has an upsampling factor of 4, and a roll-off
factor of 0.2. The C4FM standard also calls for an inverse sinc filter after the raised cosine filter, to
compensate for the sinc response of a P25 receiver integrate and dump filter. The FM modulator has
a deviation of 600 Hz.

To observe the effects of noise on the design decisions, run the detection at SNR values of -3 dB, 3 dB
and infinity dB.

% The length of input bits is N. The length of the output bits must also be
% N
x = randi([0,3],N,1);
sym = 2*x-3;                    % integer input

% Raised Cosine Filter
sampsPerSym = 4;                % Upsampling factor
% Design raised cosine filter with given order in symbols. Apply gain to
% the unit energy filter to obtain max amplitude of 1.
rctFilt = comm.RaisedCosineTransmitFilter(...
    'Shape', 'Normal', ...
    'RolloffFactor', 0.2, ...
    'OutputSamplesPerSymbol', sampsPerSym, ...
    'FilterSpanInSymbols', 60, ...
    'Gain', 1.9493);
c4fm_init = rctFilt(sym);

shape2 = 'Inverse-sinc Lowpass';
d2 = fdesign.interpolator(2, shape2);
intrpltr = design(d2, 'SystemObject', true);
c4fm_init = intrpltr(c4fm_init);

% Baseband Frequency Modulator
Fs = 4800;
freqdev = 600;
int_x = cumsum(c4fm_init)/Fs;
c4fm_output = exp(1i*2*pi*freqdev*int_x);
y = c4fm_output(1:N); % Ideal case, SNR = infinity
y1 = awgn(y,3);       % SNR = 3 dB
y2 = awgn(y,-3);      % SNR = -3 dB

The corresponding spectral autocorrelation functions are calculated and plotted. Note that the SAF
peaks become more indistinct as the SNR decreases.

[Sx0,alphao0,fo0] = commP25ssca(y,1,1/64,1/(4*N));
[Sx1,alphao1,fo1] = commP25ssca(y1,1,1/64,1/(4*N));
[Sx2,alphao2,fo2] = commP25ssca(y2,1,1/64,1/(4*N));
fig2 = figure('Position',figposition([5 40 80 40]));
subplot(131);
commP25plot(Sx0,alphao0,fo0);
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title('Ideal case');
subplot(132);
commP25plot(Sx1,alphao1,fo1);
title('SNR = 3 dB');
subplot(133);
commP25plot(Sx2,alphao2,fo2);
title('SNR = -3 dB');

This section follows the same procedures as in the previous one and obtains the classification results
for each SNR value. The function commP25decision.m performs spectrum sensing classification for
all possible input signal types.

commP25decision(Sx0); % Ideal case

There is signal present. Checking for presence of C4FM.
This is C4FM.

commP25decision(Sx1); % SNR = 3 dB

There is signal present. Checking for presence of C4FM.
This is C4FM.

commP25decision(Sx2); % SNR = -3 dB

There is signal present. Checking for presence of C4FM.
This is C4FM.

CQPSK Case with Synthesized Data

According to [ 8 ], the following modulation structure generates a CQPSK output signal.
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The CQPSK modulator consists of In Phase and Quadrature (I and Q) parts. The input bits are
processed by the lookup table [ 8 ] to yield a 5-level I/Q signal. Because the specification of the lookup
table is equivalent to pi/4 DQPSK, the example uses the DQPSK modulator System object™ to
implement this lookup table. The I/Q signals are then filtered with the raised cosine filter described in
the previous case.

% The size of input bits is 2*N, the size of output is 4*N
x = randi([0,1],2*N,1);

% Create a DQPSK modulator System object(TM) with bits as inputs, phase
% rotation of pi/4 and Gray-coded constellation
dqpskMod = comm.DQPSKModulator(pi/4,'BitInput',true);
% Modulate and filter
modout = dqpskMod(x);
release(rctFilt);
cqpsk_output = rctFilt(modout);
y = cqpsk_output;   % Ideal case, SNR = infinity
y1 = awgn(y,3);     % SNR = 3 dB
y2 = awgn(y,-3);    % SNR = -3 dB

Calculate and plot the corresponding spectral autocorrelation functions.

[Sx0,alphao0,fo0] = commP25ssca(y,1,1/64,1/(4*N));
[Sx1,alphao1,fo1] = commP25ssca(y1,1,1/64,1/(4*N));
[Sx2,alphao2,fo2] = commP25ssca(y2,1,1/64,1/(4*N));
fig3 = figure('Position',figposition([5 40 80 40]));
subplot(131);
commP25plot(Sx0,alphao0,fo0);
title('Ideal case');
subplot(132);
commP25plot(Sx1,alphao1,fo1);
title('SNR = 3 dB');
subplot(133);
commP25plot(Sx2,alphao2,fo2);
title('SNR = -3 dB');

The code outputs below show the results of CQPSK detection for three different SNR values.
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commP25decision(Sx0); % Ideal case

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is CQPSK.

commP25decision(Sx1); % SNR = 3 dB

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is CQPSK.

commP25decision(Sx2); % SNR = -3 dB

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is CQPSK.

Non-P25 Signal Case with Synthesized Data

This case defines one arbitrary signal type, processes it with the P25 cyclostationary detector, and
determines if it is a P25 signal.

Design an FIR equiripple lowpass filter, and apply it to a random input. Do not add any noise to the
signal in this case. Try additional signal types, and let the cyclostationary feature detector classify
them.

bcoeffs = firpm(200,[0 0.2 0.22 1],[1 1 0 0]); % Set N to achieve 40 dB rejection
input = randn(N,1);
y = filter(bcoeffs,1,input);

Then we calculate and plot the spectral autocorrelation function. Note that the different modulation
characteristics of each signal yield significantly different SAFs.

[Sx,alphao,fo] = commP25ssca(y,1,1/64,1/(4*N));
fig4 = figure('Position',figposition([5 40 40 40]));
commP25plot(Sx,alphao,fo);
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Follow the same procedures and obtain the classification result.

commP25decision(Sx);

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is NOT CQPSK either, so it is not a P25 signal.

C4FM Case with Captured Data

This case applies the detection algorithm to a captured real-world C4FM signal. The signal was
transmitted by a P25 radio at 446 MHz, received by a USRP™ radio, and then saved by MATLAB® in
capturedc4fm.mat. Follow the same procedures and obtain the classification result.

load capturedc4fm.mat;
y = y(1:4*N);
agc = comm.AGC;
y = 0.1*agc(y);
[Sx,alphao,fo] = commP25ssca(y,1,1/64,1/(4*N));
fig5 = figure('Position',figposition([5 40 40 40]));
commP25plot(Sx,alphao,fo);
commP25decision(Sx);

There is signal present. Checking for presence of C4FM.
This is C4FM.
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Conclusion

This example shows how to use cyclostationary feature detection to distinguish signals of different
modulation schemes. The algorithm classifies the signals based on the location of the peaks in
spectral autocorrelation function. Cyclostationary feature detection has advantages over some
detectors, like the energy detector, due to its resilience to noise.

Appendix

This example uses the following scripts and helper functions:

• commP25ssca.m

• commP25plot.m

• commP25decision.m

• commP25decision_noise.m

• commP25decision_c4fm.m

• commP25decision_cqpsk.m
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LLR vs. Hard Decision Demodulation in Simulink
This model shows the improvement in BER performance when using log-likelihood ratio (LLR) instead
of hard decision demodulation in a convolutionally coded communication link.

For a MATLAB™ version of this example, see “Log-Likelihood Ratio (LLR) Demodulation” on page 8-
69.

System Setup

This example model simulates a convolutionally coded communication system having one transmitter,
an AWGN channel and three receivers. The convolutional encoder has a code rate of 1/2. The system
employs a 16-QAM modulation. The modulated signal passes through an additive white Gaussian
noise channel. The top receiver performs hard decision demodulation in conjunction with a Viterbi
decoder that is set up to perform hard decision decoding. The second receiver has the demodulator
configured to compute log-likelihood ratios (LLRs) that are then quantized using a 3-bit quantizer. It
is well known that the quantization levels are dependent on noise variance for optimum performance
[2]. The exact boundaries of the quantizer are empirically determined here. A Viterbi decoder that is
set up for soft decision decoding processes these quantized values. The LLR values computed by the
demodulator are multiplied by -1 to map them to the right quantizer index for use with Viterbi
Decoder. To compute the LLR, the demodulator must be given the variance of noise as seen at its
input. The third receiver includes a demodulator that computes LLRs which are processed by a
Viterbi decoder that is set up in unquantized mode. The BER performance of each receiver is
computed and displayed.

modelName = 'commLLRvsHD';
open_system(modelName);

 LLR vs. Hard Decision Demodulation in Simulink

8-105



System Simulation and Visualization

Simulate this system over a range of information bit Eb/No values. Adjust these Eb/No values for
coded bits and multi-bit symbols to get noise variance values required for the AWGN block and
Rectangular QAM Baseband Demodulator block. Collect BER results for each Eb/No value and
visualize the results.

EbNo     = 2:0.5:8; % information rate Eb/No in dB
codeRate = 1/2;     % code rate of convolutional encoder
nBits    = 4;       % number of bits in a 16-QAM symbol
Pavg     = 10;      % average signal power of a 16-QAM modulated signal
snr      = EbNo - 10*log10(1/codeRate) + 10*log10(nBits); % SNR in dB
noiseVarVector = Pavg ./ (10.^(snr./10)); % noise variance

% Initialize variables for storing the BER results
ber_HD  = zeros(1,length(EbNo));
ber_SD  = zeros(1,length(EbNo));
ber_LLR = zeros(1, length(EbNo));

% Loop over all noiseVarVector values
for idx=1:length(noiseVarVector)
    noiseVar = noiseVarVector(idx); %#ok<NASGU>
    sim(modelName);
    % Collect BER results
    ber_HD(idx)  = BER_HD(1);
    ber_SD(idx)  = BER_SD(1);
    ber_LLR(idx) = BER_LLR(1);
end

% Perform curve fitting and plot the results
fitBER_HD  = real(berfit(EbNo,ber_HD));
fitBER_SD  = real(berfit(EbNo,ber_SD));
fitBER_LLR = real(berfit(EbNo,ber_LLR));
semilogy(EbNo,ber_HD,'r*', ...
    EbNo,ber_SD,'g*', ...
    EbNo,ber_LLR,'b*', ...
    EbNo,fitBER_HD,'r', ...
    EbNo,fitBER_SD,'g', ...
    EbNo,fitBER_LLR,'b');
legend('Hard Decision Decoding', ...
    'Soft Decision Decoding','Unquantized Decoding');
xlabel('Eb/No (dB)');
ylabel('BER');
title('LLR vs. Hard Decision Demodulation with Viterbi Decoding');
grid on;
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To experiment with this system further, try different modulation types. This system uses a binary
mapped modulation scheme for faster error collection but it is well known that Gray mapped signal
constellation provides better BER performance. Experiment with various constellation ordering
options in the modulator and demodulator blocks. Configure the demodulator block to compute
approximate LLR to see the difference in the BER performance compared to hard decision
demodulation and LLR. Try out a different range of Eb/No values. Finally, investigate different
quantizer boundaries for your modulation scheme and Eb/No values.

Using Dataflow in Simulink

You can configure this example to use data-driven execution by setting the Domain parameter to
dataflow for Dataflow Subsystem. With dataflow, blocks inside the domain, execute based on the
availability of data as rather than the sample timing in Simulink. Simulink automatically partitions the
system into concurrent threads. This autopartitioning accelerates simulation and increases data
throughput. To learn more about dataflow and how to run this example using multiple threads, see
“Multicore Simulation of Comparing Demodulation Types” on page 8-556.

% Cleanup
close_system(modelName,0);
clear modelName EbNo codeRate nBits Pavg snr noiseVarVector ...
    ber_HD ber_SD ber_LLR idx noiseVar fitBER_HD fitBER_SD fitBER_LLR;
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Passband Modulation
This model shows a straightforward way to perform passband modulation, by multiplying a modulated
complex signal with a complex sine wave to perform frequency upconversion. In general, it is
preferable to model a system at complex baseband. However, there are some circumstances where it
is necessary to model the system at real passband. An example of this is when an adjacent band
signal is processed with a nonlinearity, and causes interference in the desired band. This model also
illustrates the effect of such interference.

Structure of the Example

The communications link in this model includes these components:

• A Random Integer Generator block, used as source of random data
• A modulator and a pulse shaping filter that perform QPSK modulation and root raised cosine pulse

shaping.
• An Upconverter block that multiplies the modulated signal by a carrier frequency.
• A source of tone interference. The interference has a cubic nonlinearity which may be toggled on

or off. When the nonlinearity is off, the interference falls completely out of band, but when on, the
third harmonic of the tone is introduced into the desired band, causing co-channel interference.

• An AWGN Channel block, set to Eb/No mode. It specifies two bits per symbol because the
modulation format is QPSK. The signal power is 1/(2*8) watts. This is because the original signal
power at the modulator is 1 watt. The root-raised cosine filter upsamples the signal by a factor of
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8, which reduces the power by that factor. The frequency upconversion block output takes only the
real part of the signal, thereby reducing the power again, this time by a factor of 2. Finally, the
symbol period is 1e-6 seconds, to match the original sample time on the Random Integer
Generator source.

• A Downconverter block that converts the signal from real passband to complex baseband.
• A root raised cosine pulse shaping filter that decimates back to one sample per symbol, and a

QPSK demodulator block.
• BER and RMS EVM metric calculation blocks.

Results and Displays

When the simulation runs, two spectrum analyzers and one scatter plot open.

The first spectrum analyzer shows the signal and the interference signal at passband. With the
nonlinearity turned off, the spectrum of the tone interferer falls outside the bandwidth of the desired
signal. With the cubic nonlinearity on, the third harmonic of the interference falls into the band of the
desired signal.

The second scope illustrates the signal after it has been downconverted back to baseband at the
receiver, prior to the root raised cosine filtering. Note that with the nonlinearity on, you can see the
interfering tone present with the baseband signal.
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The third scope shows the scatter plot of the received signal, and by toggling the nonlinearity on and
off, you can view the effect the interference has on the scatter plot. With the nonlinearity on, the
signal constellation is more diffuse than when the nonlinearity is not present.
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The model also contains two numerical displays. The first one displays the BER of the link. The BER
calculation resets each time the nonlinearity is toggled on or off.

The second numerical display is the RMS Error Vector Magnitude (EVM) measured with the EVM
Measurement block.

Experimenting with the Example

Double-click on the Nonlinearity on/off block to toggle the nonlinearity on the interference
signal. Observe the changes this has on the received spectrum, constellation, BER and EVM.

By varying the Eb/No parameter, you can produce BER curves, and compare the results of the model
with theoretical results. Note that the model achieves expected theoretical results[ 1 ] for QPSK with
the nonlinearity off. Furthermore, you can see the effects the nonlinearity has on overall BER.

For further experimentation, try changing the value of the Eb/No parameter on the AWGN channel
block, or changing the power of the interference signal. To change the power of the interference
signal, open the Interference with Nonlinearity subsystem, and modify the gain value.
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See Also

The Downconverter block uses a simple complex multiplication method to perform downconversion.
You can find an example showing more efficient downconversion using IF subsampling at: “IF
Subsampling with Complex Multirate Filters”.
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256-Channel ADSL
This model shows part of the asymmetric digital subscriber line (ADSL) technology for transmitting
data and multimedia information over telephone lines. It illustrates a downstream path from the
central office to the end user. It incorporates the discrete multitone (DMT) signaling modulation
technique.

The DMT modulator and demodulator subsystems in the model have been updated to allow code
reuse when generating code. These subsystems now generate only 10 unique reusable functions
compared to the 256 chunks of code for each modulator/demodulator block generated earlier. This
leads to shorter compile times and smaller executable sizes.

Structure of the Example

When the simulation is run, the model:

• Generates random binary data frames,
• Transmits the binary data frames according to the ADSL specification,
• Simulates a channel, specifically the telephone line, using an FIR filter of length 101 and the

AWGN Channel block,
• Attempts to recover the transmitted information from the received data,
• Computes error statistics.

The model uses frame-based processing, thereby processing many bits in each time step. For more
information, see “Sample- and Frame-Based Concepts”.
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Transmitting Data

The transmitter portion of the model, shaded in blue at the top of the model, contains two parallel
paths. One path (the fast buffer) processes the first 776 bits of each 1552-bit data frame, while the
other path (the interleaved buffer) processes the last 776 bits of each data frame. Each path appends
eight cyclic redundancy check (CRC) bits to its 776-bit frame, scrambles the bits, and encodes them
using a shortened Reed-Solomon code. The scrambling and encoding operations interpret the bits as
integers between 0 and 127. In the second path but not the first, a Convolutional Interleaver block
interleaves the encoded data. This interleaving operation increases the second path's resistance to
burst errors but also adds latency. Finally, the data from the two routes is concatenated and
modulated. Data from the fast buffer is modulated to the low frequency subcarriers, while data from
the interleaved buffer is modulated to the high frequency subcarriers, according to the bit allocation
vector b. This example assumes that the bit allocation vector is known and uses the vector to
calculate the channel. Click
commadsl;get_param('commadsl','ModelWorkspace');commandwindow to see in the
MATLAB® Command Window the calculations involved.

Processing Received Data

The receiver attempts to undo each operation that the transmitter performs. Much of the receiver's
design is straightforward; for example, to undo the actions of the Convolutional Interleaver block, use
a Convolutional Deinterleaver block with the same mask parameters. The frequency domain equalizer
in the DMT Demodulator subsystem mitigates the channel distortion.

Aligning Frames to Account for Delays. One subtle point in the receiver portion is the Integer
Delay block that follows the Convolutional Deinterleaver block. This Integer Delay block delays the
deinterleaved data by 800 samples. Because the delay between the original and restored sequences is
40 samples (five shift registers times a maximum delay of 2*(5-1) samples among all shift registers),
the extra 800-sample delay ensures that bits are properly aligned in the 840-bit frame.

Results and Displays

Two display icons show error statistics for comparisons between the transmitted and received data in
the two paths (with and without interleaving). Two other display icons show error statistics based on
the CRC bits, where any nonzero bit among the eight CRC bits indicates a frame error.

In each of the display icons, the error statistics consist of the bit error rate, the number of bit errors,
and the total number of bits processed.
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Simultaneous Simulation of Multiple Fading Channels with
WINNER II Channel Model

This example shows how to set up a system with multiple base stations (BS), multiple mobile stations
(MS) and multiple MIMO downlinks from one BS sector to one MS. You must download and install the
WINNER II Channel Model for Communications Toolbox™ Add-On to run this example. Each link is
assigned with a propagation scenario and condition. Fading channel coefficients for all links are
generated simultaneously. An impulse signal is passed through the fading channel for each link. The
received impulse and frequency responses are plotted for selected links.

Check for Support Package Installation

Check if the 'WINNER II Channel Model for Communications Toolbox' support package is installed.

commSupportPackageCheck('CST_WINNER2');

Antenna Array Inventory

In the WINNER II channel model, each BS is composed of one or more sectors, and each BS sector
and MS is assigned with an antenna array. We need to first establish a set of arrays that are available
for BS sectors and MS to employ, which we call the antenna array inventory.

In this example, all available antenna arrays are uniform circular array (UCA). There are four
different UCAs in the inventory:

• 16 elements with a radius of 30cm
• 12 elements with a radius of 30cm
• 8 elements with a radius of 30cm
• 4 elements with a radius of 5cm

Each antenna element in the UCAs is omnidirectional.

s = rng(21); % For repeatability

AA(1) = winner2.AntennaArray('UCA',16,0.3);
AA(2) = winner2.AntennaArray('UCA',12,0.3);
AA(3) = winner2.AntennaArray('UCA',8,0.3);
AA(4) = winner2.AntennaArray('UCA',4,0.05);

Configure System Layout

On a 300-by-300 (meters) map, we will set up 3 BS, 5 MS, and 6 links. The first BS has one sector
which is equipped with a 16-element UCA. The second BS also has one sector that is equipped with a
12-element UCA. The third BS has three sectors which are equipped with a 8-element UCA each.
Each MS is assigned with a 4-element UCA.

BSIdx    = {1; 2; [3 3 3]}; % Index in antenna array inventory vector
MSIdx    = [4 4 4 4 4];     % Index in antenna array inventory vector
numLinks = 6;               % Number of links
range    = 300;             % Layout range (meters)
cfgLayout = winner2.layoutparset(MSIdx,BSIdx,numLinks,AA,range);

Six links are modeled in the system. The first BS connects to the first and second MSs. The second BS
connects to the third MS. For the third BS, its first sector connects to the third and fourth MSs, its
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second sector connects to the fifth MS, and its third sector does not connect to any MS. From MS
perspective, each of them connects to one BS except for the third one, which connects to both the
second and third BSs. Each link is assigned with one propagation scenario, chosen from B4 (outdoor
to indoor), C2 (Urban macro-cell) and C4 (Urban macro outdoor to indoor). Non-line-of-sight (NLOS)
is modeled for each link.

cfgLayout.Pairing = [1 1 2 3 3 4; 6 7 8 8 9 10];  % Index in cfgLayout.Stations
cfgLayout.ScenarioVector = [6 6 13 13 11 11];     % 6 for B4, 11 for C2 and 13 for C4
cfgLayout.PropagConditionVector = [0 0 0 0 0 0];  % 0 for NLOS

The three BSs are uniformly spaced between 0 and 300 on the x-axis and have the same position on
the y-axis. MS positions are assigned to ensure that their distances to the connected BSs are in the
valid path loss ranges for the corresponding scenarios. Specifically, the ranges for the B4, C2 and C4
scenarios are [3, 1000], [50, 5000] and [50, 5000] meters, respectively. By default, each BS sector is
32 meters high and MS is 1.5 meters high. Each MS is randomly assigned with a velocity which does
not exceed 0.5 m/s in any of the X, Y and Z directions.

% Number of BS sectors and MSs in the system
numBSSect = sum(cfgLayout.NofSect);
numMS = length(MSIdx);

% Set up positions for BS sectors. Same position for the third, fourth and
% fifth sectors as they belong to one BS.
cfgLayout.Stations(1).Pos(1:2) = [50;  150];
cfgLayout.Stations(2).Pos(1:2) = [150; 150];
cfgLayout.Stations(3).Pos(1:2) = [250; 150];
cfgLayout.Stations(4).Pos(1:2) = [250; 150];
cfgLayout.Stations(5).Pos(1:2) = [250; 150];

% Set up MS positions
cfgLayout.Stations(6).Pos(1:2)  = [10;  180];  % 50m from 1st BS
cfgLayout.Stations(7).Pos(1:2)  = [60;  50];   % 111.8m from 1st BS
cfgLayout.Stations(8).Pos(1:2)  = [194; 117];  % 55m and 65m from 2nd and 3rd BSs respectively
cfgLayout.Stations(9).Pos(1:2)  = [260; 270];  % 120.4m from 3rd BS
cfgLayout.Stations(10).Pos(1:2) = [295; 90];   % 75m from 3rd BS

% Randomly draw MS velocity
for i = numBSSect + (1:numMS)
    cfgLayout.Stations(i).Velocity = rand(3,1) - 0.5;
end

To illustrate the system setup, we plot the BSs, the MSs, and the links between them on a 2-D map. In
the plot, each BS sector is represented by a circle, each MS is represented by a cross, and each link
is represented by a straight line between the corresponding BS and MS. As the third BS has three
sectors, only three circles are shown on the map.

% Get all BS sector and MS positions
BSPos = cell2mat({cfgLayout.Stations(1:numBSSect).Pos});
MSPos = cell2mat({cfgLayout.Stations(numBSSect+1:end).Pos});

scrsz = get(groot,'ScreenSize');
figSize = min(scrsz([3,4]))/2.3;
figure('Position',[scrsz(3)*.5-figSize/2,scrsz(4)*.7-figSize/2,figSize,figSize]);
hold on; grid on;
hBS = plot(BSPos(1,:),BSPos(2,:),'or');   % Plot BS
hMS = plot(MSPos(1,:),MSPos(2,:),'xb');   % Plot MS
for linkIdx = 1:numLinks  % Plot links
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    pairStn = cfgLayout.Pairing(:,linkIdx);
    pairPos = cell2mat({cfgLayout.Stations(pairStn).Pos});
    plot(pairPos(1,:),pairPos(2,:),'-b');
end
xlim([0 300]); ylim([0 300]);
xlabel('X Position (meters)'); ylabel('Y Position (meters)')
legend([hBS, hMS],'BS','MS','location','northwest');

Configure Model Parameters

There are multiple model parameters that can be adjusted in the structure created by the
winner2.wimparset function. In this example, the center frequency is 5.25 GHz. Path loss and
shadowing fading are modeled for each link. To support bandwidth up to 100 MHz, the two strongest
clusters of each link are divided into 3 subclusters each which are 5 ns apart. All links are sampled at
different rates which depend on the velocity of the MSs. Because the third and fourth links connect to
the same MS, they share the same sample rate.

frameLen = 1600; % Number of samples to be generated

cfgWim = winner2.wimparset;
cfgWim.NumTimeSamples      = frameLen;
cfgWim.IntraClusterDsUsed  = 'yes';
cfgWim.CenterFrequency     = 5.25e9;
cfgWim.UniformTimeSampling = 'no';
cfgWim.ShadowingModelUsed  = 'yes';
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cfgWim.PathLossModelUsed   = 'yes';
cfgWim.RandomSeed          = 31415926;  % For repeatability

Create WINNER II Channel System Object™

We are now able to use the model and layout configurations to create a WINNER II channel System
object. Once the object is created, you can call its info method to view some derived system
parameters. For example, in the info method return, the NumBSElements, NumMSElements and
NumPaths fields indicate the number of array elements at BS sectors, the number of array elements
at MSs and the number of paths for each link. The SampleRate field also shows the sample rate for
each link.

WINNERChan = comm.WINNER2Channel(cfgWim,cfgLayout);
chanInfo = info(WINNERChan)

chanInfo = struct with fields:
               NumLinks: 6
          NumBSElements: [16 16 12 8 8 8]
          NumMSElements: [4 4 4 4 4 4]
               NumPaths: [16 16 16 16 24 24]
             SampleRate: [3.0636e+07 3.5303e+07 2.7559e+07 2.7559e+07 ... ]
     ChannelFilterDelay: [7 7 7 7 7 7]
    NumSamplesProcessed: 0

Process Impulse Signal for Each Link

We pass an impulse signal through each link and observe the impulse and frequency responses at the
MS. To do so, we need to create the impulse signal for each link and aggregate them into a cell array.
This is achieved by using the NumBSElements field of the info method return and the cellfun
function. The impulse signal cell array is to be processed by the channel object.

txSig = cellfun(@(x) [ones(1,x);zeros(frameLen-1,x)], ...
    num2cell(chanInfo.NumBSElements)','UniformOutput',false);

rxSig = WINNERChan(txSig); % Pass impulse signal through each link

Plotting the received signal at MSs gives an idea about how the fading channel's impulse and
frequency responses look for each link. Out of the 4 antennas at each MS, only the received signal at
the first antenna is plotted. The fact that the links are sampled at different rates is captured in the
impulse response plot. For each link, the first few samples from a channel filter delay are plotted in
the negative time axis, if any.

figure('Position',[scrsz(3)*.3-figSize/2,scrsz(4)*.25-figSize/2,figSize,figSize]);
hold on;
for linkIdx = 1:numLinks
    delay = chanInfo.ChannelFilterDelay(linkIdx);
    stem(((0:(frameLen-1))-delay)/chanInfo.SampleRate(linkIdx), ...
        abs(rxSig{linkIdx}(:,1)));
end
maxX = max((cell2mat(cellfun(@(x) find(abs(x) < 1e-8,1,'first'), ...
    rxSig.','UniformOutput',false)) - chanInfo.ChannelFilterDelay)./ ...
    chanInfo.SampleRate);
minX = -max(chanInfo.ChannelFilterDelay./chanInfo.SampleRate);
xlim([minX, maxX]);
xlabel('Time (s)'); ylabel('Magnitude');
legend('Link 1','Link 2','Link 3','Link 4','Link 5','Link 6');
title('Impulse Response at First Receive Antenna');
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As the third and fourth links connect to the same MS and hence have the same sample rate, we plot
them together using the Spectrum Analyzer System object. The two links have 16 paths each and
demonstrate significant frequency selectivity.

SA = dsp.SpectrumAnalyzer( ...
    'Name',         'Frequency response', ...
    'SpectrumType', 'Power density', ...
    'SampleRate',   chanInfo.SampleRate(3), ...
    'Position',     [scrsz(3)*.7-figSize/2,scrsz(4)*.25-figSize/2,figSize,figSize], ...
    'Title',        'Frequency Response', ...
    'ShowLegend',   true, ...
    'ChannelNames', {'Link 3','Link 4'});

SA(cell2mat(cellfun(@(x) x(:,1),rxSig(3:4,1)','UniformOutput',false)));
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rng(s); % Restore RNG

Further Exploration

The example shows how to configure a WINNER II fading channel System object to model a system
with multiple MIMO links from BSs to MSs. Further exploration includes modifications to the fields of
the cfgLayout and cfgWim to model different antenna arrays like uniform linear arrays (ULA),
BS/MS locations and pairings, propagation scenarios and conditions, and so on.

Because the third and fourth links are connecting to the same MS, you can combine the received
signals from both links, by offsetting the samples appropriately to account for the channel filter
delays on the two links.

Selected Bibliography
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802.11ac Multiuser MIMO Precoding with WINNER II Channel
Model

This example shows the transmit and receive processing for a 802.11ac™ multiuser downlink
transmission over a WINNER II fading channel. You must download and install the WINNER II
Channel Model for Communications Toolbox™ Add-On to run this example. Only one WINNER II
channel System object™ is needed to set up the channels from one access point to all users.

Introduction

802.11ac supports downlink (access-point to station) multiuser transmissions for up to four users and
up to eight transmit antennas to increase the aggregate throughput of the link [ 1 ]. Based on a
scheduled transmission time for a user, the scheduler looks for other smaller packets ready for
transmission to other users. If available, it schedules these users over the same interval, which
reduces the overall time taken for multiple transmissions.

This simultaneous transmission comes at a higher complexity because successful reception of the
individual user's payloads requires precoding, also known as transmit-end beamforming. Precoding
assumes that channel state information (CSI) is known at the transmitter. A sounding packet, as
described in the “802.11ac Transmit Beamforming” (WLAN Toolbox) example, is used to determine
the CSI for each user in a multiuser transmission. Each of the users feed back their individual CSI to
the beamformer. The beamformer uses the CSI from all users to set the precoding (spatial mapping)
matrix for subsequent data transmission.

This example uses a channel inversion technique for a three-user transmission with a different
number of spatial streams allocated per user and different rate parameters per user. The system can
be characterized by the figure below.

The example generates the multiuser transmit waveform, passes it through a multiuser WINNER II
channel and decodes the received signal for each user to calculate the bits in error. Prior to the data
transmission, the example uses a null-data packet (NDP) transmission to sound the different channel
for each user and determines the precoding matrix under the assumption of perfect feedback.

Check for Support Package Installation

Check if the 'WINNER II Channel Model for Communications Toolbox' support package is installed.

commSupportPackageCheck('CST_WINNER2');
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Simulation Parameters and Configuration

For 802.11ac, a maximum of eight spatial streams is allowed. An 8x8 MIMO configuration for three
users is used in this example, where the first user has three streams, second has one, and the third
has four streams allocated to it. Different rate parameters and payload sizes for each user are
specified as vector parameters for the transmission configuration.

s = rng(10);                           % Set RNG seed for repeatability

% Transmission parameters
chanBW      = 'CBW80';               % Channel bandwidth
numUsers    = 3;                     % Number of users
numSTSVec   = [3 1 4];               % Number of streams per user
userPos     = [0 1 2];               % User positions
mcsVec      = [4 6 8];               % MCS per user: 16QAM, 64QAM, 256QAM
apepVec     = [520 192 856];         % Payload per user, in bytes
chCodingVec = {'BCC','LDPC','LDPC'}; % Channel coding per user

% Precoding and equalization parameters
precodingType = 'ZF';                % Precoding type; ZF or MMSE
snr           = 47;                  % SNR in dB
eqMethod      = 'ZF';                % Equalization method

% Create the multiuser VHT format configuration object
numTx = sum(numSTSVec);
cfgVHTMU = wlanVHTConfig('ChannelBandwidth',chanBW, ...
    'NumUsers',numUsers, ...
    'NumTransmitAntennas',numTx, ...
    'GroupID',2, ...
    'NumSpaceTimeStreams',numSTSVec,...
    'UserPositions',userPos, ...
    'MCS',mcsVec, ...
    'APEPLength',apepVec, ...
    'ChannelCoding',chCodingVec);

The number of transmit antennas is set to be the sum total of all the used space-time streams. This
implies no space-time block coding (STBC) or spatial expansion is employed for the transmission.

Sounding (NDP) Configuration

For precoding, channel sounding is first used to determine the channel experienced by the users
(receivers). This channel state information is sent back to the transmitter, for it to be used for
subsequent data transmission. It is assumed that the channel varies slowly over the two
transmissions. For multiuser transmissions, the same NDP (Null Data Packet) is transmitted to each
of the scheduled users [ 2 ].

% VHT sounding (NDP) configuration, for same number of streams
cfgVHTNDP = wlanVHTConfig('ChannelBandwidth',chanBW, ...
    'NumUsers',1, ...
    'NumTransmitAntennas',numTx, ...
    'GroupID',0, ...
    'NumSpaceTimeStreams',sum(numSTSVec),...
    'MCS',0, ...
    'APEPLength',0);

The number of streams specified is the sum total of all space-time streams used. This allows the
complete channel to be sounded.
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% Generate the null data packet, with no data
txNDPSig = wlanWaveformGenerator([],cfgVHTNDP);
NPDSigLen = size(txNDPSig, 1);

WINNER II Channel for Indoor Office (A1) Scenario

In this example, one comm.WINNER2Channel System object in the WINNER II Channel Model for
Communications Toolbox™ is set up to simulate the three channels to different users. The indoor
office (A1) non-line-of-sight (NLOS) scenario is configured for each user. With a fixed power delay
profile, each user experiences a 16-path fading channel with the largest delay of 175 us. Each user is
also assigned a low mobility as appropriate for 802.11ac.

The access point employs a uniform circular array (UCA) with a radius of 20cm. Each user employs a
uniform linear array (ULA) with 5cm spacing between elements. It is also assumed that each user's
number of receive antennas is equal to the number of space-time streams allocated to them.

% Set up layout parameters for WINNER II channel
AA = winner2.AntennaArray('UCA',numTx,0.2);
for i = 1:numUsers
    AA(i+1) = winner2.AntennaArray('ULA',numSTSVec(i),0.05);
end
STAIdx   = 2:(numUsers+1);
APIdx   = {1};
rndSeed = 12;
cfgLayout = winner2.layoutparset(STAIdx,APIdx,numUsers,AA,[],rndSeed);
cfgLayout.Pairing = [ones(1,numUsers);2:(numUsers+1)]; % One access point to all users
cfgLayout.ScenarioVector = ones(1,numUsers);           % A1 scenario for all links
cfgLayout.PropagConditionVector = zeros(1,numUsers);  % NLOS
for i = 1:numUsers % Randomly set velocity for each user
    v = rand(3,1) - 0.5;
    cfgLayout.Stations(i+1).Velocity = v/norm(v,'fro');
end

% Set up model parameters for WINNER II channel
cfgModel = winner2.wimparset;
cfgModel.FixedPdpUsed       = 'yes';
cfgModel.FixedAnglesUsed    = 'yes';
cfgModel.IntraClusterDsUsed = 'no';
cfgModel.RandomSeed         = 111;    % Repeatability

% The maximum velocity for the 3 users is 1m/s. Set up the SampleDensity
% field to ensure that the sample rate matches the channel bandwidth.
maxMSVelocity = max(cell2mat(cellfun(@(x) norm(x,'fro'), ...
    {cfgLayout.Stations.Velocity},'UniformOutput',false)));
cfgModel.UniformTimeSampling = 'yes';
cfgModel.SampleDensity = round(physconst('LightSpeed')/ ...
    cfgModel.CenterFrequency/2/(maxMSVelocity/wlanSampleRate(cfgVHTMU)));

% Create the WINNER II channel System object
WINNERChan = comm.WINNER2Channel(cfgModel,cfgLayout);

% Call the info method to check some derived channel parameters
chanInfo = info(WINNERChan)

chanInfo = 

  struct with fields:
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               NumLinks: 3
          NumBSElements: [8 8 8]
          NumMSElements: [3 1 4]
               NumPaths: [16 16 16]
             SampleRate: [8.0000e+07 8.0000e+07 8.0000e+07]
     ChannelFilterDelay: [7 7 7]
    NumSamplesProcessed: 0

The channel filtering delay for each user is stored to account for its compensation at the receiver. In
practice, symbol timing estimation would be used. At transmitter, an extra ten all-zero samples are
appended to account for channel filter delay.

chanDelay   = chanInfo.ChannelFilterDelay;
numPadZeros = 10;

% Set ModelConfig.NumTimeSamples to match the length of the input signal to
% avoid warning
WINNERChan.ModelConfig.NumTimeSamples = NPDSigLen + numPadZeros;

% Sound the WINNER II channel for all users
chanOutNDP = WINNERChan([txNDPSig;zeros(numPadZeros,numTx)]);

% Add AWGN
rxNDPSig = cellfun(@awgn,chanOutNDP, ...
    num2cell(snr*ones(numUsers,1)),'UniformOutput',false);

Channel State Information Feedback

Each user estimates its own channel using the received NDP signal and computes the channel state
information that it can send back to the transmitter. This example uses the singular value
decomposition of the channel seen by each user to compute the CSI feedback.

mat = cell(numUsers,1);
for uIdx = 1:numUsers
    % Compute the feedback matrix based on received signal per user
    mat{uIdx} = vhtCSIFeedback(rxNDPSig{uIdx}(chanDelay(uIdx)+1:end,:), ...
        cfgVHTNDP,uIdx,numSTSVec);
end

Assuming perfect feedback, with no compression or quantization loss of the CSI, the transmitter
computes the steering matrix for the data transmission using either Zero-Forcing or Minimum-Mean-
Square-Error (MMSE) based precoding techniques. Both methods attempt to cancel out the intra-
stream interference for the user of interest and interference due to other users. The MMSE-based
approach avoids the noise enhancement inherent in the zero-forcing technique. As a result, it
performs better at low SNRs.

% Pack the per user CSI into a matrix
numST = length(mat{1});         % Number of subcarriers
steeringMatrix = zeros(numST,sum(numSTSVec),sum(numSTSVec));
%   Nst-by-Nt-by-Nsts
for uIdx = 1:numUsers
    stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
    steeringMatrix(:,:,stsIdx) = mat{uIdx};     % Nst-by-Nt-by-Nsts
end
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% Zero-forcing or MMSE precoding solution
if strcmp(precodingType, 'ZF')
    delta = 0; % Zero-forcing
else
    delta = (numTx/(10^(snr/10))) * eye(numTx); % MMSE
end
for i = 1:numST
    % Channel inversion precoding
    h = squeeze(steeringMatrix(i,:,:));
    steeringMatrix(i,:,:) = h/(h'*h + delta);
end

% Set the spatial mapping based on the steering matrix
cfgVHTMU.SpatialMapping = 'Custom';
cfgVHTMU.SpatialMappingMatrix = permute(steeringMatrix,[1 3 2]);

Data Transmission

Random bits are used as the payload for the individual users. A cell array is used to hold the data bits
for each user, txDataBits. For a multiuser transmission the individual user payloads are padded
such that the transmission duration is the same for all users. This padding process is described in
Section 9.12.6 of [ 1 ]. In this example for simplicity the payload is padded with zeros to create a
PSDU for each user.

% Create data sequences, one for each user
txDataBits = cell(numUsers,1);
psduDataBits = cell(numUsers,1);
for uIdx = 1:numUsers
    % Generate payload for each user
    txDataBits{uIdx} = randi([0 1],cfgVHTMU.APEPLength(uIdx)*8,1,'int8');

    % Pad payload with zeros to form a PSDU
    psduDataBits{uIdx} = [txDataBits{uIdx}; ...
        zeros((cfgVHTMU.PSDULength(uIdx)-cfgVHTMU.APEPLength(uIdx))*8,1,'int8')];
end

Using the format configuration, cfgVHTMU, with the steering matrix, to generate the multiuser VHT
waveform.

txSig = wlanWaveformGenerator(psduDataBits,cfgVHTMU);

The WINNER II channel object does not allow the input signal size to change once locked, so we have
to call the release method before passing the waveform through it. In addition, as we restart the
channel, we want it to re-process the NDP before the waveform so as to accurately mimic the channel
continuity. Only the waveform portion of the channel's output is extracted for the subsequent
processing of each user.

release(WINNERChan);

% Set ModelConfig.NumTimeSamples to match the total length of NDP plus
% waveform and padded zeros
WINNERChan.ModelConfig.NumTimeSamples = ...
    WINNERChan.ModelConfig.NumTimeSamples + length(txSig) + numPadZeros;

% Transmit through the WINNER II channel for all users, with 10 all-zero
% samples appended to account for channel filter delay
chanOut = WINNERChan([txNDPSig; zeros(numPadZeros,numTx); ...
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    txSig; zeros(numPadZeros,numTx)]);

% Extract the waveform output for each user
chanOut = cellfun(@(x) x(NPDSigLen+numPadZeros+1:end,:),chanOut,'UniformOutput',false);

% Add AWGN
rxSig = cellfun(@awgn,chanOut, ...
    num2cell(snr*ones(numUsers,1)),'UniformOutput',false);

Data Recovery Per User

The receive signals for each user are processed individually. The example assumes that there are no
front-end impairments and that the transmit configuration is known by the receiver for simplicity.

A user number specifies the user of interest being decoded for the transmission. This is also used to
index into the vector properties of the configuration object that are user-specific.

% Get field indices from configuration, assumed known at receiver
ind = wlanFieldIndices(cfgVHTMU);

% Single-user receivers recover payload bits
rxDataBits = cell(numUsers,1);
scaler = zeros(numUsers,1);
spAxes = gobjects(sum(numSTSVec),1);
hfig = figure('Name','Per-stream equalized symbol constellation');
for uIdx = 1:numUsers
    rxNSig = rxSig{uIdx}(chanDelay(uIdx)+1:end, :);

    % User space-time streams
    stsU = numSTSVec(uIdx);

    % Estimate noise power in VHT fields
    lltf = rxNSig(ind.LLTF(1):ind.LLTF(2),:);
    demodLLTF = wlanLLTFDemodulate(lltf,chanBW);
    nVar = helperNoiseEstimate(demodLLTF,chanBW,sum(numSTSVec));

    % Perform channel estimation based on VHT-LTF
    rxVHTLTF  = rxNSig(ind.VHTLTF(1):ind.VHTLTF(2),:);
    demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,chanBW,numSTSVec);
    chanEst = wlanVHTLTFChannelEstimate(demodVHTLTF,chanBW,numSTSVec);

    % Recover information bits in VHT Data field
    rxVHTData = rxNSig(ind.VHTData(1):ind.VHTData(2),:);
    [rxDataBits{uIdx},~,eqsym] = wlanVHTDataRecover(rxVHTData, ...
        chanEst,nVar,cfgVHTMU,uIdx, ...
        'EqualizationMethod',eqMethod,'PilotPhaseTracking','None', ...
        'LDPCDecodingMethod','layered-bp','MaximumLDPCIterationCount',6);

    % Plot equalized symbols for all streams per user
    scaler(uIdx) = ceil(max(abs([real(eqsym(:)); imag(eqsym(:))])));
    for i = 1:stsU
        subplot(numUsers,max(numSTSVec),(uIdx-1)*max(numSTSVec)+i);
        plot(reshape(eqsym(:,:,i),[],1),'.');
        axis square
        spAxes(sum([0 numSTSVec(1:(uIdx-1))])+i) = gca; % Store axes handle
        title(['User ' num2str(uIdx) ', Stream ' num2str(i)]);
        grid on;
    end
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end

% Scale axes for all subplots and scale figure
for i = 1:numel(spAxes)
    xlim(spAxes(i),[-max(scaler) max(scaler)]);
    ylim(spAxes(i),[-max(scaler) max(scaler)]);
end
pos = get(hfig,'Position');
set(hfig,'Position',[pos(1)*0.7 pos(2)*0.7 1.3*pos(3) 1.3*pos(4)]);

Per-stream equalized symbol constellation plots validate the simulation parameters and convey the
effectiveness of the technique. Note the discernible 16QAM, 64QAM and QPSK constellations per
user as specified on the transmit end. Also observe the EVM degradation over the different streams
for an individual user. This is a representative characteristic of the channel inversion technique.

The recovered data bits are compared with the transmitted payload bits to determine the bit error
rate.

% Compare recovered bits against per-user APEPLength information bits
ber = inf(1, numUsers);
for uIdx = 1:numUsers
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    idx = (1:cfgVHTMU.APEPLength(uIdx)*8).';
    [~,ber(uIdx)] = biterr(txDataBits{uIdx}(idx),rxDataBits{uIdx}(idx));
    disp(['Bit Error Rate for User ' num2str(uIdx) ': ' num2str(ber(uIdx))]);
end

rng(s); % Restore RNG state

Bit Error Rate for User 1: 0
Bit Error Rate for User 2: 0
Bit Error Rate for User 3: 0.00014603

The small number of bit errors, within noise variance, indicate successful data decoding for all
streams for each user, despite the variation in EVMs seen in individual streams.

Conclusion and Further Exploration

The example shows how to use the WINNER II fading channel System object to model a multiuser
VHT transmission in 802.11ac. Further exploration includes modifications to the transmission
parameters, antenna arrays, channel scenarios, LOS vs. NLOS propagations, path loss modeling and
shadowing modeling.

There is another version of this example in the WLAN Toolbox, which uses three independent TGac
fading channels for three users: “802.11ac Multi-User MIMO Precoding” (WLAN Toolbox).

Appendix

This example uses the following helper functions from WLAN Toolbox™:

• helperNoiseEstimate.m
• vhtCSIFeedback.m
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End-to-End QAM Simulation with RF Impairments and
Corrections

This example provides visualization capabilities to see the effects of RF impairments and corrections
in a satellite downlink. The link employs 16-QAM modulation in the presence of AWGN and uses a
High Power Amplifier (HPA) to overcome the losses associated with satellite communications. The
HPA introduces nonlinear behavior that, when combined with other RF impairments, requires the use
of mitigation techniques.

This example includes:

• A MATLAB® GUI, QAMwithRFImpairmentsExample.

• A MATLAB-based simulator function, QAMwithRFImpairmentsSim.m, which receives its input
parameters from the GUI.

Keywords: QAM, RF impairments, I/Q imbalance, nonlinearity, RF correction.

Introduction

The simulation allows you to configure the parameters shown in the GUI.

Open the GUI to:

• Modify the parameters
• Run the simulation with MATLAB
• Visualize signal constellations and spectra
• View the underlying MATLAB code
• Generate C code and run the simulation (with a valid MATLAB Coder™ license)

QAMwithRFImpairmentsExample
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The Simulate button simulates the configured link using interpreted MATLAB code. While the
simulation is running, you can modify some simulation parameters using the GUI. The impact of
parameter setting updates is immediately observable on the Results panel or on the plots. Parameters
that are nontunable while the simulation is running are grayed out. To modify nontunable
parameters, the simulation must be stopped.

The View MATLAB Code button opens the simulator code in the editor allowing for visual inspection
and further exploration of the underlying functions used in the simulation.

The Run Generated Code button compiles the MATLAB function into an executable MEX-file and
runs the simulation once the compiling process is complete. The MEX version of the simulation runs
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much faster though there is a time penalty from the compiling process itself. You can modify the same
parameters when running from either interpreted mode or from the MEX-file.

The Stop Simulation button stops the simulation during execution. This works for both interpreted
MATLAB and the MEX-file. The button is active only when a simulation is running.

The Help button brings up this HTML page.

Simulation Overview

The simulation executes the following steps:

• Generate random integers
• Modulate with 16-QAM
• Root raised cosine (RRC) transmit filter
• Pass through an HPA
• Apply transmit antenna gain
• Apply path loss based on atmospheric condition
• Pass the signal through an AWGN channel with RF impairments
• Apply receive antenna gain
• Remove DC offset
• Apply automatic gain control
• RRC receive filter
• Apply ADC effects
• Compensate for I/Q amplitude and phase imbalance
• Correct for the Doppler shift
• Demodulate 16-QAM
• Calculate the bit error rate

The following block diagram shows the architecture of the system.
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You can specify the following signal impairments:

• Receiver noise temperature in the range [0, 600] K
• Doppler error in the range [-3, 3] Hz
• DC offset, expressed as a percentage of the maximum signal voltage, in the range [0, 20]
• Phase noise in the range [-100, -48] dBc/Hz
• I/Q amplitude imbalance in the range [-5, 5] dB
• I/Q phase imbalance in the range [-30, 30] degrees
• HPA backoff level in the range [1, 30] dB
• Quantization error by changing the number of ADC bits in the range of [2 16] bits
• Saturation due to ADC full scale voltage in the range of [0.1 2] amplitude units (AUs)

An HPA backoff of 30 dB corresponds to negligible distortion because the amplifier is operating in its
linear region, while 1 dB corresponds to severe distortion. A Saleh model is used to simulate the
behavior of the HPA. Further information is available on the comm.MemorylessNonlinearity page.

The GUI provides the ability to enable or disable corrections for Doppler error, I/Q imbalance, and DC
offset. These corrections are provided by three System objects. The comm.CarrierSynchronizer
compensates for the frequency offset due to Doppler, the comm.IQImbalanceCompensator corrects
the amplitude and phase imbalance, and the dsp.DCBlocker compensates for the DC offset.

Results and Displays

You can use GUI controls to display:

• The spectrum of the transmitted signal measured at the output of the transmit RRC filter.
• The spectrum of the received signal measured at the input of the receive RRC filter.
• The constellation diagram of the received signal.
• The constellation diagrams of the HPA input signal.
• The constellation diagrams of the HPA output signal

A typical spectrum plot, using the default parameters, is shown. The effects of AWGN are most easily
seen in the out-of-band signal spectrum, where the noise floor of the received signal is 20 dB higher
than the transmitted signal spectrum. The received signal spectrum also shows the effect of
propagation loss through the channel.
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A plot of the constellation diagram is shown for the case in which the I/Q imbalance correction is
disabled. The red + symbols denote the 16-QAM reference constellation. The constellation is scaled
and rotated by the uncorrected imbalance.
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The effects of nonlinear HPA behavior are shown as HPA Input and HPA Output using the same
constellation diagram plot. The diagrams show the effects of AM/AM and AM/PM distortion when the
amplifier operates 7 dB below saturation. AM/AM distortion causes the 'rounded' appearance of the
HPA output signal constellation, while AM/PM causes the constellation to rotate.
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The bit error rate, number of errors, total number of transmitted symbols, path loss, and the Eb/No
are displayed directly on the results panel of the GUI.

Further Exploration

Use the GUI to change the parameters listed below.

• Link gains and losses: Vary the noise temperature between 0 to 290 K (typical) to view the
effects on the received signal spectrum analyzer plot. Likewise, change the link distance,
atmospheric condition and carrier frequency to view the impact on the received signal spectrum.
Changes in the link margin are also reflected in the calculated path loss and Eb/No.

• HPA AM-to-AM and AM-to-PM conversion: Vary the HPA Backoff between 30 dB (negligible
nonlinearity) to 1 dB (severe nonlinearity). A value of 7 dB corresponds to moderate nonlinearity.
View the effects on the spectrum plot, the HPA output constellation, the received signal
constellation diagram, and on the bit error rate. Increasing nonlinearity increases spectral
regrowth and causes the HPA output constellation to become 'rounder' and rotate. The HPA
Backoff parameter can be adjusted while the simulation is executing.
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• Phase noise: Set the Phase Noise to -48 dBc/Hz (high) and observe the increased variance in the
tangential direction in the received signal constellation diagram. This level of phase noise is
sufficient to cause errors in an otherwise error-free channel. Set the Phase Noise to -55 dBc/Hz
(low) and observe that the variance in the tangential direction has decreased. This level of phase
noise does not significantly increase the error rate. Now, set the HPA Backoff level parameter to 7
dB (moderate nonlinearity). Note that even though the moderate HPA nonlinearity and the
moderate phase noise do not cause many bit errors when applied individually, they do cause
significantly more bit errors when applied together. The Phase Noise parameter can be adjusted
only when the simulation is stopped.

• DC offset and DC offset correction: Set the DC offset to 10 and disable the DC offset correction
by unchecking the DC Offset checkbox. The constellation diagram changes significantly. Re-enable
the DC Offset correction and view the received signal constellation diagram and signal spectrum
to verify that the DC offset is removed. Both the DC offset and the DC offset correction parameters
can be modified during simulation execution.

• I/Q imbalance: Disable the Amplitude and phase imbalance box to view the effects of an I/Q
imbalance on the received constellation diagram. Modify the amplitude and phase imbalance
fields to observe the effects of different values on the received signal constellation diagram. Re-
enable the I/Q Imbalance correction to verify that the receive constellation aligns with its
reference points. These parameters can be modified during execution.

• Doppler and Doppler compensation: Set Doppler error to 0.7 Hz and disable the Doppler error
correction to show the effect of uncorrected Doppler on the received signal. Note that the BER is
close to 0.5. Re-enable the Doppler error correction to correct for the Doppler error. Verify that
the BER decreases. These parameters are available only when the simulation is stopped.

• ADC Effects: Decrease the number of ADC bits to view the effect of increasing quantization
errors on the received signal. Decrease the ADC full scale voltage to impose saturation on the
received signal and view its effect on the system performance.

• Code Generation: Run the simulation by clicking the Run Generated Code button. The first time
this is done, the simulation compiles before executing, which makes the process take longer than
it does when simulating with interpreted MATLAB. Change the HPA backoff level and rerun the
simulation. Note that the results panel updates very quickly. Now, change the Phase noise and
click the Run Generated Code button. The code is recompiled because the phase noise is a
nontunable parameter. Enable the Rx constellation option and rerun the simulation. You can see
that when the scope is activated, the bit error results accumulate more slowly but the scope
updates much faster than it does when running with interpolated MATLAB.

• BER estimation: By default, the Number of bit errors parameter is set to Inf so that the effects
of the impairments and corrections can be easily visualized on the scopes. For BER estimation, it
is typically sufficient to collect 50 to 200 errors; consequently, disable the scopes and change the
Number of bit errors parameter from Inf to 100. It is important to leave the modifiable
parameters unchanged when the simulation is running to obtain a valid BER estimate.
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HF Ionospheric Channel Models
This example shows how to simulate High-Frequency (HF) ionospheric channels, based on the models
described in Recommendation ITU-R F.1487. In particular, it shows how to simulate the general
Watterson channel model, and other simplified channel models used in the quantitative testing of HF
modems. It makes use of the comm.RayleighChannel System object™ and stdchan function along
with the Gaussian and bi-Gaussian doppler structures from Communications Toolbox™.

ITU-R HF Channel Models: Overview

In HF ionospheric radio communications, the transmitted signal can bounce off several times from
the E and F layers of the ionosphere, which results in several propagation paths, also called modes
[ 1 on page 8-0  ]. Typically, the multipath delay spreads are large, as compared to mobile radio.
Also, the signal can suffer from Doppler spread due to the turbulence of the ionosphere. However, the
fading rate is usually smaller than for mobile radio.

Recommendation ITU-R F.1487 [ 1 on page 8-0  ] proposes a general Gaussian scatter model for the
simulation of HF ionospheric channels. This model is based on Watterson's channel model [ 2 on page
8-0  ]. Simpler models are also proposed in [ 1 on page 8-0  ] for use in HF modem tests, with
specified parameters.

Initialization of Simulation-Specific Parameters

The simulation sampling rate Rs is specified to 9.6K Hz, and kept the same for the remainder of the
example. We use a QPSK modulation scheme with zero phase offset.

Rs = 9.6e3;                      % Channel sampling rate
M = 4;                           % Modulation order
qpskMod = comm.QPSKModulator(0); % QPSK modulator object

Watterson Channel Model

The Watterson channel model consists of a tapped delay line, where each tap corresponds to a
resolvable propagation path. On each tap, two magneto-ionic components are present: each one is
modeled as a complex Gaussian random process with a given gain and frequency shift, and whose
Doppler spectrum is Gaussian with a given standard deviation [ 2 on page 8-0  ]. Hence, each tap is
characterized by a bi-Gaussian Doppler spectrum, which consists of two Gaussian functions in the
frequency domain, each one with its own set of parameters (power gain, frequency shift, and
standard deviation).

In this example, we follow the Watterson simulation model specified in [ 1 on page 8-0  ], in which
the complex fading process on each tap is obtained by adding two independent frequency-shifted
complex Gaussian random processes (with Gaussian Doppler spectra) corresponding to the two
magneto-ionic components. This simulation model leads to a complex fading process whose envelope
is in general not Rayleigh distributed. Hence, to be faithful to the simulation model, we cannot simply
generate a Rayleigh channel with a bi-Gaussian Doppler spectrum. Instead, we generate two
independent Rayleigh channels, each with a frequency-shifted Gaussian Doppler spectrum, gain-scale
them, and add them together to obtain the Watterson channel model with a bi-Gaussian Doppler
spectrum. For simplicity, we simulate a Watterson channel with only one tap.

A frequency-shifted Gaussian Doppler spectrum can be seen as a bi-Gaussian Doppler spectrum in
which only one Gaussian function is present (the second one having a zero power gain). Hence, to
emulate the frequency-shifted Gaussian Doppler spectrum of each magneto-ionic component, we
construct a bi-Gaussian Doppler structure such that one of the two Gaussian functions has the
specified frequency shift and standard deviation, while the other has a zero power gain.
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The first magneto-ionic component has a Gaussian Doppler spectrum with standard deviation
sGauss1, frequency shift fGauss1, and power gain gGauss1. A bi-Gaussian Doppler structure
dopplerComp1 is constructed such that the second Gaussian function has a zero power gain (its
standard deviation and center frequency are hence irrelevant, and take on default values), while the
first Gaussian function has a normalized standard deviation sGauss1/fd and a normalized frequency
shift fGauss1/fd, where the normalization factor fd is the maximum Doppler shift of the
corresponding channel. In this example, since the gain of the second Gaussian function is zero, the
value assigned to the gain of the first Gaussian function is irrelevant (we leave it to its default value
of 0.5), because the associated channel System object created later normalizes the Doppler spectrum
to have a total power of 1.

For more information on how to construct a bi-Gaussian Doppler structure, see doppler.

fd = 10; % Chosen maximum Doppler shift for simulation
sGauss1 = 2.0;
fGauss1 = -5.0;
dopplerComp1 = doppler('BiGaussian', ...
    'NormalizedStandardDeviations', [sGauss1/fd 1/sqrt(2)], ...
    'NormalizedCenterFrequencies',  [fGauss1/fd 0], ...
    'PowerGains',                   [0.5        0])

dopplerComp1 = struct with fields:
                    SpectrumType: 'BiGaussian'
    NormalizedStandardDeviations: [0.2000 0.7071]
     NormalizedCenterFrequencies: [-0.5000 0]
                      PowerGains: [0.5000 0]

To simulate the first magneto-ionic component, we construct a single-path Rayleigh channel System
object chanComp1 with a frequency-shifted Gaussian Doppler spectrum specified by the Doppler
structure dopplerComp1. The average path power gain of the channel is 1 (0 dB).

chanComp1 = comm.RayleighChannel( ...
    'SampleRate',          Rs, ...
    'MaximumDopplerShift', fd, ...
    'DopplerSpectrum',     dopplerComp1, ...
    'RandomStream',        'mt19937ar with seed', ...
    'Seed',                99, ...
    'PathGainsOutputPort', true)

chanComp1 = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: 0
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 10
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: true

  Show all properties

Similarly, the second magneto-ionic component has a Gaussian Doppler spectrum with standard
deviation sGauss2, frequency shift fGauss2, and power gain gGauss2. A bi-Gaussian Doppler
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structure dopplerComp2 is constructed such that the second Gaussian function has a zero power
gain (its standard deviation and center frequency are hence irrelevant, and take on default values),
while the first Gaussian function has a normalized standard deviation sGauss2/fd and a normalized
frequency shift fGauss2/fd (again its power gain is irrelevant).

sGauss2 = 1.0;
fGauss2 = 4.0;
dopplerComp2 = doppler('BiGaussian', ...
    'NormalizedStandardDeviations', [sGauss2/fd 1/sqrt(2)], ...
    'NormalizedCenterFrequencies',  [fGauss2/fd 0], ...
    'PowerGains',                   [0.5        0])

dopplerComp2 = struct with fields:
                    SpectrumType: 'BiGaussian'
    NormalizedStandardDeviations: [0.1000 0.7071]
     NormalizedCenterFrequencies: [0.4000 0]
                      PowerGains: [0.5000 0]

To simulate the second magneto-ionic component, we construct a single-path Rayleigh channel
System object chanComp2 with a frequency-shifted Gaussian Doppler spectrum specified by the
Doppler structure dopplerComp2.

chanComp2 = comm.RayleighChannel( ...
    'SampleRate',          Rs, ...
    'MaximumDopplerShift', fd, ...
    'DopplerSpectrum',     dopplerComp2, ...
    'RandomStream',        'mt19937ar with seed', ...
    'Seed',                999, ...
    'PathGainsOutputPort', true)

chanComp2 = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: 0
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 10
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: true

  Show all properties

We compute in the loop below the output to the Watterson channel in response to an input signal, and
store it in y. In obtaining y, the function call on chanComp1 emulates the effect of the first magneto-
ionic component, while the function call on chanComp2 emulates the effect of the second component.

To obtain the desired power gains, gGauss1 and gGauss2, of each magneto-ionic component, we
need to scale the output signal for each magneto-ionic component by their corresponding amplitude
gains, sqrt(gGauss1) and sqrt(gGauss2).

Due to the low Doppler shifts found in HF environments and the fact that the bi-Gaussian Doppler
spectrum is combined from two objects, obtaining measurements for the Doppler spectrum using the
built-in visualization of the System objects is not appropriate. Instead, we store the channel's complex
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path gains and later compute the Doppler spectrum for each path at the command line. In the loop
below, the channel's complex path gains are obtained by summing (after scaling by the corresponding
amplitude gains) the complex path gains associated with each magneto-ionic component, and then
stored in g.

gGauss1 = 1.2;       % Power gain of first component
gGauss2 = 0.25;      % Power gain of second component

Ns     = 2e6;        % Total number of channel samples
frmLen = 1e3;        % Number of samples per frame
numFrm = Ns/frmLen;  % Number of frames

[y, g] = deal(zeros(Ns, 1));
for frmIdx = 1:numFrm
    x = qpskMod(randi([0 M-1], frmLen, 1));
    [y1, g1] = chanComp1(x);
    [y2, g2] = chanComp2(x);
    y(frmLen*(frmIdx-1)+(1:frmLen)) = sqrt(gGauss1) * y1 ...
        + sqrt(gGauss2) * y2;
    g(frmLen*(frmIdx-1)+(1:frmLen)) = sqrt(gGauss1) * g1 ...
        + sqrt(gGauss2) * g2;
end

The Doppler spectrum is estimated from the complex path gains and plotted.

hFig = figure;
pwelch(g, hamming(Ns/100), [], [], Rs, 'centered');
axis([-0.1 0.1 -80 0]);
legend('Simulation');
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The theoretical bi-Gaussian Doppler spectrum is overlaid to the estimated Doppler spectrum. We
observe a good fit between both.

f = -(Rs/2):0.1:(Rs/2);
Sd = gGauss1 * 1/sqrt(2*pi*sGauss1^2) * exp(-(f-fGauss1).^2/(2*sGauss1^2)) ...
    + gGauss2 * 1/sqrt(2*pi*sGauss2^2) * exp(-(f-fGauss2).^2/(2*sGauss2^2));

hold on;
plot(f(Sd>0)/1e3, 10*log10(Sd(Sd>0)), 'k--');
legend('Simulation', 'Theory');
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ITU-R F.1487 Low Latitudes, Moderate Conditions (LM) Channel Model

Recommendation ITU-R F.1487 specifies simplified channel models used in the quantitative testing of
HF modems. These models consist of two independently fading paths with equal power. On each path,
the two magneto-ionic components are assumed to have zero frequency shift and equal variance:
hence the bi-Gaussian Doppler spectrum on each tap reduces to a single Gaussian Doppler spectrum,
and the envelope of the complex fading process is Rayleigh-distributed.

Below, we construct a channel object according to the Low Latitudes, Moderate Conditions (LM)
channel model specified in Annex 3 of ITU-R F.1487, using the stdchan function. The path delays are
0 and 2 ms. The frequency spread, defined as twice the standard deviation of the Gaussian Doppler
spectrum, is 1.5 Hz. The Gaussian Doppler spectrum structure is hence constructed with a
normalized standard deviation of (1.5/2)/ fd, where fd is 1 Hz (type help doppler for more
information). When using stdchan to construct ITU-R HF channel models, the maximum Doppler
shift must be set to 1 Hz: this ensures that the Gaussian Doppler spectrum of the constructed channel
has the correct standard deviation.

close(hFig);

fd = 1;
chanLM = stdchan('iturHFLM', Rs, fd);
chanLM.RandomStream = 'mt19937ar with seed';
chanLM.Seed = 9999;
chanLM.PathGainsOutputPort = true;
chanLM.Visualization = 'Impulse response'
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chanLM = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: [0 0.0020]
       AveragePathGains: [0 0]
     NormalizePathGains: true
    MaximumDopplerShift: 1
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: true

  Show all properties

We have turned on the impulse response visualization in the Rayleigh channel System object. The
code below simulates the LM channel and visualizes its bandlimited impulse response. By default, the
channel responses for one of every four samples are visualized for faster simulation. In other words,
for a frame of length 1000, the responses for the 1st, 5th, 9th, ..., 997th samples are shown. To
observe the response for every sample, set the SamplesToDisplay property of chanLM to '100%'.

numFrm = 10;       % Number of frames
for frmIdx = 1:numFrm
    x = qpskMod(randi([0 M-1], frmLen, 1));
    chanLM(x);
end
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We now turn on the Doppler spectrum visualization for the channel object to observe the theoretical
and empirical Gaussian Doppler spectra for the first discrete path. Due to the very low Doppler shift,
it may take a while to have the empirical spectrum converge to the theoretical spectrum.

release(chanLM);
chanLM.Visualization = 'Doppler spectrum';

frmLen = 2e6;      % Number of samples per frame
numFrm = 80;       % Number of frames
for frmIdx = 1:numFrm
    x = qpskMod(randi([0 M-1], frmLen, 1));
    chanLM(x);
end
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GSM, CDMA and WiMAX Channel Models
This example shows how to simulate multipath fading channels defined for GSM/EDGE [ 1 2 ], CDMA
[ 3 ], and WiMAX [ 4 ] wireless standards. The example uses the Rayleigh and MIMO fading channel
System objects™ from Communications Toolbox™ to simulate and visualize the channels.

GSM Channel Model

GSM (Global System for Mobile Communications) is the global standard for 2G mobile
communications. The multipath fading channel for GSM was defined in [ 1 2 ] for different
communication scenarios including rural area (RAx), hilly terrain (HTx), urban area (TUx). Each
scenario was assigned a specific power delay profile (PDP) and Doppler spectrum. In this example,
we simulate the hilly terrain scenario (HTx) with 12 taps. We pass GMSK modulated signals through
the fading channel and observe its impulse response.

% Set random number generator for repeatability
rng('default');

Create a GMSK modulator using the comm.GMSKModulator object and use it to modulate randomly
generated bits. This object is to illustrate that the GMSK modulation is used in the GSM system.

gmskMod = comm.GMSKModulator( ...
    'BitInput', true, ...
    'SamplesPerSymbol', 8);

% Modulate random bits using the GMSK object
x = gmskMod(randi([0 1], 1e4, 1));

Assume mobile speed at 120 km/h. Calculate the Doppler shift at the carrier frequency of 1.8 GHz.

v = 120*1e3/3600;                   % Mobile speed (m/s)
fc = 1.8e9;                         % Carrier frequency
fd = v*fc/physconst('lightspeed');  % Maximum Doppler shift

To simulate the fading channel for HTx, we can configure a comm.RayleighChannel object
following the PDP specification in [ 1 2 ]. Alternatively, we can use the stdchan function to create the
desired comm.RayleighChannel object, given the scenario input 'gsmHTx12c1'. So we do not have
to refer to [ 1 2] for PDP and Doppler spectrum specifications.

Rsym = 270.833e3; % GSM symbol rate
Rsamp = gmskMod.SamplesPerSymbol * Rsym; % GSM sample rate
gsmChan = stdchan('gsmHTx12c1', Rsamp, fd);

We turn on the impulse response visualization for the channel object and send the GMSK modulated
data through it. You can observe that the path (tap) delays last over 5 samples. The first 7 and last 5
taps can be grouped into two different clusters. In that sense, the channel characterizes two
dominant paths from the transmitter to the receiver with scattering. You can also observe that the
impulse response changes reasonably fast at this mobile speed of 120 km/h.

gsmChan.Visualization = 'Impulse response';
gsmChan(x);
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CDMA Channel Model

CDMA (Code-Division Multiple Access) is the standard for 3G mobile communications. Like GSM, the
multipath fading channel for CDMA was defined in [ 3 ] for different communication scenarios with
different PDPs and Doppler spectra. In this example, we simulate the typical urban scenario (TUx)
with a low mobile speed and visualize the channel's frequency response. The
cdma2000ForwardReferenceChannels and cdma2000ForwardWaveformGenerator functions
are used to configure and simulate a CDMA 2000 waveform, which is subsequently transmitted
through the fading channel.

% Configure a CDMA waveform and change the packet length
config = cdma2000ForwardReferenceChannels('ALL-RC3');
config.NumChips = 1e4;

% Generate a waveform
waveform = cdma2000ForwardWaveformGenerator(config);

Derive channel sample rate from the waveform configuration. If the SpreadingRate field is 'SR1', it
corresponds to a 1.2288 Mcps waveform. If it is 'SR3', it corresponds to a 3.6864 Mcps waveform.

Rsprd = str2double(config.SpreadingRate(3)) * 1.2288e6;
Rsamp = Rsprd * config.OversamplingRatio;
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% Assume a human walking speed which is about 5 km/h. Calculate the Doppler
% shift at the carrier frequency of 1.9 GHz.
v = 5*1e3/3600;                     % Mobile speed (m/s)
fc = 1.9e9;                         % Carrier frequency
fd = v*fc/physconst('lightspeed');  % Maximum Doppler shift

Again, configure a CDMA channel for TUx using the stdchan function. Turn on the channel's
frequency response visualization and pass the waveform through it. You can observe the obvious
frequency-selectivity of the channel. The frequency response varies slowly at this low mobile speed of
5 km/h.

cdmaChan = stdchan('cdmatux', Rsamp, fd);
cdmaChan.Visualization = 'Frequency response';
y = cdmaChan(waveform);

WiMAX Channel Model

The WiMAX (IEEE® 802.16) channel models [ 4 ] for fixed wireless applications are proposed for
scenarios where the cell radius is less than 10 km, the directional antennas at the receiver are
installed under-the-eaves/windows or on the rooftop, and the base station (BS) antennas are 15 to 40
m in height. The channel models comprise a set of path loss models including shadowing (suburban,
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urban) and a multipath fading model, which describes the multipath delay profile, the K-factor
distribution, and the Doppler spectrum. The antenna gain reduction factor, due to the use of
directional antennas, is also characterized.

This example uses a MIMO multipath fading channel System object™ comm.MIMOChannel with two
transmit antennas, one receive antenna, and a rounded Doppler spectrum structure. The modified
Stanford University Interim (SUI) channel models consist of a set of 6 typical channels used to
simulate the IEEE 802.16 channel models (more specifically the 2004 version of the standard for fixed
wireless applications). They are proposed for a scenario where: the cell size is 7 km, the BS antenna
height is 30 m, the receive antenna height is 6 m, the BS antenna beamwidth is 120 degrees, the
receive antenna is either omnidirectional or directional (30 degrees), and only vertical polarization is
used.

Each modified SUI channel model has three taps. Each tap is characterized by a relative delay (with
respect to the first path delay), a relative power, a Rician K-factor, and a maximum Doppler shift. Two
sets of relative powers are specified for each channel model: one for an omnidirectional antenna, and
one for a 30 degrees directional antenna. Furthermore, for each set of relative powers, two different
K-factors are specified, a K-factor for 90% cell coverage, and a K-factor for 75% cell coverage. Hence,
each of the 6 modified SUI channel models comprises parameters for four distinct scenarios. Each
modified SUI channel model is further assigned an antenna correlation, defined as the envelope
correlation coefficient between signals received at different antenna elements.

The code below constructs a MIMO fading channel System object according to the modified SUI-1
channel model, for an omnidirectional antenna and 90% cell coverage.

The channel model has 3 paths: the first path is Rician while the remaining two are Rayleigh. Each
path has a rounded Doppler spectrum for its diffuse component: the parameters are as specified in
the doppler('Rounded') structure. While different maximum Doppler shifts are specified for each path
in [ 4 ], we use the maximum value of the Doppler shifts for all paths.

We use 2 transmit antennas and 1 receive antenna. Similar to Appendix B of [ 4 ], the correlation
coefficient between the two links on each path is taken equal to the antenna spatial correlation. The
correlation coefficient is 0.7.

The sample rate for a WiMAX system is 1.429, 2.857, 5.714, 11.429 or 22.857 MHz. At such rates
with a small Doppler shift, we need many samples and long simulation time to sufficiently exhibit the
channel statistical characteristics. To avoid that, we arbitrarily choose a smaller sample rate of 0.1
MHz. You can increase the sample rate, Rsamp, and number of samples, Ns, at the same time to see
the similar statistical results.

Rsamp = 0.1e6;
Ns = 3e6;

wimaxChan = comm.MIMOChannel( ...
    'SampleRate', Rsamp, ...
    'PathDelays', [0 0.4 0.9]*1e-6, ...
    'AveragePathGains', [0 -15 -20], ...
    'FadingDistribution', 'Rician', ...
    'KFactor', 4, ...
    'MaximumDopplerShift', .5, ...
    'DopplerSpectrum', doppler('Rounded'), ...
    'TransmitCorrelationMatrix', [1 0.7; 0.7 1], ...
    'ReceiveCorrelationMatrix', 1, ...
    'PathGainsOutputPort', true);
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The code below simulates the modified SUI-1 channel model with a long QPSK modulated frame
input.

Nt = size(wimaxChan.TransmitCorrelationMatrix, 1);
x = pskmod(randi([0 3], Ns, Nt), 4);
[~, g] = wimaxChan(x);

The Doppler spectrum of the 1st link of the second path is estimated from the complex path gains and
plotted.

figure;
win = hamming(Ns/5);
Noverlap = Ns/10;
pwelch(g(:,2,1),win,Noverlap,[],Rsamp,'centered')
axis([-0.1/10 0.1/10 -80 10]);
legend('Simulation');

The theoretical rounded Doppler spectrum is overlaid on the estimated Doppler spectrum. We
observe a good fit between them.

fd = wimaxChan.MaximumDopplerShift;
f  = -fd:0.01:fd;
a  = wimaxChan.DopplerSpectrum.Polynomial;      % Parameters of the rounded Doppler spectrum
Sd = 1/(2*fd*(a(1)+a(2)/3+a(3)/5))*(a(1)+a(2)*(f/fd).^2+a(3)*(f/fd).^4);
Sd = Sd*10^(wimaxChan.AveragePathGains(2)/10);  % Scaling by average path power

hold on;
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plot(f(Sd>0)/1e3,10*log10(Sd(Sd>0)),'k--');
legend('Simulation','Theory');

The Doppler spectrum for the 2nd link of the 2nd path is also estimated and compared to the
theoretical spectrum. We also observe a good fit between them.

figure;
pwelch(g(:,2,2),win,Noverlap,[],Rsamp,'centered')
axis([-0.1/10 0.1/10 -80 10]);
legend('Simulation');
hold on;
plot(f(Sd>0)/1e3,10*log10(Sd(Sd>0)),'k--');
legend('Simulation','Theory');
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For each path, we plot the fading envelope waveforms of both transmit links. We can observe a
correlation between the fading envelopes.

figure;
semilogy(abs(g(:,1,1)),'b');
hold on;
grid on;
semilogy(abs(g(:,1,2)),'r');
legend('First transmit link','Second transmit link');
title('Fading envelopes for two transmit links of Path 1');

figure;
semilogy(abs(g(:,2,1)),'b');
hold on;
grid on;
semilogy(abs(g(:,2,2)),'r');
legend('First transmit link','Second transmit link');
title('Fading envelopes for two transmit links of Path 2');

figure;
semilogy(abs(g(:,3,1)),'b');
hold on;
grid on;
semilogy(abs(g(:,3,2)),'r');
legend('First transmit link','Second transmit link');
title('Fading envelopes for two transmit links of Path 3');
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We compute the spatial correlation matrices for each path. We observe that they show a match with
the theoretical values Rt. Note that corrcoef function estimate can be improved if Ns is increased.

TxCorrMatrixPath1 = corrcoef(g(:,1,1),g(:,1,2)).'
TxCorrMatrixPath2 = corrcoef(g(:,2,1),g(:,2,2)).'
TxCorrMatrixPath3 = corrcoef(g(:,3,1),g(:,3,2)).'

TxCorrMatrixPath1 =

   1.0000 + 0.0000i   0.7537 + 0.0388i
   0.7537 - 0.0388i   1.0000 + 0.0000i

TxCorrMatrixPath2 =

   1.0000 + 0.0000i   0.7605 + 0.2331i
   0.7605 - 0.2331i   1.0000 + 0.0000i

TxCorrMatrixPath3 =

   1.0000 + 0.0000i   0.7113 + 0.1282i
   0.7113 - 0.1282i   1.0000 + 0.0000i
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GSM Multiframe Generation in Simulink
This example shows how to model a GSM® waveform generator to generate a 51-frame multiframe in
Simulink®. For more information see GSM TDMA Frame Parameterization for Waveform Generation
Example.

Introduction

This model generates a 51-frame GSM downlink multiframe with the following configuration.
Downlink frames can carry normal burst (NB), frequency correction burst (FB), synchronization burst
(SB) and dummy burst. The first frame is [FB NB NB NB NB Dummy NB NB], the second frame is [SB
NB NB NB NB Dummy NB NB], and the next 49 frames are [NB NB NB NB NB Dummy NB NB].
Repeat this structure 3 times.

cfg1 = 

  gsmDownlinkConfig with properties:

           BurstType: [FB    NB    NB    NB    NB    Dummy    NB    NB]
    SamplesPerSymbol: 8
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

cfg2 = 

  gsmDownlinkConfig with properties:

           BurstType: [SB    NB    NB    NB    NB    Dummy    NB    NB]
    SamplesPerSymbol: 8
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

cfg3 = 

  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    Dummy    NB    NB]
    SamplesPerSymbol: 8
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
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            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

GSM 51-frame Multiframe Generation

Double click the TDMA Frame 0 block. The gsmDownlinkFrame0 function uses the
gsmDownlinkConfig function to configure the GSM downlink TDMA frame for the first frame. The
gsmFrame function generates the samples of the frame. Double click the TDMA Frame 2 to 50
block. This block generates 49 frames at once using the y = gsmFrame(cfg,49) function call.

Setup Model

The GSM standard [1] specifies the symbol rate as R = 1625e3/6 symbols per second. Set the
gsmDownlinkWaveform blocks' sample time to match the GSM specifications. Use the gsmInfo
function to get information on the generated waveform based on the configuration object, cfg.

wfInfo = 

  struct with fields:

              SymbolRate: 2.7083e+05
              SampleRate: 2.1667e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
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    BurstLengthInSamples: 1250
    FrameLengthInSamples: 10000

Setup MATLAB Function Block

Select each MATLAB Function block and open the Property Inspector. In the Modeling tab, expand
the Design group and click on the Property Inspector under the General category. In the Properties
tab, make sure that Update method is set to Discrete and Sample Time is set to
51*wfInfo.FrameLengthInSamples/Rs. Close the Property Inspector.

Results

Running the simulation displays the time domain signal and the spectrogram.
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Multipath Fading Channel
This example shows how to use Rayleigh and Rician multipath fading channel System objects and
their built-in visualization to model a fading channel. Rayleigh and Rician fading channels are useful
models of real-world phenomena in wireless communication. These phenomena include multipath
scattering effects, time dispersion, and Doppler shifts that arise from relative motion between the
transmitter and receiver.

Processing a signal using a fading channel involves the following steps:

1 Create a channel System object™ that describes the channel that you want to use. A channel
object is a type of MATLAB® variable that contains information about the channel, such as the
maximum Doppler shift.

2 Adjust properties of the System object, if necessary, to tailor it to your needs. For example, you
can change the path delays or average path gains.

3 Apply the channel System object to your signal using the step method, which generates random
discrete path gains and filters the input signal.

The characteristics of a channel can be shown with the built-in visualization support of the System
object.

Initialization

The following variables control both the Rayleigh and Rician channel objects. By default, the channel
is modeled as four fading paths, each representing a cluster of multipath components received at
around the same delay.

sampleRate500kHz = 500e3; % Sample rate of 500K Hz
sampleRate20kHz  = 20e3; % Sample rate of 20K Hz
maxDopplerShift  = 200; % Maximum Doppler shift of diffuse components (Hz)
delayVector = (0:5:15)*1e-6; % Discrete delays of four-path channel (s)
gainVector  = [0 -3 -6 -9]; % Average path gains (dB)

The maximum Doppler shift is computed as v*f/c, where v is the mobile speed, f is the carrier
frequency, and c is the speed of light. For example, a maximum Doppler shift of 200 Hz (as above)
corresponds to a mobile speed of 65 mph (30 m/s) and a carrier frequency of 2 GHz.

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. In some outdoor multipath
environments, reflected paths can be up to several kilometers longer than the shortest path. With the
path delays specified above, the last path is 4.5 km longer than the shortest path, and thus arrives 15
microseconds later.

Together, the path delays and path gains specify the average delay profile of the channel. Typically,
the average path gains decay exponentially with delay (i.e., the dB values decay linearly), but the
specific delay profile depends on the propagation environment. In the delay profile specified above,
we assume a 3 dB decrease in average power for every 5 microseconds of path delay.

The following variables control the Rician channel System object. The Doppler shift of the specular
component is typically smaller than the maximum Doppler shift (above) and depends on the direction
of travel of the mobile relative to the direction of the specular component. The K-factor specifies the
linear ratio of average received power from the specular component relative to that of the associated
diffuse components.
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KFactor = 10; % Linear ratio of specular power to diffuse power
specDopplerShift = 100; % Doppler shift of specular component (Hz)

Creating Channel System Objects

With the parameters specified above, we can now create the comm.RayleighChannel and
comm.RicianChannel System objects. We configure the objects to use their self-contained random
stream with a specified seed for path gain generation.

% Configure a Rayleigh channel object
rayChan = comm.RayleighChannel( ...
    'SampleRate',sampleRate500kHz, ...
    'PathDelays',delayVector, ...
    'AveragePathGains',gainVector, ...
    'MaximumDopplerShift',maxDopplerShift, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',10, ...
    'PathGainsOutputPort',true);

% Configure a Rician channel object
ricChan = comm.RicianChannel( ...
    'SampleRate',sampleRate500kHz, ...
    'PathDelays',delayVector, ...
    'AveragePathGains',gainVector, ...
    'KFactor',KFactor, ...
    'DirectPathDopplerShift',specDopplerShift, ...
    'MaximumDopplerShift',maxDopplerShift, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',100, ...
    'PathGainsOutputPort',true);

Modulation and Channel Filtering

Create a comm.QPSKModulator System object to modulate the channel data, which has been
generated using the randi function. In the code here a 'frame' refers to a vector of information bits.
A phase offset of pi/4 is used for this example.

qpskMod = comm.QPSKModulator('BitInput',true,'PhaseOffset',pi/4);

% Number of bits transmitted per frame is set to be 1000. For QPSK
% modulation, this corresponds to 500 symbols per frame.
bitsPerFrame = 1000;
msg = randi([0 1],bitsPerFrame,1);

% Modulate data for transmission over channel
modSignal = qpskMod(msg);

% Apply Rayleigh or Rician channel object on the modulated data
rayChan(modSignal);
ricChan(modSignal);

Visualization

The fading channel System objects have built-in visualization to show the channel impulse response,
frequency response, or Doppler spectrum when the object runs. To invoke it, set the Visualization
property to the desired value before calling the object. Release the Rayleigh and Rician channel
System objects now so that to change their property values.

8 Communications Toolbox Featured Examples

8-166



release(rayChan);
release(ricChan);

Wideband or Frequency-Selective Fading

Setting the Visualization property to 'Impulse response' shows the bandlimited impulse
response (yellow circles). The visualization also shows the delays and magnitudes of the underlying
fading path gains (pink stembars) clustered around the peak of the impulse response. Note that the
path gains do not equal the AveragePathGains property value because the Doppler effect causes
the gains to fluctuate over time.

Similarly, setting the Visualization property to 'Frequency response' shows the frequency
response (DFT transformation) of the impulses. You can also set Visualization to 'Impulse and
frequency responses' to display both impulse and frequency responses side by side.

You can control the percentage of the input samples to be visualized by changing the
SamplesToDisplay property. In general, the smaller the percentage, the faster the simulation runs.
Once the visualization figure opens up, click the Playback button and turn off the "Reduce Updates
to Improve Performance" or "Reduce Plot Rate to Improve Performance" option to further improve
display accuracy. The option is on by default for faster simulation. To see the channel response for
every input sample, uncheck this option and set SamplesToDisplay to '100%'.

rayChan.Visualization = 'Impulse and frequency responses';
rayChan.SamplesToDisplay = '100%';

% Display impulse and frequency responses for 2 frames
numFrames = 2;
for i = 1:numFrames
    % Create random data
    msg = randi([0 1],bitsPerFrame,1);
    % Modulate data
    modSignal = qpskMod(msg);
    % Filter data through channel and show channel responses
    rayChan(modSignal);
end
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As you can see, the channel frequency response is not flat and may have deep fades over the 500K Hz
bandwidth. Because the power level varies over the bandwidth of the signal, it is referred to as
frequency-selective fading.

For the same channel specification, we now display the Doppler spectrum for its first discrete path,
which is a statistical characterization of the fading process. The System object makes periodic
measurements of the Doppler spectrum (blue stars). Over time with more samples processed by the
System object, the average of this measurement better approximates the theoretical Doppler
spectrum (yellow curve).

release(rayChan);
rayChan.Visualization = 'Doppler spectrum';

% Display Doppler spectrum from 5000 frame transmission
numFrames = 5000;
for i = 1:numFrames
    msg = randi([0 1],bitsPerFrame,1);
    modSignal = qpskMod(msg);
    rayChan(modSignal);
end
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Narrowband or Frequency-Flat Fading

When the bandwidth is too small for the signal to resolve the individual components, the frequency
response is approximately flat because of the minimal time dispersion caused by the multipath
channel. This kind of multipath fading is often referred to as narrowband fading, or frequency-flat
fading.

We now reduce the signal bandwidth from 500 kb/s (250 ksym/s) to 20 kb/s (10 ksym/s), so the delay
span (15 microseconds) of the channel is much smaller than the QPSK symbol period (100
microseconds). The resultant impulse response has very small intersymbol interference (ISI) and the
frequency response is approximately flat.

release(rayChan);
rayChan.Visualization = 'Impulse and frequency responses';
rayChan.SampleRate = sampleRate20kHz;
rayChan.SamplesToDisplay = '25%';  % Display one of every four samples

% Display impulse and frequency responses for 2 frames
numFrames = 2;
for i = 1:numFrames
    msg = randi([0 1],bitsPerFrame,1);
    modSignal = qpskMod(msg);
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    rayChan(modSignal);
end
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To simplify and speed up modeling, narrowband fading channels are typically modeled as a single-
path fading channel. That is, a multipath fading model overspecifies a narrowband fading channel.
The following settings correspond to a narrowband fading channel. Notice that the shape of the
bandlimited impulse response is flat.

release(rayChan);
rayChan.PathDelays = 0;        % Single fading path with zero delay
rayChan.AveragePathGains = 0;  % Average path gain of 1 (0 dB)

for i = 1:numFrames % Display impulse and frequency responses for 2 frames
    msg = randi([0 1],bitsPerFrame,1);
    modSignal = qpskMod(msg);
    rayChan(modSignal);
end
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The Rician fading channel System object models line-of-sight propagation in addition to diffuse
multipath scattering. This results in a smaller variation in the magnitude of path gains. To compare
the variation between Rayleigh and Rician channels, we make use of a timescope object to view
their path gains over time. Note that the magnitude fluctuates over approximately a 10 dB range for
the Rician fading channel (blue curve), compared with 30-40 dB for the Rayleigh fading channel
(yellow curve). For the Rician fading channel, this variation would be further reduced by increasing
the K-factor (currently set to 10).

release(rayChan);
rayChan.Visualization = 'Off'; % Turn off Rayliegh object visualization
ricChan.Visualization = 'Off'; % Turn off Rician object visualization

% Same sample rate and delay profile for the Rayleigh and Rician objects
ricChan.SampleRate = rayChan.SampleRate;
ricChan.PathDelays = rayChan.PathDelays;
ricChan.AveragePathGains = rayChan.AveragePathGains;

% Configure a Time Scope System object to show path gain magnitude
gainScope = timescope( ...
    'SampleRate',rayChan.SampleRate, ...
    'TimeSpanSource','Property',...
    'TimeSpan',bitsPerFrame/2/rayChan.SampleRate, ... % One frame span
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    'Name','Multipath Gain', ...
    'ShowGrid',true, ...
    'YLimits',[-40 10], ...
    'YLabel','Gain (dB)');

% Compare the path gain outputs from both objects for one frame
msg = randi([0 1],bitsPerFrame,1);
modSignal = qpskMod(msg);
[~,rayPathGain] = rayChan(modSignal);
[~,ricPathGain] = ricChan(modSignal);
% Form the path gains as a two-channel input to the time scope
gainScope(10*log10(abs([rayPathGain,ricPathGain]).^2));

Fading Channel Impact on Signal Constellation

We now return to our original four-path Rayleigh fading channel. We use a
comm.ConstellationDiagram System object to show the impact of narrowband fading on the
signal constellation. To slow down the channel dynamics for visualization purposes, we reduce the
maximum Doppler shift to 5 Hz. Compared with the QPSK channel input signal, you can observe
signal attenuation and rotation at the channel output, as well as some signal distortion due to the
small amount of ISI in the received signal.

clear hRicChan hMultipathGain;
release(rayChan);

rayChan.PathDelays = delayVector;
rayChan.AveragePathGains = gainVector;
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rayChan.MaximumDopplerShift = 5;

% Configure a Constellation Diagram System object to show received signal
constDiag = comm.ConstellationDiagram( ...
    'Name','Received Signal After Rayleigh Fading');

numFrames = 16;

for n = 1:numFrames
    msg = randi([0 1],bitsPerFrame,1);
    modSignal = qpskMod(msg);
    rayChanOut = rayChan(modSignal);
    % Display constellation diagram for Rayleigh channel output
    constDiag(rayChanOut);
end
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When we increase the signal bandwidth to 500 kb/s (250 ksym/s), we see much greater distortion in
the signal constellation. This distortion is the ISI that comes from time dispersion of the wideband
signal. The delay span (15 microseconds) of the channel is now larger than the QPSK symbol period
(4 microseconds), so the resultant bandlimited impulse response is no longer approximately flat.

release(rayChan);
release(constDiag);
rayChan.SampleRate = sampleRate500kHz;

for n = 1:numFrames
    msg = randi([0 1],bitsPerFrame,1);
    modSignal = qpskMod(msg);
    rayChanOut = rayChan(modSignal);
    constDiag(rayChanOut);
end
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Adjacent and Co-Channel Interference
This model uses PSK-modulated signals to show the effects of adjacent and co-channel interference
on a transmitted signal. You can view the effect of adjacent channel interferer and co-channel
interferer together or individually.

Exploring the Example

The communication system in this example includes these components:

• Transmitter - Creates a PSK-modulated signal and applies a square root raised cosine filter. The
interference is added to this Primary signal.

• Interferer1 - Creates a PSK-modulated interference signal.
• Interferer2 - Creates a PSK-modulated interference signal.
• Multiband Combiner - Combines all the signals without introducing signal distortion and enables

interference modeling. The Multiband Combiner block interpolates input signals, frequency shifts
the signals by the value specified in the "Frequency offsets" parameter, and then combines the
signals into one output signal.

• AWGN Channel - Adds noise to the transmitted signals.
• Receiver - Filters, downsamples, and demodulates the received signal.
• Error Rate Calculation - Computes the bit error rate.

Results and Displays

When you run the simulation, the block labeled BER Display shows the bit error rate for the original
signal. The BER Display block shows a three-element vector containing the calculated bit error rate
(BER), the number of errors observed, and the number of bits processed.

Scope blocks in the model display the spectra of the primary and interfering signals, spectrum of the
received combined signal, and constellation diagram of the received signal.

• The spectra of the primary and interfering signals
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• The spectrum of the received signal

• A scatter plot of the received signal constellation
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Experimenting with the Example

To deactivate an interferer, double-click the switch block that corresponds to that interferer. In the
"Received signal" spectrum analyzer, notice the effect of omitting the interfering signal.

To change the spectral overlap between primary signal and interfering signals, set the "Frequency
offsets" parameter of Multiband Combiner block. As you decrease the offset, the "Received signal"
spectrum analyzer shows the interfering signal slowly moving from the adjacent channel into the
frequency band of the original signal and eventually causing co-channel interference. The values
reported in the BER Display block slowly deteriorate as the offset decreases, because the 8-PSK
constellation points become difficult to demodulate correctly.

To change the power gain of an interfering signal, double-click the dB Gain block and change the
Gain parameter. Observe the effect on the "Transmitted signal" and the "Received signal" spectrum
analyzers. If you decrease the negative dB gain, the BER worsens, especially in the presence of co-
channel interference.
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Multipath Fading Channel in Simulink
This model shows how to use the SISO Fading Channel block from the Communications Toolbox™ to
simulate multipath Rayleigh and Rician fading channels, which are useful models of real-world
phenomena in wireless communications. These phenomena include multipath scattering effects, time
dispersion, and Doppler shifts that arise from relative motion between the transmitter and receiver.
The model also shows how to visualize channel characteristics such as the impulse and frequency
responses, Doppler spectrum and component gains.

Model and Parameters

The example model simulates QPSK transmission over a multipath Rayleigh fading channel and a
multipath Rician fading channel. Both the channel blocks are configured from the SISO Fading
Channel library block. You can control transmission and channel parameters via workspace variables.

The following variables control the "Bit Source" block. By default, the bit rate is 10M b/s (5M sym/s)
and each transmitted frame is 2000 bits long (1000 symbols).

bitRate =

    10000000

bitsPerFrame =

        2000

The following variables control both the Rayleigh and Rician fading channel blocks. By default, the
channels are modeled as four fading paths, each representing a cluster of multipath components
received at around the same delay.
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delayVector =

   1.0e-06 *

         0    0.2000    0.4000    0.8000

gainVector =

     0    -3    -6    -9

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. In some outdoor multipath
environments, reflected paths can be up to several kilometers longer than the shortest path. With the
path delays specified above, the last path is 240 m longer than the shortest path, and thus arrives 0.8
microseconds later.

Together, the path delays and average path gains specify the delay profile of the channel. Typically,
the average path gains decay exponentially with delay (i.e., the dB values decay linearly), but the
specific delay profile depends on the propagation environment. On each channel block, we have also
turned on the option to normalize the average path gains so that their average gain is 0 dB over time.

The following variable controls the maximum Doppler shift which is computed as v*f/c, where v is the
mobile speed, f is the carrier frequency, and c is the speed of light. The default maximum Doppler
shift in the model is 200 Hz which corresponds to a mobile speed of 65 mph (30 m/s) and a carrier
frequency of 2 GHz.

maxDopplerShift =

   200

The following variables apply to the Rician fading channel block. The Doppler shift of the line-of-sight
component is typically smaller than the maximum Doppler shift, maxDopplerShift, and depends on
the direction of travel of the mobile relative to the direction of the line-of-sight path. The K-factor
specifies the ratio of average received power from the line-of-sight path relative to that of the
associated diffuse components.

LOSDopplerShift =

   100

KFactor =

    10

The SISO Fading Channel block can visualize channel impulse response, frequency response, and
Doppler spectrum while the model is running. To invoke it, set the Channel visualization
parameter to the desired channel characteristic(s) before running the model. Note that turning on
channel visualization may slow down your simulation.
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Wideband or Frequency-Selective Fading

By default, the delay span (0.8 microseconds) of the channel is larger than the input QPSK symbol
period (0.2 microseconds), and causes considerable intersymbol interference (ISI). So the resultant
channel frequency response is not flat and may have deep fades over the 10M Hz signal bandwidth.
Because the power level varies over the bandwidth, it is referred to as frequency-selective fading.

Setting the Channel visualization parameter of the channel block to 'Impulse response' shows
the bandlimited impulse response (yellow circles). The visualization also shows the delays and
magnitudes of the underlying fading path gains (pink stems) clustered around the peak of the impulse
response. Note that the path gains do not equal the Average path gains (dB) parameter value
because the Doppler effect causes the gains to fluctuate over time.

As displayed, the channel impulse response coincides with the path gains for this delay profile
because the discrete path delays are all integer multiples of the input symbol period. In this case,
there is also no channel filter delay.

Similarly, setting the Channel visualization parameter to 'Frequency response' shows the
frequency response of the channel. You can also set Channel visualization to 'Impulse and
frequency responses' to display both impulse and frequency responses side by side. You can see that
the power level of the channel varies across the whole bandwidth.
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As shown in the channel visualization plots, you can also control the percentage of the input samples
to be visualized by changing the Percentage of samples to display parameter of the channel
block. In general, the smaller the percentage, the faster the model runs. Once the visualization figure
opens, click the Playback button and turn off the Reduce Updates to Improve Performance or
Reduce Plot Rate to Improve Performance option to further improve display accuracy. The
option is on by default for faster simulation. To see the channel response for every input sample,
uncheck this option and set Percentage of samples to display to '100%'.

For the same channel specification, we now display the Doppler spectrum for its first discrete path,
which is a statistical characterization of the fading process. The channel block makes periodic
measurements of the Doppler spectrum (blue stars). Over time with more samples processed by the
block, the average of this measurement better approximates the theoretical Doppler spectrum (yellow
curve).
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By opening the constellation diagram following the Rayleigh channel block, you can see the impact of
wideband fading on the signal constellation. To slow down the channel dynamics for visualization
purposes, we reduce the maximum Doppler shift to 5 Hz. Compared with the QPSK channel input
signal, you can observe obvious distortion in the channel output signal, due to the ISI from the time
dispersion of the wideband signal.
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Narrowband or Frequency-Flat Fading

When the bandwidth is too small for the signal to resolve the individual components, the frequency
response is approximately flat because of the minimal time dispersion and very small ISI from the
impulse response. This kind of multipath fading is often referred to as narrowband fading, or
frequency-flat fading.

To observe the effect, we now reduce the signal bandwidth from 10M b/s (5M sym/s) to 1M b/s (500K
sym/s), so the delay span (0.8 microseconds) of the channel is much smaller than the QPSK symbol
period (2 microseconds). Effectively, all delayed components combine at a single delay (in this case,
at zero).

bitRate =
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     1000000

We can visually validate this narrowband fading behavior by setting the Channel visualization
parameter to 'Impulse and frequency responses' for the Rayleigh channel block and then running the
model.
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To simplify and speed up simulation, narrowband fading channels are often modeled as a single-path
fading channel. That is, a multiple-path fading model overspecifies a narrowband fading channel. The
following settings correspond to a narrowband fading channel with a completely flat frequency
response.
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We now return to our original four-path fading channel and observe how narrowband fading causes
signal attenuation and phase rotation, by opening the constellation diagram following the Rayleigh
channel block. In addition to attenuation and rotation, you can see some signal distortion because of
the small amount of ISI in the channel output signal. The distortion is far less than that seen above
for a wideband channel.

Rician Fading

The Rician fading channel block models line-of-sight propagation in addition to diffuse multipath
scattering. This results in a smaller variation in the magnitude of path gains. To compare the
variation between Rayleigh and Rician channels, we re-configure the channel blocks to model a
single-path delay and make use of a Time Scope block to view their path gains over time. Note that
the magnitude fluctuates over approximately a 5 dB range for the Rician fading channel, compared
with approximate 15 dB for the Rayleigh fading channel. For the Rician fading channel, this variation
would be further reduced by increasing the K-factor (currently set to 10).
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RF Satellite Link
This model shows a satellite link, using the blocks from the Communications Toolbox™ to simulate
the following impairments:

• Memoryless nonlinearity
• Free space path loss
• Doppler error
• Receiver thermal noise
• Phase noise
• In-phase and quadrature imbalances
• DC offsets

The model optionally corrects most of these impairments.

By modeling the gains and losses on the link, this model implements link budget calculations that
determine whether a downlink can be closed with a given bit error rate (BER). The gain and loss
blocks, including the Free Space Path Loss block and the Receiver Thermal Noise block, determine
the data rate that can be supported on the link in an additive white Gaussian noise channel.

Structure of the Example

The example highlights both the satellite link model and its signal scopes. The model consists of a
Satellite Downlink Transmitter, Downlink Path, and Ground Station Downlink Receiver.

 RF Satellite Link

8-193



The blocks that correspond to each of these sections are

Satellite Downlink Transmitter

• Bernoulli Binary Generator - Creates a random binary data stream.
• Rectangular QAM Modulator Baseband - Maps the data stream to 16-QAM constellation.
• Raised Cosine Transmit Filter - Upsamples and shapes the modulated signal using the square root

raised cosine pulse shape.
• HPA Nonlinearity with Optional Digital Predistortion (High Power Amplifier) -

Models a traveling wave tube amplifier (TWTA) using the Saleh model option of the Memoryless
Nonlinearity and optionally corrects the AM/AM and AM/PM with a Digital Predistortion block.

• Gain (Tx Dish Antenna Gain) - Applies gain of the transmitter parabolic dish antenna.

Downlink Path

• Free Space Path Loss (Downlink Path) - Attenuates the signal by the free space path loss.
• Phase/Frequency Offset (Doppler Error) - Rotates the signal to model Doppler error on the link.

Ground Station Downlink Receiver

• Gain (Rx Dish Antenna Gain) - Applies gain of the receiver parabolic dish antenna.
• Receiver Thermal Noise (Satellite Receiver System Temp) - Adds white Gaussian noise that

represents the effective system temperature of the receiver.

8 Communications Toolbox Featured Examples

8-194



• Phase Noise - Introduces random phase perturbations that result from 1/f or phase flicker noise.
• I/Q Imbalance - Introduces DC offset, amplitude imbalance, or phase imbalance to the signal.
• LNA (Low Noise Amplifier)- Applies low noise amplifier gain.
• Raised Cosine Receive Filter - Applies a matched filter to the modulated signal using the square

root raised cosine pulse shape.
• DC Blocker - Compensates for the DC offset in the I/Q Imbalance block.
• AGC - Sets the signal power to a desired level.
• I/Q Imbalance Compensator - Estimates and removes I/Q imbalance from the signal by a blind

adaptive algorithm.
• Doppler Correction - Uses the Carrier Synchronizer block to compensate for the carrier

frequency offset due to Doppler.
• Rectangular QAM Demodulator Baseband - Demaps the data stream from the 16-QAM

constellation space.

Exploring the Example

Double-click the block labeled Model Parameters to view the parameter settings for the model. All
these parameters are tunable. To make changes to the parameters as the model is running, apply
them in the dialog, then update the model via ctrl+d. The parameters are:

Satellite altitude (km) - Distance between the satellite and the ground station. Changing this
parameter updates the Free Space Path Loss block. The default setting is 35600.

Frequency (MHz) - Carrier frequency of the link. Changing this parameter updates the Free Space
Path Loss block. The default setting is 4000.

Transmit and receive antenna diameters (m) - The first element in the vector represents the
transmit antenna diameter and is used to calculate the gain in the Tx Dish Antenna Gain block. The
second element represents the receive antenna diameter and is used to calculate the gain in the Rx
Dish Antenna Gain block. The default setting is [.4 .4].

Noise temperature (K) - Allows you to select from four effective receiver system noise
temperatures. The selected noise temperature changes the Noise Temperature of the Receiver
Thermal Noise block. The default setting is 20 K. The choices are

• 0 (no noise) - Use this setting to view the other RF impairments without the perturbing effects
of noise.

• 20 (very low noise level) - Use this setting to view how easily a low level of noise can,
when combined with other RF impairments, degrade the performance of the link.

• 290 (typical noise level) - Use this setting to view how a typical quiet satellite receiver
operates.

• 500 (high noise level) - Use this setting to view the receiver behavior when the system
noise figure is 2.4 dB and the antenna noise temperature is 290K.

HPA backoff level - Allows you to select from three backoff levels. This parameter is used to
determine how close the satellite high power amplifier is driven to saturation. The selected backoff is
used to set the input and output gain of the Memoryless Nonlinearity block. The default setting is 30
dB (negligible nonlinearity). The choices are

• 30 dB (negligible nonlinearity) - Sets the average input power to 30 decibels below the
input power that causes amplifier saturation (that is, the point at which the gain curve becomes
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flat). This causes negligible AM-to-AM and AM-to-PM conversion. AM-to-AM conversion is an
indication of how the amplitude nonlinearity varies with the signal magnitude. AM-to-PM
conversion is a measure of how the phase nonlinearity varies with signal magnitude.

• 7 dB (moderate nonlinearity) - Sets the average input power to 7 decibels below the input
power that causes amplifier saturation. This causes moderate AM-to-AM and AM-to-PM
conversion, which is correctable with digital predistortion.

• 1 dB (severe nonlinearity) - Sets the average input power to 1 decibel below the input
power that causes amplifier saturation. This causes severe AM-to-AM and AM-to-PM conversion,
and is not correctable with digital predistortion.

Doppler error - Allows you to select one of two values of Doppler. The selection updates the Phase/
Frequency Offset (Doppler Error) block. The default setting is 0 Hz. The choices are

• 0 Hz - No Doppler on the link.
• 3 Hz - Adds 3 Hz carrier frequency offset.

Phase noise - Allows you to select from three values of phase noise at the receiver. The selection
updates the Phase Noise block. The default setting is Negligible (-100 dBc/Hz @ 100 Hz). The
choices are

• Negligible (-100 dBc/Hz @ 100 Hz) - Almost no phase noise.
• Low (-55 dBc/Hz @ 100 Hz) - Enough phase noise to be visible in both the spectral and I/Q

domains, and cause bit errors when combined with thermal noise or other RF impairments.
• High (-48 dBc/Hz @ 100 Hz) - Enough phase noise to cause errors without the addition of

thermal noise or other RF impairments.

I/Q imbalance and DC offset - Allows you to select from five types of in-phase and quadrature
imbalances at the receiver. The selection updates the I/Q Imbalance block. The default setting is
None. The choices are

• None - No imbalances.
• Amplitude imbalance (3 dB) - Applies a 1.5 dB gain to the in-phase signal and a -1.5 dB gain

to the quadrature signal.
• Phase imbalance (20 deg) - Rotates the in-phase signal by 10 degrees and the quadrature

signal by -10 degrees.
• In-phase DC offset (1e-8) - Adds a DC offset of 1e-8 to the in-phase signal amplitude. This
offset changes the received signal constellation diagram, but does not cause errors on the link
unless combined with thermal noise or other RF impairments.

• Quadrature DC offset (5e-8) - Adds a DC offset of 5e-8 to the quadrature signal amplitude.
This offset causes errors on the link even when not combined with thermal noise or another RF
impairment. This offset also causes a DC spike in the received signal spectrum.

Digital predistortion - Allows you to enable or disable the Digital Predistortion subsystem. The
default setting is Disabled.

DC offset correction - Allows you to enable or disable the DC Blocking subsystem. The default
setting is Disabled.

Doppler correction - Allows you to enable or disable the Doppler Correction subsystem. The default
setting is Disabled.
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I/Q imbalance correction - Allows you to enable or disable the I/Q Imbalance Correction subsystem.
The default setting is Disabled.

Results and Displays

When you run this model, the following displays are active:

Power Spectrum - Double-clicking this Open Scopes block enables you to view the spectrum of the
modulated/filtered signal (yellow) and the received signal before demodulation (blue).

Comparing the two spectra allows you to view the effect of the following RF impairments:

• Spectral regrowth due to HPA nonlinearities caused by the Memoryless Nonlinearity block
• Thermal noise caused by the Receiver Thermal Noise block
• Phase flicker (that is, 1/f noise) caused by the Phase Noise block

HPA AM/AM and AM/PM - Double-clicking this Open Scopes block enables you to view the AM/AM
and AM/PM conversion after the HPA. These plots enable you to view the impact that the Digital
Predistortion block and HPA have on the linearity of the signal.

Constellation Before and After HPA - Double-clicking this Open Scopes block enables you to
compare the constellation of the transmitted signal before (yellow) and after (blue) the HPA. The
amplifier gain causes the HPA Output signal to be larger than the HPA Input signal. This plot enables
you to view the combined effect of both the HPA nonlinearity and digital predistortion.
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End to End Constellation - Double-clicking this Open Scopes block enables you to compare the
reference 16-QAM constellation (red) with the received QAM constellation before demodulation
(yellow). Comparing these constellation diagrams allows you to view the impact of all the RF
impairments on the received signal and the effectiveness of the compensations.

Bit error rate (BER) display - In the lower right corner of the model is a display of the BER of the
model. The BER computation can be reset manually by double-clicking the green "Double-click to
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reset BER" button. This allows you to view the impact of the parameter changes as the model is
running.

Experimenting with the Example

This section describes some ways that you can change the model parameters to experiment with the
effects of the blocks from the RF Impairments library and other blocks in the model. You can double-
click the block labeled "Model Parameters" in the model and try some of the following scenarios:

Link gains and losses - Change Noise temperature to 290 (typical noise level), 0 (no
noise) or 500 (high noise level). Change the value of the Satellite altitude (km) or
Satellite frequency (MHz) parameters to change the free space path loss. In addition, increase or
decrease the Transmit and receive antenna diameters (m) parameter to increase or decrease the
received signal power. You can view the changes in the received constellation in the received signal
constellation diagram scope and the changes in received power in the spectrum analyzer.

Raised cosine pulse shaping - Make sure Noise temperature is set to 0 (no noise). Turn on
the Constellation Before and After HPA scopes. Observe that the square-root raised cosine filtering
results in intersymbol interference (ISI). This results in the points being scattered loosely around
ideal constellation points, which you can see in the After HPA constellation diagram. The square-root
raised cosine filter in the receiver, in conjunction with the transmit filter, controls the ISI, which you
can see in the received signal constellation diagram.

HPA AM-to-AM conversion and AM-to-PM conversion - Change the HPA backoff level
parameter to 7 dB (moderate nonlinearity) and observe the AM-to-AM and AM-to-PM
conversions by comparing the Transmit RRC filtered signal constellation diagram with the RRC signal
after HPA constellation diagram. Note how the AM-to-AM conversion varies according to the different
signal amplitudes. You can also view the effect of this conversion on the received signal in the
received signal constellation diagram. In addition, you can observe the spectral regrowth in the
received signal spectrum analyzer. You can also view the phase change in the received signal in the
received signal constellation diagram scope.

Digital predistortion With the Digital predistortion checkbox checked, change the HPA backoff
level parameter to 30 dB (negligible nonlinearity), 7 dB (moderate nonlinearity),
and 1 dB (severe nonlinearity) to view the effect of digital predistortion on the HPA
nonlinearity.

Phase noise plus AM-to-AM conversion - Set the Phase Noise parameter to High and observe
the increased variance in the tangential direction in the received signal constellation diagram. Also
note that this level of phase noise is sufficient to cause errors in an otherwise error-free channel.

DC offset and DC offset compensation - Set the I/Q imbalance and DC offset parameter to In-
phase DC offset (1e-8) and view the shift of the constellation in the received signal
constellation diagram. Set DC offset correction to Enabled and view the received signal
constellation diagram to view how the DC offset block estimates the DC offset value and removes it
from the signal. Set DC offset compensation to Disabled and change I/Q imbalance to
Quadrature DC offset (5e-8). View the changes in the received signal constellation diagram for
a large DC offset and the DC spike in the received signal spectrum. Note that the LNA amplifies the
small DC offsets so that they are visible on the constellation diagram with much larger axis limits. Set
DC offset compensation to Enabled and view the received signal constellation diagram and
spectrum analyzer to see how the DC component is removed.

Amplitude imbalance - With the I/Q imbalance correction disabled, set the I/Q Imbalance and
DC offset parameter to Amplitude imbalance (3 dB) to view the effect of unbalanced I and Q
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gains in the received signal constellation diagram. Enable the I/Q imbalance correction to
compensate for the amplitude imbalance.

Doppler and Doppler compensation - Disable Doppler correction by unchecking the Doppler
correction check box. Set Doppler error to 3 Hz to show the effect of uncorrected Doppler on the
received signal constellation diagram. Enable Doppler correction to show that the carrier
synchronizer restores the received constellation. Repeat the exercise with different I/Q imbalance
and DC offsets.
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Introduction to MIMO Systems
This example shows Multiple-Input-Multiple-Output (MIMO) systems, which use multiple antennas at
the transmitter and receiver ends of a wireless communication system. MIMO systems are
increasingly being adopted in communication systems for the potential gains in capacity they realize
when using multiple antennas. Multiple antennas use the spatial dimension in addition to the time
and frequency ones, without changing the bandwidth requirements of the system.

For a generic communications link, this example focuses on transmit diversity in lieu of traditional
receive diversity. Using the flat-fading Rayleigh channel, it illustrates the concept of Orthogonal
Space-Time Block Coding, which is employable when multiple transmitter antennas are used. It is
assumed here that the channel undergoes independent fading between the multiple transmit-receive
antenna pairs.

For a chosen system, it also provides a measure of the performance degradation when the channel is
imperfectly estimated at the receiver, compared to the case of perfect channel knowledge at the
receiver.

PART 1: Transmit Diversity vs. Receive Diversity

Using diversity reception is a well-known technique to mitigate the effects of fading over a
communications link. However, it has mostly been relegated to the receiver end. In [ 1 ], Alamouti
proposes a transmit diversity scheme that offers similar diversity gains, using multiple antennas at
the transmitter. This was conceived to be more practical as, for example, it would only require
multiple antennas at the base station in comparison to multiple antennas for every mobile in a
cellular communications system.

This section highlights this comparison of transmit vs. receive diversity by simulating coherent binary
phase-shift keying (BPSK) modulation over flat-fading Rayleigh channels. For transmit diversity, we
use two transmit antennas and one receive antenna (2x1 notationally), while for receive diversity we
employ one transmit antenna and two receive antennas (1x2 notationally).

The simulation covers an end-to-end system showing the encoded and/or transmitted signal, channel
model, and reception and demodulation of the received signal. It also provides the no-diversity link
(single transmit- receive antenna case) and theoretical performance of second-order diversity link for
comparison. It is assumed here that the channel is known perfectly at the receiver for all systems. We
run the simulation over a range of Eb/No points to generate BER results that allow us to compare the
different systems.

We start by defining some common simulation parameters

frmLen = 100;       % frame length
numPackets = 1000;  % number of packets
EbNo = 0:2:20;      % Eb/No varying to 20 dB
N = 2;              % maximum number of Tx antennas
M = 2;              % maximum number of Rx antennas

and set up the simulation.

% Create comm.BPSKModulator and comm.BPSKDemodulator System objects(TM)
P = 2;                % modulation order
bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('OutputDataType','double');

% Create comm.OSTBCEncoder and comm.OSTBCCombiner System objects
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ostbcEnc = comm.OSTBCEncoder;
ostbcComb = comm.OSTBCCombiner;

% Create two comm.AWGNChannel System objects for one and two receive
% antennas respectively. Set the NoiseMethod property of the channel to
% 'Signal to noise ratio (Eb/No)' to specify the noise level using the
% energy per bit to noise power spectral density ratio (Eb/No). The output
% of the BPSK modulator generates unit power signals; set the SignalPower
% property to 1 Watt.
awgn1Rx = comm.AWGNChannel(...
    'NoiseMethod', 'Signal to noise ratio (Eb/No)', ...
    'SignalPower', 1);
awgn2Rx = clone(awgn1Rx);

% Create comm.ErrorRate calculator System objects to evaluate BER.
errorCalc1 = comm.ErrorRate;
errorCalc2 = comm.ErrorRate;
errorCalc3 = comm.ErrorRate;

% Since the comm.AWGNChannel System objects as well as the RANDI function
% use the default random stream, the following commands are executed so
% that the results will be repeatable, i.e., same results will be obtained
% for every run of the example. The default stream will be restored at the
% end of the example.
s = rng(55408);

% Pre-allocate variables for speed
H = zeros(frmLen, N, M);
ber_noDiver  = zeros(3,length(EbNo));
ber_Alamouti = zeros(3,length(EbNo));
ber_MaxRatio = zeros(3,length(EbNo));
ber_thy2     = zeros(1,length(EbNo));

% Set up a figure for visualizing BER results
fig = figure;
grid on;
ax = fig.CurrentAxes;
hold(ax,'on');

ax.YScale = 'log';
xlim(ax,[EbNo(1), EbNo(end)]);
ylim(ax,[1e-4 1]);
xlabel(ax,'Eb/No (dB)');
ylabel(ax,'BER');
fig.NumberTitle = 'off';
fig.Renderer = 'zbuffer';
fig.Name = 'Transmit vs. Receive Diversity';
title(ax,'Transmit vs. Receive Diversity');
set(fig, 'DefaultLegendAutoUpdate', 'off');
fig.Position = figposition([15 50 25 30]);

% Loop over several EbNo points
for idx = 1:length(EbNo)
    reset(errorCalc1);
    reset(errorCalc2);
    reset(errorCalc3);
    % Set the EbNo property of the AWGNChannel System objects
    awgn1Rx.EbNo = EbNo(idx);
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    awgn2Rx.EbNo = EbNo(idx);
    % Loop over the number of packets
    for packetIdx = 1:numPackets
        % Generate data vector per frame
        data = randi([0 P-1], frmLen, 1);

        % Modulate data
        modData = bpskMod(data);

        % Alamouti Space-Time Block Encoder
        encData = ostbcEnc(modData);

        % Create the Rayleigh distributed channel response matrix
        %   for two transmit and two receive antennas
        H(1:N:end, :, :) = (randn(frmLen/2, N, M) + ...
                         1i*randn(frmLen/2, N, M))/sqrt(2);
        %   assume held constant for 2 symbol periods
        H(2:N:end, :, :) = H(1:N:end, :, :);

        % Extract part of H to represent the 1x1, 2x1 and 1x2 channels
        H11 = H(:,1,1);
        H21 = H(:,:,1)/sqrt(2);
        H12 = squeeze(H(:,1,:));

        % Pass through the channels
        chanOut11 = H11 .* modData;
        chanOut21 = sum(H21.* encData, 2);
        chanOut12 = H12 .* repmat(modData, 1, 2);

        % Add AWGN
        rxSig11 = awgn1Rx(chanOut11);
        rxSig21 = awgn1Rx(chanOut21);
        rxSig12 = awgn2Rx(chanOut12);

        % Alamouti Space-Time Block Combiner
        decData = ostbcComb(rxSig21, H21);

        % ML Detector (minimum Euclidean distance)
        demod11 = bpskDemod(rxSig11.*conj(H11));
        demod21 = bpskDemod(decData);
        demod12 = bpskDemod(sum(rxSig12.*conj(H12), 2));

        % Calculate and update BER for current EbNo value
        %   for uncoded 1x1 system
        ber_noDiver(:,idx)  = errorCalc1(data, demod11);
        %   for Alamouti coded 2x1 system
        ber_Alamouti(:,idx) = errorCalc2(data, demod21);
        %   for Maximal-ratio combined 1x2 system
        ber_MaxRatio(:,idx) = errorCalc3(data, demod12);

    end % end of FOR loop for numPackets

    % Calculate theoretical second-order diversity BER for current EbNo
    ber_thy2(idx) = berfading(EbNo(idx), 'psk', 2, 2);

    % Plot results
    semilogy(ax,EbNo(1:idx), ber_noDiver(1,1:idx), 'r*', ...
             EbNo(1:idx), ber_Alamouti(1,1:idx), 'go', ...
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             EbNo(1:idx), ber_MaxRatio(1,1:idx), 'bs', ...
             EbNo(1:idx), ber_thy2(1:idx), 'm');
    legend(ax,'No Diversity (1Tx, 1Rx)', 'Alamouti (2Tx, 1Rx)',...
           'Maximal-Ratio Combining (1Tx, 2Rx)', ...
           'Theoretical 2nd-Order Diversity');

    drawnow;
end  % end of for loop for EbNo

% Perform curve fitting and replot the results
fitBER11 = berfit(EbNo, ber_noDiver(1,:));
fitBER21 = berfit(EbNo, ber_Alamouti(1,:));
fitBER12 = berfit(EbNo, ber_MaxRatio(1,:));
semilogy(ax,EbNo, fitBER11, 'r', EbNo, fitBER21, 'g', EbNo, fitBER12, 'b');
hold(ax,'off');

% Restore default stream
rng(s);

The transmit diversity system has a computation complexity very similar to that of the receive
diversity system.

The resulting simulation results show that using two transmit antennas and one receive antenna
provides the same diversity order as the maximal-ratio combined (MRC) system of one transmit
antenna and two receive antennas.
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Also observe that transmit diversity has a 3 dB disadvantage when compared to MRC receive
diversity. This is because we modeled the total transmitted power to be the same in both cases. If we
calibrate the transmitted power such that the received power for these two cases is the same, then
the performance would be identical. The theoretical performance of second-order diversity link
matches the transmit diversity system as it normalizes the total power across all the diversity
branches.

The accompanying functional scripts, mrc1m.m and ostbc2m.m aid further exploration for the
interested users.

PART 2: Space-Time Block Coding with Channel Estimation

Building on the theory of orthogonal designs, Tarokh et al. [ 2 ] generalized Alamouti's transmit
diversity scheme to an arbitrary number of transmitter antennas, leading to the concept of Space-
Time Block Codes. For complex signal constellations, they showed that Alamouti's scheme is the only
full-rate scheme for two transmit antennas.

In this section, we study the performance of such a scheme with two receive antennas (i.e., a 2x2
system) with and without channel estimation. In the realistic scenario where the channel state
information is not known at the receiver, this has to be extracted from the received signal. We assume
that the channel estimator performs this using orthogonal pilot signals that are prepended to every
packet [ 3 ]. It is assumed that the channel remains unchanged for the length of the packet (i.e., it
undergoes slow fading).

A simulation similar to the one described in the previous section is employed here, which leads us to
estimate the BER performance for a space-time block coded system using two transmit and two
receive antennas.

Again we start by defining the common simulation parameters

frmLen = 100;           % frame length
maxNumErrs = 300;       % maximum number of errors
maxNumPackets = 3000;   % maximum number of packets
EbNo = 0:2:12;          % Eb/No varying to 12 dB
N = 2;                  % number of Tx antennas
M = 2;                  % number of Rx antennas
pLen = 8;               % number of pilot symbols per frame
W = hadamard(pLen);
pilots = W(:, 1:N);     % orthogonal set per transmit antenna

and set up the simulation.

% Create a comm.MIMOChannel System object to simulate the 2x2 spatially
% independent flat-fading Rayleigh channel
chan = comm.MIMOChannel( ...
    'MaximumDopplerShift', 0, ...
    'SpatialCorrelationSpecification', 'None', ...
    'NumTransmitAntennas', N, ...
    'NumReceiveAntennas', M, ...
    'PathGainsOutputPort', true);

% Change the NumReceiveAntennas property value of the hAlamoutiDec System
% object to M that is 2
release(ostbcComb);
ostbcComb.NumReceiveAntennas = M;
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% Release the hAWGN2Rx System object
release(awgn2Rx);

% Set the global random stream for repeatability
s = rng(55408);

% Pre-allocate variables for speed
HEst = zeros(frmLen, N, M);
ber_Estimate = zeros(3,length(EbNo));
ber_Known    = zeros(3,length(EbNo));

% Set up a figure for visualizing BER results
fig = figure;
grid on;
ax = fig.CurrentAxes;
hold(ax,'on');

ax.YScale = 'log';
xlim(ax,[EbNo(1), EbNo(end)]);
ylim(ax,[1e-4 1]);
xlabel(ax,'Eb/No (dB)');
ylabel(ax,'BER');
fig.NumberTitle = 'off';
fig.Name = 'Orthogonal Space-Time Block Coding';
fig.Renderer = 'zbuffer';
title(ax,'Alamouti-coded 2x2 System');
set(fig,'DefaultLegendAutoUpdate','off');
fig.Position = figposition([41 50 25 30]);

% Loop over several EbNo points
for idx = 1:length(EbNo)
    reset(errorCalc1);
    reset(errorCalc2);
    awgn2Rx.EbNo = EbNo(idx);

    % Loop till the number of errors exceed 'maxNumErrs'
    % or the maximum number of packets have been simulated
    while (ber_Estimate(2,idx) < maxNumErrs) && ...
          (ber_Known(2,idx) < maxNumErrs) && ...
          (ber_Estimate(3,idx)/frmLen < maxNumPackets)
        % Generate data vector per frame
        data = randi([0 P-1], frmLen, 1);

        % Modulate data
        modData = bpskMod(data);

        % Alamouti Space-Time Block Encoder
        encData = ostbcEnc(modData);

        % Prepend pilot symbols for each frame
        txSig = [pilots; encData];

        % Pass through the 2x2 channel
        reset(chan);
        [chanOut, H] = chan(txSig);

        % Add AWGN
        rxSig = awgn2Rx(chanOut);
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        % Channel Estimation
        %   For each link => N*M estimates
        HEst(1,:,:) = pilots(:,:).' * rxSig(1:pLen, :) / pLen;
        %   assume held constant for the whole frame
        HEst = HEst(ones(frmLen, 1), :, :);

        % Combiner using estimated channel
        decDataEst = ostbcComb(rxSig(pLen+1:end,:), HEst);

        % Combiner using known channel
        decDataKnown = ostbcComb(rxSig(pLen+1:end,:), ...
                            squeeze(H(pLen+1:end,:,:,:)));

        % ML Detector (minimum Euclidean distance)
        demodEst   = bpskDemod(decDataEst);      % estimated
        demodKnown = bpskDemod(decDataKnown);    % known

        % Calculate and update BER for current EbNo value
        %   for estimated channel
        ber_Estimate(:,idx) = errorCalc1(data, demodEst);
        %   for known channel
        ber_Known(:,idx)    = errorCalc2(data, demodKnown);

    end % end of FOR loop for numPackets

    % Plot results
    semilogy(ax,EbNo(1:idx), ber_Estimate(1,1:idx), 'ro');
    semilogy(ax,EbNo(1:idx), ber_Known(1,1:idx), 'g*');
    legend(ax,['Channel estimated with ' num2str(pLen) ' pilot symbols/frame'],...
           'Known channel');
    drawnow;
end  % end of for loop for EbNo

% Perform curve fitting and replot the results
fitBEREst   = berfit(EbNo, ber_Estimate(1,:));
fitBERKnown = berfit(EbNo, ber_Known(1,:));
semilogy(ax,EbNo, fitBEREst, 'r', EbNo, fitBERKnown, 'g');
hold(ax,'off');

% Restore default stream
rng(s)
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For the 2x2 simulated system, the diversity order is different than that seen for either 1x2 or 2x1
systems in the previous section.

Note that with 8 pilot symbols for each 100 symbols of data, channel estimation causes about a 1 dB
degradation in performance for the selected Eb/No range. This improves with an increase in the
number of pilot symbols per frame but adds to the overhead of the link. In this comparison, we keep
the transmitted SNR per symbol to be the same in both cases.

The accompanying functional script, ostbc2m_e.m aids further experimentation for the interested
users.

PART 3: Orthogonal Space-Time Block Coding and Further Explorations

In this final section, we present some performance results for orthogonal space-time block coding
using four transmit antennas (4x1 system) using a half-rate code, G4, as per [ 4 ].

We expect the system to offer a diversity order of 4 and will compare it with 1x4 and 2x2 systems,
which have the same diversity order also. To allow for a fair comparison, we use quaternary PSK with
the half-rate G4 code to achieve the same transmission rate of 1 bit/sec/Hz.

These results take some time to generate on a single core. If you do not have Parallel Computing
Toolbox™ (PCT) installed, we load the results from a prior simulation. The functional script
ostbc4m.m is included, which, along with mrc1m.m and ostbc2m.m, was used to generate these
results. If PCT is installed, these simulations are performed in parallel. In this case the functional
scripts ostbc4m_pct.m, mrc1m_pct.m and ostbc2m_pct.m are used. The user is urged to use these
scripts as a starting point to study other codes and systems.
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[licensePCT,~] = license( 'checkout' , 'Distrib_Computing_Toolbox');
if (licensePCT && ~isempty(ver('parallel')))
    EbNo = 0:2:20;
    [ber11, ber14, ber22, ber41] = mimoOSTBCWithPCT(100,4e3,EbNo);
else
    load ostbcRes.mat;
end

% Set up a figure for visualizing BER results
fig = figure;
grid on;
ax = fig.CurrentAxes;
hold(ax,'on');
fig.Renderer  = 'zbuffer';
ax.YScale = 'log';
xlim(ax,[EbNo(1), EbNo(end)]);
ylim(ax,[1e-5 1]);
xlabel(ax,'Eb/No (dB)');
ylabel(ax,'BER');
fig.NumberTitle = 'off';
fig.Name = 'Orthogonal Space-Time Block Coding(2)';
title(ax,'G4-coded 4x1 System and Other Comparisons');
set(fig,'DefaultLegendAutoUpdate','off');
fig.Position = figposition([30 15 25 30]);

% Theoretical performance of fourth-order diversity for QPSK
BERthy4 = berfading(EbNo, 'psk', 4, 4);

% Plot results
semilogy(ax,EbNo, ber11, 'r*', EbNo, ber41, 'ms', EbNo, ber22, 'c^', ...
         EbNo, ber14, 'ko', EbNo, BERthy4, 'g');
legend(ax,'No Diversity (1Tx, 1Rx), BPSK', 'OSTBC (4Tx, 1Rx), QPSK', ...
       'Alamouti (2Tx, 2Rx), BPSK', 'Maximal-Ratio Combining (1Tx, 4Rx), BPSK', ...
       'Theoretical 4th-Order Diversity, QPSK');

% Perform curve fitting
fitBER11 = berfit(EbNo, ber11);
fitBER41 = berfit(EbNo(1:9), ber41(1:9));
fitBER22 = berfit(EbNo(1:8), ber22(1:8));
fitBER14 = berfit(EbNo(1:7), ber14(1:7));
semilogy(ax,EbNo, fitBER11, 'r', EbNo(1:9), fitBER41, 'm', ...
         EbNo(1:8), fitBER22, 'c', EbNo(1:7), fitBER14, 'k');
hold(ax,'off');

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
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As expected, the similar slopes of the BER curves for the 4x1, 2x2 and 1x4 systems indicate an
identical diversity order for each system.

Also observe the 3 dB penalty for the 4x1 system that can be attributed to the same total transmitted
power assumption made for each of the three systems. If we calibrate the transmitted power such
that the received power for each of these systems is the same, then the three systems would perform
identically. Again, the theoretical performance matches the simulation performance of the 4x1 system
as the total power is normalized across the diversity branches.

Appendix

This example uses the following helper functions:

• mrc1m.m
• ostbc2m.m
• ostbc4m.m
• mimoOSTBCWithPCT.m
• mrc1m_pct.m
• ostbc2m_pct.m
• ostbc4m_pct.m
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Spatial Multiplexing
This example shows spatial multiplexing schemes wherein the data stream is subdivided into
independent sub-streams, one for each transmit antenna employed. As a consequence, these schemes
provide a multiplexing gain and do not require explicit orthogonalization as needed for space-time
block coding.

Spatial multiplexing requires powerful decoding techniques at the receiver though. Of the many
proposed [ 1 ], this example highlights two ordered Successive Interference Cancellation (SIC)
detection schemes. These schemes are similar to the original Bell Labs Layered Space-Time (BLAST)
techniques as per [ 2 ], [ 3 ].

For expositional benefits the example uses the basic 2x2 MIMO system employing two transmit and
two receive antennas. For an uncoded QPSK modulated system it employs flat Rayleigh fading over
independent transmit-receive links. At the receiver end, we assume perfect channel knowledge with
no feedback to the transmitter, i.e., an open-loop spatial multiplexing system.

The example shows two nonlinear interference cancellation methods - Zero-Forcing (ZF) and
Minimum-Mean-Square-Error (MMSE) - with symbol cancellation and compares their performance
with the Maximum-Likelihood (ML) optimum receiver.

Simulation

We start by defining some common simulation parameters

N = 2;                  % Number of transmit antennas
M = 2;                  % Number of receive antennas
EbNoVec = 2:3:8;        % Eb/No in dB
modOrd = 2;             % constellation size = 2^modOrd

and set up the simulation.

% Create a local random stream to be used by random number generators for
% repeatability.
stream = RandStream('mt19937ar');

% Create PSK modulator and demodulator System objects
pskModulator   = comm.PSKModulator(...
            'ModulationOrder',  2^modOrd, ...
            'PhaseOffset',      0, ...
            'BitInput',         true);
pskDemodulator = comm.PSKDemodulator( ...
            'ModulationOrder',  2^modOrd, ...
            'PhaseOffset',      0, ...
            'BitOutput',        true);

% Create error rate calculation System objects for 3 different receivers
zfBERCalc = comm.ErrorRate;
mmseBERCalc = comm.ErrorRate;
mlBERCalc = comm.ErrorRate;

% Get all bit and symbol combinations for ML receiver
allBits = int2bit(0:2^(modOrd*N)-1, modOrd*N);
allTxSig = reshape(pskModulator(allBits(:)), N, 2^(modOrd*N));

% Pre-allocate variables to store BER results for speed
[BER_ZF, BER_MMSE, BER_ML] = deal(zeros(length(EbNoVec), 3));
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The simulation loop below simultaneously evaluates the BER performance of the three receiver
schemes for each Eb/No value using the same data and channel realization. A short range of Eb/No
values are used for simulation purposes. Results for a larger range, using the same code, are
presented later.

% Set up a figure for visualizing BER results
fig = figure;
grid on;
hold on;
ax = fig.CurrentAxes;
ax.YScale = 'log';
xlim([EbNoVec(1)-0.01 EbNoVec(end)]);
ylim([1e-3 1]);
xlabel('Eb/No (dB)');
ylabel('BER');
fig.NumberTitle = 'off';
fig.Renderer = 'zbuffer';
fig.Name = 'Spatial Multiplexing';
title('2x2 Uncoded QPSK System');
set(fig,'DefaultLegendAutoUpdate','off');

% Loop over selected EbNo points
for idx = 1:length(EbNoVec)
    % Reset error rate calculation System objects
    reset(zfBERCalc);
    reset(mmseBERCalc);
    reset(mlBERCalc);

    % Calculate SNR from EbNo for each independent transmission link
    snrIndB = EbNoVec(idx) + 10*log10(modOrd);
    snrLinear = 10^(0.1*snrIndB);

    while (BER_ZF(idx, 3) < 1e5) && ((BER_MMSE(idx, 2) < 100) || ...
          (BER_ZF(idx, 2) < 100) ||  (BER_ML(idx, 2)   < 100))
        % Create random bit vector to modulate
        msg = randi(stream, [0 1], [N*modOrd, 1]);

        % Modulate data
        txSig = pskModulator(msg);

        % Flat Rayleigh fading channel with independent links
        rayleighChan = (randn(stream, M, N) +  1i*randn(stream, M, N))/sqrt(2);

        % Add noise to faded data
        rxSig = awgn(rayleighChan*txSig, snrIndB, 0, stream);

        % ZF-SIC receiver
        r = rxSig;
        H = rayleighChan; % Assume perfect channel estimation
        % Initialization
        estZF = zeros(N*modOrd, 1);
        orderVec = 1:N;
        k = N+1;
        % Start ZF nulling loop
        for n = 1:N
            % Shrink H to remove the effect of the last decoded symbol
            H = H(:, [1:k-1,k+1:end]);
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            % Shrink order vector correspondingly
            orderVec = orderVec(1, [1:k-1,k+1:end]);
            % Select the next symbol to be decoded
            G = (H'*H) \ eye(N-n+1); % Same as inv(H'*H), but faster
            [~, k] = min(diag(G));
            symNum = orderVec(k);

            % Hard decode the selected symbol
            decBits = pskDemodulator(G(k,:) * H' * r);
            estZF(modOrd * (symNum-1) + (1:modOrd)) = decBits;

            % Subtract the effect of the last decoded symbol from r
            if n < N
                r = r - H(:, k) * pskModulator(decBits);
            end
        end

        % MMSE-SIC receiver
        r = rxSig;
        H = rayleighChan;
        % Initialization
        estMMSE = zeros(N*modOrd, 1);
        orderVec = 1:N;
        k = N+1;
        % Start MMSE nulling loop
        for n = 1:N
            H = H(:, [1:k-1,k+1:end]);
            orderVec = orderVec(1, [1:k-1,k+1:end]);
            % Order algorithm (matrix G calculation) is the only difference
            % with the ZF-SIC receiver
            G = (H'*H + ((N-n+1)/snrLinear)*eye(N-n+1)) \ eye(N-n+1);
            [~, k] = min(diag(G));
            symNum = orderVec(k);

            decBits = pskDemodulator(G(k,:) * H' * r);
            estMMSE(modOrd * (symNum-1) + (1:modOrd)) = decBits;

            if n < N
                r = r - H(:, k) * pskModulator(decBits);
            end
        end

        % ML receiver
        r = rxSig;
        H = rayleighChan;
        [~, k] = min(sum(abs(repmat(r,[1,2^(modOrd*N)]) - H*allTxSig).^2));
        estML = allBits(:,k);

        % Update BER
        BER_ZF(  idx, :) = zfBERCalc(msg, estZF);
        BER_MMSE(idx, :) = mmseBERCalc(msg, estMMSE);
        BER_ML(  idx, :) = mlBERCalc(msg, estML);
    end

    % Plot results
    semilogy(EbNoVec(1:idx), BER_ZF(  1:idx, 1), 'r*', ...
             EbNoVec(1:idx), BER_MMSE(1:idx, 1), 'bo', ...
             EbNoVec(1:idx), BER_ML(  1:idx, 1), 'gs');
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    legend('ZF-SIC', 'MMSE-SIC', 'ML');
    drawnow;
end

% Draw the lines
semilogy(EbNoVec, BER_ZF(  :, 1), 'r-', ...
         EbNoVec, BER_MMSE(:, 1), 'b-', ...
         EbNoVec, BER_ML(  :, 1), 'g-');
hold off;

We observe that the ML receiver is the best in performance followed by the MMSE-SIC and ZF-SIC
receivers, as also seen in [ 4 ]. In terms of receiver complexity, ML grows exponentially with the
number of transmit antennas while the ZF-SIC and MMSE-SIC are linear receivers combined with
successive interference cancellation. Optimized ZF-SIC and MMSE-SIC algorithms for reduced
complexity can be found in [ 5 ].

Simulation results comparing the three schemes for a larger range of Eb/No values are displayed
next. These curves allow you to gauge the diversity order attained from the slope of the BER curve.

openfig('spatMuxResults.fig');
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Some areas of further exploration would be to try these methods for a larger number of antennas,
with and without channel estimation.

Selected References

1 George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC Press, Boca
Raton, FL, 2006.

2 G. J. Foschini, "Layered space-time architecture for wireless communication in a fading
environment when using multiple antennas," The Bell Sys. Tech. Journal, 1996, No. 1, pp. 41-59.

3 P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, "V-BLAST: An Architecture for
realizing very high data rates over the rich scattering wireless channel," 1998 URSI International
Symposium on Signals, Systems, and Electronics, 29 Sep.-2 Oct. 1998, pp. 295-300.

4 X. Li, H. C. Huang, A. Lozano, G. J. Foschini, "Reduced-complexity detection algorithms for
systems using multi-element arrays", IEEE® Global Telecommunications Conference, 2000.
Volume 2, 27 Nov.-1 Dec. 2000, pp. 1072-76.

5 Y. Shang and X.-G. Xia, "On fast recursive algorithms for V-BLAST with optimal ordered SIC
detection," IEEE Trans. Wireless Communications, vol. 8, no. 6, pp. 2860-2865, Jun. 2009.

8 Communications Toolbox Featured Examples

8-216



OSTBC Transmission with Antenna Coupling
This example shows how the antenna mutual coupling affects the performance of an orthogonal
space-time block code (OSTBC) transmission over a multiple-input multiple-output (MIMO) channel.
The transmitter and receiver have two dipole antenna elements each. The BER vs. SNR curves are
plotted under different correlation and coupling scenarios. To run this example, you need Antenna
Toolbox™.

System Parameters

A QPSK modulated Alamouti OSTBC is simulated over a 2x2 quasi-static frequency-flat Rayleigh
channel [ 1 on page 8-0  ]. The system operates at 2.4 GHz. The SNR range to be simulated is 0 to
10 dB.

fc = 2.4e9;         % Center frequency
Nt = 2;             % Number of Tx antennas
Nr = 2;             % Number of Rx antennas
blkLen = 2;         % Alamouti code block length
snr = 0:10;         % SNR range
maxNumErrs = 3e2;   % Maximum number of errors
maxNumBits = 5e4;   % Maximum number of bits

Create objects to perform QPSK modulation and demodulation, Alamouti encoding and combining,
AWGN channel as well as BER calculation.

qpskMod = comm.QPSKModulator;
qpskDemod = comm.QPSKDemodulator; 
alamoutiEnc = comm.OSTBCEncoder( ...
    'NumTransmitAntennas', Nt);
alamoutiDec = comm.OSTBCCombiner( ...
    'NumTransmitAntennas', Nt, ...
    'NumReceiveAntennas',  Nr);
awgnChanNC = comm.AWGNChannel( ... % For no coupling case
    'NoiseMethod', 'Signal to noise ratio (SNR)',...
    'SignalPower', 1);
berCalcNC = comm.ErrorRate;       % For no coupling case

% Clone objects for mutual coupling case 
awgnChanMC = clone(awgnChanNC); 
berCalcMC  = clone(berCalcNC);

Antenna Arrays and Coupling Matrices

A two-element resonant dipole array is used at both transmit (Tx) and receive (Rx) side. At Tx, the
dipoles are spaced a half-wavelength apart. At Rx, the spacing is a tenth of a wavelength.

txSpacing = 0.5;
rxSpacing = 0.1;
lambda = physconst('lightspeed')/fc;
antElement = dipole( ...
    'Length', lambda/2, ...
    'Width',  lambda/100);
txArray = linearArray( ...
    'Element',        antElement,...
    'NumElements',    Nt,...
    'ElementSpacing', txSpacing*lambda);
rxArray = linearArray( ...
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    'Element',        antElement,...
    'NumElements',    Nr,...
    'ElementSpacing', rxSpacing*lambda);

The coupling matrix is calculated based on a circuit model of the array as per [ 2 on page 8-0  ]. The
s-parameter calculation is performed for the transmit and receive arrays and from this the impedance
matrix representation of the array is derived.

txMCMtx = helperCalculateCouplingMatrix(txArray, fc, [1 Nt]);
rxMCMtx = helperCalculateCouplingMatrix(rxArray, fc, [1 Nr]);

Spatial Correlation Matrices

The transmit and receive spatial correlation matrices capture the propagation environment of the
channel. Without coupling, it is assumed that the two elements at Tx are uncorrelated and the two
elements at Rx have high correlation. The combined/overall correlation matrix for the whole channel
is their Kronecker product.

txCorrMtx = eye(2);
rxCorrMtx = [1 0.9; 0.9 1];
combCorrMtx = kron(txCorrMtx, rxCorrMtx);

With coupling, we use the approach in [ 3 on page 8-0  ] to modify the Tx and Rx correlation
matrices by pre and post-multiplying them by the corresponding coupling matrices. This is valid
under the assumption that the correlation and coupling can be modeled independently.

txMCCorrMtx = txMCMtx * txCorrMtx * txMCMtx';
rxMCCorrMtx = rxMCMtx * rxCorrMtx * rxMCMtx';

The combined spatial correlation with coupling is kron(txMCCorr, rxMCCorr). Alternatively, we
can treat the Tx/Rx coupling matrix as being "absorbed" into the Tx/Rx correlation matrix and derive
the combined correlation matrix as follows:

txSqrtCorrMtx = txMCMtx * sqrtm(txCorrMtx);
rxSqrtCorrMtx = rxMCMtx * sqrtm(rxCorrMtx);
combMCCorrMtx = kron(txSqrtCorrMtx, rxSqrtCorrMtx);
combMCCorrMtx = combMCCorrMtx * combMCCorrMtx';

MIMO Channel Modeling

Create two comm.MIMOChannel objects to simulate the 2x2 MIMO channels with and without
coupling. The combined spatial correlation matrix is assigned in each case. The
MaximumDopplerShift property of the objects is set to 0 to model a quasi-static channel.

mimoChanNC = comm.MIMOChannel( ...  % For no coupling case 
    'MaximumDopplerShift',             0, ...
    'SpatialCorrelationSpecification', 'Combined', ...
    'SpatialCorrelationMatrix',        combCorrMtx,...
    'PathGainsOutputPort',             true);

% Clone objects for mutual coupling case 
mimoChanMC = clone(mimoChanNC);
mimoChanMC.SpatialCorrelationMatrix = combMCCorrMtx;

Simulations

Simulate the QPSK modulated Alamouti code for each SNR value with and without antenna coupling.
One Alamouti code is simulated through the MIMO channel in each iteration. To model a quasi-static
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channel, we reset the comm.MIMOChannel object to obtain a new set of channel gains for each code
transmission (iteration).

% Set up a figure to visualize BER results
h1 = figure; grid on; hold on;
ax = gca;
ax.YScale = 'log';
xlim([snr(1), snr(end)]); ylim([1e-3 1]);
xlabel('SNR (dB)'); ylabel('BER'); 
h1.NumberTitle = 'off';
h1.Name = 'Orthogonal Space-Time Block Coding';
h1.Renderer = 'zbuffer';
title('Alamouti-coded 2x2 System - High Coupling, High Correlation');

s = rng(108);  % For repeatability
[berNC, berMC] = deal(zeros(3,length(snr)));

% Loop over SNR values
for idx = 1:length(snr)
    awgnChanNC.SNR = snr(idx); 
    awgnChanMC.SNR = snr(idx); 
    reset(berCalcNC); 
    reset(berCalcMC);    
    
    while min(berNC(2,idx),berMC(2,idx)) <= maxNumErrs && (berNC(3,idx) <= maxNumBits)    
        % Generate random data
        txData = randi([0 3], blkLen, 1);
        
        % Perform QPSK modulation and Alamouti encoding
        txSig = alamoutiEnc(qpskMod(txData)); 
        
        % Pass through MIMO channel
        reset(mimoChanNC); reset(mimoChanMC);
        [chanOutNC, estChanNC] = mimoChanNC(txSig);
        [chanOutMC, estChanMC] = mimoChanMC(txSig);
        
        % Add AWGN
        rxSigNC = awgnChanNC(chanOutNC);
        rxSigMC = awgnChanMC(chanOutMC);
        
        % Perform Alamouti decoding with known channel state information
        decSigNC = alamoutiDec(rxSigNC, squeeze(estChanNC));
        decSigMC = alamoutiDec(rxSigMC, squeeze(estChanMC));
                        
        % Perform QPSK demodulation 
        rxDataNC = qpskDemod(decSigNC);
        rxDataMC = qpskDemod(decSigMC);
        
        % Update BER
        berNC(:, idx) = berCalcNC(txData, rxDataNC);
        berMC(:, idx) = berCalcMC(txData, rxDataMC);
    end 

    % Plot results
    semilogy(snr(1:idx), berNC(1,1:idx), 'r*');
    semilogy(snr(1:idx), berMC(1,1:idx), 'bo');
    legend({'Channel Without Coupling', 'Channel With Coupling'});
    drawnow;
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end

% Perform curve fitting
fitBERNC = berfit(snr, berNC(1,:));
fitBERMC = berfit(snr, berMC(1,:));
semilogy(snr, fitBERNC, 'r', snr, fitBERMC, 'b');
legend({'Channel Without Coupling', 'Channel With Coupling'});

rng(s); % Restore RNG

Further Exploration

The effect of correlation and mutual coupling on the BER performance can be further studied by
modifying the correlation coefficient and/or by changing the spacing between the elements. The
smaller the spacing is, the higher the coupling is. Similar to what has been done above for high
correlation (0.9) and high coupling (spacing = 0 . 1λ) at Rx, we now show the BER vs. SNR results for
low correlation (0.1) and/or low coupling (spacing = 0 . 5λ).

• High Coupling (spacing = 0 . 1λ), Low Correlation (0.1)

8 Communications Toolbox Featured Examples

8-220



• Low Coupling (spacing = 0 . 5λ), High Correlation (0.9)
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• Low Coupling (spacing = 0 . 5λ), Low Correlation (0.1)

8 Communications Toolbox Featured Examples

8-222



Conclusion

The simulation results are similar to those reported in [ 1 on page 8-0  ]. A spacing of 0 . 5λ has a
negligible impact on BER under both high and low correlation conditions. For the case with high
coupling, i.e., 0 . 1λ element spacing, the results indicate that depending on the correlation
conditions, the BER could be either higher or lower than if coupling were not considered.

Appendix

This example uses the following helper functions:

• helperCalculateCouplingMatrix.m
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Concatenated OSTBC with TCM
This example shows an orthogonal space-time block code (OSTBC) concatenated with trellis-coded
modulation (TCM) for information transmission over a multiple-input multiple-output (MIMO) channel
with 2 transmit antennas and 1 receive antenna. The example uses communications System objects™
to simulate this system.

Introduction

OSTBCs [ 1 ], [ 2 ] are an attractive technique for MIMO wireless communications. They exploit full
spatial diversity order and enjoy symbol-wise maximum likelihood (ML) decoding. However, they offer
no coding gain. The combiner for OSTBC at the receiver side provides soft information of the
transmitted symbols, which can be utilized for decoding or demodulation of an outer code.

TCM [ 3 ] is a bandwidth efficient scheme that integrates coding and modulation to provide a large
coding gain. Concatenating TCM with an inner code will usually offer an improved performance.

This example illustrates the advantages of an OSTBC and TCM concatenation scheme: the spatial
diversity gain offered by OSTBC and the coding gain offered by TCM. For comparison, two reference
systems containing only TCM or OSTBC are also provided. The diversity and coding gains of the
concatenation scheme over the reference models can be clearly observed from the simulation results.
More discussions about concatenating OSTBC and TCM can be found in, for example, [ 4 ], [ 5 ] and
references therein.

The configureTCMOSTBCDemo.m script creates System objects used to simulate the concatenated
OSTBC system. It also initializes some simulation parameters.

% Trellis structure of the TCM modulator
trellis = poly2trellis([2, 3], [1, 2, 0; 4, 1, 2]);

% Create System objects of the concatenated OSTBC system and set simulation
% parameters such as SNR and frame length.
configureTCMOSTBCDemo

PSK TCM Modulator and Demodulator

The PSK TCM modulator System object modulates the random message data to a PSK constellation
that has unit average energy. The TrellisStructure property accepts a MATLAB® structure to specify
the trellis of the TCM. The ModulationOrder property specifies the size of the PSK constellation. This
example uses the Ungerboeck TCM scheme for 8-PSK constellation with 8 trellis states [ 3 ], and sets
the corresponding TrellisStructure property to the result of poly2trellis([2 3], [1 2 0; 4 1 2]). This
object has an output length of 50, as every two input bits produce one symbol.

The PSK TCM demodulator System object uses the Viterbi algorithm for TCM to decode the signals
from the OSTBC combiner. The example sets the TerminationMethod property to 'Truncated';
therefore treats each frame independently. The example also sets the TracebackDepth property to 30,
which compared to the constraint length of the TCM, is long enough to ensure an almost lossless
performance.

psktcmMod = comm.PSKTCMModulator(trellis, ...
                'TerminationMethod', 'Truncated');

psktcmDemod = comm.PSKTCMDemodulator(trellis, ...
                'TerminationMethod', 'Truncated', ...
                'TracebackDepth', 30, ...
                'OutputDataType', 'logical');
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Orthogonal Space-Time Block Codes (OSTBC)

The OSTBC encoder System object encodes the information symbols from the TCM Encoder by using
the Alamouti code [ 1 ] for 2 transmit antennas. The output of this object is a 50x2 matrix, where
entries on each column correspond to the data transmitted from one antenna.

The OSTBC combiner System object uses a single antenna and decodes the received signal utilizing
the channel state information (CSI). The output of the step method of this object represents the
estimates of the transmitted symbols, which are then fed into the PSK TCM demodulator. In this
example, the CSI is assumed perfectly known at the receiver side.

ostbcEnc = comm.OSTBCEncoder;
ostbcComb = comm.OSTBCCombiner;

2x1 MIMO Fading Channel

The 2x1 MIMO fading channel System object simulates the spatially independent flat Rayleigh fading
channel from the 2 transmit antennas to the 1 receive antenna.

The example sets the maximumDopplerShift property of the channel object to 30. The reason for
using this value is to make the MIMO channel behave like a quasi-static fading channel, i.e., it keeps
constant during one frame transmission and varies along multiple frames. The example sets the
PathGainsOutputPort property to true to use the channel path gain values as perfect estimates of CSI.
The example also sets the RandomStream property to 'mt19937ar with seed' so that the object uses a
self-contained random number generator to generate repeatable channel coefficients. The 2x1 MIMO
channel has normalized path gains.

mimoChan = comm.MIMOChannel(...
                'SampleRate', 1/Tsamp, ...
                'MaximumDopplerShift', maxDopp, ...
                'SpatialCorrelationSpecification', 'None', ...
                'NumReceiveAntennas', 1, ...
                'RandomStream', 'mt19937ar with seed', ...
                'PathGainsOutputPort', true);

Concatenated OSTBC with TCM

This section of the code calls the processing loop for a concatenated OSTBC system. The main loop
processes the data frame-by-frame, where the transmitter modulates the random data using an 8-PSK
TCM modulator and then applies Alamouti coding. The two transmitted signals from the OSTBC
encoder pass through the 2x1 MIMO Rayleigh fading channel and are also impaired by AWGN. The
OSTBC combiner uses one receive antenna and provides soft inputs to the 8-PSK TCM demodulator.
The example compares the output of the demodulator with the generated random data to obtain
frame error rate (FER).

Stream Processing

fer = zeros(3,1);
while (fer(3) < maxNumFrms) && (fer(2) < maxNumErrs)
  data      = logical(randi([0 1], frameLen, 1)); % Generate data
  modData   = psktcmMod(data);                    % Modulate
  txSignal  = ostbcEnc(modData);                  % Apply Alamouti coding
  [chanOut, chanEst] = mimoChan(txSignal);        % 2x1 fading channel
  rxSignal  = awgnChan(chanOut);                  % Add receiver noise
  modDataRx = ostbcComb(rxSignal, ...
                   squeeze(chanEst));             % Decode
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  dataRx    = psktcmDemod(modDataRx);             % Demodulate
  frameErr  = any(dataRx - data);                 % Check frame error
  fer       = FERData(false, frameErr);           % Update frame error rate
end

The step method of the error rate measurement System object, FERData, outputs a 3-by-1 vector
containing updates of the measured FER value, the number of errors, and the total number of frame
transmissions. Display FER values.

frameErrorRate = fer(1)

frameErrorRate =

    0.1481

TCM over Flat Fading Channel

This section of the example simulates the TCM in the previous concatenation scheme over a single-
input single-output (SISO) flat Rayleigh fading channel, without space-time coding. The fading
channel has the same specification as one subchannel of the 2x1 MIMO fading channel in the
previous system. So this section of the example sets the NumTransmitAntennas property of the fading
channel System object to 1 after releasing it. This section of the example also sets the SignalPower
property of the AWGN channel System object to 1, as there is only one symbol transmitted per symbol
period.

Initialize the processing loop

release(mimoChan);
mimoChan.NumTransmitAntennas = 1;
awgnChan.SignalPower = 1;
reset(FERData)
fer = zeros(3,1);

Stream Processing Loop

while (fer(3) < maxNumFrms) && (fer(2) < maxNumErrs)
  data      = logical(randi([0 1], frameLen, 1)); % Generate data
  modData   = psktcmMod(data);                    % Modulate
  [chanOut, chanEst] = mimoChan(modData);         % SISO fading channel
  rxSignal  = awgnChan(chanOut);                  % Add receiver noise
  modDataRx = (rxSignal.*conj(chanEst)) / ...
              (chanEst'*chanEst);                 % Equalize
  dataRx    = psktcmDemod(modDataRx);             % Demodulate
  frameErr  = any(dataRx - data);                 % Check frame error
  fer       = FERData(false, frameErr);           % Update frame error rate
end

OSTBC over 2x1 Flat Rayleigh Fading Channel

This section of the example replaces the TCM in the previous concatenation scheme by a QPSK
modulation so that both systems have the same symbol (frame) rate. It uses the same 2x1 flat
Rayleigh fading channel as in the TCM-OSTBC concatenation model. The QPSK modulator System
object, qpskMod, maps the information bits to a QPSK constellation and the QPSK demodulator
System object, QPSKDemod, demodulates the signals from the OSTBC Combiner.

Initialize the processing loop
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release(mimoChan);
mimoChan.NumTransmitAntennas = 2;
awgnChan.SignalPower = 2;
reset(FERData)
fer = zeros(3,1);

Stream Processing Loop

while (fer(3) < maxNumFrms) && (fer(2) < maxNumErrs)
  data      = logical(randi([0 1], frameLen, 1)); % Generate data
  modData   = qpskMod(data);                      % Modulate
  txSignal  = ostbcEnc(modData);                  % Apply Alamouti coding
  [chanOut, chanEst] = mimoChan(txSignal);        % 2x1 fading channel
  rxSignal  = awgnChan(chanOut);                  % Add receiver noise
  modDataRx = ostbcComb(rxSignal, ...
                   squeeze(chanEst));             % Decode
  dataRx    = qpskDemod(modDataRx);               % Demodulate
  frameErr  = any(dataRx - data);                 % Check frame error
  fer       = FERData(false, frameErr);           % Update frame error rate
end

You can add a for-loop around the previous processing loops to run simulations for a set of SNR
values. Simulations were run offline for SNR values of (10:2:24) dB, target number of errors equal to
1000, and maximum number of transmissions equal to 5e6. The following figure shows the results
from this simulation.
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Summary

This example utilized several System objects to simulate a concatenated OSTBC with TCM over a 2x1
flat Rayleigh fading channel. This base system was modified to model a TCM system over a SISO flat
fading channel and an OSTBC system over the same 2x1 flat Rayleigh fading channel. System
performance was measured using the FER curves obtained with the error rate measurement System
object. This example showed that the concatenation scheme provides a significant diversity gain over
the TCM scheme and about 2dB coding gain over the Alamouti code.

Appendix

This example uses the following script and helper function:

• configureTCMOSTBCDemo.m
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Concatenated OSTBC with TCM in Simulink
This model shows an orthogonal space-time block code (OSTBC) concatenated with trellis-coded
modulation (TCM) for information transmission over a multiple-input multiple-output (MIMO) channel
with 2 transmit antennas and 1 receive antenna.

Introduction

OSTBCs [ 1 ], [ 2 ] are an attractive technique for MIMO wireless communications. They exploit full
spatial diversity order and enjoy symbol-wise maximum likelihood (ML) decoding. However, they offer
no coding gain. The combiner for OSTBC at the receiver side provides soft information of the
transmitted symbols, which can be utilized for decoding or demodulation of an outer code.

TCM [ 3 ] is a bandwidth efficient scheme that integrates coding and modulation to provide a large
coding gain. Concatenating TCM with an inner code will usually offer an improved performance.

This example illustrates the advantages of an OSTBC and TCM concatenation scheme: the spatial
diversity gain offered by OSTBC and the coding gain offered by TCM. For comparison, two reference
models containing only TCM or OSTBC are also provided. The diversity and coding gains of the
concatenation scheme over the reference models can be clearly observed from the simulation results.
More discussions about concatenating OSTBC and TCM can be found in, for example, [ 4 ], [ 5 ] and
references therein.

Structure of the Example

The individual tasks performed by the model include:
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Random Data Generation

The Bernoulli Binary Generator block produces the information source for this simulation. The block
generates a frame of 100 random bits. The Samples per frame parameter determines the length of
the output frame (100 in this case).

Trellis-Coded Modulation (TCM)

The M-PSK TCM Encoder block modulates the message data from the Bernoulli Binary Generator to a
PSK constellation that has unit average energy. The Trellis structure parameter accepts a
MATLAB® structure to specify the trellis of the TCM. The M-ary number parameter specifies the
size of the PSK constellation. In this example, we use the Ungerboeck TCM scheme for 8-PSK
constellation with 8 trellis states [ 3 ]. Correspondingly, the Trellis structure parameter is set to
poly2trellis([2 3], [1 2 0; 4 1 2]). This block has an output frame length of 50 as every
two input bits produce one symbol.

The M-PSK TCM Decoder block uses the Viterbi algorithm for TCM to decode the signals from the
OSTBC Combiner. The Operation mode parameter is set to Truncated to treat each frame
independently. The Traceback depth parameter is set to 30 that, compared with the constraint
length of the TCM, is long enough to ensure an almost lossless performance.

Orthogonal Space-Time Block Codes (OSTBC)

The OSTBC Encoder block encodes the information symbols from the TCM Encoder by using the
Alamouti code [ 1 ] for 2 transmit antennas. The output of this block is a 50x2 matrix whose entries
on each column correspond to the data transmitted over one antenna.

The OSTBC Combiner block combines the received signals from the receive antenna with the channel
state information (CSI) to output the estimates of the transmitted symbols, which are then fed into
the M-PSK TCM Decoder. In this example, the CSI is assumed perfectly known at the receiver side.

2x1 MIMO Channel

The MIMO Fading Channel block simulates a 2x1 frequency-flat Rayleigh fading channel. The Sample
rate (Hz) parameter is set to 500000 that is calculated based on the input signal length and model
sample time. The Maximum Doppler shift (Hz) parameter is set to 30. The reason for using this
value is to make the MIMO channel behave like a quasi-static fading channel, i.e., it keeps constant
during one frame transmission and varies along multiple frames.

Receiver Noise

The AWGN Channel block adds white Gaussian noises at the receiver side. The Mode parameter is set
to Signal to noise ratio (SNR) mode and the Input signal power, referenced to 1
ohm (watts) parameter is set to 2 because the PSK constellation for TCM has unit average energy
and the path gains of the MIMO channel are normalized.

Frame Error Rate (FER) Calculation

The Frame Error Rate (FER) Calculation subsystem compares the decoded bits with the original
source bits per frame to detect errors and dynamically updates the FER along the simulation. The
output of this subsystem is a three-element vector containing the FER, the number of error frames
observed and the number of frames processed. This vector is from the Error Rate Calculation block
and also saved as a MATLAB® workspace variable FER_Data to ease the simulation for multiple SNR
values described below.
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The Stop simulation parameter is checked to control the duration of the simulation. The
simulation stops upon detecting a target number of error frames (specified by the Target number
of errors parameter) or a maximum number of frames (specified by the Maximum number of
symbols parameter), whichever comes first.

We now briefly describe the two reference models used for comparison.

TCM over Flat Rayleigh Fading Channel

The model commtcm.slx simulates the TCM in the above concatenation scheme over a single-input
single-output (SISO) flat Rayleigh fading channel. No space-time coding is used. The SISO Fading
Channel block has the same specification as one subchannel of the 2x1 MIMO channel in the above
model. The Input signal power, referenced to 1 ohm (watts) parameter of the AWGN
Channel block is set to 1 as there is only one symbol transmitted per symbol period.
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Channel Equalizer

The Channel Equalizer subsystem compensates the fading channel effect at the receiver side and its
output is fed into the M-PSK TCM Decoder block for decoding. Note that the channel is flat Rayleigh
fading in this model.

OSTBC over 2x1 Flat Rayleigh Fading Channel

The model commostbc.slx replaces the TCM in the above concatenation scheme by a QPSK
modulation so that both the models have the same symbol (frame) rate. It uses the same 2x1 MIMO
Fading Channel block as in the TCM-OSTBC concatenation model. The QPSK Modulator Baseband
block maps the information bits to a QPSK constellation and the QPSK Demodulator Baseband block
demodulates the signals from the OSTBC Combiner.
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Performance Results

Creating a FER vs. SNR performance curve requires simulations for multiple SNR values, which can
be performed by using the sim command. We start by defining some simulation parameters

      SNRRange = 10:2:24;
      maxNumErrs = 1e3;  % Number of frame errors
      maxNumFrms = 5e6;  % Number of frames processed

and then initialize a figure in order to visualize the performance results.

      fig = figure;
      grid on;
      hold on;
      ax = fig.CurrentAxes;
      ax.YScale = 'log';
      xlim([SNRRange(1), SNRRange(end)]);
      ylim([1e-4 1]);

      xlabel('SNR (dB)');
      ylabel('FER');
      fig.NumberTitle = 'off';
      fig.Rrenderer = 'zbuffer';
      fig.Name = 'Concatenated OSTBC with TCM';
      title('Concatenated OSTBC with TCM');

To simulate the OSTBC-TCM concatenated model, we execute the following commands that run the
simulation multiple times and plot the results.

      FERTCMOSTBC = zeros(length(SNRRange), 3);
      for idx = 1:length(SNRRange)
          SNR = SNRRange(idx);
          sim('commtcmostbc');
          FERTCMOSTBC(idx, :) = FER_Data;
          h1 = semilogy(SNRRange(1:idx), FERTCMOSTBC(1:idx, 1), 'r+');
      end
      fitFERTCMOSTBC = berfit(SNRRange, FERTCMOSTBC(:, 1)');
      semilogy(SNRRange, fitFERTCMOSTBC, 'r');

Similarly, we can simulate the two reference models via executing

      FERTCM = zeros(length(SNRRange), 3);
      for idx = 1:length(SNRRange)
          SNR = SNRRange(idx);
          sim('commtcm');
          FERTCM(idx, :) = FER_Data;
          h2 = semilogy(SNRRange(1:idx), FERTCM(1:idx, 1), 'gp');
      end
      fitFERTCM = berfit(SNRRange, FERTCM(:, 1)');
      semilogy(SNRRange, fitFERTCM, 'g');

      FEROSTBC = zeros(length(SNRRange), 3);
      for idx = 1:length(SNRRange)
          SNR = SNRRange(idx);
          sim('commostbc');
          FEROSTBC(idx, :) = FER_Data;
          h3 = semilogy(SNRRange(1:idx), FEROSTBC(1:idx, 1), 'bo');
      end

 Concatenated OSTBC with TCM in Simulink

8-233



      fitFEROSTBC = berfit(SNRRange, FEROSTBC(:, 1)');
      semilogy(SNRRange, fitFEROSTBC, 'b');

      legend([h1, h2, h3], 'TCM + OSTBC', 'TCM', 'OSTBC');

The FER vs. SNR performance result is presented in the following figure.

As expected, the concatenation scheme provides a significant diversity gain over the TCM scheme
and about 2dB coding gain over the Alamouti code.

Further Exploration

Upon loading the simulation models, variables are created in the MATLAB® workspace which can be
modified to explore the effects of different parameter settings such as Samples per frame
(variable frameLen), Trellis structure (variable trellis) or Maximum Doppler shift (Hz)
(variable maxDopp) on the system performance.
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BER Performance of Different Equalizers
This example shows the BER performance of several types of equalizers in a static channel with a null
in the passband. The example constructs and implements a linear equalizer object and a decision
feedback equalizer (DFE) object. It also initializes and invokes a maximum likelihood sequence
estimation (MLSE) equalizer. The MLSE equalizer is first invoked with perfect channel knowledge,
then with a straightforward but imperfect channel estimation technique.

As the simulation progresses, it updates a BER plot for comparative analysis between the equalization
methods. It also shows the signal spectra of the linearly equalized and DFE equalized signals. It also
shows the relative burstiness of the errors, indicating that at low BERs, both the MLSE algorithm and
the DFE algorithm suffer from error bursts. In particular, the DFE error performance is burstier with
detected bits fed back than with correct bits fed back. Finally, during the "imperfect" MLSE portion of
the simulation, it shows and dynamically updates the estimated channel response.

To experiment with this example, you can change such parameters as the channel impulse response,
the number of equalizer tap weights, the recursive least squares (RLS) forgetting factor, the least
mean square (LMS) step size, the MLSE traceback length, the error in estimated channel length, and
the maximum number of errors collected at each Eb/No value.

Code Structure

This example relies on these helper scripts and functions to perform link simulations over a range of
Eb/No values.

eqber_adaptive.m - a script that runs link simulations for linear and DFE equalizers

eqber_mlse.m - a script that runs link simulations for ideal and imperfect MLSE equalizers

eqber_siggen.m - a script that generates a binary phase shift keying (BPSK) signal with no pulse
shaping, then processes it through the channel and adds noise

eqber_graphics.m - a function that generates and updates plots showing the performance of the
linear, DFE, and MLSE equalizers.

The scripts eqber_adaptive and eqber_mlse illustrate how to use adaptive and MLSE equalizers
across multiple blocks of data such that state information is retained between data blocks.

Signal and Channel Parameters

Set parameters related to the signal and channel. Use BPSK without any pulse shaping, and a 5-tap
real-valued symmetric channel impulse response. (See section 10.2.3 of Digital Communications by J.
Proakis, 4th Ed., for more details on the channel.) Set initial states of data and noise generators. Set
the Eb/No range.

% System simulation parameters
Fs = 1;           % sampling frequency (notional)
nBits = 2048;     % number of BPSK symbols per vector
maxErrs = 200;    % target number of errors at each Eb/No
maxBits = 1e6;    % maximum number of symbols at each Eb/No

% Modulated signal parameters
M = 2;                     % order of modulation
Rs = Fs;                   % symbol rate
nSamp = Fs/Rs;             % samples per symbol
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Rb = Rs*log2(M);           % bit rate

% Channel parameters
chnl = [0.227 0.460 0.688 0.460 0.227]';  % channel impulse response
chnlLen = length(chnl);                   % channel length, in samples
EbNo = 0:14;                              % in dB
BER = zeros(size(EbNo));                  % initialize values

% Create BPSK modulator
bpskMod = comm.BPSKModulator;

% Specify a seed for the random number generators to ensure repeatability.
rng(12345)

Adaptive Equalizer Parameters

Set parameter values for the linear and DFE equalizers. Use a 31-tap linear equalizer, and a DFE with
15 feedforward and feedback taps. Use the recursive least squares (RLS) algorithm for the first block
of data to ensure rapid tap convergence. Use the least mean square (LMS) algorithm thereafter to
ensure rapid execution speed.

% Linear equalizer parameters
nWts = 31;               % number of weights
algType = 'RLS';         % RLS algorithm
forgetFactor = 0.999999; % parameter of RLS algorithm

% DFE parameters - use same update algorithms as linear equalizer
nFwdWts = 15;            % number of feedforward weights
nFbkWts = 15;            % number of feedback weights

MLSE Equalizer & Channel Estimation Parameters and Initial Visualization

Set the parameters of the MLSE equalizer. Use a traceback length of six times the length of the
channel impulse response. Initialize the equalizer states. Set the equalization mode to "continuous",
to enable seamless equalization over multiple blocks of data. Use a cyclic prefix in the channel
estimation technique, and set the length of the prefix. Assume that the estimated length of the
channel impulse response is one sample longer than the actual length.

% MLSE equalizer parameters
tbLen = 30;                        % MLSE equalizer traceback length
numStates = M^(chnlLen-1);         % number of trellis states
[mlseMetric,mlseStates,mlseInputs] = deal([]);
const = constellation(bpskMod);    % signal constellation
mlseType = 'ideal';                % perfect channel estimates at first
mlseMode = 'cont';                 % no MLSE resets

% Channel estimation parameters
chnlEst = chnl;         % perfect estimation initially
prefixLen = 2*chnlLen;  % cyclic prefix length
excessEst = 1;          % length of estimated channel impulse response
% beyond the true length

% Initialize the graphics for the simulation. Plot the unequalized channel
% frequency response, and the BER of an ideal BPSK system.
idealBER = berawgn(EbNo,'psk',M,'nondiff');

[hBER,hLegend,legendString,hLinSpec,hDfeSpec,hErrs,hText1,hText2, ...
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    hFit,hEstPlot,hFig,hLinFig,hDfeFig] = eqber_graphics('init', ...
    chnl,EbNo,idealBER,nBits);
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Construct RLS and LMS Linear and DFE Equalizer Objects

The RLS update algorithm is used to adapt the equalizer tap weights and reference tap is set to
center tap.

linEq = comm.LinearEqualizer('Algorithm',algType, ...
    'ForgettingFactor',forgetFactor, ...
    'NumTaps',nWts, ...
    'Constellation',const, ...
    'ReferenceTap',round(nWts/2), ...
    'TrainingFlagInputPort',true);

dfeEq = comm.DecisionFeedbackEqualizer('Algorithm',algType, ...
    'ForgettingFactor',forgetFactor, ...
    'NumForwardTaps',nFwdWts, ...
    'NumFeedbackTaps',nFbkWts, ...
    'Constellation',const, ...
    'ReferenceTap',round(nFwdWts/2), ...
    'TrainingFlagInputPort',true);

Linear Equalizer

Run the linear equalizer, and plot the equalized signal spectrum, the BER, and the burst error
performance for each data block. Note that as the Eb/No increases, the linearly equalized signal
spectrum has a progressively deeper null. This highlights the fact that a linear equalizer must have
many more taps to adequately equalize a channel with a deep null. Note also that the errors occur
with small inter-error intervals, which is to be expected at such a high error rate.

See eqber_adaptive.m for a listing of the simulation code for the adaptive equalizers.

firstRun = true;  % flag to ensure known initial states for noise and data
eqType = 'linear';
eqber_adaptive;
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Decision Feedback Equalizer

Run the DFE, and plot the equalized signal spectrum, the BER, and the burst error performance for
each data block. Note that the DFE is much better able to mitigate the channel null than the linear
equalizer, as shown in the spectral plot and the BER plot. The plotted BER points at a given Eb/No
value are updated every data block, so they move up or down depending on the number of errors
collected in that block. Note also that the DFE errors are somewhat bursty, due to the error
propagation caused by feeding back detected bits instead of correct bits. The burst error plot shows
that as the BER decreases, a significant number of errors occurs with an inter-error arrival of five bits
or less. (If the DFE equalizer were run in training mode at all times, the errors would be far less
bursty.)

For every data block, the plot also indicates the average inter-error interval if those errors were
randomly occurring.

See eqber_adaptive.m for a listing of the simulation code for the adaptive equalizers.

close(hFig(ishghandle(hFig)));

eqType = 'dfe';
eqber_adaptive;
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Ideal MLSE Equalizer, with Perfect Channel Knowledge

Run the MLSE equalizer with a perfect channel estimate, and plot the BER and the burst error
performance for each data block. Note that the errors occur in an extremely bursty fashion. Observe,
particularly at low BERs, that the overwhelming percentage of errors occur with an inter-error
interval of one or two bits.

See eqber_mlse.m for a listing of the simulation code for the MLSE equalizers.

close(hLinFig(ishghandle(hLinFig)),hDfeFig(ishghandle(hDfeFig)));

eqType = 'mlse';
mlseType = 'ideal';
eqber_mlse;
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MLSE Equalizer with an Imperfect Channel Estimate

Run the MLSE equalizer with an imperfect channel estimate, and plot the BER and the burst error
performance for each data block. These results align fairly closely with the ideal MLSE results. (The
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channel estimation algorithm is highly dependent on the data, such that an FFT of a transmitted data
block has no nulls.) Note how the estimated channel plots compare with the actual channel spectrum
plot.

See eqber_mlse.m for a listing of the simulation code for the MLSE equalizers.

mlseType = 'imperfect';
eqber_mlse;
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OFDM Synchronization
This example shows a method for digital communication with OFDM synchronization based upon the
IEEE® 802.11a™ standard. System objects™ from the Communications Toolbox are utilized to
provide OFDM modulation and demodulation and help synchronization functionality. In particular,
this example illustrates methods to address real-world wireless communication issues like carrier
frequency recovery, timing recovery, and frequency domain equalization.

Implementations

This example describes a MATLAB® implementation of OFDM synchronization, based upon the IEEE
802.11a standard [ 3 ].

Introduction

The IEEE 802.11a standard describes the transmission of an OFDM modulated signal for information
exchange between systems in local and metropolitan area networks. This example utilizes the
physical layer outlined by that standard, specifically the preamble symbols and the OFDM grid
structure.

The purpose of this example is:

• To model a general OFDM wireless communication system that is able to successfully recover a
message, which was corrupted by various simulated channel impairments.

• To illustrate the use of key Communications Toolbox™ tools for OFDM system design and OFDM
symbol synchronization

• To illustrate the performance benefits of MATLAB Coder™

Initialization

Adjustable transmitter parameters including the payload message in each frame that consists of
several OFDM symbols and the number of transmitted frames.

message = 'Live long and prosper, from the Communications Toolbox Team at MathWorks!';
numFrames = 1e2;

% Adjustable channel parameters
EbN0dB = 12; % Channel noise level (dB)
frequencyOffset = 1e4; % Frequency offset (Hz)
phaseOffset = 15; % Phase offset (Degrees)
delay = 80; % Initial sample offset for entire data stream (samples)

% Display recovered messages
displayRecoveredMsg = false;

% Enable scope visualizations
useScopes = true;

% Check for MATLAB Coder license
useCodegen = checkCodegenLicense;
if useCodegen
  fprintf(['--MATLAB Coder license found. ',...
    'Transmitter and receiver functions will be compiled for ',...
    'additional simulation acceleration.--\n']);
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end

% By default the transmitter and receiver functions will be recompiled
% between every run, which is not always necessary. To disable receiver
% compilation, change "compileIt" to false.
compileIt = useCodegen;

--MATLAB Coder license found. Transmitter and receiver functions will be compiled for additional simulation acceleration.--

Code Architecture for the System

This example models a digital communication system based upon the IEEE 802.11a standard [ 3 ].
The system is broken down into four functions: generateOFDMSignal, applyOFDMChannel,
receiveOFDMSignal, and calculateOFDMBER.

1) generateOFDMSignal: set up and step an OFDMTransmitter System object. The object converts
the payload message into a bit stream which is first PSK modulated, then OFDM modulated, and
finally prepended by preamble OFDM symbols to form an individual frame. The transmitter repeats
this frame numFrames times.

2) applyOFDMChannel: models the channel with carrier offset, timing offset, and additive white
Gaussian noise (AWGN).

3) receiveOFDMSignal: set up and step an OFDMReceiver System object. The object models a series
of components at the receiver, including timing recovery, carrier frequency recovery, channel
equalization, and demodulation. The object can also be configured to show multiple scopes to
visualize the receiver processing. The output of the OFDMReceiver object's step method is the
decoded bit stream from those detected frames.

4) calculateOFDMBER: calculate the system frame error rate (FER) and bit error rate (BER) based on
the original payload message in each frame and the bit output from the OFDMReceiver System
object.

Description of the Individual Components and Algorithms

Transmitter

The OFDMTransmitter System object generates an OFDM signal based upon the IEEE 802.11a
standard with a supplied ASCII payload. Each transmission frame is made up of several OFDM
symbols, including preamble and data symbols. Identical frames are repeated by the transmitter
based on the value supplied. Frames are padded to fill the OFDM grid when necessary.

Channel

This component simulates the effects of over-the-air transmission. It degrades the transmitted signal
with both phase and frequency offset, a delay to mimic channel delay between transmitter and
receiver, and AWGN. The noise level of the AWGN is given in dB.

Receiver

This OFDMReceiver System object recovers the original transmitted payload message. It is divided
into four primary operations in this order:

1) Timing Recovery: This component is responsible for determining the sample location of the start of
a given frame. More specifically, it utilizes a known preamble sequence in the received frame found
through a cross-correlation. The cross-correlated data will contain a specific peak arrangement/
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spacing which allows for identification. The preamble itself is designed to produce this specific shape
in the time domain. This identification method is based upon [ 1 ]. The locatePreamble method of the
object, which is responsible for this operation, uses a normalized minimum peak height, and a
minimum number of required peaks to provide a possible preamble match.

2) Carrier Frequency Recovery: Frequency estimation is accomplished by calculating the phase
difference in the time domain between halves of the long portion of the 802.11a preamble. This phase
difference Phi is then converted to a frequency offset. This is a common technique originally
published by Schmidl and Cox [ 2 ]. This implementation of the phase measurement assumes that the
true offset is within pi, or one frequency bin of the FFT. In the case of 802.11a a bin is 312.5kHz wide.

3) Frequency Domain Equalization: Since the frequency estimate can be inaccurate, additional phase
rotation will exist at the subcarrier level of the OFDM symbol. As well as phase rotations, channel
fading will also affect the received signal. Both of these impairments are corrected by a frequency
domain equalizer. The equalizer has two stages, utilizing both preamble and pilot data. First, the
received payload is equalized through the use of taps generated from the received long preamble
samples. Then the pilot subcarriers are extracted, and interpolated in frequency to provide a full
channel estimate. The payload is next equalized using these pilot estimates.

4) Data Decoder: Finally the OFDM subcarriers are demodulated and then, PSK demodulated into
bits, from which the original payload message can be recovered.

BER Calculation

This component calculates the system FER and BER based on the original payload message and the
decoded bit stream from the detected frames at the receiver. The undetected frames are not counted
in the calculation.

Display of Recovered Message

The recovered message at the receiver is displayed for each detected frame. Since the original
message length is not sent to the receiver, the padded bits in each frame are also recovered into
characters and displayed. So you may see up to 7 meaningless characters at the end of each
recovered message.

Scopes

• constellation diagrams showing the received signal before and after frequency domain
equalization

• vector plot of the equalizer taps used for a given frame

• a spectrum analyzer displaying detected frames of data

• a time plot displaying the start of detected frames

• a time plot displaying the frequency estimate of the transmitter's carrier offset for detected
frames

OFDM Synchronization Test Overview

A large data vector is regenerated for a given EbN0 value by the generateOFDMSignal function. This
data is then passed through the applyOFDMChannel function which introduces several common
channel impairments. Finally the data is passed to the receiver for recovery. The receiveOFDMSignal
function operates by processing data on a frame-by-frame basis. This processing mechanism is self-
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contained for performance benefits when using code generation and for code simplicity. This script by
default generates code for the transmitter and receiver functions; this is accomplished by using the
codegen command provided by the MATLAB Coder™ product. The codegen command translates
MATLAB® functions to a C++ static or dynamic library, executable, or to a MEX file, producing a
code for accelerated execution. The generated C code runs several times faster than the original
MATLAB code.

During operation, the receiver will display a series of plots illustrating certain synchronization results
and effects on the signal.

% Compile transmitter with MATLAB Coder
if compileIt
    codegen generateOFDMSignal -args {coder.Constant(message), coder.Constant(numFrames)}
end

% Generate transmission signal
if useCodegen
    [txSig, frameLen] = generateOFDMSignal_mex(message, numFrames);
else
    [txSig, frameLen] = generateOFDMSignal(message, numFrames);
end

% Pass signal through channel
rxSig = applyOFDMChannel(txSig, EbN0dB, delay, frequencyOffset, phaseOffset);

% Compile receiver with MATLAB Coder
if compileIt
   codegen  receiveOFDMSignal -args {rxSig, coder.Constant(frameLen), coder.Constant(displayRecoveredMsg), coder.Constant(useScopes)}
end

% Recover signal
if useCodegen
    [decMsgInBits, numFramesDetected] = receiveOFDMSignal_mex(rxSig, frameLen, displayRecoveredMsg, useScopes);
else
    [decMsgInBits, numFramesDetected] = receiveOFDMSignal(rxSig, frameLen, displayRecoveredMsg, useScopes);
end

% Calculate average BER
[FER, BER] = calculateOFDMBER(message, decMsgInBits, numFramesDetected);
fprintf('\nAt EbNo = %5.2fdB, %d frames detected among the %d transmitted frames with FER = %f and BER = %f\n', ...
    EbN0dB, numFramesDetected, numFrames, FER, BER);

Code generation successful.

Code generation successful.

At EbNo = 12.00dB, 100 frames detected among the 100 transmitted frames with FER = 0.010000 and BER = 0.000098
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Summary

This example utilizes several MATLAB System objects to simulate digital communication with OFDM
over an AWGN channel. It shows how to model several parts of the OFDM system such as modulation,
frequency estimation, timing recovery, and equalization. The simulation also displays information
about the operation of the synchronization algorithms through a series of plots. This example also
utilizes code generation, allowing the simulation to run several times faster than the original MATLAB
code.

Appendix

The following System objects are used in this example:

• OFDMTransmitter.m
• OFDMReceiver.m
• OFDMScopes.m

The following helper functions are used in this example:

• generateOFDMSignal.m
• applyOFDMChannel.m
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• receiveOFDMSignal.m
• processOFDMScopes.m
• calculateOFDMBER.m
• getOFDMPreambleAndPilot.m
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QPSK Transmitter and Receiver
This example shows the implementation of a QPSK transmitter and receiver with MATLAB®. In
particular, this example illustrates methods to address real-world wireless communications issues like
carrier frequency and phase offset, timing recovery and frame synchronization. For the Simulink®
implementation of the same system, refer to the “QPSK Transmitter and Receiver in Simulink” on
page 8-262 example.

Introduction

The transmitted QPSK data undergoes impairments that simulate the effects of wireless transmission
such as addition of Additive White Gaussian Noise (AWGN), introduction of carrier frequency and
phase offset, and timing drift. To cope with these impairments, this example provides a reference
design of a practical digital receiver. The receiver includes correlation-based coarse frequency
compensation, PLL-based fine frequency compensation, PLL-based symbol timing recovery, frame
synchronization, and phase ambiguity resolution.

This example serves two main purposes:

• To model a general wireless communication system that is able to successfully recover a message,
which was corrupted by various simulated channel impairments.

• To illustrate the use of key Communications Toolbox™ synchronization components including
coarse and fine carrier frequency compensation, closed-loop timing recovery with bit stuffing and
stripping, frame synchronization and carrier phase ambiguity resolution.

Initialization

The commqpsktxrx_init.m script initializes simulation parameters and generates the structure
prmQPSKTxRx.

prmQPSKTxRx = commqpsktxrx_init %#ok<*NOPTS> % QPSK system parameters

useScopes = true;   % true if scopes are to be used
printReceivedData = false; %true if the received data is to be printed
compileIt = false;  % true if code is to be compiled
useCodegen = false; % true to run the generated mex file

prmQPSKTxRx = 

  struct with fields:

                ModulationOrder: 4
                  Interpolation: 2
                     Decimation: 1
                           Rsym: 50000
                           Tsym: 2.0000e-05
                             Fs: 100000
                     TotalFrame: 1000
                     BarkerCode: [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1]
                   BarkerLength: 13
                   HeaderLength: 26
                        Message: 'Hello world'
                  MessageLength: 16
                NumberOfMessage: 20

 QPSK Transmitter and Receiver

8-255



                  PayloadLength: 2240
                      FrameSize: 1133
                      FrameTime: 0.0227
                  RolloffFactor: 0.5000
                  ScramblerBase: 2
            ScramblerPolynomial: [1 1 1 0 1]
     ScramblerInitialConditions: [0 0 0 0]
         RaisedCosineFilterSpan: 10
                    PhaseOffset: 47
                           EbNo: 13
                FrequencyOffset: 5000
                      DelayType: 'Triangle'
                   DesiredPower: 2
                AveragingLength: 50
                   MaxPowerGain: 20
         MaximumFrequencyOffset: 6000
     PhaseRecoveryLoopBandwidth: 0.0100
     PhaseRecoveryDampingFactor: 1
    TimingRecoveryLoopBandwidth: 0.0100
    TimingRecoveryDampingFactor: 1
        TimingErrorDetectorGain: 5.4000
      PreambleDetectorThreshold: 20
                    MessageBits: [11200x1 double]
                        BerMask: [1540x1 double]

Code Architecture for the System Under Test

This example models a digital communication system using QPSK modulation. The function
runQPSKSystemUnderTest.m models this communication environment. The QPSK transceiver model
in this script is divided into the following four main components.

1) QPSKTransmitter.m: generates the bit stream and then encodes, modulates and filters it.

2) QPSKChannel.m: models the channel with carrier offset, timing offset, and AWGN.

3) QPSKReceiver.m: models the receiver, including components for phase recovery, timing recovery,
decoding, demodulation, etc.

4) QPSKScopes.m: optionally visualizes the signal using time scopes, frequency scopes, and
constellation diagrams.

Each component is modeled using a System object. To see the construction of the four main System
object components, refer to runQPSKSystemUnderTest.m.

Description of the Individual Components

Transmitter

This component generates a message using ASCII characters, converts the characters to bits, and
prepends a Barker code for receiver frame synchronization. This data is then modulated using QPSK
and filtered with a square root raised cosine filter.

Channel
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This component simulates the effects of over-the-air transmission. It degrades the transmitted signal
with both phase and frequency offset, a time-varying delay to mimic clock skew between transmitter
and receiver, and AWGN.

Receiver

This component regenerates the original transmitted message. It is divided into seven
subcomponents.

1) Automatic Gain Control: Sets its output power to a level ensuring that the equivalent gains of the
phase and timing error detectors keep constant over time. The AGC is placed before the Raised
Cosine Receive Filter so that the signal amplitude can be measured with an oversampling factor of
two. This process improves the accuracy of the estimate.

2) Coarse frequency compensation: Uses a correlation-based algorithm to roughly estimate the
frequency offset and then compensate for it. The estimated coarse frequency offset is averaged so
that fine frequency compensation is allowed to lock/converge. Hence, the coarse frequency offset is
estimated using a comm.CoarseFrequencyCompensator System object and an averaging formula;
the compensation is performed using a comm.PhaseFrequencyOffset System object.

3) Timing recovery: Performs timing recovery with closed-loop scalar processing to overcome the
effects of delay introduced by the channel, using a comm.SymbolSynchronizer System object. The
object implements a PLL to correct the symbol timing error in the received signal. The rotationally-
invariant Gardner timing error detector is chosen for the object in this example; thus, timing recovery
can precede fine frequency compensation. The input to the object is a fixed-length frame of samples.
The output of the object is a frame of symbols whose length can vary due to bit stuffing and stripping,
depending on actual channel delays.

4) Fine frequency compensation: Performs closed-loop scalar processing and compensates for the
frequency offset accurately, using a comm.CarrierSynchronizer System object. The object
implements a phase-locked loop (PLL) to track the residual frequency offset and the phase offset in
the input signal.

5) Preamble Detection: Detects the location of the known Barker code in the input using a
comm.PreambleDetector System object. The object implements a cross-correlation based algorithm
to detect a known sequence of symbols in the input.

6) Frame Synchronization: Performs frame synchronization and, also, converts the variable-length
symbol inputs into fixed-length outputs, using a FrameSynchronizer System object. The object has a
secondary output that is a boolean scalar indicating if the first frame output is valid.

7) Data decoder: Performs phase ambiguity resolution and demodulation. Also, the data decoder
compares the regenerated message with the transmitted one and calculates the BER.

Scopes

This component provides optional visualization to plot:

• A spectrum scope depicting the received signal before and after square root raised cosine
filtering,

• Constellation diagrams showing the received signal after receiver filtering, after timing recovery
and then after fine frequency compensation.

For more information about the system components, refer to the “QPSK Transmitter and Receiver in
Simulink” on page 8-262 Simulink example.
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System Under Test

The main loop in the system under test script processes the data frame-by-frame. Set the MATLAB
variable compileIt to true in order to generate code. This can be accomplished by using the
codegen command provided by the MATLAB Coder™ product. The codegen command translates
MATLAB® functions to a MEX file, producing code for accelerated execution. The generated C code
runs several times faster than the original MATLAB code. For this example, set useCodegen to true
to use the code generated by codegen instead of the MATLAB code.

The inner loop of runQPSKSystemUnderTest.m uses the four System objects previously mentioned. In
this file, there is a for-loop around the system under test to process one frame at a time.

for count = 1:prmQPSKTxRx.FrameCount
    transmittedSignal = qpskTx(); rcvdSignal =
    qpskChan(transmittedSignal, count); [RCRxSignal, timingRecSignal,
    freqRecSignal, BER] = qpskRx(rcvdSignal); % Receiver if useScopes
      runQPSKScopes(qpskScopes, rcvdSignal, RCRxSignal, timingRecSignal,
      freqRecSignal); % Plots all the scopes
    end
end

Execution and Results

To run the System Under Test script and obtain BER values for the simulated QPSK communication,
the following code is executed. When you run the simulations, it displays the bit error rate data, and
some graphical results. The displayed scopes are constellation diagrams of the Raised Cosine
Receive Filter output, the Symbol Synchronizer output, and the Fine Frequency Compensation
output, and the power spectrum of the Raised Cosine Receive Filter output.

if compileIt
    codegen -report runQPSKSystemUnderTest.m -args {coder.Constant(prmQPSKTxRx),coder.Constant(useScopes),coder.Constant(printReceivedData)} %#ok
end
if useCodegen
    BER = runQPSKSystemUnderTest_mex(prmQPSKTxRx,useScopes,printReceivedData);
else
    BER = runQPSKSystemUnderTest(prmQPSKTxRx,useScopes,printReceivedData);
end
fprintf('Error rate = %f.\n',BER(1));
fprintf('Number of detected errors = %d.\n',BER(2));
fprintf('Total number of compared samples = %d.\n',BER(3));

Error rate = 0.000238.
Number of detected errors = 366.
Total number of compared samples = 1536920.
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Alternate Execution Options

As already mentioned in the section System Under Test, by using the variables at the beginning of
the example, it is possible to interact with the code to explore different aspects of System objects and
coding options.

By default, the variables useScopes and printReceivedData are set to true and false,
respectively. The useScopes variable enables MATLAB scopes to be opened during the example
execution. Using the scopes, you can see how the simulated subcomponents behave and also obtain a
better understanding of how the system functions in simulation time. When you set this variable to
false, the scopes will not open during the example execution. When you set printReceivedData to
true, you can also see the decoded received packets printed in the command window. The other two
variables, compileIt and useCodegen, are related to speed performance and can be used to analyze
design tradeoffs.

When you set compileIt to true, this example script will use MATLAB Coder™ capabilities to compile
the script runQPSKSystemUnderText for accelerated execution. This command will create a MEX file
(runQPSKSystemUnderTest_mex) and save it in the current folder. Once you set useCodegen to true
to run the mex file, the example is able to run the system implemented in MATLAB much faster. This
feature is essential for implementation of real-time systems and is an important simulation tool. To
maximize simulation speed, set useScopes to false and useCodegen to true to run the mex file.

For other exploration options, refer to the “QPSK Transmitter and Receiver in Simulink” on page 8-
262 example.

Summary

This example simulates digital communication over an AWGN channel. It shows how to model several
parts of the QPSK system such as modulation, frequency and phase recovery, timing recovery, and
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frame synchronization. It measures the system performance by calculating BER. It also shows that
the generated C code runs several times faster than the original MATLAB code.

Appendix

This example uses the following script and helper functions:

• runQPSKSystemUnderTest.m
• QPSKTransmitter.m
• QPSKChannel.m
• QPSKReceiver.m
• QPSKScopes.m
• QPSKBitsGenerator.m
• QPSKDataDecoder.m
• FrameSynchronizer.m

References
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QPSK Transmitter and Receiver in Simulink
This model shows the implementation of a QPSK transmitter and receiver with Simulink®. The
receiver addresses practical issues in wireless communications, such as carrier frequency and phase
offset, timing drift and frame synchronization. The receiver demodulates the received symbols and
outputs a simple message to the Diagnostic Viewer. For the MATLAB® implementation of the same
system, refer to the “QPSK Transmitter and Receiver” on page 8-255.

Overview

This example model performs all processing at complex baseband to handle a static frequency offset,
a timing drift, and Gaussian noise. To cope with the above-mentioned impairments, this example
provides a reference design of a practical digital receiver, which includes correlation-based coarse
frequency compensation, PLL-based fine frequency compensation, PLL-based symbol timing recovery,
frame synchronization, and phase ambiguity resolution. The example showcases a few library blocks
in Communications Toolbox™ that implement synchronization algorithms in the receiver processing.

Structure of the Example

The top-level structure of the model is shown in the following figure, which includes the Transmitter
subsystem, the channel subsystem, and the Receiver subsystem.

The detailed structures of the Transmitter subsystem and the Receiver subsystem are illustrated in
the following figures.
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The components are further described in the following sections.

Transmitter

• Bit Generation - Generates the bits for each frame
• QPSK Modulator - Modulates the bits into QPSK symbols
• Raised Cosine Transmit Filter - Uses a rolloff factor of 0.5, and upsamples the QPSK symbols by

two
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Channel

• AWGN Channel with Frequency Offset and Variable Time Delay - Applies the frequency
offset, a timing drift, and additive white Gaussian noise to the signal

Receiver

• Raised Cosine Receive Filter - Uses a rolloff factor of 0.5
• Coarse Frequency Compensation - Estimates an approximate frequency offset of the received

signal and corrects it
• Symbol Synchronizer - Resamples the input signal according to a recovered timing strobe so

that symbol decisions are made at the optimum sampling instants
• Carrier Synchronizer - Compensates for the residual frequency offset and the phase offset
• Preamble Detector - Detect location of the frame header
• Frame Synchronizer - Aligns the frame boundaries at the known frame header
• Data Decoding - Resolves the phase ambiguity caused by the Carrier Synchronizer,

demodulates the signal, and decodes the text message

Transmitter

The transmitter includes the Bit Generation subsystem, the QPSK Modulator block, and the
Raised Cosine Transmit Filter block. The Bit Generation subsystem uses a MATLAB workspace
variable as the payload of a frame, as shown in the figure below. Each frame contains 20 'Hello world
###' messages and a header. The first 26 bits are header bits, a 13-bit Barker code that has been
oversampled by two. The Barker code is oversampled by two in order to generate precisely 13 QPSK
symbols for later use in the Data Decoding subsystem of the receiver model. The remaining bits are
the payload. The payload correspond to the ASCII representation of 'Hello world ###', where '###'
is a repeating sequence of '000', '001', '002', ..., '099'. The payload is scrambled to guarantee a
balanced distribution of zeros and ones for the timing recovery operation in the receiver model. The
scrambled bits are modulated by the QPSK Modulator (with Gray mapping). The modulated symbols
are upsampled by two by the Raised Cosine Transmit Filter with a roll-off factor 0.5. The symbol
rate of the transmitter system is 50k symbols per second, and the sample rate after the Raised
Cosine Transmit Filter is 100k samples per second.
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AWGN Channel with Frequency Offset and Variable Delay

The AWGN Channel with Frequency Offset and Variable Delay subsystem first applies the
frequency offset and a preset phase offset to the transmit signal. Then it adds a variable delay with a
choice of the following two types of delay to the signal:

• Ramp delay - This type of delay is initialized at DelayStart samples, and increases linearly at a
rate of DelayStep samples in each frame. When the actual delay reaches one frame, the delay
buffer is full, and it maintains a delay of one frame.

• Triangle delay - This type of delay linearly changes back and forth between MinDelay samples
and MaxDelay samples at a rate of DelayStep samples in each frame

The use of multiple delay characteristics allows you to investigate their effects on receiver
performance, particularly on the Symbol Synchronizer block. The delayed signal is processed
through an AWGN Channel. The diagram of the AWGN Channel with Frequency Offset and
Variable Delay subsystem is as shown in the following.

Receiver

Raised Cosine Receive Filter

The Raised Cosine Receive Filter provides matched filtering for the transmitted waveform with a
rolloff factor of 0.5.

AGC

The received signal amplitude affects the accuracy of the carrier and symbol synchronizer. Therefore
the signal amplitude should be stabilized to ensure an optimum loop design. The AGC output power is
set to a value ensuring that the equivalent gains of the phase and timing error detectors keep
constant over time. The AGC is placed before the Raised Cosine Receive Filter so that the signal
amplitude can be measured with an oversampling factor of two, thus improving the accuracy of the
estimate. You can refer to Chapter 7.2.2 and Chapter 8.4.1 of [ 1 ] for details on how to design the
phase detector gain.

Coarse Frequency Compensation

The Coarse Frequency Compensation subsystem corrects the input signal with a rough estimate of
the frequency offset. The following diagram shows the subsystem, in which the frequency offset is
estimated by averaging the output of the correlation-based algorithm of the Coarse Frequency
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Compensator block. The compensation is performed by the Phase/Frequency Offset block. There is
usually a residual frequency offset even after the coarse frequency compensation, which would cause
a slow rotation of the constellation. The Carrier Synchronizer block compensates for this residual
frequency.

The accuracy of the Coarse Frequency Compensator decreases with its maximum frequency offset
value. Ideally, this value should be set just above the expected frequency offset range. For example,
this model introduces a 5 kHz frequency offset and the Coarse Frequency Compensator is
configured with a 6 kHz maximum frequency offset.

Symbol Synchronizer

The timing recovery is performed by a Symbol Synchronizer library block, which implements a PLL,
described in Chapter 8 of [ 1 ], to correct the timing error in the received signal. The timing error
detector is estimated using the Gardner algorithm, which is rotationally invariant. In other words,
this algorithm can be used before or after frequency offset compensation. The input to the block is
oversampled by two. On average, the block generates one output symbol for every two input samples.
However, when the channel timing error (delay) reaches symbol boundaries, there will be one extra
or missing symbol in the output frame. In that case, the block implements bit stuffing/skipping thus
the output of this block is a variable-size signal.

The Damping factor, Normalized loop bandwidth, and Detector gain parameters of the block are
tunable. Their default values are set to 1 (critical damping), 0.01 and 5.4 respectively, so that the PLL
quickly locks to the correct timing while introducing little timing jitter.

Carrier Synchronizer

The fine frequency compensation is performed by a Carrier Synchronizer library block, which
implements a phase-locked loop (PLL), described in Chapter 7 of [ 1 ], to track the residual frequency
offset and the phase offset in the input signal. The PLL uses a Direct Digital Synthesizer (DDS) to
generate the compensating phase that offsets the residual frequency and phase offsets. The phase
offset estimate from DDS is the integral of the phase error output of a Loop Filter.

The Damping factor and Normalized loop bandwidth parameters of the block are tunable. Their
default values are set to 1 (critical damping) and 0.01 respectively, so that the PLL quickly locks to
the intended phase while introducing little phase noise.

Preamble Detector and Frame Synchronizer

The location of the known frame header is detected by a Preamble Detector library block and the
frame synchronization is performed by a MATLAB System block using a FrameSynchronizer System
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object™. The Preamble Detector block uses the known frame header (QPSK-modulated Barker code)
to correlate against the received QPSK symbols in order to find the location of the frame header. The
Frame Synchronizer block uses this location information to align the frame boundaries. It also
transforms the variable-size output of the Symbol Synchronizer block into a fixed-size frame, which
is necessary for the downstream processing. The second output of the block is a boolean scalar
indicating if the first output is a valid frame with the desired header and if so, enables the Data
Decoding subsystem to run.

Data Decoding

The Data Decoding enabled subsystem performs phase ambiguity resolution, demodulation and text
message decoding. The Carrier Synchronizer block may lock to the unmodulated carrier with a
phase shift of 0, 90, 180, or 270 degrees, which can cause a phase ambiguity. For details of phase
ambiguity and its resolution, please refer to Chapter 7.2.2 and 7.7 in [ 1 ]. The Phase Offset
Estimator subsystem determines this phase shift. The Phase Ambiguity Correction &
Demodulation subsystem rotates the input signal by the estimated phase offset and demodulates the
corrected data. The payload bits are descrambled, and printed out to the Simulink Diagnostic Viewer
at the end of the simulation.

Results and Displays

When you run the simulation, it displays bit error rate and numerous graphical results.

These following scopes illustrate the spectrum of the received signal before and after filtering, as well
as the signal constellation after filtering, after timing recovery and after fine frequency
compensation.
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In the following are the constellation diagrams at the output of the Symbol Synchronizer and
Carrier Synchronizer blocks respectively.
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Exploring the Example

The example allows you to experiment with multiple system capabilities to examine their effect on bit
error rate performance. For example, you can view the effect of changing the frequency offset, delay
type and  on the various displays.
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This example models a static frequency offset. In practice, the frequency offset might vary over time.
This model can still track a time-varying frequency drift via the Coarse Frequency Compensation
subsystem. If the actual frequency offset exceeds the maximum frequency offset that can be tracked
by the current coarse frequency compensation subsystem, you can increase its tracking range by
increasing the oversampling factor. Alternatively, you can change the algorithm from correlation-
based to FFT-based, in the Model Parameters block. The FFT-based algorithm performs better than
the correlation-based algorithm at low Eb/No.

You can also tune the Normalized loop bandwidth and Damping factor parameters of the Symbol
Synchronizer and Carrier Synchronizer blocks, to assess their convergence time and estimation
accuracy. In addition, you can assess the pull-in range of the Carrier Synchronizer block. With a
large Normalized loop bandwidth and Damping factor, the PLL can acquire over a greater frequency
offset range. However a large Normalized loop bandwidth allows more noise, which leads to a large
mean squared error in the phase estimation. "Underdamped systems (with Damping Factor less than
one) have a fast settling time, but exhibit overshoot and oscillation; overdamped systems (with
Damping Factor greater than one) have a slow settling time but no oscillations." [ 1 ]. For more detail
on the design of these PLL parameters, you can refer to Appendix C in [ 1 ].

References

1. Michael Rice, "Digital Communications - A Discrete-Time Approach", Prentice Hall, April 2008.
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Raised Cosine Filtering
This example shows the intersymbol interference (ISI) rejection capability of the raised cosine filter,
and how to split the raised cosine filtering between transmitter and receiver, using raised cosine
transmit and receive filter System objects (comm.RaisedCosineTransmitFilter and
comm.RaisedCosineReceiveFilter, respectively).

Raised Cosine Filter Specifications

The main parameter of a raised cosine filter is its roll-off factor, which indirectly specifies the
bandwidth of the filter. Ideal raised cosine filters have an infinite number of taps. Therefore, practical
raised cosine filters are windowed. The window length is controlled using the
FilterSpanInSymbols property. In this example, we specify the window length as six symbol
durations, i.e., the filter spans six symbol durations. Such a filter also has a group delay of three
symbol durations. Raised cosine filters are used for pulse shaping, where the signal is upsampled.
Therefore, we also need to specify the upsampling factor. The following is a list of parameters used to
design the raised cosine filter for this example.

Nsym = 6;           % Filter span in symbol durations
beta = 0.5;         % Roll-off factor
sampsPerSym = 8;    % Upsampling factor

We use a raised cosine transmit filter System object and set its properties to obtain the desired filter
characteristics. We also use fvtool to visualize filter characteristics.

rctFilt = comm.RaisedCosineTransmitFilter(...
  'Shape','Normal', ...
  'RolloffFactor',beta, ...
  'FilterSpanInSymbols',Nsym, ...
  'OutputSamplesPerSymbol',sampsPerSym)

rctFilt = 
  comm.RaisedCosineTransmitFilter with properties:

                     Shape: 'Normal'
             RolloffFactor: 0.5000
       FilterSpanInSymbols: 6
    OutputSamplesPerSymbol: 8
                      Gain: 1

% Visualize the impulse response
fvtool(rctFilt,'Analysis','impulse')
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This object designs a direct-form polyphase FIR filter with unit energy. The filter has an order of
Nsym*sampsPerSym, or Nsym*sampsPerSym+1 taps. You can utilize the Gain property to normalize
the filter coefficients so that the filtered and unfiltered data matches when overlayed.

% Normalize to obtain maximum filter tap value of 1
b = coeffs(rctFilt);
rctFilt.Gain = 1/max(b.Numerator);

% Visualize the impulse response
fvtool(rctFilt,'Analysis','impulse')
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Pulse Shaping with Raised Cosine Filters

We generate a bipolar data sequence. We use the raised cosine filter to shape the waveform without
introducing ISI.

% Parameters
DataL = 20;             % Data length in symbols
R = 1000;               % Data rate
Fs = R * sampsPerSym;   % Sampling frequency

% Create a local random stream to be used by random number generators for
% repeatability
hStr = RandStream('mt19937ar','Seed',0);

% Generate random data
x = 2*randi(hStr,[0 1],DataL,1)-1;
% Time vector sampled at symbol rate in milliseconds
tx = 1000 * (0: DataL - 1) / R;

The plot compares the digital data and the interpolated signal. It is difficult to compare the two
signals because the peak response of the filter is delayed by the group delay of the filter (Nsym/
(2*R)). Note that, we append Nsym/2 zeros at the end of input x to flush all the useful samples out of
the filter.

% Filter
yo = rctFilt([x; zeros(Nsym/2,1)]);
% Time vector sampled at sampling frequency in milliseconds
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to = 1000 * (0: (DataL+Nsym/2)*sampsPerSym - 1) / Fs;
% Plot data
fig1 = figure;
stem(tx, x, 'kx'); hold on;
% Plot filtered data
plot(to, yo, 'b-'); hold off;
% Set axes and labels
axis([0 30 -1.7 1.7]);  xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Upsampled Data','Location','southeast')

This step compensates for the raised cosine filter group delay by delaying the input signal. Now it is
easy to see how the raised cosine filter upsamples and filters the signal. The filtered signal is
identical to the delayed input signal at the input sample times. This shows the raised cosine filter
capability to band-limit the signal while avoiding ISI.

% Filter group delay, since raised cosine filter is linear phase and
% symmetric.
fltDelay = Nsym / (2*R);
% Correct for propagation delay by removing filter transients
yo = yo(fltDelay*Fs+1:end);
to = 1000 * (0: DataL*sampsPerSym - 1) / Fs;
% Plot data.
stem(tx, x, 'kx'); hold on;
% Plot filtered data.
plot(to, yo, 'b-'); hold off;
% Set axes and labels.
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axis([0 25 -1.7 1.7]);  xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Upsampled Data','Location','southeast')

Roll-off Factor

This step shows the effect that changing the roll-off factor from .5 (blue curve) to .2 (red curve) has
on the resulting filtered output. The lower value for roll-off causes the filter to have a narrower
transition band causing the filtered signal overshoot to be greater for the red curve than for the blue
curve.

% Set roll-off factor to 0.2
rctFilt2 = comm.RaisedCosineTransmitFilter(...
  'Shape',                  'Normal', ...
  'RolloffFactor',          0.2, ...
  'FilterSpanInSymbols',    Nsym, ...
  'OutputSamplesPerSymbol', sampsPerSym);
% Normalize filter
b = coeffs(rctFilt2);
rctFilt2.Gain = 1/max(b.Numerator);
% Filter
yo1 = rctFilt2([x; zeros(Nsym/2,1)]);
% Correct for propagation delay by removing filter transients
yo1 = yo1(fltDelay*Fs+1:end);
% Plot data
stem(tx, x, 'kx'); hold on;
% Plot filtered data
plot(to, yo, 'b-',to, yo1, 'r-'); hold off;
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% Set axes and labels
axis([0 25 -2 2]);  xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','beta = 0.5','beta = 0.2',...
    'Location','southeast')

Square-Root Raised Cosine Filters

A typical use of raised cosine filtering is to split the filtering between transmitter and receiver. Both
transmitter and receiver employ square-root raised cosine filters. The combination of transmitter and
receiver filters is a raised cosine filter, which results in minimum ISI. We specify a square-root raised
cosine filter by setting the shape as 'Square root'.

% Design raised cosine filter with given order in symbols
rctFilt3 = comm.RaisedCosineTransmitFilter(...
  'Shape',                  'Square root', ...
  'RolloffFactor',          beta, ...
  'FilterSpanInSymbols',    Nsym, ...
  'OutputSamplesPerSymbol', sampsPerSym);

The data stream is upsampled and filtered at the transmitter using the designed filter. This plot shows
the transmitted signal when filtered using the square-root raised cosine filter.

% Upsample and filter.
yc = rctFilt3([x; zeros(Nsym/2,1)]);
% Correct for propagation delay by removing filter transients
yc = yc(fltDelay*Fs+1:end);
% Plot data.
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stem(tx, x, 'kx'); hold on;
% Plot filtered data.
plot(to, yc, 'm-'); hold off;
% Set axes and labels.
axis([0 25 -1.7 1.7]);  xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Sqrt. Raised Cosine','Location','southeast')

The transmitted signal (magenta curve) is then filtered at the receiver. We did not decimate the filter
output to show the full waveform. The default unit energy normalization ensures that the gain of the
combination of the transmit and receive filters is the same as the gain of a normalized raised cosine
filter. The filtered received signal, which is virtually identical to the signal filtered using a single
raised cosine filter, is depicted by the blue curve at the receiver.

% Design and normalize filter.
rcrFilt = comm.RaisedCosineReceiveFilter(...
  'Shape',                  'Square root', ...
  'RolloffFactor',          beta, ...
  'FilterSpanInSymbols',    Nsym, ...
  'InputSamplesPerSymbol',  sampsPerSym, ...
  'DecimationFactor',       1);
% Filter at the receiver.
yr = rcrFilt([yc; zeros(Nsym*sampsPerSym/2, 1)]);
% Correct for propagation delay by removing filter transients
yr = yr(fltDelay*Fs+1:end);
% Plot data.
stem(tx, x, 'kx'); hold on;
% Plot filtered data.
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plot(to, yr, 'b-',to, yo, 'm:'); hold off;
% Set axes and labels.
axis([0 25 -1.7 1.7]);  xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Rcv Filter Output', ...
    'Raised Cosine Filter Output','Location','southeast')

Computational Cost

In the following table, we compare the computational cost of a polyphase FIR interpolation filter and
polyphase FIR decimation filter.

C1 = cost(rctFilt3);
C2 = cost(rcrFilt);

------------------------------------------------------------------------
                    Implementation Cost Comparison
------------------------------------------------------------------------
                        Multipliers  Adders  Mult/Symbol  Add/Symbol
Multirate Interpolator      49         41          49         41
Multirate Decimator         49         48           6.125      6
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CORDIC-Based QPSK Carrier Synchronization
This model shows the use of a CORDIC (COordinate Rotation DIgital Computer) rotation algorithm in
a digital PLL (Phase Locked Loop) implementation for QPSK carrier synchronization. Fixed-Point
Designer™ is needed to run this model.

Introduction

The structure of a digital PLL is essentially equivalent to that of a continuous-time PLL. A PLL has the
following components: a phase error detector (PED), a loop filter, and a controlled oscillator.

In the case of QPSK carrier (phase and frequency) synchronization, implementing the loop filter as a
digital P+I (proportional-plus-integrator) filter produces a second order PLL. The controlled oscillator
(Phase Accumulator) adjusts the angle of the received QPSK signal via a complex rotation.

You can implement the complex rotation using a variety of approaches, including direct complex
multiplication by exp(j*theta). However, such an implementation can be relatively expensive in
terms of hardware (e.g., FPGA or ASIC) resources. An alternative approach uses a CORDIC-based
rotation algorithm to implement the complex multiplication. This example uses this approach, via the
Fixed-Point Designer™ CORDICROTATE function. This results in a multiplier-less complex rotation
approximation, where the trade-off is in terms of speed. A small number of CORDIC iterations may
often be enough to achieve a good digital PLL response, without the full hardware resource cost of a
true complex multiplication.
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Structure of the Example

Tx Data Source

The PN Sequence Generator library block from the Communications Toolbox™ is the Tx Data
Source, generating unsigned 2-bit integer symbols.

QPSK Modulator

The QPSK Modulator Baseband library block from the Communications Toolbox uses a pi/4 phase
offset and binary ordering to compute signed 12-bit fixed-point modulator output values.

Raised Cosine Tx Filter

The Raised Cosine Transmit Filter library block from the Communications Toolbox performs
square root FIR filtering with an upsampling factor of 8.

Transmitter Impairments

The Phase/Frequency Offset library block from the Communications Toolbox simulates the
associated transmitter impairments. You can tune the Phase offset and Frequency offset
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parameter values to see the effect on the PLL Phase Error time scope and the receive signal
scatter plot displays.

AWGN Channel

The AWGN Channel library block from the Communications Toolbox simulates a noisy channel. You
can tune the block Eb/No parameter to see the effect on the PLL Phase Error time scope and the
receive signal scatter plot displays.

Raised Cosine Rx Filter

The Raised Cosine Receive Filter library block from the Communications Toolbox performs
square root FIR filtering with a downsampling factor of 8.

CORDIC-Based PLL Subsystem

The CORDIC-Based PLL subsystem consists of a Phase Error Detector (PED), P+I Loop
Filter, Phase Accumulator, and CORDICROTATE to form the corrected complex signal output
values.

CORDIC-Based PLL

Phase Error Detector

The Phase Error Detector is implemented using a MATLAB® function.
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P+I Loop Filter

A P+I Loop Filter implements a second order PLL. The loop constants K1 (P gain) and K2 (I gain)
are derived from the Normalized loop bandwidth and Damping factor parameters of the
masked CORDIC-Based PLL subsystem.
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Phase Accumulator

The Phase Accumulator computes the angle Theta.

CORDICROTATE

The MATLAB function CORDICROTATE rotates the complex received signal by Theta using an
iterative, multiplier-less, CORDIC-based algorithm.
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Results and Displays

Phase Error

Use the Phase Error time scope block to view the time-varying PLL Phase Error Detector
output values.

 CORDIC-Based QPSK Carrier Synchronization

8-287



Scatter Plots

Use the Before Carrier Synchronization and After Carrier Synchronization scope
blocks to observe the effects of tuning the Transmitter Impairments and AWGN Channel
parameters.
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Experimenting with the Example

Transmitter Impairments

To see the effects of transmitter phase and frequency offset impairments, change the Phase offset
and Frequency offset parameter values while the model is running. Set the model StopTime to
inf and use the PLL Enable/Disable switch to observe changes in the transient response.

AWGN Channel

To see the effects of a noisy channel, change the Eb/No parameter value while the model is running.
Set the model StopTime to inf and use the PLL Enable/Disable switch to observe changes in the
transient response.

CORDIC-Based PLL

Vary the PLL Normalized loop bandwidth and Damping factor parameters to tune the
underlying P+I Loop Filter behavior while the model is running. Set the model StopTime to inf
and use the PLL Enable/Disable switch to observe changes in the transient response.

Note that the phase-locked QPSK receive signal output contains phase ambiguity. For further analysis
(e.g., symbol error rate computations), this phase ambiguity may be resolved using one of a number
of well known methods, including known training (preamble) signals, varying demodulator phase
offsets, constellation re-ordering, etc.
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Defense Communications: US MIL-STD-188-110A Receiver
This model shows a communications system compliant with the U. S. MIL-STD-188-110A military
standard. In particular, the model implements a full receiver that demodulates and outputs a text
message, which was modulated by a reference transmitter and captured with data acquisition
equipment. This model supports a 1200 bps data rate. It also implements an interleaver length of 0.6
s.

The system described in this standard is intended for long-haul and tactical communications over HF
(high frequency) channels. The system is compatible with the NATO standard STANAG 4539.

Structure of the Example

This example consists of the following pieces, further described in the sections below:

• Acquired Passband Waveform - Outputs a bandpass MIL-STD-188-110A waveform centered at
1800 Hz

• Frequency Translator and Channel - Downconverts the signal to complex baseband and
processes it with a choice of channels

• Receiver - Performs synchronization and baseband processing, and outputs a text message

Acquired Passband Waveform

The Acquired Passband Waveform subsystem uses a MATLAB® workspace variable to stream as
an output. This variable represents data that has been generated by a standard-compliant transmitter
and captured with data acquisition equipment. The nominal sample rate of the A/D is 9600 sps, but
the actual A/D sampling rate is somewhat offset from that value, resulting in a symbol timing
frequency offset.

Frequency Translator and Channel

This subsystem performs ideal downconversion to complex baseband, then processes the input signal
with a choice of four successively degraded channels:
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• a noiseless channel
• an AWGN channel
• a static frequency selective channel plus AWGN
• a fading frequency selective channel plus AWGN

The fading frequency selective channel is implemented by the SISO Fading Channel library block.

The use of multiple channels allows you to investigate their effects on receiver performance,
especially that of the symbol synchronization blocks. The noiseless channel most effectively isolates
the operation of the receiver, and the AWGN-only and static frequency selective channels show a
graceful degradation in performance. The fading frequency selective channel models the moderate
Watterson channel described in [2].

Receiver

The MIL-STD-188-110A receiver consists of four subsystems:

• RRC Filter and AGC
• Preamble Detect to Enable Downstream Processing
• Carrier Recovery, Timing Recovery, and Equalization
• Demodulation and Error Correction

The RRC Filter and AGC subsystem performs square root raised cosine filtering on the received
signal, providing matched filtering for the transmitted waveform. The AGC ensures that the average
signal power into the equalizer is 1 watt. This operation ensures that the constellation of the
equalizer input signal is most closely matched to the ideal constellation against which it makes
symbol decisions.

The Preamble Detect to Enable Downstream Processing subsystem performs a correlation on the
known 0.6 sec synchronization preamble, which consists of three virtually identical 0.2 sec data
segments. It detects three consecutive correlation peaks at 0.2, 0.4, and 0.6 sec in order to declare
preamble detection. Once the preamble is detected, the subsystem sends a control signal to turn on
the downstream processing, including: carrier recovery, timing recovery, equalization, demodulation,
and error correction. The three consecutive peaks are detected with the Stateflow® state machine
shown below. The block diagram shows the state machine in context with the preamble correlator,
and the state machine is below the block diagram.
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The Carrier Recovery, Timing Recovery, and Equalization subsystem uses a switchable NCO to
generate a compensating sinusoid to remove the relatively constant carrier frequency offset. The
NCO control signal is generated by estimating the phase error between the output of the RLS
equalizer and its input. The RLS equalizer is implemented by the Decision Feedback Equalizer library
block. The estimation is performed by computing the cross-spectrum between the equalizer input and
its output, and performing a linear least squares fit on the resulting phase characteristic. The phase
error is then filtered by a proportional-integral (PI) controller and fed to the carrier recovery NCO.

To compensate for the timing frequency error inherent in the acquired waveform, the Carrier
Recovery, Timing Recovery, and Equalization subsystem uses a switchable timing control unit to
generate a fractional delay value and a symbol clock. The fractional delay value is used to drive a
variable delay block that uses a Farrow filter structure to interpolate its input. The variable delay is
implemented by the Variable Fractional Delay library block.

The symbol clock, which runs at 9600 sps, is used to downsample the input signal, which is
oversampled by four, down to the symbol rate of 2400 sym/sec. The clock typically goes high every
four samples, but because of the timing frequency offset, it periodically goes high every five samples.
The clock drives a rebuffering operation that creates symbol-spaced data in frames 40 samples long.
These frames are ideally suited for processing by the RLS equalizer, since it has 40 taps. The
rebuffering occurs in the Carrier Recovery, Timing Recovery, and Equalization -> Equalize and
Re-Buffer subsystem. This subsystem also generates a frame clock that enables the RLS equalizer.
This frame clock also runs at the oversampled rate of 9600 sps, but goes high nominally every 160
samples. Because of the timing frequency offset, it periodically goes high every 161 samples.

The pattern of using a high rate clock to drive a lower rate processing system can be used liberally in
communications receiver designs. This pattern is shown in a more fundamental form in the DSP
System Toolbox™ example “WWV Digital Receiver - Synchronization and Detection”. The Carrier

8 Communications Toolbox Featured Examples

8-294



Recovery, Timing Recovery, and Equalization -> Equalize and Re-Buffer subsystem is shown
below:

The time delay incurred by the RLS equalizer is estimated once again by a cross-spectral technique,
and is used to drive the NCO of the timing control unit. A linear least squares fit is made to the phase
characteristic of the cross spectrum between the equalizer input and its output. The slope of this
phase estimates the delay induced by the equalizer.

The Decision Feedback Equalizer block is configured to use the RLS algorithm' and has 20
feedforward and 20 feedback taps. A DFE structure is necessary because of the deep spectral nulls
induced by the Watterson channel. The quickly converging RLS weight update algorithm is needed to
combat the rapid fading of the Watterson channel. Half the data that the equalizer processes is
training data. This large percentage of training data is necessary because of the rapidly fluctuating
HF channel. Once the training data is discarded, the equalizer output rate is nominally 1200 sps.
Also, the equalizer subsystem performs descrambling to undo the scrambling performed by the
transmitter.

The Equalize and Re-Buffer subsystem also generates a frame clock to enable the downstream
processing performed in the Demodulation and Error Correction subsystem. The data into that
downstream subsystem is packaged in frames of 720 samples long, which corresponds to a time
duration of 0.6 sec. This second frame clock, as with the first one, also runs at the oversampled rate
of 9600 sps, but goes high nominally every 5760 samples. However, due to the previous
downsampling by four to derive symbol-rate data, and the effective downsampling by two from
discarding equalizer training data, the clock triggers roughly every 5760 / 8 = 720 samples. However,
because of the timing frequency offset, the clock actually goes high either every 5762 or every 5763
samples.

The Demodulation and Error Correction subsystem performs the following functions:

 Defense Communications: US MIL-STD-188-110A Receiver

8-295



• Symbol extraction via QPSK demodulation
• Modified Gray encoding
• Block deinterleaving
• Viterbi decoding of the rate 1/2, constraint length 7 convolutional code
• Byte error rate calculations
• End-of-message detection
• Printing of the text message that drove the transmitter

Results and Displays

When you run the simulation, it displays these numerical or graphical results:

• The byte error rate
• The power spectrum of the channel output
• The estimate of the cross-spectral phase between the equalizer input and its output
• The control signal used to drive the Farrow fractional delay
• A scatter plot of the equalizer input
• A scatter plot of the equalizer output
• A scatter plot of the descrambler output
• A window showing the demodulated, decoded text message

These plots are shown below, starting with the channel output power spectrum.

Below is the estimate of the cross-spectral phase between the equalizer input and its output.
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Below is the control signal used to drive the Farrow fractional delay.

Below is the scatter plot of the equalizer input.
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Below is the scatter plot of the equalizer output.

Below is the scatter plot of the descrambler output. Note that the 8PSK constellation has been
collapsed to a QPSK constellation, per the MIL-STD-188-110A spec for this data rate.
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Below is an excerpt from the demodulated message, which is taken from the MIL-STD-188-110a
standard [1].

Exploring the Example

The example allows you to experiment with multiple system capabilities to examine their effect on
byte error rate performance. For instance, you can view the effect of changing the channel model on
the various displays. In particular, when you select the fading frequency selective channel, the
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channel phase estimate, the Farrow control signal, and the scatter plot displays are all noticeably
degraded.

You can also enable or disable the timing control unit and the Farrow fractional delay. When the
timing control unit is disabled, the demodulation operates properly for a time, but eventually the
symbol timing frequency offset exceeds the length of the equalizer, which can no longer compensate
for the delay. At that point, the demodulation process breaks down completely. When the Farrow
fractional delay is disabled, and the timing control unit is enabled, the effect is more nuanced.
However, in that case you can see the scatter plots flicker when the symbol timing crosses a symbol
boundary. This is most easily seen in the noiseless case.

Take note of the quality of the demodulated message in the MATLAB figure window. For successively
degraded channel and/or receiver configurations, the demodulated message becomes progressively
more unreadable.

To generate executable code for this model, you will need to disable the display of the text message,
via the Model Parameters subsystem. The block that performs the text printing is implemented with
the Interpreted MATLAB Function block, which does not generate code.

Selected Bibliography

[1] MIL-STD-188-110B: Interoperability and Performance Standards for Data Modems, U. S.
Department of Defense, 2000. (A superset of the MIL-STD-188-110A standard)

[2] ITU-R Recommendation 520-2: Use of High Frequency Ionospheric Channel Simulators,
1978/1982/1992.

See Also

The “Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link” on page 8-405
example shows both a MIL-STD-188-110B transmitter and receiver, without the synchronization
operations. It also enables a flexible choice of data rates, whereas this example has a fixed data rate
of 1200 bps.
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cdma2000 Waveform Generation
This example shows how to generate standard-compliant forward (downlink) and reverse (uplink)
cdma2000® waveforms using the Communications Toolbox™.

Introduction

The Communications Toolbox can be used to generate preset or customized standard-compliant
forward and reverse cdma2000 waveforms. Specifically, the following channels are supported:

Forward cdma2000:

• Forward Pilot Channel (F-PICH)
• Forward Auxiliary Pilot Channel (F-APICH)
• Forward Transmit Diversity Pilot Channel (F-TDPICH)
• Forward Auxiliary Transmit Diversity Pilot Channel (F-ATDPICH)
• Forward Sync Channel (F-SYNC)
• Forward Paging Channel (F-PCH)
• Forward Quick Paging Channel (F-QPCH)
• Forward Broadcast Control Channel (F-BCCH)
• Forward Common Control Channel (F-CCCH)
• Forward Dedicated Control Channel (F-DCCH)
• Forward Common Power Control Channel (F-CPCCH)
• Forward Fundamental Traffic Channel (F-FCH), including Power Control Subchannel
• Forward Supplemental Code Channel (F-SCCH)
• Forward Supplemental Channel (F-SCH)
• Forward Packet Data Common Control Channel (F-PDCCH)
• Forward Orthogonal Channel Noise (F-OCNS)

Reverse cdma2000:

• Reverse Pilot Channel (R-PICH), including Power Control Subchannel
• Reverse Access Channel (R-ACH)
• Reverse Enhanced Access Channel (R-EACH)
• Reverse Common Control Channel (R-CCCH)
• Reverse Dedicated Control Channel (R-DCCH)
• Reverse Fundamental Traffic Channel (R-FCH)
• Reverse Supplemental Code Channel (R-SCCH)
• Reverse Supplemental Channel (R-SCH)

The generated waveforms can be used for the following applications:

• Golden reference for transmitter implementations
• Receiver testing and algorithm development
• Testing RF hardware and software
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• Interference testing

Waveform Generation Techniques

• Waveforms can be generated using the cdma2000ForwardWaveformGenerator and
cdma2000ReverseWaveformGenerator functions. The input of these functions is a structure
containing top-level waveform parameters as well as substructures containing channel-specific
parameters. This example will illustrate how such structures can be constructed from scratch.

• Preset structure configurations can be created using the
cdma2000ForwardReferenceChannels and cdma2000ReverseReferenceChannels
functions. Such preset configurations can represent common Test and Measurement scenarios or
provide a good starting point (wizard) for customizing a waveform configuration.

Generation of Preset-driven Forward and Reverse cdma2000 Waveforms

The preset structure configurations can then be passed to the waveform generation functions. For
example, the following commands generate all forward and reverse channels allowable for Radio
Configuration 4:

forwardPresetConfig     = cdma2000ForwardReferenceChannels('ALL-RC4');
forwardPresetWaveform   = cdma2000ForwardWaveformGenerator(forwardPresetConfig);

reversePresetConfig     = cdma2000ReverseReferenceChannels('ALL-RC4');
reversePresetWaveform   = cdma2000ReverseWaveformGenerator(reversePresetConfig);

Generation of a Forward cdma2000 Waveform Using Full Parameter List

Next, we illustrate the creation of equivalent configuration structures from scratch (for forward
cdma2000). This is also useful for customizing the preset configurations.

fManualConfig.SpreadingRate          = 'SR1';           % Spreading Rate 1 or 3
fManualConfig.Diversity              = 'NTD';           % No Transmit Diversity (other options are 'OTD', 'STS')
fManualConfig.QOF                    = 'QOF1';          % Quasi-orthogonal function 1, 2 or 3
fManualConfig.PNOffset               = 0;               % PN offset of Base station
fManualConfig.LongCodeState          = 0;               % Initial long code state
fManualConfig.PowerNormalization     = 'Off';           % Power normalization: 'Off', 'NormalizeTo0dB' or 'NoiseFillTo0dB'
fManualConfig.OversamplingRatio      = 4;               % Upsampling factor
fManualConfig.FilterType             = 'cdma2000Long';  % Filter coefficients: 'cdma2000Long', 'cdma2000Short', 'Custom' or 'Off'
fManualConfig.InvertQ                = 'Off';           % Negate the imaginary part of the waveform
fManualConfig.EnableModulation       = 'Off';           % Enable carrier modulation
fManualConfig.ModulationFrequency    = 0;               % Modulation frequency (Hz)
fManualConfig.NumChips               = 1000;            % Number of chips in the waveform

fpich.Enable                = 'On';                     % Enable the F-PICH channel
fpich.Power                 = 0;                        % Relative channel power (dBW)
fManualConfig.FPICH         = fpich;                    % Add the channel to the waveform configuration

fapich.Enable               = 'On';                     % Enable the F-APICH channel
fapich.Power                = 0;                        % Relative channel power (dBW)
fapich.WalshCode            = 10;                       % Unique Walsh code number
fapich.WalshLength          = 64;                       % Walsh code length
fManualConfig.FAPICH        = fapich;                   % Add the channel to the waveform configuration

ftdpich.Enable              = 'On';                     % Enable the F-TDPICH channel
ftdpich.Power               = 0;                        % Relative channel power (dBW)
fManualConfig.FTDPICH       = ftdpich;                  % Add the channel to the waveform configuration
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fatdpich.Enable             = 'On';                     % Enable the F-ATDPICH channel
fatdpich.Power              = 0;                        % Relative channel power (dBW)
fatdpich.WalshCode          = 11;                       % Unique Walsh code number
fatdpich.WalshLength        = 64;                       % Walsh code length
fManualConfig.FATDPICH      = fatdpich;                 % Add the channel to the waveform configuration

fpch.Enable                 = 'On';                     % Enable the F-PCH channel
fpch.Power                  = 0;                        % Relative channel power (dBW)
fpch.LongCodeMask           = 0;                        % Long code mask
fpch.DataRate               = 4800;                     % Data rate (bps)
fpch.EnableCoding           = 'On';                     % Enable channel coding
fpch.DataSource             = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fpch.WalshCode              = 1;                        % Unique Walsh code number
fManualConfig.FPCH          = fpch;                     % Add the channel to the waveform configuration

fsync.Enable                = 'On';                     % Enable the F-SYNC channel
fsync.Power                 = 0;                        % Relative channel power (dBW)
fsync.EnableCoding          = 'On';                     % Enable channel coding
fsync.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed}, numerical vector or 'SyncMessage'
fManualConfig.FSYNC         = fsync;                    % Add the channel to the waveform configuration

fbcch.Enable                = 'On';                     % Enable the F-BCCH channel
fbcch.Power                 = 0;                        % Relative channel power (dBW)
fbcch.LongCodeMask          = 0;                        % Long code mask
fbcch.DataRate              = 4800;                     % Data rate (bps)
fbcch.FrameLength           = 160;                      % Frame length (ms)
fbcch.EnableCoding          = 'On';                     % Enable channel coding
fbcch.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fbcch.WalshCode             = 2;                        % Unique Walsh code number
fbcch.CodingType            = 'conv';                   % Coding type: 'conv' or 'turbo'
fManualConfig.FBCCH         = fbcch;                    % Add the channel to the waveform configuration

fcach.Enable                = 'On';                     % Enable the F-CACH channel
fcach.Power                 = 0;                        % Relative channel power (dBW)
fcach.LongCodeMask          = 0;                        % Long code mask
fcach.EnableCoding          = 'On';                     % Enable channel coding
fcach.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fcach.WalshCode             = 3;                        % Unique Walsh code number
fcach.CodingType            = 'conv';                   % Coding type: 'conv' or 'turbo'
fManualConfig.FCACH         = fcach;                    % Add the channel to the waveform configuration

fccch.Enable                = 'On';                     % Enable the F-CCCH channel
fccch.Power                 = 0;                        % Relative channel power (dBW)
fccch.LongCodeMask          = 0;                        % Long code mask
fccch.DataRate              = 9600;                     % Data rate (bps)
fccch.FrameLength           = 20;                       % Frame length (ms)
fccch.EnableCoding          = 'On';                     % Enable channel coding
fccch.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fccch.WalshCode             = 4;                        % Unique Walsh code number
fccch.CodingType            = 'conv';                   % Coding type: 'conv' or 'turbo'
fManualConfig.FCCCH         = fccch;                    % Add the channel to the waveform configuration

fcpcch.Enable               = 'On';                     % Enable the F-CPCCH channel
fcpcch.Power                = 0;                        % Relative channel power (dBW)
fcpcch.LongCodeMask         = 0;                        % Long code mask
fcpcch.EnableCoding         = 'On';                     % Enable channel coding
fcpcch.DataSource           = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fcpcch.WalshCode            = 5;                        % Unique Walsh code number
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fManualConfig.FCPCCH        = fcpcch;                   % Add the channel to the waveform configuration

fqpch.Enable                = 'On';                     % Enable the F-QPCH channel
fqpch.Power                 = 0;                        % Relative channel power (dBW)
fqpch.LongCodeMask          = 0;                        % Long code mask
fqpch.DataRate              = 2400;                     % Data rate (bps)
fqpch.EnableCoding          = 'On';                     % Enable channel coding
fqpch.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fqpch.WalshCode             = 6;                        % Unique Walsh code number
fManualConfig.FQPCH         = fqpch;                    % Add the channel to the waveform configuration

ffch.Enable                 = 'On';                     % Enable the F-FCH channel
ffch.Power                  = 0;                        % Relative channel power (dBW)
ffch.RadioConfiguration     = 'RC4';                    % Radio Configuration: 1-9
ffch.DataRate               = 9600;                     % Data rate (bps)
ffch.FrameLength            = 20;                       % Frame length (ms)
ffch.LongCodeMask           = 0;                        % Long code mask
ffch.EnableCoding           = 'On';                     % Enable channel coding
ffch.DataSource             = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
ffch.WalshCode              = 7;                        % Unique Walsh code number
ffch.EnableQOF              = 'Off';                    % Enable QOF spreading
ffch.PowerControlEnable     = 'Off';                    % Enable the Power Control Subchannel
fManualConfig.FFCH          = ffch;                     % Add the channel to the waveform configuration

focns.Enable                = 'On';                     % Enable the F-OCNS channel
focns.Power                 = -30;                      % Relative channel power (dBW)
focns.WalshCode              = 12;                      % Unique Walsh code number
focns.WalshLength           = 128;                      % Walsh code length
fManualConfig.FOCNS         = focns;                    % Add the channel to the waveform configuration

fdcch.Enable                = 'On';                     % Enable the F-DCCH channel
fdcch.Power                 = 0;                        % Relative channel power (dBW)
fdcch.RadioConfiguration    = 'RC4';                    % Radio Configuration: 1-9
fdcch.LongCodeMask          = 0;                        % Long code mask
fdcch.DataRate              = 9600;                     % Data rate (bps)
fdcch.FrameLength           = 5;                        % Frame length (ms)
fdcch.EnableCoding          = 'On';                     % Enable channel coding
fdcch.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fdcch.WalshCode             = 8;                        % Unique Walsh code number
fdcch.EnableQOF             = 'off';                    % Enable QOF spreading
fManualConfig.FDCCH         = fdcch;                    % Add the channel to the waveform configuration

fsch.Enable                 = 'On';                     % Enable the F-SCH channel
fsch.Power                  = 0;                        % Relative channel power (dBW)
fsch.RadioConfiguration     = 'RC4';                    % Radio Configuration: 1-9
fsch.DataRate               = 9600;                     % Data rate (bps)
fsch.FrameLength            = 20;                       % Frame length (ms)
fsch.LongCodeMask           = 0;                        % Long code mask
fsch.EnableCoding           = 'On';                     % Enable channel coding
fsch.DataSource             = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
fsch.WalshCode              = 9;                        % Unique Walsh code number
fsch.EnableQOF              = 'Off';                    % Enable QOF spreading
fsch.CodingType             = 'conv';                   % Coding type: 'conv' or 'turbo'
fManualConfig.FSCH          = fsch;                     % Add the channel to the waveform configuration

forwardManualWaveform   = cdma2000ForwardWaveformGenerator(fManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
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if(isequal(forwardPresetConfig, fManualConfig))
    disp([  'Configuration structures generated with and without the ' ...
            'cdma2000ForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the cdma2000ForwardReferenceChannels function are the same.

Generation of a Reverse cdma2000 Waveform Using Full Parameter List

rManualConfig.RadioConfiguration    = 'RC4';            % Radio Configuration: 1-6
rManualConfig.PowerNormalization    = 'Off';            % Power normalization: 'Off', 'NormalizeTo0dB' or 'NoiseFillTo0dB'
rManualConfig.OversamplingRatio     = 4;                % Upsampling factor
rManualConfig.FilterType            = 'cdma2000Long';   % Filter coefficients: 'cdma2000Long', 'cdma2000Short', 'Custom' or 'Off'
rManualConfig.InvertQ               = 'Off';            % Negate the imaginary part of the waveform
rManualConfig.EnableModulation      = 'Off';            % Enable carrier modulation
rManualConfig.ModulationFrequency   = 0;                % Modulation frequency (Hz)
rManualConfig.NumChips              = 1000;             % Number of chips in the waveform

rfch.Enable                 = 'On';                     % Enable the R-FCH channel
rfch.Power                  = 0;                        % Relative channel power (dBW)
rfch.LongCodeMask           = 0;                        % Long code mask
rfch.EnableCoding           = 'On';                     % Enable channel coding
rfch.DataSource             = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
rfch.DataRate               = 14400;                    % Data rate (bps)
rfch.FrameLength            = 20;                       % Frame length (ms)
rfch.WalshCode              = 1;                        % Unique Walsh code number
rManualConfig.RFCH          = rfch;                     % Add the channel to the waveform configuration

rpich.Enable                = 'On';                     % Enable the R-PICH channel
rpich.Power                 = 0;                        % Relative channel power (dBW)
rpich.LongCodeMask          = 0;                        % Long code mask
rpich.PowerControlEnable    = 'Off';                    % Enable the Power Control Subchannel
rManualConfig.RPICH         = rpich;                    % Add the channel to the waveform configuration

reach.Enable                = 'On';                     % Enable the R-EACH channel
reach.Power                 = 0;                        % Relative channel power (dBW)
reach.LongCodeMask          = 0;                        % Long code mask
reach.EnableCoding          = 'On';                     % Enable channel coding
reach.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
reach.DataRate              = 9600;                     % Data rate (bps)
reach.FrameLength           = 20;                       % Frame length (ms)
reach.WalshCode             = 2;                        % Unique Walsh code number
rManualConfig.REACH         = reach;                    % Add the channel to the waveform configuration

rcch.Enable                 = 'On';                     % Enable the R-CCH channel
rcch.Power                  = 0;                        % Relative channel power (dBW)
rcch.LongCodeMask           = 0;                        % Long code mask
rcch.EnableCoding           = 'On';                     % Enable channel coding
rcch.DataSource             = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
rcch.DataRate               = 9600;                     % Data rate (bps)
rcch.FrameLength            = 20;                       % Frame length (ms)
rcch.WalshCode              = 3;                        % Unique Walsh code number
rManualConfig.RCCCH         = rcch;                     % Add the channel to the waveform configuration

rdcch.Enable                = 'On';                     % Enable the R-DCCH channel
rdcch.Power                 = 0;                        % Relative channel power (dBW)
rdcch.LongCodeMask          = 0;                        % Long code mask
rdcch.EnableCoding          = 'On';                     % Enable channel coding
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rdcch.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
rdcch.DataRate              = 14400;                    % Data rate (bps)
rdcch.FrameLength           = 20;                       % Frame length (ms)
rdcch.WalshCode             = 4;                        % Unique Walsh code number
rManualConfig.RDCCH         = rdcch;                    % Add the channel to the waveform configuration

rsch1.Enable                = 'On';                     % Enable the R-SCH1 channel
rsch1.Power                 = 0;                        % Relative channel power (dBW)
rsch1.LongCodeMask          = 0;                        % Long code mask
rsch1.EnableCoding          = 'On';                     % Enable channel coding
rsch1.DataSource            = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
rsch1.DataRate              = 14400;                    % Data rate (bps)
rsch1.FrameLength           = 20;                       % Frame length (ms)
rsch1.WalshLength           = 8;                        % Walsh code length
rsch1.WalshCode             = 5;                        % Unique Walsh code number
rManualConfig.RSCH1         = rsch1;                    % Add the channel to the waveform configuration

rsch2                       = rsch1;                    % Apply the same settings with R-SCH1
rsch2.WalshCode             = 6;                        % Except for the unique Walsh code number
rManualConfig.RSCH2         = rsch2;                    % Add the channel to the waveform configuration

reverseManualWaveform   = cdma2000ReverseWaveformGenerator(rManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(reversePresetConfig, rManualConfig))
    disp([  'Configuration structures generated with and without the ' ...
            'cdma2000ForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the cdma2000ForwardReferenceChannels function are the same.

Waveform Comparison

Compare the waveforms generated using both approaches described above and see that the
generated waveforms are identical

if(isequal(forwardPresetWaveform, forwardManualWaveform))
    disp([  'Forward waveforms generated with and without the ' ...
            'cdma2000ForwardReferenceChannels function are the same.']);
end

if(isequal(reversePresetWaveform, reverseManualWaveform))
    disp([  'Reverse waveforms generated with and without the ' ...
            'cdma2000ReverseReferenceChannels function are the same.']);
end

Forward waveforms generated with and without the cdma2000ForwardReferenceChannels function are the same.
Reverse waveforms generated with and without the cdma2000ReverseReferenceChannels function are the same.

Customization of Configuration

The configuration structures can be customized in order to create a waveform that better suits your
objective. You can also customize the preset waveforms in order to exploit additional capabilities,
such as:

% 1. Specifying the message of the Sync channel:
fManualConfig2              = fManualConfig;
fsync.Enable                = 'On';                     % Enable the F-SYNC channel
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fsync.Power                 = 0;                        % Relative channel power (dBW)
fsync.EnableCoding          = 'On';                     % Enable channel coding
fsync.DataSource            = 'SyncMessage';            % Input message: {'PNX', Seed}, numerical vector or 'SyncMessage'
sm.P_REV                    = 6;                        % Protocol Revision field
sm.MIN_P_REV                = 6;                        % Minimum Protocol Revision field
sm.SID                      = hex2dec('14B');           % System Identifier field
sm.NID                      = 1;                        % Network Identification field
sm.PILOT_PN                 = 0;                        % Pilot PN Offset field
sm.LC_STATE                 = hex2dec('20000000000');   % Long Code State field
sm.SYS_TIME                 = hex2dec('36AE0924C');     % System Time field
sm.LP_SEC                   = 0;                        % Leap Second field
sm.LTM_OFF                  = 0;                        % Local Time Offset field
sm.DAYLT                    = 0;                        % Daylight Savings Time Indicator field
sm.PRAT                     = 0;                        % Paging Channel Data Rate field
sm.CDMA_FREQ                = hex2dec('2F6');           % CDMA Frequency field
sm.EXT_CDMA_FREQ            = hex2dec('2F6');           % Extended CDMA Frequency field
fsync.SyncMessage           = sm;                       % Sync channel message substructure, used if 'SyncMessage' is the data source
fManualConfig2.FSYNC         = fsync;                    % Add the channel to the waveform configuration

% 2. Enabling the Power Control Subchannel of the Forward Fundamental Channel:
ffch.Enable                 = 'On';                     % Enable the F-FCH channel
ffch.Power                  = 0;                        % Relative channel power (dBW)
ffch.RadioConfiguration     = 'RC4';                    % Radio Configuration: 1-9
ffch.DataRate               = 9600;                     % Data rate (bps)
ffch.FrameLength            = 20;                       % Frame length (ms)
ffch.LongCodeMask           = 0;                        % Long code mask
ffch.EnableCoding           = 'On';                     % Enable channel coding
ffch.DataSource             = {'PN9', 1};               % Input message: {'PNX', Seed} or numerical vector
ffch.WalshCode              = 7;                        % Unique Walsh code number
ffch.EnableQOF              = 'Off';                    % Enable QOF spreading
ffch.PowerControlEnable     = 'On';                     % Enable the Power Control Subchannel
ffch.PowerControlPower      = 0;                        % Power control subchannel power (relative to F-FCH)
ffch.PowerControlDataSource = {'PN9',1};                % Power control subchannel data source
fManualConfig2.FFCH          = ffch;                     % Add the channel to the waveform configuration

forwardManualWaveform2   = cdma2000ForwardWaveformGenerator(fManualConfig2);

Plot Spectrum of Forward cdma2000 Waveform

Plot the spectrum of the time domain signal forwardManualWaveform.

chiprate                 = 1.2288e6;   % Chip rate of the baseband waveform (SR1)
fSpectrumPlot            = dsp.SpectrumAnalyzer('SampleRate', chiprate*fManualConfig.OversamplingRatio);
fSpectrumPlot.Title      = 'Spectrum of Forward cdma2000 Waveform';
fSpectrumPlot.YLimits    = [-160,40];
fSpectrumPlot(forwardManualWaveform);
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Plot Spectrum of Reverse cdma2000 Waveform

Plot the spectrum of the time domain signal reverseManualWaveform.

chiprate                 = 1.2288e6;   % Chip rate of the baseband waveform (SR1)
rSpectrumPlot            = dsp.SpectrumAnalyzer('SampleRate', chiprate*rManualConfig.OversamplingRatio);
rSpectrumPlot.Title      = 'Spectrum of Reverse cdma2000 Waveform';
rSpectrumPlot.YLimits    = [-160,40];
rSpectrumPlot(reverseManualWaveform);
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1xEV-DO Waveform Generation
This example shows how to generate standard-compliant forward (downlink) and reverse (uplink)
1xEV-DO waveforms using the Communications Toolbox™.

Introduction

The Communications Toolbox can be used to generate preset or customized standard-compliant
forward and reverse, Release 0 and Revision A 1xEV-DO waveforms.

The generated waveforms can be used for the following applications:

• Golden reference for transmitter implementations
• Receiver testing and algorithm development
• Testing RF hardware and software
• Interference testing

Waveform Generation Techniques

• Waveforms can be generated using the evdoForwardWaveformGenerator and
evdoReverseWaveformGenerator functions. The input of these functions is a structure
containing top-level waveform parameters as well as substructures containing channel- or packet-
specific parameters. This example will illustrate how such structures can be constructed from
scratch.

• Preset structure configurations can be created using the evdoForwardReferenceChannels and
evdoReverseReferenceChannels functions. Such preset configurations can represent common
Test and Measurement scenarios or provide a good starting point (wizard) for customizing a
waveform configuration.

Generation of Preset-driven Forward and Reverse 1xEV-DO Waveforms

The preset structure configurations can then be passed to the waveform generation functions. For
example, the following commands generate Revision A and Release 0 forward and reverse
waveforms, respectively.

forwardPresetConfig = evdoForwardReferenceChannels('RevA-5120-2-64', 10);
forwardPresetWaveform = evdoForwardWaveformGenerator(forwardPresetConfig);

reversePresetConfig = evdoReverseReferenceChannels('Rel0-38400', 10);
reversePresetWaveform = evdoReverseWaveformGenerator(reversePresetConfig);

Generation of a Forward 1xEV-DO Waveform Using Full Parameter List

Next, we illustrate the creation of equivalent configuration structures from scratch. This is also useful
for customizing the preset configurations.

% Create top-level waveform parameters:
fManualConfig.Release = 'RevisionA';            % 'Release0' or 'RevisionA'
fManualConfig.PNOffset = 0;                     % PN Offset of the Base station
fManualConfig.IdleSlotsWithControl = 'Off';            
fManualConfig.EnableControl = 'On';             
fManualConfig.OversamplingRatio = 4;            % Upsampling factor          
fManualConfig.FilterType = 'cdma2000Long';      % Filter coefficients: 'cdma2000Long', 'cdma2000Short', 'Custom' or 'Off'
fManualConfig.InvertQ = 'Off';                  % Negate the imaginary output

8 Communications Toolbox Featured Examples

8-310



fManualConfig.EnableModulation = 'Off';         % Enable modulation
fManualConfig.ModulationFrequency = 0;          % Modulation frequency (Hz)
fManualConfig.NumChips = 41600;                 % Number of chips in the waveform

% Create a input message source for the packets:
pds.MACIndex = 0;                               % MAC index associated with data
pds.DataSource = {'PN9', 1};                    % Input message: {'PNX', Seed} or numerical vector
pds.EnableCoding = 'On';                        % Enable channel coding
fManualConfig.PacketDataSources = pds;          % Add the data source specification to the waveform configuration

% Create a single packet:
fPacket.MACIndex = 0;                           % MAC index associated with this packet
fPacket.PacketSize = 5120;                      % The packet size: 128, 256, 512, 1024, 2048 4096 or 5120 bits
fPacket.NumSlots = 2;                           % The number of slots: 1, 2, 4, 8 or 16
fPacket.PreambleLength = 64;                    % The preamble length: 64, 128, 256, 512 or 1024 chips
% Create a sequence of 10 packets:
fManualConfig.PacketSequence = repmat(fPacket, 1, 10);

% Generate waveform:
forwardManualWaveform = evdoForwardWaveformGenerator(fManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(forwardPresetConfig, fManualConfig))
    disp([  'Configuration structures generated with and without the ' ...
            'evdoForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the evdoForwardReferenceChannels function are the same.

Generation of a Reverse 1xEV-DO Waveform Using Full Parameter List

% Create top-level waveform parameters:
rManualConfig.Release = 'Release0';             % 'Release0' or 'RevisionA'
rManualConfig.LongCodeMaskI = 0;                % Initial long code mask for I channel
rManualConfig.LongCodeMaskQ = 0;                % Initial long code mask for Q channel
rManualConfig.OversamplingRatio = 4;            % Upsampling factor          
rManualConfig.FilterType = 'cdma2000Long';      % Filter coefficients: 'cdma2000Long', 'cdma2000Short', 'Custom' or 'Off'
rManualConfig.InvertQ = 'Off';                  % Negate the imaginary output
rManualConfig.EnableModulation = 'Off';         % Enable modulation
rManualConfig.ModulationFrequency = 0;          % Modulation frequency (Hz)
rManualConfig.NumChips = 327680;                % Number of chips in the waveform

% Create a single packet:
rPacket.Power = 0;                              % Relative channel power (dBW)
rPacket.DataSource = {'PN9', 1};                % Input message: {'PNX', Seed} or numerical vector
rPacket.EnableCoding = 'On';                    % Enable channel coding
rPacket.DataRate = 38400;                       % Data rate (bps)
% Create a sequence of 10 packets:
rManualConfig.PacketSequence = repmat(rPacket, 1, 10);

% Add a Pilot Channel:
pich.Enable = 'On';                             % Enable the pilot channel
pich.Power = 0;                                 % Relative channel power (dBW)
pich.DataSource = {'PN9', 1};                   % Input message: {'PNX', Seed} or numerical vector
pich.EnableCoding = 'On';                       % Enable channel coding
rManualConfig.PilotChannel = pich;              % Add the channel to the waveform configuration

% Add an ACK Channel, but do not enable it:
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ach.Enable = 'Off';                             % Do not enable the ack channel
ach.Power = 0;                                  % Relative channel power (dBW)
ach.DataSource = {'PN9', 1};                    % Input message: {'PNX', Seed} or numerical vector
rManualConfig.ACKChannel = ach;                 % Add the disabled channel specification to the waveform configuration

% Generate waveform:
reverseManualWaveform   = evdoReverseWaveformGenerator(rManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(reversePresetConfig, rManualConfig))
    disp([  'Configuration structures generated with and without the ' ...
            'evdoForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the evdoForwardReferenceChannels function are the same.

Waveform Comparison

Compare the waveforms generated using both approaches described above and see that the
generated waveforms are identical

if(isequal(forwardPresetWaveform, forwardManualWaveform))
    disp([  'Forward waveforms generated with and without the ' ...
            'evdoForwardReferenceChannels function are the same.']);
end

Forward waveforms generated with and without the evdoForwardReferenceChannels function are the same.

if(isequal(reversePresetWaveform, reverseManualWaveform))
    disp([  'Reverse waveforms generated with and without the ' ...
            'evdoReverseReferenceChannels function are the same.']);
end

Reverse waveforms generated with and without the evdoReverseReferenceChannels function are the same.

Customizing Configurations

The configuration structures can be customized in order to create a waveform that better suits your
objective. For example:

rManualConfig2 = rManualConfig;
rPacket.Power = -10;                            % Relative channel power (dBW)
rPacket.DataSource = {'PN23', 1};               % Input message: {'PNX', Seed} or numerical vector
rPacket.EnableCoding = 'Off';                   % Enable channel coding
rPacket.DataRate = 38400;                       % Data rate (bps)
rManualConfig2.PacketSequence = repmat(rPacket, 1, 10);

% Regenerate the waveform accounting for the customizations:
reverseManualWaveform2   = evdoReverseWaveformGenerator(rManualConfig2);

Plot Spectrum of Generated 1xEV-DO Waveforms

chiprate = 1.2288e6;   % Chip rate of the baseband waveform (SR1)
spectrumPlot = dsp.SpectrumAnalyzer('SampleRate', chiprate*fManualConfig.OversamplingRatio);
spectrumPlot.Title = 'Spectrum of Forward 1xEV-DO Waveform';
spectrumPlot.YLimits = [-180,40];
spectrumPlot(forwardManualWaveform);
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spectrumPlot2 = dsp.SpectrumAnalyzer('SampleRate', chiprate*rManualConfig.OversamplingRatio);
spectrumPlot2.Title = 'Spectrum of Reverse 1xEV-DO Waveform';
spectrumPlot2.YLimits = [-180,40];
spectrumPlot2(reverseManualWaveform2);
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cdma2000 Physical Layer in Simulink
This example demonstrates how the Communications Toolbox™ can be used for: (i) working with
standard-compliant cdma2000® waveforms in Simulink® and (ii) building standard-compliant
decoder subsystems. Specifically, the model mainly covers the Forward Fundamental Channel (F-
FCH) of the downlink channel between a base station and a mobile station for radio configuration 3
and spreading rate 1.

Introduction

cdma2000 is a terrestrial radio interface for the third generation of wireless communications
developed within the framework of the International Mobile Telecommunications (IMT)-2000
standard, as defined by the International Telecommunication Union (ITU). The specifications of the
cdma2000 system are being developed by the Third Generation Partnership Project 2 (3GPP2).

The cdma2000 air interface is a direct spread technology. This means that it spreads encoded user
data at a relatively low rate over a much wider bandwidth (1.23 MHz for the 1x case), using a
sequence of pseudorandom units called chips at a much higher rate (1.2288 Mcps). By assigning a
unique code to each user, the receiver, which has knowledge of the code of the intended user, can
successfully separate the desired signal from the received waveform.

Structure of the Example

The key components of the forward cdma2000 physical layer are the transmitting base station, the
channel, and the mobile station (receiver).

• The base station is represented by a standard-compliant forward waveform, which is generated
with the cdma2000ForwardWaveformGenerator function and is imported from the MATLAB®
Workspace.

• The channel can function as a SISO Fading Channel, an AWGN Channel, or as an empty
subsystem.

• The mobile receiver includes the decoder and receiver subsystem, which perform all operations
needed for decoding the standard-compliant waveform.
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Parameters in the Model

A configuration block labeled "Model Parameters" enables you to configure the generated waveform,
as well as the channel model.

Base Station

For waveform generation, you can customize the data rate, the oversampling ratio, the QOF index
and the Walsh code. Every customization regenerates a standard-compliant waveform in the MATLAB
Workspace. The waveform generation performs the following steps:

• Generating a PN9 bit sequence
• Inserting frame quality indicator bits (CRC)
• Appending tail bits before coding
• Convolutional encoding
• Repetition
• Puncturing
• Block interleaving
• Mapping and scaling
• Spreading by a Walsh code
• Spreading by a QOF (quasiorthogonal function) mask
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• Walsh code rotation
• Quadrature scrambling by a PN (pseudonoise) sequence
• Transmit filtering by an oversampled square root raised cosine filter

Channel

The default channel model includes the effects of both multipath Rayleigh fading and additive white
Gaussian noise. Alternatively, you can use the channel as a source of Gaussian noise only, or as an
empty subsystem. You can configure the channel characteristics using the Model Parameters block in
the top left corner of the model.

Receiver

The most important parts of the receiver subsystem are the Rake receiver and the channel estimator.

Besides these two components,the other receiver operations are straightforward inverses of some
waveform-generation operations.

Decoder

The decoder subsystem conducts the inverse operations of the remaining waveform-generation
operations.

Results and Displays

The BER Calculation component compares the decoded signal with the signal of the data source. BER
equals zero under all possible configurations for waveform generation, assuming no changes have
been made to the model. Notice that signal delay is properly handled and frames are aligned.

To view data graphically, open the scopes by double-clicking the Open Scopes icon. The scopes show
the following information:

• The 'Tx Waveform: Spectrum' scope shows the power spectrum of the generated waveform.
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• The 'Tx Waveform: Constellation' scope shows the generated waveform in the I-Q plane. The
transmitted signal seems scattered, as a result of spreading.
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• The 'From Channel' spectrum scope noticeably illustrates the effects of the channel on the
received signal.

• The 'From Channel' constellation scope shows the I-Q output of the channel. The signal is still
spreaded.

 cdma2000 Physical Layer in Simulink

8-319



• The 'After Derotation' constellation scope shows the data after the receiver subsystem has
despreaded the signal and compensated for the phase rotation caused by the channel. The signal
still suffers from some effects of the multipath fading channel.
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• The 'After Rake' constellation scope shows the output of the rake receiver after the rake receiver
has compensated for the attenuation caused by the channel. Even though some bit errors may
exist at this stage, these are later on corrected by a powerful decoding operation.
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Simulink Techniques Illustrated in the Example

In addition to illustrating a cdma2000 application, this example also illustrates several techniques for
modeling in Simulink. In particular, this example shows how you can:

1. Use the Communications Toolbox extensively to implement wireless systems.

2. Represent the architecture of the design using subsystems.

3. Import signals from the MATLAB Workspace.

4. Reuse and share custom-built blocks using a library. To view the library for this example, double-
click the cdma2000 Library icon in the top right corner of model.

5. Control the parameters of the simulation using a configuration dialog box.

6. Handle end-to-end delays and perform frame alignment.
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Near Field Communication (NFC)
This example shows you how to model communication between two Near Field Communication (NFC)
devices.

Introduction

Near Field Communication (NFC) is a standards-based short-range wireless connectivity technology,
designed for intuitive and simple communication between two electronic devices. NFC operates at
13.56 MHz center frequency (Fc), at rates ranging from 106 kbps to 424 kbps, and its typical
operating range is 10 cm or less. NFC always involves an Initiator and a Target - the Initiator actively
generates an electromagnetic field that can power a passive Target.

ISO®/IEC 18092 (Telecommunications and Information Exchange Between Systems - Near Field
Communication - Interface and Protocol), also referred to as NFCIP-1 (Near Field Communication -
Interface and Protocol Specification), is the governing international Standard for NFC. It is based on
ISO/IEC 14443. ISO/IEC 18092 includes two communication modes:

• Passive: The Initiator device generates a carrier field and the Target device answers by
modulating the existing field. In this mode, the Target device draws its operating power from the
Initiator-provided electromagnetic field.

• Active: Both Initiator and Target device communicate by alternately generating their own fields. A
device deactivates its RF field while it is waiting for data. In this mode, both devices typically have
power supplies.

Within the two modes of communication there are three modes of operation defined in ISO/IEC
18092:

• Read/Write: In this mode, the NFC device can read data from or write data to any of the supported
NFC tags (contactless cards) in a standard NFC data format. The applications include reading
information stored in inexpensive NFC tags embedded in labels or smart posters.

• Card Emulation: The NFC device can also act as an NFC tag for other readers. This enables NFC-
enabled devices like smart phones to act like smart cards to perform transactions such as
payments or ticketing.

• Peer-to-Peer: Two NFC devices can exchange data. The applications include sharing a WiFi or
Bluetooth® link, or exchanging data in the form of virtual business cards and photos.

System Setup

This example illustrates the NFC protocol and commands required to transmit data from an Initiator
to a Target. The passive communication mode is used here whereby the Initiator provides the
electromagnetic field and the Target sends the information back by modulating this field. The Initiator
is operating as a writer and the Target as card emulator or tag. The Initiator and Target use the Type
A air interface defined in ISO/IEC 14443-2 (Identification cards - Contactless integrated circuit cards
- Proximity cards - Part 2: Radio frequency power and signal interface) and are operating at 106 kbps.
The Initiator uses Modified Miller coding with 100% ASK, as shown in the Time scope below. The
Target generates a subcarrier with frequency 847.5 kHz (Fs), via load modulation, using the
Initiator's field and then modulates the data onto the Initiator's carrier frequency using this
subcarrier. The Spectrum Analyzer illustrates the load modulation below. To highlight the subcarrier
at 847.5 kHz, select Tools->Measurements->Peak Finder in the spectrum analyzer window. The
Target uses Manchester coding with 10% ASK as shown in the Time scope below. Note that the time
domain signals shown in the two Time scopes are baseband signals i.e the 13.56 MHz carrier signal is
stripped out.
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The nfcInitiator object represents the Initiator. The UserData property holds the data to be
transmitted to the Target. The nfcTarget object represents the Target and ReceivedUserData holds
the data received from the Initiator. Due to short range of NFC devices, the system SNR is very high.

initiator = nfcInitiator

initiator = 
                     Fc: 13560000
       SamplesPerSymbol: 64
                     t1: 32
               AppLayer: []
               UserData: 'Hello, from MathWorks.'
    EnableVisualization: 1

target = nfcTarget

target = 
                     Fc: 13560000
                     Fs: 847500
       SamplesPerSymbol: 64
                    UID: '11aa22bb'
               AppLayer: []
       ReceivedUserData: ''
    EnableVisualization: 1

% Signal to noise ratio, in dB
snrdB = 50;
% Reset the RNG for reproducible results 
s = rng(0);

Initialization and Anticollision

The Initiator and Target follow initialization and anticollision sequences to establish a communication
link. Figure 9 (Initialization and anticollision flowchart for PCD) and Figure 10 (Anticollision loop,
flowchart for PCD) in ISO/IEC 14443-3 (Identification cards - Contactless integrated circuit cards -
Proximity cards, Part 3: Initialization and anticollision) illustrate the corresponding flowcharts.
Section 6 (Type A - Initialization and anticollision) of ISO/IEC 14443-3 describes the commands and
protocol in detail. Functions nfcInitialization() and nfcAnticollisionLoop() implement the
corresponding sequence of commands and protocol. The example prints the status and actions of
Initiator and Target devices, along with important information that is exchanged, to indicate the flow
of commands.

Transport Protocol

As described in ISO/IEC 18092, Transport protocol has three parts -

• Activation of protocol: Various protocol parameters, like bit rates, are negotiated and selected
during this phase. Section 12.5 (Activation of the protocol) of ISO/IEC 18092 describes this phase
in details. The function nfcProtocolActivation() implements the sequence of commands required
during this phase.

• Data Exchange Protocol: The information is exchanged during this phase using a half-duplex
protocol that supports block oriented data transmission with error handling. See section 12.6
(Data Exchange Protocol) of ISO/IEC 18092 for details. Function nfcDataExchangeProtocol()
shows how to implement the exchange of data as prescribed by the ISO/IEC 18092.
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• Deactivation of Protocol: After completing data exchange, the Initiator deactivates the protocol
and connection with the Target. Function nfcProtocolDeactivation() implements the sequence
described in section 12.7 (Deactivation of the protocol) of ISO/IEC 18092.

nfcPrint.Message('The message to transmit from Initiator to Target:');

The message to transmit from Initiator to Target:

nfcPrint.Message(initiator.UserData);

Hello, from MathWorks.

nfcPrint.Start();

Start of NFC Communication between Initiator and Target

nfcInitialization(initiator, target, snrdB);

    Initiator transmitted REQA
    Target received REQA
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        Target transmitted ATQA in response to REQA
    Initiator received ATQA
        Target supports bit frame anticollision
        Target's UID size: single

nfcAnticollisionLoop(initiator, target, snrdB);

    Start of Anticollision loop
        Cascade Level-1
            Initiator transmitted ANTICOLLISION command
            Target received Cascade Level-1 SEL code
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                Target transmitted full UID
            Initiator received CL1 UID without collision
                Complete UID received: 0x11aa22bb
                Initiator transmitted SELECT command
            Target received Cascade Level-1 SEL code
                Target selection confirmed
                Target transmitted SAK with UID complete flag
            Initiator received SAK
                UID complete. Exit Anticollision loop.
    End of Anticollision loop

    Target compliant with NFCIP-1. Continue with Transport Protocol Activation

nfcProtocolActivation(initiator, target, snrdB);

    Start of Transport Protocol Activation
        Initiator transmitted ATR_REQ
        Target received ATR_REQ
            Target transmitted ATR_RES in response to ATR_REQ
        Initiator received ATR_RES
            Initiator transmitted PSL_REQ in response to ATR_REQ
            Selected send rate: 106 Kbps
            Selected receive rate: 106 Kbps
        Target received PSL_REQ
            Target transmitted PSL_RES in response to PSL_REQ
        Initiator received PSL_RES
            PSL_RES validated. All selected rates confirmed
    End of Transport Protocol Activation
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nfcDataExchangeProtocol(initiator, target, snrdB);

    Start of Data Exchange Protocol (DEP)
        Initiator transmitted an Information PDU in DEP_REQ
            Initiator PNI: 0
        Target received an Information PDU in DEP_REQ
            MI chaining not activated in received information PDU
            Received Initiator PNI: 0
            Target PNI: 0
            Target transmitted an Information PDU in DEP_RES in response to DEP_REQ
        Initiator received an Information PDU in DEP_RES
            Received Target PNI: 0
        All data transmitted from Initiator to Target. Exit DEP.
    End of Data Exchange Protocol (DEP)

nfcProtocolDeactivation(initiator, target, snrdB)

    Start of Transport Protocol Deactivation
        Initiator transmitted RLS_REQ
        Target received RLS_REQ
            Target transmitted RLS_RES in response to RLS_REQ
        Initiator received RLS_RES
            Target released
    End of Transport Protocol Deactivation

nfcPrint.End();

End of NFC Communication between Initiator and Target

nfcPrint.Message('The message received by Target from Initiator:');

The message received by Target from Initiator:

nfcPrint.Message(target.ReceivedUserData);

Hello, from MathWorks.

nfcPrint.NewLine;

% Restore RNG state 
rng(s);

function nfcInitialization(initiator, target, snrdB)
    % Initialization and anticollision
    % Reference: ISO/IEC 14443-3, section 6

    txREQA = transmitREQA(initiator);
    rxREQA = awgn(txREQA, snrdB, 'measured');

    txATQA = receiveREQA(target, rxREQA);
    rxATQA = awgn(txATQA, snrdB, 'measured');

    [isATQAValid, isCollisionDetected, isTargetCompliant] = ...
        receiveATQA(initiator, rxATQA);

    coder.internal.errorIf(~isATQAValid, 'comm:NFC:InvalidATQA');
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    coder.internal.errorIf(isCollisionDetected, 'comm:NFC:CollisionATQA');
    coder.internal.errorIf(~isTargetCompliant, 'comm:NFC:TargetNotCompliant');    
end

function nfcAnticollisionLoop(initiator, target, snrdB)
    % Anticollision Loop
    % Reference: ISO/IEC 14443-3, section 6
    
    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Anticollision loop');
    
    % Start anticollision loop
    cascadeLevel = 1;
    targetRxAC = [];
    nfcPrint.CascadeLevel(cascadeLevel);
    [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
        antiCollisionLoop(initiator, targetRxAC, cascadeLevel);
    
    while (newCascadeLevel <= 3) && ~uidComplete
        
        nfcPrint.CascadeLevel(newCascadeLevel, cascadeLevel);
        cascadeLevel = newCascadeLevel;
        
        targetRxAC = awgn(initiatorTxAC, snrdB, 'measured');
        % Target's anticollision loop
        targetTxAC = antiCollisionLoop(target, targetRxAC);
        initiatorRxAC = awgn(targetTxAC, snrdB, 'measured');
        % Initiator's anticollision loop
        [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
            antiCollisionLoop(initiator, initiatorRxAC, cascadeLevel);
    end
    
    coder.internal.errorIf(~uidComplete, 'comm:NFC:IncompleteUID');
    coder.internal.errorIf(~isoCompliantTarget, ...
        'comm:NFC:TargetNotCompliantWithNFCIP1');
    
    nfcPrint.Heading1('End of Anticollision loop');
    nfcPrint.NewLine;    
    nfcPrint.Heading1(['Target compliant with NFCIP-1. '...
        'Continue with Transport Protocol Activation']);    
end

function nfcProtocolActivation(initiator, target, snrdB)
    % NFCIP-1 Transport Protocol Activation
    % Reference: ISO/IEC 18092, section 12.5
    
    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Transport Protocol Activation');
    
    txATR_REQ = transmitATR_REQ(initiator);
    rxATR_REQ = awgn(txATR_REQ, snrdB, 'measured');
    
    txATR_RES = receiveATR_REQ(target, rxATR_REQ);
    rxATR_RES = awgn(txATR_RES, snrdB, 'measured');
    
    txPSL_REQ = receiveATR_RES(initiator, rxATR_RES);
    rxPSL_REQ = awgn(txPSL_REQ, snrdB, 'measured');
    txPSL_RES = receivePSL_REQ(target, rxPSL_REQ);
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    status = receivePSL_RES(initiator, txPSL_RES);
    coder.internal.errorIf(~status, 'comm:NFC:TPActivationFailed');
    
    nfcPrint.Heading1('End of Transport Protocol Activation');    
end

function nfcDataExchangeProtocol(initiator, target, snrdB)
    % Data Exchange Protocol
    % Reference: ISO/IEC 18092, section 12.6
    
    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Data Exchange Protocol (DEP)');
    
    status = nfcDEP(initiator, target, snrdB);
    coder.internal.errorIf(~status, 'nfc:NFC:DEPFailed');
    
    nfcPrint.Heading1('End of Data Exchange Protocol (DEP)');
    nfcPrint.NewLine;    
end

function nfcProtocolDeactivation(initiator, target, snrdB)
    % Transport Protocol Deactivation
    % Reference: ISO/IEC 18092, section 12.7

    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Transport Protocol Deactivation');

    txRLS_REQ = transmitRLS_REQ(initiator);
    rxRLS_REQ = awgn(txRLS_REQ, snrdB, 'measured');
    
    txRLS_RES = receiveRLS_REQ(target, rxRLS_REQ);
    rxRLS_RES = awgn(txRLS_RES, snrdB, 'measured');
    
    status = receiveRLS_RES(initiator, rxRLS_RES);
    coder.internal.errorIf(~status, 'comm:NFC:TPDeactivationFailed');
    
    nfcPrint.Heading1('End of Transport Protocol Deactivation');
end

Exploration

Explore various methods of nfcInitiator and nfcTarget objects to understand various commands and
protocols described by NFC standards. Experiment with various system parameters like SNR, UID
type (Single or Double), UID value, SamplesPerSymbol to see how they impact the system.

References
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NFC Application Layer
This example demonstrates exchange of data between application layers of two Near Field
Communication (NFC) devices.

Introduction

The example demonstrates a Near Field Communication (NFC) smart poster, which is an NFC feature
used by retailers, advertising agencies, transportation authorities, health care providers, and various
industries who want to interact with consumers. Since NFC requires the user to take action, the opt-
in nature of the technology creates an engaged user leading to a much more meaningful interaction
with a brand.

An NFC smart poster is a magazine advertisement, flier, billboard, or other physical medium that
includes embedded or affixed NFC tags. When an NFC device is placed within a few centimeters of
the NFC tag, information is transferred to the device or a task is launched on the device.

Depending on the smart poster and environment, the consumer can receive targeted information
about their current location. Examples of NFC smart poster use include:

• A poster that contains an NFC tag that instructs the receiving NFC device to launch a map
application with directions to help a lost tourist find a nearby landmark.

• In a retail setting, a poster that offers coupons, information about a product, or loyalty points. The
consumer's phone acts as the loyalty card and stores the information, thus eliminating the need to
keep track of multiple cards.

The data to transfer is encoded in the NFC Tag in the NDEF (NFC Data Exchange Format) format and
is stored into the Tag data structure. The NDEF is a data format for NFC Devices and Tags to
construct a valid NDEF message. The NDEF file consists of NDEF Messages, which consist of NDEF
Records. The NDEF format is used to store and exchange information like URI (Uniform Resource
Identifier), plain text, encrypted data, image data like GIF and JPEG files, etc.

System Setup

The application layer of the NFC Tag stores the data in the NDEF file. This example illustrates the
NFC protocols and commands required to transfer data between the application layers of an NFC
Device and an NFC Tag for an application like an NFC smart poster.

NDEF is a lightweight, binary message format that can be used to encapsulate one or more
application-defined payloads of arbitrary type and size into a single message construct. Each payload
is described by a type, a length, and an optional identifier. Type identifiers may be URIs, MIME media
types, or NFC-specific types. NDEF payloads may include nested NDEF messages or chains of linked
data chunks of length unknown at the time the data is generated [ 5 on page 8-0  ].

txURL = 'mathworks.com';
targetRecord = ndefRecord('Type', 'U', 'URIID', '01', ...
    'ActualText', txURL)

targetRecord = 
  ndefRecord with properties:

       TypeNameFormat: 'NFC Forum well-known type'
    IsIDLengthPresent: '0'
        IsShortRecord: '1'
              IsChunk: '0'
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       IsMessageBegin: '1'
         IsMessageEnd: '1'
           TypeLength: ''
        PayloadLength: ''
             IDLength: '00'
                 Type: 'U'
                   ID: ''
              Payload: ''
          StatusBytes: '02'
         LanguageCode: 'en'
                URIID: '01'
           ActualText: 'mathworks.com'

The NFC Tag containing the URI in the NDEF file is a Type 4 Tag in this example, as specified in the
Type 4 Tag Operation Specification [ 6 on page 8-0  ]. An nfcTarget object models this tag. It
contains an nfcApp object that models the application layer and contains the data to be exchanged.

targetAppLayer = nfcApp();
targetAppLayer.AppData = create(targetRecord)

targetAppLayer = 
  nfcApp with properties:

       AppName: 'D2760000850101'
      CCFileID: 'E103'
    NDEFFileID: 'E104'
           CLA: '00'
           INS: 'A4'
            P1: '04'
            P2: '00'
            Lc: ''
            Le: ''
           SW1: '90'
           SW2: '00'
       AppData: 'D1010E55016D617468776F726B732E636F6D'

target = nfcTarget('AppLayer', targetAppLayer, 'EnableVisualization', false)

target = 
                     Fc: 13560000
                     Fs: 847500
       SamplesPerSymbol: 64
                    UID: '11aa22bb'
               AppLayer: [1x1 nfcApp]
       ReceivedUserData: ''
    EnableVisualization: 0

The consumer device is modeled by an nfcInitiator object, which also contains an nfcApp object to
model its application layer.

initiator = nfcInitiator('AppLayer', nfcApp(), 'UserData', '', ...
    'EnableVisualization', false)

initiator = 
                     Fc: 13560000
       SamplesPerSymbol: 64
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                     t1: 32
               AppLayer: [1x1 nfcApp]
               UserData: ''
    EnableVisualization: 0

% Signal to noise ratio, in dB
snrdB = 50;
% Reset the RNG for reproducible results 
s = rng(0);

The Initialization and Anticollision sequences are as described in “Near Field Communication (NFC)”
on page 8-323 example. The application data is exchanged using half-duplex block transmission
protocol, as described in ISO®/IEC 14443-4 [ 4 on page 8-0  ]. The example prints the status and
actions of Initiator and Target devices, along with important information that is exchanged, to
indicate the flow of commands.

nfcPrint.Message('URL to transmit:');

URL to transmit:

nfcPrint.Message(sprintf('%s%s', 'http://www.', txURL));

http://www.mathworks.com

nfcPrint.Start();

Start of NFC Communication between Initiator and Target

nfcInitialization(initiator, target, snrdB);

    Initiator transmitted REQA
    Target received REQA
        Target transmitted ATQA in response to REQA
    Initiator received ATQA
        Target supports bit frame anticollision
        Target's UID size: single

nfcAnticollisionLoop(initiator, target, snrdB);

    Start of Anticollision loop
        Cascade Level-1
            Initiator transmitted ANTICOLLISION command
            Target received Cascade Level-1 SEL code
                Target transmitted full UID
            Initiator received CL1 UID without collision
                Complete UID received: 0x11aa22bb
                Initiator transmitted SELECT command
            Target received Cascade Level-1 SEL code
                Target selection confirmed
                Target transmitted SAK with UID complete flag
            Initiator received SAK
                UID complete. Exit Anticollision loop.
    End of Anticollision loop

    Target compliant with NFCIP-1. Continue with Transport Protocol Activation
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nfcProtocolActivation(initiator, target, snrdB);

    Start of Protocol Activation
        Initiator transmitted RATS
        Target received RATS
            Target transmitted ATS in response to RATS
        Initiator received ATS
    End of Protocol Activation

nfcBlockTransmissionProtocol(initiator, target, snrdB);

    Start of Half-Duplex Block Transmission Protocol
        Initiator transmitted SELECT command for APP NAME
        Target received SELECT command for APP NAME
            Target transmitted STATUS Bytes for APP NAME
        Initiator received valid STATUS Bytes for APP NAME
            Initiator transmitted SELECT command for CC File
        Target received SELECT command for CC File
            Target transmitted STATUS Bytes for CC File
        Initiator received valid STATUS Bytes for CC File
            Initiator transmitted READ command for CC File
        Target received READ command for CC File
            Target transmitted CCFILE CONTENT and STATUS Bytes for CC File
        Initiator received valid CCFILE CONTENT and STATUS Bytes for CC File
            Initiator transmitted SELECT command for NDEF File
        Target received SELECT command for NDEF File
            Target transmitted STATUS Bytes for NDEF File
        Initiator received valid STATUS Bytes for NDEF File
            Initiator transmitted READ command for NDEF NLEN
        Target received READ command for NDEF NLEN
            Target transmitted NLEN and STATUS Bytes for NDEF
        Initiator received NLEN and valid STATUS Bytes
            Initiator transmitted READ command for NDEF File
        Target received READ command for NDEF File
            Target transmitted NDEF CONTENT and STATUS Bytes for NDEF File
        Initiator received NDEF File content and valid STATUS Bytes
    End of Half-Duplex Block Transmission Protocol

nfcProtocolDeactivation(initiator, target, snrdB)

    Start of Protocol Deactivation
        Initiator transmitted DESELECT
        Target received DESELECT
            Target transmitted DESELECT response
        Initiator received DESELECT response
            Target released
    End of Protocol Deactivation

nfcPrint.End();

End of NFC Communication between Initiator and Target

recDataType = getReceivedNDEFType(initiator.AppLayer);
recData = getReceivedNDEFData(initiator.AppLayer);
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if strcmpi(recDataType, 'U')
    nfcPrint.Message('Received URL:');
else
    nfcPrint.Message('Received telephone number:');
end

Received URL:

nfcPrint.Message(recData);

http://www.mathworks.com

nfcPrint.NewLine;

% Restore RNG state 
rng(s);

function nfcInitialization(initiator, target, snrdB)
    % Initialization and anticollision
    % Reference: ISO/IEC 14443-3, section 6

    txREQA = transmitREQA(initiator);
    rxREQA = awgn(txREQA, snrdB, 'measured');

    txATQA = receiveREQA(target, rxREQA);
    rxATQA = awgn(txATQA, snrdB, 'measured');

    [isATQAValid, isCollisionDetected, isTargetCompliant] = ...
        receiveATQA(initiator, rxATQA);

    coder.internal.errorIf(~isATQAValid, 'comm:NFC:InvalidATQA');
    coder.internal.errorIf(isCollisionDetected, 'comm:NFC:CollisionATQA');
    coder.internal.errorIf(~isTargetCompliant, 'comm:NFC:TargetNotCompliant');    
end

function nfcAnticollisionLoop(initiator, target, snrdB)
    % Anticollision Loop
    % Reference: ISO/IEC 14443-3, section 6
    
    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Anticollision loop');
    
    % Start anticollision loop
    cascadeLevel = 1;
    targetRxAC = [];
    nfcPrint.CascadeLevel(cascadeLevel);
    [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
        antiCollisionLoop(initiator, targetRxAC, cascadeLevel);
    
    while (newCascadeLevel <= 3) && ~uidComplete
        
        nfcPrint.CascadeLevel(newCascadeLevel, cascadeLevel);
        cascadeLevel = newCascadeLevel;
        
        targetRxAC = awgn(initiatorTxAC, snrdB, 'measured');
        % Target's anticollision loop
        targetTxAC = antiCollisionLoop(target, targetRxAC);
        initiatorRxAC = awgn(targetTxAC, snrdB, 'measured');
        % Initiator's anticollision loop
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        [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
            antiCollisionLoop(initiator, initiatorRxAC, cascadeLevel);
    end
    
    coder.internal.errorIf(~uidComplete, 'comm:NFC:IncompleteUID');
    coder.internal.errorIf(~isoCompliantTarget, ...
        'comm:NFC:TargetNotCompliantWithNFCIP1');
    
    nfcPrint.Heading1('End of Anticollision loop');
    nfcPrint.NewLine;    
    nfcPrint.Heading1(['Target compliant with NFCIP-1. '...
        'Continue with Transport Protocol Activation']);    
end

function nfcProtocolActivation(initiator, target, snrdB)
    % ISO/IEC 14443-4 Protocol Activation
    % Reference: ISO/IEC 14443-4, section 5
    
    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Protocol Activation');

    txRATS = transmitRATS(initiator);
    rxRATS = awgn(txRATS, snrdB, 'measured');
    
    txATS = receiveRATS(target, rxRATS);
    rxATS = awgn(txATS, snrdB, 'measured');
    
    status = receiveATS(initiator, rxATS);
    coder.internal.errorIf(~status, 'comm:NFC:ProtocolActivationFailed');
    
    nfcPrint.Heading1('End of Protocol Activation');    
end

function nfcBlockTransmissionProtocol(initiator, target, snrdB)
    % Half-duplex Block Transmission Protocol
    % Reference: ISO/IEC 14443-4, section 7
    
    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Half-Duplex Block Transmission Protocol');
    
    nfcTransmissionProtocol(initiator, target, snrdB);
    
    nfcPrint.Heading1('End of Half-Duplex Block Transmission Protocol');
    nfcPrint.NewLine;    
end

function nfcProtocolDeactivation(initiator, target, snrdB)
    % Protocol Deactivation
    % Reference: ISO/IEC 14443-4, section 8

    nfcPrint.NewLine;
    nfcPrint.Heading1('Start of Protocol Deactivation');

    txDESLECT = transmitDESELECT(initiator);
    rxDESELECT = awgn(txDESLECT, snrdB, 'measured');
    
    txDESELECT_RES = receiveDESELECT(target, rxDESELECT);
    rxDESELECT_RES = awgn(txDESELECT_RES, snrdB, 'measured');
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    status = receiveDESELECT_RES(initiator, rxDESELECT_RES);
    coder.internal.errorIf(~status, 'comm:NFC:ProtocolDeactivationFailed');
    
    nfcPrint.Heading1('End of Protocol Deactivation');
end

Exploration

Explore various methods of nfcInitiator, nfcTarget, nfcApp, and ndefRecord objects, and various
functions used in this example to understand various commands and protocols described by NFC
standards. Experiment with various system parameters like SNR, NDEF messages to see how they
impact the system.

References

1. https://nfc-forum.org/
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4. ISO/IEC 14443-4 Identification cards - Contactless integrated circuit cards - Proximity cards - Part
4: Transmission protocol

5. NFC Data Exchange Format (NDEF) Technical Specification 1.0

6. Type 4 Tag Operation Specification Technical Specification 2.0
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Bluetooth Full Duplex Voice and Data Transmission
This model shows the full duplex communication between two Bluetooth® devices. Both data packets
and voice packets can be transmitted between the two devices:

• Supported voice packet types: HV1, HV2, HV3 and SCORT
• Supported data packet types: DM1

A system parameters block configures the packet type, slot pair, and channel type. Stateflow® is used
to implement the acknowledgement scheme for the data packets and the SCORT receiver state
machine.

Structure of the Example

A Bluetooth core system consists of an RF transceiver, baseband, and protocol stack. The system
offers services that enable the connection of devices and the exchange of a variety of classes of data
between these devices. This example is focused on the simulation of a piconet consisting of a master,
a slave, and a transmission channel.

This model includes CVSD speech coding, HEC, payload CRC for DM1, FEC, framing, GFSK
Modulation, frequency hopping, hop sequence generation, an 802.11b interferer, wave file I/O, BER
meters, spectrum, timing, and spectrogram plot.

You can set the system parameters by double-clicking the Model Parameters block in the top left.
You can toggle instrumentation (spectrum, spectrogram, and timing diagram) by double-clicking the
switch. The ARQN display for data transmission can be turned on or off.

Transmitter

The transmitter consists of:

• The controller block (based on BT spec Part B 7.6 ARQ Scheme)
• The payload and FEC block (based on BT spec Part B 7)
• The framing block (based on BT spec Part B 6.1 6.4 and 7.3)
• The radio block (based on BT spec Part A 3.1 Basic Rate)

Receiver

The receiver consists of:

• The radio block (based on BT spec Part A 4.1 Basic Rate)
• The deframing block (based on BT spec Part B 7)
• The controller block(based on BT spec Part B 7)

Channel

The following subsystems are constructed in the Bluetooth Full Duplex library:

• AWGN Channel
• AWGN Channel and 80211b interference
• None (direct connection)
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Blocks Used

This model shows the use of the following blocks:

• The CPM Modulator Baseband block is used to implement the GFSK (Gaussian frequency shift
keying). The Bluetooth radio module uses GFSK, where a binary one is represented by a positive
frequency deviation and a binary zero by a negative frequency deviation.

• The M-FSK Modulator Baseband block is used to implement the frequency hopping in
Bluetooth Radio. The Bluetooth radio accomplishes spectrum spreading by using 79 frequency
hops, each displaced by 1 MHz, starting at 2.402GHz and finishing at 2.480GHz.

• The Free Space Path Loss block, together with the AWGN block and the 802.11b interference
subsystem, shows the construction of a transmission channel.

• The General CRC Generator block is used for transmitted data CRC calculation.
• The use of the M-FSK Demodulator block, the General CRC Syndrome Detector block, and

the implementation of rate 1/3 and rate 2/3 payload FEC are also included.

The model also uses Stateflow charts to implement:

• The Transmitter Controller
• The Receiver Controller, which decides on the successful reception of a packet by looking at the

status of the access code, HEC and CRC

Signals Between the Two Devices

• Tx_Raw_Bits1: The master device generates information data randomly, does CRC and FEC
payload, and packs them according to the Bluetooth defined format (similarly, Tx_Raw_Bits2 is
for the slave device).

• Signal_Tx1: The master device takes Tx_Raw_Bits1 and modulates according to the Bluetooth
standard. Signal_Tx1 will be transmitted through the channel (similarly, Signal_Tx2 is for the
slave device).

• Signal_Rx1: The raw received signal after AWGN and interference. Signal_Rx1 is fed to the
master device for demodulation and detection (similarly, Signal_Rx2 is for the slave device).

• Tx_Info_Bits1: The information data generated by the master with CRC payload but no FEC.
Tx_Info_Bits1 is used for SCO BER check on the slave side (similarly, Tx_Info_Bits2 is for the
master device).

• Diagnostics2: A collection of frame and packet information for the ACL BER check on the master
side (similarly, Diagnostics1 is for the slave device).

• master_SCO: SCO BER information from the master device for display (similarly, slave_SCO is
for the slave device).

• master_ACL: ACL BER information from the master device for display (similarly, slave_ACL is for
the slave device).

• Interference: The interference signal generated from a 802.11b channel.
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Results and Displays

The scope display includes:

• The timing diagram of the received signal

• The received signal spectrum and the spectrogram of the channel
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The Master/Slave BER meters calculate:

• The data BER
• The data throughput

A successful system is decided by:

• The ACL(Asynchronous connection-oriented) BER being zero.
• The SCO (Synchronous connection-oriented) BER (which includes Raw BER, Residual BER, and

FER) being within the specifications.
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References

Standards can be found at: https://www.bluetooth.com/

See Also

More About
• “Bluetooth Full Duplex Data and Voice Transmission in MATLAB” on page 3-51
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DOCSIS Upstream TDMA Link Simulation
This example shows how to implement the physical layer (PHY) of Data Over Cable Service Interface
Specification (DOCSIS®) in the upstream TDMA operating mode [1] on page 8-0 [2] on page 8-0 .

Introduction

DOCSIS defines the international standards for high-speed data-over-cable systems and specifies a
variety of operating modes. This example focuses on the upstream Time Division Multiple Access
(TDMA) mode, where Single Carrier Quadrature Amplitude Modulation (SC-QAM) is used. This
access mode is compatible with all versions of DOCSIS, including 4.0. The example implements a
flexible PHY signal processing chain by incorporating a configuration object that specifies numerous
configurable parameters. It also includes the medium access control layer (MAC) header format and
simulates data packets compliant with the MAC configuration parameters.

Using features available with Communications Toolbox™ and Signal Processing Toolbox™, the
example:

• Models the baseband PHY of a DOCSIS communications system
• Includes helper functions to configure objects and uses these objects to specify, validate, and

organize configuration parameters
• Generates statistics to compare the error rate performance of the model to theoretical results.

System Model

The high level simulation flow is shown in this image. The individual blocks will be explained in more
detail in the following paragraphs.

MAC Frame Structure

The MAC header format shown in this image complies with DOCSIS [2] on page 8-0 . The Extended
Header and Packet Protocol Data Unit (Packet PDU) fields of the frame structure use random bits.

If the Extended Header On field is 1, then MAC Parameter specifies the length of Extended Header in
bytes. Otherwise MAC Parameter can be reserved for other usage.

Transmitter Signal Processing

This image shows the transmitter signal processing chain. The input data bits undergo Reed-Solomon
encoding, interleaving, scrambling, preamble prepending, SC-QAM, pre-equalization (for more
information see Effect of Transmit Pre-Equalizer on page 8-0 ), and transmit filtering.
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Channel Model

The helper function helperDocsisChannel models a multipath channel with a static channel
response and stochastic additive white Gaussian noise (AWGN) to reproduce the practical cable
channel shown in Figures 40-42 of [3] on page 8-0 . This code filters a unit impulse through the
modeled channel and plots the channel taps and frequency response. The magnitude response
matches the one shown in Figure 40.

% Probe channel with a unit impulse. Pad zeros at the beginning and end to
% account for channel delay.
probeSignal = [zeros(1,12),1,zeros(1,12)];
sampsPerSymbol = 1;
chanTaps = helperDocsisChannel(probeSignal,sampsPerSymbol);
% Remove zero values
chanTaps = nonzeros(chanTaps);
% Time domain tap values
figure
subplot(2,1,1)
stem(abs(chanTaps))
title('Channel Taps')
xlabel('Taps')
ylabel('Amplitude')
legend('Magnitude')
subplot(2,1,2)
stem(real(chanTaps))
hold on
stem(imag(chanTaps))
legend('Real','Imag')
xlabel('Taps')
ylabel('Amplitude')
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% Frequency domain response
fvtool(chanTaps,'Analysis','freq')
title('Magnitude and Phase Response')
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Receiver Signal Processing

This image shows an ideal receiver signal processing chain which assumes perfect synchronization.
The input received baseband symbols undergo processing that reverses the transmitter operations to
recover the transmitted data bits and compute the bit error rate (BER).

Effect of Transmit Pre-Equalizer

The DOCSIS standard specifies pre-equalization of the transmitter symbols to counter the
intersymbol interference (ISI) introduced by the multipath channel. Since a static channel frequency
response is used, the pre-equalizer taps at the transmitter are fixed for the duration of the simulation.

This code shows the transmission of a QPSK modulated signal with and without pre-equalization.
Both signals are filtered through using the helperDocsisChannel function with no AWGN added.
The constellation diagram of symbols without pre-equalization applied shows ISI distortion after the
channel filtering. The constellation diagram of symbols with pre-equalization applied shows no
distortion after the channel filtering.

In fact, since there is no noise in the channel, the equalized symbols align with the reference
constellation so well that they can be difficult to see. Toggle the visibility of the two sets of symbols
on the constellation diagram by clicking their respective labels in the legend for a better view.

8 Communications Toolbox Featured Examples

8-346



% Create a DOCSIS configuration object with the specified parameters. Do
% not use Reed-Solomon encoding or append any preamble bits. 500 bytes of
% data are transmitted in total.
docsisCfg = docsisConfig( ...
    'NumBytes',500, ...
    'RSEnabled',false, ...
    'PreambleLength',0, ...
    'SamplesPerSymbol',1);
% Validate configuration parameters after they're all set
validateConfig(docsisCfg);

% Generate random data bits manually
srcData = randi([0 1],docsisCfg.NumBytes*8,1);

% Get the output from the modulator and pre-equalizer
[~,~,modOut,eqOut] = helperDocsisTx(srcData,[],docsisCfg);

% Pass both signals through the example channel
uneqChanOut = helperDocsisChannel(modOut,docsisCfg.SamplesPerSymbol);
eqChanOut = helperDocsisChannel(eqOut,docsisCfg.SamplesPerSymbol);

% Show received symbols in constellation diagram
constDiagram0 = comm.ConstellationDiagram( ...
    'NumInputPorts',2, ...
    'Title','Zero-noise Channel Output', ...
    'ChannelNames',{'Unequalized','Equalized'}, ...
    'ShowLegend',true, ...
    'XLimits',[-18 18], ...
    'YLimits',[-18 18], ...
    'ShowReferenceConstellation',false);
constDiagram0(uneqChanOut,eqChanOut)
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End-to-end Link Simulation

The simulated end-to-end communications link complies with transmissions specified by DOCSIS.
These helper functions and objects are used:

• docsisConfig: configuration object that captures all the parameters affecting waveform
generation

• docsisMACFrameConfig: configuration object that is a sub-component of docsisConfig and
specifies the MAC frame structure

• helperDocsisConstellation: returns the modulation order (total number of constellation
points) and symbol mapping given the modulation name

• helperDocsisGenerateSourceData: generates a random burst of data bits, including MAC
frame configuration, according to the parameters specified by the configuration object
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• helperDocsisTx: implements the transmitter signal processing chain; accepts burst data and
preamble bits as input, and returns both the baseband transmitter samples and other intermediate
block outputs (refer to transmitter block diagram)

• helperDocsisChannel: applies the example cable channel with static tap values defined earlier
• helperDocsisRx: implements the receiver signal processing chain; takes channel output as

input, and returns the decoded data bits as well as other intermediate block outputs (refer to
receiver block diagram)

Run the link simulation with a range of Eb/No values. For each Eb/No, generate random source data,
pass it through the transmitter and channel, and retrieve the bits at the receiver. These bits are then
compared with the source data to check for bit errors. Move on to the next Eb/No value when the bit
errors collected or the total bits sent exceeds a specified threshold.

Create configuration object and list all the parameters:

docsisCfg = docsisConfig( ...

    'PayloadModulation', , ...
    'RSMessageLength',251, ...
    'RSCodewordLength',255)

docsisCfg = 
  docsisConfig with properties:

                           MACFrame: [1x1 docsisMACFrameConfig]
                           NumBytes: 2000
                     ModulationRate: 1280000
                          RSEnabled: 1
                    RSMessageLength: 251
                   RSCodewordLength: 255
                 InterleaverNumRows: 4
                      ScramblerSeed: [1 1 0 1 1 1 1 1 0 0 1 1 0 0 1]
                     PreambleLength: 1536
                 PreambleModulation: 'QPSK0'
                  PayloadModulation: '16-QAM'
                   PreEqualizerTaps: [24x1 double]
                   RaisedCosineSpan: 10
                   SamplesPerSymbol: 2
                         SampleRate: 2560000

   Read-only properties:
                  PreEqualizerDelay: 7
            PreambleModulationOrder: 4
    PreambleModulationBitsPerSymbol: 2
        PreambleModulationSymbolMap: [-8.0000 - 8.0000i ... ]
             PayloadModulationOrder: 16
     PayloadModulationBitsPerSymbol: 4
         PayloadModulationSymbolMap: [-4.0000 - 4.0000i ... ]
               SignalPowerPerSample: 80

% Validate configuration parameters after they're all set
validateConfig(docsisCfg);

The example preamble sequence reproduces the sequence specified in Appendix I of [4] on page 8-
0 .
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load('docsisExamplePreamble.mat')
prmbBits = examplePreamble(end-docsisCfg.PreambleLength+1:end);

Initialize other relevant variables and visualization scopes:

% Max number of bit errors to collect and max number of bits to send
maxErr = 1e3;
maxBits = 1e6;
% Use an Eb/No range that results in meaningful BERs
EbNoRange = helperDocsisEbNoRange(docsisCfg.PayloadModulationOrder);
ber = zeros(size(EbNoRange));
berUncoded = zeros(size(EbNoRange));
% Initialize spectrum analyzer scope and constellation diagram scope
[specAnalyzer,constDiagram] = helperInitializeScopes(docsisCfg);
% Initialize AWGN channel
awgnChan = comm.AWGNChannel( ...
    'BitsPerSymbol',docsisCfg.PayloadModulationBitsPerSymbol, ...
    'SignalPower',docsisCfg.SignalPowerPerSample, ...
    'SamplesPerSymbol',docsisCfg.SamplesPerSymbol);

Run the main loop:

for i = 1:length(EbNoRange)
    awgnChan.EbNo = EbNoRange(i);
    totalErr = 0; totalBits = 0;
    totalErrUncoded = 0; totalBitsUncoded = 0;
    while totalErr < maxErr && totalBits < maxBits
        % Generate source data bits
        srcData = helperDocsisGenerateSourceData(docsisCfg);
        % Transmitter signal processing
        [txrcOut,modIndexOut] = helperDocsisTx(srcData,prmbBits,docsisCfg);
        % Apply example cable channel and add Gaussian noise
        chanOut = helperDocsisChannel(txrcOut,docsisCfg.SamplesPerSymbol);
        awgnOut = awgnChan(chanOut);
        % Receiver signal processing
        [decoderOut,rxrcOut,demodOut] = helperDocsisRx(awgnOut,docsisCfg);
        
        % Helper function to show visualization on the scopes
        helperShowScopes(specAnalyzer,constDiagram,txrcOut,rxrcOut,awgnOut, ...
            EbNoRange(i),docsisCfg)
        
        % Tally bit errors and total bits sent
        [nErr,nBits,nErrUncoded,nBitsUncoded] = helperBitErrors( ...
            srcData,decoderOut,modIndexOut,demodOut,docsisCfg);
        totalErr = totalErr + nErr;
        totalBits = totalBits + nBits;
        totalErrUncoded = totalErrUncoded + nErrUncoded;
        totalBitsUncoded = totalBitsUncoded + nBitsUncoded;
    end
    % Compute BER
    ber(i) = totalErr / totalBits;
    berUncoded(i) = totalErrUncoded / totalBitsUncoded;
end
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The spectrum analyzer shows the power spectral density of the signals at the transmit filter output
and at the cable channel output. The transmit filter output signal has been pre-equalized and thus its
spectrum has the reciprocal shape of the channel response (see Channel Model on page 8-0 ) in the
main lobe. The side lobes and notches are due to raised cosine filtering. After channel filtering, the
channel output signal has a flat spectrum in its bandwidth, and the out of band signal power is
increased due to AWGN.

The constellation diagram shows three sets of symbols: channel output, receive filter output preamble
symbols, and receive filter output payload symbols. The channel output symbols do not align with the
reference constellations; after receiver raised cosine filtering, they separate into clusters centered at
the reference constellation points. The preamble symbols are always modulated with QPSK, and they
may be different from the modulation of the payload symbols. Note that the example preamble bits
from DOCSIS are not independently and uniformly distributed -- they result in fewer constellation
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symbols in the upper left cluster than the other three clusters. The payload bits, however, are mostly
randomly generated, so they result in evenly distributed clusters of points.

Plot BER against Eb/No

Plot the empirically found BER against the Eb/No values, and compare them with theoretical results.
The figure omits the theoretical curves for modulation orders of odd powers of 2 because the DOCSIS
standard uses different symbol constellations than the ones assumed in the bercoding and berawgn
functions. For even powers of 2, the functions assume the same constellations as the simulations, and
thus the simulation is comparable with theory.

The BER curves show that both the coded and uncoded error rates match the theory reasonably well.
For some combinations of (n,k) in Reed-Solomon codes, the coding gain may only appear in the higher
Eb/No range, and sometimes the coded BER may even be higher than the uncoded BER at low Eb/No.
This is expected behavior of R-S codes.

To get a more accurate simulated BER at higher Eb/No where the errors are very rare, increase the
values of maxErr and maxBits in the previous section, and rerun the simulation. This allows the
system to collect more bit errors for each Eb/No. If no errors occur at an Eb/No value, the BER curve
will omit that data point.

% Find theoretical uncoded and coded BER
berUncodedTheoretical = berawgn(EbNoRange, ...
    'qam',docsisCfg.PayloadModulationOrder);
% Theoretical BER with R-S coding is only available when the codeword
% length is of the form 2^m-1.
if mod(log2(docsisCfg.RSCodewordLength+1),1) == 0
    berTheoretical = bercoding(EbNoRange,'RS','hard', ...
        docsisCfg.RSCodewordLength,docsisCfg.RSMessageLength, ...
        'qam',docsisCfg.PayloadModulationOrder);
else
    berTheoretical = [];
end

% Plot the curves
figure
semilogy(EbNoRange,berUncoded,'m*-')
hold on
semilogy(EbNoRange,ber,'go-')
legendText = {'Uncoded simulation','Coded simulation'};
if mod(docsisCfg.PayloadModulationBitsPerSymbol,2) == 0
    semilogy(EbNoRange,berUncodedTheoretical,'r--')
    legendText{end+1} = 'Uncoded theoretical';
    if ~isempty(berTheoretical)
        semilogy(EbNoRange,berTheoretical,'b--')
        legendText{end+1} = 'Coded theoretical';
    end
end
grid on

if docsisCfg.RSEnabled
    title(sprintf('DOCSIS BER - Upstream TDMA, %s, R-S (%d,%d)', ...
        docsisCfg.PayloadModulation, ...
        docsisCfg.RSCodewordLength,docsisCfg.RSMessageLength))
else
    title(sprintf('DOCSIS BER - Upstream TDMA, %s, uncoded', ...
        docsisCfg.PayloadModulation))
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end
xlabel('Eb/No (dB)')
ylabel('BER')
legend(legendText,'Location','southwest')

Further Exploration

Alter the parameters of docsisCfg to see how they affect the output. For instance, alter the
modulation and coding rate and rerun the simulations to see what effect they have on the system BER
performance. Alter the raised cosine filter span, samples per symbol, and sample rate to see how they
affect the visualization.
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ATSC Digital Television
This model shows the vestigial sideband modulation with 8 discrete amplitude levels (8-VSB)
transmission subsystem of the Advanced Television Systems Committee (ATSC) digital television
standard [ 1 ]. The standard describes the characteristics of the U.S. advanced television system that
is designed to transmit high-quality video, audio, and ancillary data within a single 6 MHz terrestrial
television broadcast channel.

The purpose of this example is to:

• Model the primary portions of a Main Service 8-VSB transmitter with MPEG-2 Transport Packet
data as inputs

• Model the primary portions of a possible Main Service 8-VSB receiver design
• Generate error statistics including number of corrected bytes, number of defective packets and

byte error rate

Structure of the Example

The model consists of MPEG-2 Transport Packet generation, transmitter baseband processing, AWGN
Channel, receiver baseband processing, and error rate calculation. The following sections describe
each subcomponent in detail.
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MATLAB® Workspace Variable Definitions

When the model is first loaded, it creates a MATLAB workspace variable prmATSC. This structure
variable contains fields that specify the block parameters in the model. This variable is cleared when
the model is closed.

prmATSC = 

  struct with fields:

          MPEG2PacketLen: 188
           RSCodewordLen: 207
             BitsPerByte: 8
           BitsPerNibble: 2
          NibblesPerByte: 4
         NibblesPerGroup: 48
       NibblesPerSegment: 828
        SegmentsPerField: 313
         RSPrimitivePoly: [1 0 0 0 1 1 1 0 1]
         RSGeneratorPoly: [1 152 185 240 5 111 99 6 220 112 150 69 36 ... ]
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      IntlvrNumShiftRegs: 52
      IntlvrShiftRegStep: 4
      DeintlvrAlignDelay: 156
        DeintlvrPktDelay: 52
        NumTrellisCoders: 12
          TraceBackDepth: 8
    TrellisDecAlignDelay: 159
      TrellisDecPktDelay: 2
              SymbolRate: 1.0762e+07
                MPEG2BPS: 1.9393e+07
            MPEG2PktRate: 1.2894e+04
       ChannelSampleTime: 9.3666e-08
             PAMSigPower: 4.5826
                    EsNo: 10

MPEG-2 Data Source

The MPEG-2 Transport Packet is a randomly generated 188-byte vector with the first byte replaced
by the sync byte 0x47 (Hexadecimal).

Transmitter Baseband Processing

• Randomizer

This subsystem corresponds to Section 6.4.1.1 in [ 1 ]. The MPEG-2 sync byte should not be
randomized and encoded, and hence is thrown away before the XOR operation. The pseudo random
byte sequence that scrambles input data bytes is re-initialized at the beginning of each Data Field. In
this model, each Data Field consists of 312 Data Segments because the Data Field Sync segment is
not modeled.

• Reed-Solomon Encoder
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This subsystem corresponds to Section 6.4.1.2 in [ 1 ]. The (207, 187) Integer-Input RS Encoder block
adds 20 parity bytes to the input packet and produces an output of 207 bytes per frame. This allows
up to 10 erroneous bytes per transport packet to be corrected by the corresponding Integer-Output
RS Decoder block at the receiver.

• Convolutional Interleaver

This subsystem corresponds to Section 6.4.1.3 in [ 1 ]. The Convolutional Interleaver block
interleaves the bytes from 52 Data Segments (intersegment), which is one-sixth (1/6) of a Data Field.
The transmitter synchronizes the interleaver to the first data byte of each Data Field.

• Trellis Interleaver

This subsystem, together with the subsequent M-PAM Modulator Baseband block, corresponds to
Section 6.4.1.4 in [ 1 ]. It creates serial 3-bit outputs from parallel bytes by feeding every two bits of
each data byte through one of 12 two-thirds (2/3) rate Convolutional Encoder blocks. Each byte
produces four 3-bit outputs and the implementation processes every 12 bytes as a group. A block
controls which Convolutional Encoder processes which two bits in a group. A complete conversion of
parallel bytes to serial bits needs four Data Segments, i.e., 828 data bytes, to produce 3312 3-bit
outputs from the 12 encoders, and each encoder processes 69 data bytes. Each Data Field needs
312/4 = 78 conversion operations.

• 8-PAM Constellation Mapping
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The M-PAM Modulator Baseband block corresponds to the symbol mapper portion of the Figure 6.8 in
[ 1 ]. It maps 3-bit integer inputs to symbols on an 8-level one-dimensional real constellation with
values [-7 -5 -3 -1 1 3 5 7].

AWGN Channel

The AWGN Channel block uses the Signal to noise ratio (Es/No) mode. Signal power and
symbol period have been calculated and stored in the workspace variable prmATSC. The Es/No value
is set to 10 dB, which produces a byte error rate of approximately 0.0039.

Receiver Baseband Processing

• 8-PAM Demodulator

The M-PAM Demodulator Baseband block converts the received baseband 8-PAM constellation
symbols to 3-bit integer outputs. The block has the same constellation settings as the upstream M-
PAM Modulator Baseband block.

• Trellis Deinterleaver

This subsystem converts serial 3-bit inputs to parallel bytes by feeding each input through one of 12
two-thirds (2/3) rate Viterbi Decoder blocks. Then, the subsystem concatenates the decoded bits into
bytes. The deinterleaver processes every 48 inputs corresponding to 12 bytes as a group, and
introduces one group (48 inputs) of delay before performing Viterbi decoding. The same control block
as in the Trellis Interleaver subsystem is used to select which Viterbi Decoder block processes
which input in a group. Note that the Trellis Interleaver and Trellis Deinterleaver
subsystems together introduce 207 + 48 = 255 bytes of delay into the system (from Buffer blocks).
So, the Trellis Deinterleaver subsystem output is delayed by 159 bytes for frame alignment,
and the first two frames received by the downstream subsystem should be ignored. To notify the
subsequent subsystem of this frame delay, the Trellis Deinterleaver subsystem creates a frame
valid flag and passes it downstream.

• Convolutional Deinterleaver

The Convolutional Deinterleaver block corresponds to the Convolutional Interleaver block at the
transmitter and both blocks have the same configuration. Note that the Convolutional Interleaver and
Convolutional Deinterleaver blocks together introduce 10608 bytes of delay into the system. As a
result, the subsystem delays Convolutional Deinterleaver block output by 156 bytes for packet
alignment, and the first 52 packets received by the downstream subsystem should be ignored. To
notify the subsequent subsystem of this packet delay, the Convolutional Deinterleaver
subsystem creates a packet valid flag and passes it downstream.
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• Reed-Solomon Decoder

The Integer-Output RS Decoder block corresponds to the Integer-Input RS Encoder block at the
transmitter and both blocks have the same configuration. The block has a second output port to
indicate the number of bytes that have been corrected for the processed packet.

• Derandomizer

This subsystem corresponds to the Randomizer subsystem at the transmitter. The block that
generates the pseudo random byte sequence is the same as the block in the Randomizer subsystem.
The MPEG-2 sync byte is inserted into each packet after the derandomization to form an MPEG-2
Transport Packet.

Results and Displays

The Error Rate Calculation block measures the system byte error rate by comparing the transmitted
and decoded MPEG-2 Transport Packet data. Note that the system has 54 packets, i.e., 10152 bytes,
of delay in total, which specifies the Receive delay parameter of the block.
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To examine the performance of the system, use the included visualization blocks, as listed below:

• MPEG-2 Bit Rate (Mbit/s) display
• Receiver 8-PAM Constellation Diagram scope
• Receiver Spectrum scope
• Number of Corrected Bytes display
• Number of Defective Packets display
• System Byte Error Rate display

Run the model. Scopes show the ATSC received constellation and the spectrum.

8 Communications Toolbox Featured Examples

8-362



 ATSC Digital Television

8-363



Further Exploration

Upon loading the model, you can set a different signal to noise ratio (SNR) by changing the EsNo field
value of the prmATSC workspace variable and observe the system performance. The following
components are not modeled in the system, but you can try to include them:

• Data Segment and Data Field synchronization
• Channel impairments such as multipath fading channels and frequency offsets
• Receiver carrier recovery and equalization

Selected Bibliography
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DVB-S.2 Link, Including LDPC Coding
This example shows the application of low density parity check (LDPC) codes in the second
generation Digital Video Broadcasting standard (DVB-S.2), which is deployed by DIRECTV in the
United States. The example uses communications System objects to simulate a transmitter-receiver
chain that includes LDPC encoding and decoding.

Introduction

The ETSI (European Telecommunications Standards Institute) EN 302 307 standard for Broadcasting,
Interactive Services, News Gathering and other broadband satellite applications (DVB-S.2) [ 1 ] uses
a state-of-the-art coding scheme to increase the channel capacity. The concatenation of LDPC (Low-
Density Parity-Check) and BCH codes is the basis of this coding scheme. LDPC codes, invented by
Gallager in his seminal doctoral thesis in 1960, can achieve extremely low error rates near channel
capacity by using a low-complexity iterative decoding algorithm [ 2 ]. The outer BCH codes are used
to correct sporadic errors made by the LDPC decoder.

The channel codes for DVB-S.2 provide a significant capacity gain over DVB-S under the same
transmission conditions. Depending on the transmission mode, DVB-S.2 provides Quasi-Error-Free
operation (packet error rate below 10^ -7) at about 0.7 dB to 1 dB from the Shannon limit.

This example simulates the BCH encoder, LDPC encoder, interleaver, modulator, as well as their
counterparts in the receiver, according to the DVB-S.2 standard. The example collects the error rate
at the demodulator, LDPC decoder, and BCH decoder outputs, determines the distribution of the
number of iterations performed by the LDPC decoder, and shows the received symbol constellation.
For more information regarding system structure, simplifications, and assumptions, see the “DVB-S.2
Link, Including LDPC Coding in Simulink” on page 8-372 example.

Initialization

The configureDVBS2Demo.m script initializes some simulation parameters and generates a structure,
dvb. The fields of this structure are the parameters of the DVB-S.2 system at hand. It also creates the
System objects making up the DVB-S.2 system.

subsystemType = '16APSK 2/3'; % Constellation and LDPC code rate
EsNodB        = 9;            % Energy per symbol to noise PSD ratio in dB
numFrames     = 20;           % Number of frames to simulate

% Initialize
configureDVBS2Demo

% Display system parameters
dvb

dvb = 

  struct with fields:

                  CodeRate: '2/3'
                    EsNodB: 9
            ModulationType: '16APSK'
         NumBytesPerPacket: 188
          NumBitsPerPacket: 1504
         BCHCodewordLength: 43200
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          BCHMessageLength: 43040
          BCHGeneratorPoly: [1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 ... ]
          BCHPrimitivePoly: [1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1]
      NumPacketsPerBBFrame: 28
    NumInfoBitsPerCodeword: 42112
                 BitPeriod: 2.3746e-05
        LDPCCodewordLength: 64800
     LDPCParityCheckMatrix: [21600x64800 logical]
         LDPCNumIterations: 50
           InterleaveOrder: [64800x1 double]
             Constellation: [16x1 double]
             SymbolMapping: [12 14 15 13 4 0 8 10 2 6 7 3 11 9 1 5]
               PhaseOffset: [0.7854 0.2618]
             BitsPerSymbol: 4
           ModulationOrder: 16
             SequenceIndex: 2
        NumSymsPerCodeword: 16200
                  NoiseVar: 0.1259
               NoiseVarEst: 0.3227
            RecDelayPreBCH: 43040

The example uses these System objects and functions.

Simulation objects:

enc            - BCH encoder
dec            - BCH decoder
intrlvr        - Block interleaver
deintrlvr      - Block deinterleaver
pskModulator   - PSK modulator
pskDemodulator - PSK demodulator
chan           - AWGN channel

Performance measurement objects:

PER       - Packet error rate calculator
BERLDPC   - LDPC decoder output error rate calculator
BERMod    - Demodulator output error rate calculator
constDiag - Scatter plot of channel output
meanCalc  - Average of the noise variance

Simulation functions:

dvbsapskmod   - DVBSAPSK modulator
dvbsapskdemod - DVBSAPSK demodulator
ldpcEncode    - LDPC encoder
ldpcDecode    - LDPC decoder

LDPC Encoder and Decoder Configuration Objects

Create LDPC encoder and decoder configuration objects based on the parity check matrix according
to Section 5.3.1 of the DVB-S.2 standard [ 1 ].

encldpcCfg = ldpcEncoderConfig(dvb.LDPCParityCheckMatrix);
decldpcCfg = ldpcDecoderConfig(dvb.LDPCParityCheckMatrix);
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Stream Processing Loop

This section of the code calls the processing loop for a DVB-S.2 system. The main loop processes the
data frame-by-frame, where the system parameter dvb.NumPacketsPerBBFrame determines the
number of data packets per BB frame. The first part of the for-loop simulates the system. The
simulator encodes each frame using BCH and LDPC encoders as inner and outer codes, respectively.
The encoded bits pass through an interleaver. The modulator maps the interleaved bits to symbols
from the predefined constellation. The modulated symbols pass through an AWGN channel. The
demodulator employs an approximate log-likelihood algorithm to obtain soft bit estimates. The LDPC
decoder decodes the deinterleaved soft bit values and generates hard decisions. The BCH decoder
works on these hard decisions to create the final estimate of the received frame.

The second part of the for-loop collects performance measurements such as the bit error rate and a
scatter plot. It also estimates the received SNR value.

bbFrameTx  = false(encbch.MessageLength,1);
numIterVec = zeros(numFrames,1);
falseVec   = false(dvb.NumPacketsPerBBFrame,1);

for frameCnt=1:numFrames

    % Transmitter, channel, and receiver
    bbFrameTx(1:dvb.NumInfoBitsPerCodeword) = ...
        logical(randi([0 1],dvb.NumInfoBitsPerCodeword,1));

    bchEncOut = encbch(bbFrameTx);
    ldpcEncOut = ldpcEncode(bchEncOut,encldpcCfg);
    intrlvrOut = intrlv(ldpcEncOut,dvb.InterleaveOrder);

    if dvb.ModulationOrder == 4 || dvb.ModulationOrder == 8
        modOut = pskModulator(intrlvrOut);
    else
        modOut = dvbsapskmod(intrlvrOut,dvb.ModulationOrder,'s2', ...
            dvb.CodeRate,'InputType','bit','UnitAveragePower',true);
    end

    chanOut = chan(modOut);

    if dvb.ModulationOrder == 4 || dvb.ModulationOrder == 8
        demodOut = pskDemodulator(chanOut);
    else
        demodOut = dvbsapskdemod(chanOut,dvb.ModulationOrder,'s2', ...
            dvb.CodeRate,'OutputType','approxllr','NoiseVar', ...
            dvb.NoiseVar,'UnitAveragePower',true);
    end

    deintrlvrOut = deintrlv(demodOut,dvb.InterleaveOrder);
    % By default, ldpcDecode stops iterating when all parity checks are
    % satisfied, which reduces decoding time
    [ldpcDecOut, numIter] = ldpcDecode(deintrlvrOut,decldpcCfg,dvb.LDPCNumIterations);
    bchDecOut = decbch(ldpcDecOut);
    bbFrameRx = bchDecOut(1:dvb.NumInfoBitsPerCodeword,1);

    % Error statistics
    comparedBits = xor(bbFrameRx,bbFrameTx(1:dvb.NumInfoBitsPerCodeword));
    packetErr    = any(reshape(comparedBits,dvb.NumBitsPerPacket, ...
        dvb.NumPacketsPerBBFrame));
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    per = PER(falseVec,packetErr');
    berMod = BERMod(demodOut<0,intrlvrOut);
    berLDPC = BERLDPC(logical(ldpcDecOut),bchEncOut);

    % LDPC decoder iterations
    numIterVec(frameCnt) = numIter;

    % Noise variance estimate
    noiseVar = meanCalc(var(chanOut - modOut));

    % Scatter plot
    constDiag(chanOut);
end

Executing the error rate measurement objects (hPER, hBERMod, and hBERLDPC), outputs a 3-by-1
vector containing updates of the measured error rate value, the number of errors, and the total
number of transmissions (packets or bits). Display the BER at the demodulator output, the BER at the
LDPC decoder output, and the packet error rate of the end-to-end system together with the measured
SNR at the receiver input. While the demodulator output presents an error rate of more than 10%,
the LDPC decoder is able to correct all of the errors and provide error free packets.

fprintf('Measured SNR : %1.2f dB\n',10*log10(1/noiseVar))
fprintf('Modulator BER: %1.2e\n',berMod(1))
fprintf('LDPC BER     : %1.2e\n',berLDPC(1))
fprintf('PER          : %1.2e\n',per(1))
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Measured SNR : 8.98 dB
Modulator BER: 8.25e-02
LDPC BER     : 0.00e+00
PER          : 0.00e+00

The figure shows the distribution of the number of iterations performed by the LDPC decoder. The
decoder was able to decode all the frames without an error before reaching the maximum iteration
count of 50.

distFig = figure;
histogram(numIterVec,1:dvb.LDPCNumIterations-1);
xlabel('Number of iterations'); ylabel('# occurrences'); grid on;
title('Distribution of number of LDPC decoder iterations')

We ran the stream processing loop for 32.4e6 bits for several SNR values. Since this simulation takes
a long time, in this example we only provide the result of the simulation stored in a MAT-file.

load berResultsDVBS2Demo.mat cBER_16APSK snrdB_16APSK
berFig = figure;
semilogy(snrdB_16APSK,cBER_16APSK(1,:)); xlim([8 8.9]);
xlabel('SNR (dB)'); ylabel('BER'); grid on
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Summary

This example utilized several System objects to simulate part of the DVB-S.2 communication system
over an AWGN channel. It showed how to model several parts of the DVB-S.2 system such as the
LDPC coding. System performance was measured using the PER and BER values obtained with error
rate measurement System objects.

Further Exploration

You can modify parts of this example to experiment with different subsystem types using various
values for Es/No and maximum number of LDPC decoder iterations. This example supports the
following subsystem types:

     'QPSK 1/4', 'QPSK 1/3', 'QPSK 2/5', 'QPSK 1/2', 'QPSK 3/5', 'QPSK
     2/3', 'QPSK 3/4', 'QPSK 4/5', 'QPSK 5/6', 'QPSK 8/9', 'QPSK 9/10'

     '8PSK 3/5', '8PSK 4/5', '8PSK 2/3', '8PSK 3/4', '8PSK 5/6', '8PSK
     8/9', '8PSK 9/10'

     '16APSK 2/3', '16APSK 3/4', '16APSK 4/5', '16APSK 5/6', '16APSK
     8/9', '16APSK 9/10'

     '32APSK 3/4', '32APSK 4/5', '32APSK 5/6', '32APSK 8/9', '32APSK
     9/10'

Appendix

This example uses the following scripts and helper function:

8 Communications Toolbox Featured Examples

8-370



• configureDVBS2Demo.m

• getParamsDVBS2Demo.m

• createSimObjDVBS2Demo.m
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DVB-S.2 Link, Including LDPC Coding in Simulink
This model shows the state-of-the-art channel coding scheme used in the second generation Digital
Video Broadcasting standard (DVB-S.2), which is deployed by DIRECTV in the United States. The
coding scheme is based on concatenation of LDPC (Low-Density Parity-Check) and BCH codes. LDPC
codes, invented by Gallager in his seminal doctoral thesis in 1960, can achieve extremely low error
rates near channel capacity by using a low-complexity iterative decoding algorithm. The outer BCH
codes are used to correct sporadic errors made by the LDPC decoder.

The channel codes for DVB-S.2 provide a significant capacity gain over DVB-S under the same
transmission conditions and allow Quasi-Error-Free operation (packet error rate below 10^ -7) at
about 0.7 dB to 1 dB from the Shannon limit, depending on the transmission mode.

This example models the BCH encoder, LDPC encoder, interleaver, modulator, as well as their
counterparts in the receiver, according to the DVB-S.2 standard.

Structure of the Example

The communication system in this example performs these tasks:

• Generation of BBFRAME by a random source
• BCH encoding, for all coding parameters and normal FECFRAME
• LDPC encoding, for all coding parameters and normal FECFRAME
• Interleaving
• Modulation (QPSK, 8PSK, 16APSK, or 32APSK)
• AWGN channel modeling
• Soft-decision demodulation
• Deinterleaving
• LDPC decoding, by means of the message passing algorithm
• BCH decoding
• BBFRAME unbuffering

modelname =  'commdvbs2' ;
open_system(modelname);
RX = [modelname '/RX Constellation']; % Define Simulink object as a variable
set_param(RX,'openScopeAtSimStart','off' ); % Set Simulink scope visibility parameter
T = evalc('sim(modelname)');
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Furthermore, this model has blocks for measuring and displaying the packet error rate, LDPC bit
error rate, and estimated Es/No. There is also a scatter plot scope displaying the received signal,
which helps users visualize the channel distortions of the signal.

Simplifications and Assumptions

For simplicity, this example

• Assumes perfect synchronization between the transmitter and the receiver
• Uses a complex baseband model of an AWGN channel, rather than a full satellite channel
• Models BBHEADER and DATA FIELD in a BBFRAME using a Bernoulli binary random source, and

does not perform baseband scrambling
• Supports only normal FECFRAME (i.e., the block length of LDPC codes is 64800)
• Processes one LDPC codeword in one unit of time in Simulink®
• Approximates the log-likelihood ratio of the channel output for LDPC decoding by considering only

two points in the constellation nearest to the received signal during soft-decision demodulation
• Uses Es/No provided by the user for LDPC decoding, instead of estimating the Es/No from the

received signal

Also, the example does not model these aspects of the DVB-S.2 standard:

• Short FECFRAME
• Physical Layer (PL) Framing
• PL Signalling and Pilot insertion
• PL Scrambler
• Baseband (BB) Filter and Quadrature Modulation

Parameters of the Model
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Double-clicking the Model Parameters block allows users to set the following parameters for the
model:

Results and Displays

When the model starts, a window automatically comes up to display the scatter plot of the received
signal. The LDPC bit error rate, packet error rate, and estimated Es/No from the received signal will
be continuously updated.

% Set scope visibility for next display and run simulation
set_param(RX,'openScopeAtSimStart','on');
sim(modelname);
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The power of LDPC codes can be readily observed using the default settings: QPSK, rate 1/2, Es/No =
1 dB, and 50 iterations in decoding. Even with such a low Es/No, the LDPC decoder will seldom make
an error. The scatter plot vividly illustrates how noisy the channel is.

If Es/No is slightly decreased, for example, to 0.5 dB, the LDPC bit error rate will be much greater.
This is consistent with typical steep performance curves of LDPC codes.

% Cleanup
%
% To clear the variables set above and close without saving the changes to
% the model, type the following commands into the MATLAB(R) command prompt.
%

close_system(modelname,0);
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Digital Video Broadcasting - Cable (DVB-C)
This example shows part of the ETSI (European Telecommunications Standards Institute) EN 300 429
standard for cable system transmission of digital television signals [ 1 ]. The example uses
communications System objects to simulate the Digital Video Broadcasting - Cable (DVB-C)
transmitter-receiver chain.

Introduction

The DVB-C standard describes transmission of digital television signals over cable lines using the
MPEG-2 or MPEG-4 family of digital audio and video streams. In this example, we model a portion of
that standard. The stream of data is transmitted using Reed-Solomon codes and single carrier QAM
modulation. The standard prescribes the transmitter design and sets minimum performance
requirements for the receiver.

The purpose of this example is to:

• Model the main portions of a possible transmit/receive design (operating in 64-QAM mode with
MPEG-2 Transport Packet data)

• Illustrate the use of key Communications Toolbox™ System objects for DVB-C (or similar) system
design

• Illustrate creation of higher level System objects that contain other System objects in order to
model large components of the system under test

• Generate error statistics that will help to determine whether the model satisfies system
performance requirements

• Illustrate creation of test harness that can support variable numbers of test runs. In this case, we
use that support to support one mode where only a single EbNo is specified, and we observe
spectra and scatterplots. We also support a mode where multiple EbNo are specified, in order to
generate a BER curve.

Initialization

The commdvbc_init.m script initializes simulation parameters and generates a structure, prmDVBC.
The fields of this structure are the parameters of the DVB-C system at hand.

commdvbc_init
% The fields of this structure are the parameters of the DVB-C system at
% hand.
prmDVBC

prmDVBC = 

  struct with fields:

             bitsPerByte: 8
             bitsPerMTpl: 6
     MPEG2DatRateBitPerS: 9600000
     rawMPEG2DataPcktLen: 184
     MPEG2TrnsprtPcktLen: 188
    MPEG2TrnsprtFramePer: 1.5667e-04
     MPEG2PcktsPerSprFrm: 8
     MPEG2TrnsSuperFrame: 1504
      PRBSSeqPeriodBytes: 1503
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       PRBSSeqPeriodBits: 12024
        RSCodewordLength: 204
       CableChanFrameLen: 272
      CableChanFrmPeriod: 1.5667e-04
      RCosineSampsPerSym: 8
       CableSymbolPeriod: 7.1998e-08
       RCosineFilterSpan: 16
     TxRxSymbolSampDelay: 288
     DeintrlvrAlignDelay: 192
        QAMSymbolMapping: [44 45 41 40 52 54 62 60 46 47 43 42 53 55 63 ... ]
     ConvIntlNumBranches: 12
       ConvIntlCellDepth: 17

Run System under Test

The main loop in the system under test processes the data packet-by-packet, where eight packets
form a superframe. Set useCodegen=true in order to use the generated code instead of the
MATLAB® code. Set the MATLAB variable compileIt to true in order to create the generated code.

Code Architecture for the System under Test

This example models the link from the cable operator to a customer's set top box. The model for that
link is contained in a function named runDVBCSystemUnderTest. The data processing loop is divided
into six main parts. A System object™ was used to model each of those six components in that link.
Those objects are:

1) DVBCSource: generates the bitstream
2) DVBCTransmitter: contains the transmitter (encoding, modulation, filtering, etc.)
3) comm.AWGNChannel: models the channel
4) DVBCReceiver: contains the receiver
5) DVBCBER: calculates error rates
6) DVBCScopes: optional object that provides visualization

The inner loop of runDVBCSystemUnderTest makes use of these objects:

You can use a for-loop around the system under test to process a fixed number of super frames.
Alternatively, you can use a while-loop to control the simulation length based on the number of
simulated errors and transmitted bits. We have done the latter, targeting the number of errors to 100,
and maximum number of transmissions to 1e6.

while (berEnd2End(2) < totalErrors) && (berEnd2End(3) < totalBits)
    txBytes = dvbcSource();                          % Source
    [txPckt, modTxPckt] = dvbcTX(txBytes);           % Transmitter
    chPckt = awgnChan(txPckt);                       % Channel
    [rxBytes, modRxPckt, rxPcakt] = dvbcRX(chPckt);  % Receiver
    [berEnd2End, berDemod] = ...
      dvbBER(txBytes,rxBytes,modTxPckt,modRxPckt);   % BER
    if useScopes
        runDVBCScopes(dvbcScope,txPckt,chPckt,rxPckt);
    end
end

Descriptions of the Individual Components

MPEG-2 Baseband Physical Interface - Data source
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This section generates random data and header bits and appends a header synchronization byte. The
first packet of each superframe uses the bit-complement of the header synchronization byte. The code
for this component is contained in DVBCSource.m.

Transmitter Baseband Processing

This section randomizes the data using a pseudo-noise sequence. The transmitter applies RS
encoding and convolutional interleaving. The function convertBytesToMTuplesDVBCDemo.m converts
8-bit bytes into 6-bit chunks for the 64-QAM modulator. It applies a square root raised cosine filter
with 8x oversampling to the data stream after modulation. The code for this component is contained
in DVBCTransmitter.m.

Channel

The signal is transmitted through an AWGN channel by using the comm.AWGNChannel System
object.

Receiver Baseband Processing

This section demodulates received symbols and converts 6-bit chunks into bytes using the
convertMTuplesToBytesDVBCDemo.m function. Since the filtering operation introduces a delay, the
example synchronizes the received bytes to the packet edge using the delay System object,
hPacketSync. Note that, the interleaver delay is a multiple of the packet size, so synchronizing to the
packet edge is enough. The receiver deinterleaves the packet-synchronized bytes and decodes using
the RS decoder System object. Because the example uses a single PN sequence generator, it
synchronizes the decoded data to the superframe edge before derandomization. The example shows
the transmitted and received channel signal spectrum. Finally, it compares transmitted bits and
received bits as well as the modulator input and the demodulator output to obtain bit error rates. The
code for this component is contained in DVBCReceiver.m.

BER Computations

This component compares the received, decoded bits and compares those to the transmitted bits in
order to compute a bit error rate. The code for this component is contained in DVBCBER.m.

Visualization

Optional instrumentation provides visualization. The code for this component is contained in
DVBCScopes.m.

Running the System under Test

We first run the system under test with a single EbNo and visualization turned on in order to verify
that it is working properly.

totalErrors = 100;
totalBits = 1e6;
EbNo = 16.5;
useScopes = true;
useCodegen = false;
compileIt = false;
if compileIt
    % Make EbNo input var-size row vector (max length = 100)
    codegen runDVBCSystemUnderTest -report -args {coder.Constant(useScopes),coder.Constant(prmDVBC), coder.Constant(num), 1, coder.typeof(EbNo,[1 100],[false true]), 1, 1}
end
if useCodegen
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    % Constant inputs do not appear in call to generated code version
    [berEnd2End, berDemod] = runDVBCSystemUnderTest_mex(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits);
else
    [berEnd2End, berDemod] = runDVBCSystemUnderTest(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits);
end
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BER Curves

Next, we rerun the system under test with a vector of EbNo's and visualization turned off to generate
a BER curve.

Calling the error rate measurement objects, berEnd2End and berDemod, output a 3-by-1 vector
containing updates of the measured BER value, the number of errors, and the total number of bit
transmissions. Display the BER at the output of the demodulator together with the end-to-end BER.

EbNo = 11.5:0.5:14.5;
useScopes = false;
useCodegen = false;
compileIt = false;
if compileIt
    % Make EbNo input var-size row vector (max length = 100)
    codegen runDVBCSystemUnderTest -report -args {coder.Constant(useScopes),coder.Constant(prmDVBC), coder.Constant(num), 1, coder.typeof(EbNo,[1 100],[false true]), 1, 1}
end
if useCodegen
    % Constant inputs do not appear in call to generated code version
    [berEnd2End, berDemod] = runDVBCSystemUnderTest_mex(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits)
else
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    [berEnd2End, berDemod] = runDVBCSystemUnderTest(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits)
end
%
plotDVBCResults(EbNo, berEnd2End, berDemod);

berEnd2End =

    0.0193
    0.0139
    0.0075
    0.0038
    0.0006
    0.0001
    0.0000

berDemod =

    0.0174
    0.0133
    0.0083
    0.0066
    0.0041
    0.0028
    0.0018
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Summary

This example utilized several System objects to simulate part of the DVB-C communication system
over an AWGN channel. It showed how to model several parts of the DVB-C system such as the
randomization, coding, and interleaving. The example also used the delay System objects to
synchronize the transmitter and the receiver. System performance was measured using the BER
curves obtained with error rate measurement System objects.

Appendix

This example uses the following scripts and helper functions:

• runDVBCSystemUnderTest.m
• DVBCSource.m
• DVBCTransmitter.m
• DVBCReceiver.m
• DVBCBER.m
• DVBCScopes.m
• convertBytesToMTuplesDVBCDemo.m
• convertMTuplesToBytesDVBCDemo.m
• createDVBCScopes.m
• runDVBCScopes.m
• plotDVBCResults.m

Selected Bibliography

1 ETSI Standard EN 300 429 V1.2.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for cable systems, European Telecommunications Standards Institute,
Valbonne, France, 1998.
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Digital Video Broadcasting - Cable (DVB-C)
This model shows part of the ETSI (European Telecommunications Standards Institute) EN 300 429
standard for cable system transmission of digital television signals [1]. The standard prescribes the
transmitter design and sets minimum performance requirements for the receiver.

The purpose of this example is to:

• Model the main portions of a possible transmitter design (operating in 64-QAM mode with
MPEG-2 Transport Packet data)

• Model the main portions of a possible receiver design (operating in 64-QAM mode with MPEG-2
Transport Packet data)

• Generate error statistics that will help determine whether the model satisfies the system
performance requirements

• Illustrate the use of key Communications Toolbox™ library blocks for DVB-C (or similar) system
design

Available Example Versions

There are two different versions of this example.

Floating-point version: commdvbc.slx

Fixed-point version: commdvbc_fixpt.slx
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Structure of the Example

MATLAB® Workspace Variable Parameter Definitions

When the example model is first loaded, it creates the MATLAB workspace variable prmDVBC, which
is a structure with members that are used as parameters in the blocks in the model file. Note also
that this workspace variable is cleared when the model is closed.

prmDVBC = 

  struct with fields:

             bitsPerByte: 8
             bitsPerMTpl: 6
     MPEG2DatRateBitPerS: 9600000
     rawMPEG2DataPcktLen: 184
     MPEG2TrnsprtPcktLen: 188
    MPEG2TrnsprtFramePer: 1.5667e-04
     MPEG2PcktsPerSprFrm: 8
     MPEG2TrnsSuperFrame: 1504
      PRBSSeqPeriodBytes: 1503
       PRBSSeqPeriodBits: 12024
        RSCodewordLength: 204
       CableChanFrameLen: 272
      CableChanFrmPeriod: 1.5667e-04
      RCosineSampsPerSym: 8
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       CableSymbolPeriod: 7.1998e-08
       RCosineFilterSpan: 16
     TxRxSymbolSampDelay: 288
     DeintrlvrAlignDelay: 192
        QAMSymbolMapping: [44 45 41 40 52 54 62 60 46 47 43 42 53 55 63 ... ]
     ConvIntlNumBranches: 12
       ConvIntlCellDepth: 17

Baseband Physical Interface (Simulated MPEG-2 Data Source)

This portion of the model corresponds to sections 4.1, 5, and 6 in [1]. The MPEG-2 Transport Packet
is defined in ISO®/IEC 13818-1 [2], and is comprised of 188-byte packets.

Communications Toolbox, DSP System Toolbox™, and Simulink® library blocks are used to simulate a
MPEG-2 Transport Packet data stream for system simulation and BER performance measurement
purposes.

Transmitter Baseband Processing

• Sync1 Inversion and Randomization

This subsystem corresponds to sections 4.2 and 7.1 in [1]. The MPEG-2 Sync1 byte is inverted, and
the data stream (other than the Sync bytes) is randomized for spectrum shaping purposes. A
resettable PN Sequence Generator library block is used as part of the scrambler for this data
randomization process.

• Shortened (204,188) Reed-Solomon Encoder

This library block corresponds to sections 4.3 and 7.2 in [1]. As described in the standard, this
process adds 16 parity bytes to the MPEG-2 Transport Packet to give a (204,188) codeword. This
allows up to eight (8) erroneous bytes per transport packet to be corrected by the corresponding
receiver Reed-Solomon Decoder block.

• Convolutional Interleaver

This library block corresponds to sections 4.4 and 7.3 in [1]. The interleaving process is based on the
Forney approach [3] and is compatible with the Ramsey type III approach [4], with I = 12.

• Byte (8-bit) to M-Tuple (6-bit) Conversion

A MATLAB® Function block is used to perform this processing. 8-bit data bytes are converted into
64-ary (6-bit) values. This block corresponds to sections 4.5 and 8 in [1].

• Differential Encoding

An example implementation of the Differential Encoding unit as described in sections 4.6 and 8 in [1]
is shown using a MATLAB Function block. For the purposes of this example model, the Differential
Encoding unit output is connected to a terminator (i.e., the unit is bypassed).

• 64-QAM Constellation Mapping

The Rectangular QAM Modulator Baseband library block maps the baseband 64-ary (M-tuple)
values to complex (I and Q) 64-QAM constellation symbol values for transmission, as described in
sections 4.7 and 9 in [1].
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Square Root Raised Cosine Interpolation Filter

This library block performs the baseband shaping of the complex (I and Q) constellation symbol
values for transmission, as described in sections 4.7, 9, and Annex A in [1].

AWGN Channel

The System FEC as specified by the standard is designed to improve the Bit Error Rate (BER) from
10^-4 to the range, 10^-10 to 10^-11 ("Quasi Error Free" operation). The AWGN Channel library
block Signal to Noise Ratio (Eb/No) is set to 16.5 dB corresponding to an operating BER of
approximately 10^-4.

Square Root Raised Cosine Rx Decimation Filter

This library block performs the matched decimation filtering of the received complex (I and Q)
constellation symbol values, as described in sections 4.7, 9, and Annex A in [1].

Receiver Baseband Processing

• 64-QAM Constellation Demapping

The Rectangular QAM Demodulator Baseband library block demaps the received baseband
complex (I and Q) 64-QAM constellation symbol values to 64-ary M-tuples, as described in sections
4.7 and 9 in [1].

• Differential Decoding

For the purposes of this example model, the Differential Decoding portion is omitted. Additionally, a
more realistic receiver system implementation will likely have equalization and synchronization
processing prior to this portion of the receiver model.

• M-Tuple (6-bit) to Byte (8-bit) Conversion

A MATLAB Function block is used to perform this processing, which is the inverse of the Byte to M-
Tuple processing used in the transmitter. 64-ary (6-bit) M-tuple values are repacked into 8-bit data
bytes.

• Convolutional Deinterleaver

The Convolutional Deinterleaver library block corresponds to the Convolutional
Interleaver library block appearing in the transmitter subsystem implementation. The
deinterleaving process is based on the Forney approach [3] and is compatible with the Ramsey type
III approach [4], with I = 12.

For the sake of example model simplicity, a simple extra delay is used to synchronize the first sync
byte into the "0" branch of the Convolutional Deinterleaver. A more realistic receiver system
implementation will likely have additional upstream synchronization processing prior to this portion
of the model.

• Shortened (204,188) Reed-Solomon Decoder

This library block performs the R-S decoding corresponding to the encoded data packets.

• Sync1 Inversion and Energy Dispersal Removal

This subsystem performs data descrambling to obtain the received MPEG-2 Transport Packet data
bytes.
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Results and Displays

To examine the performance of the example, use the included visualization blocks, as listed below.

Overall System Results and Displays:

• Bit rate (Mbit/s) display
• Cable symbol rate (MBaud) display
• 64-QAM bit error rate (BER) display
• System bit error rate (BER) display
• Various internal bit error rate (BER) displays (under the Internal Tx and Rx BER subsystem)

Transmitter/Receiver Results and Displays:

• Rx 64-QAM Constellation scatter plot
• Tx/Rx Spectrum (2MHz BW) scope
• Total Number of Errors Corrected display

8 Communications Toolbox Featured Examples

8-388



Differences Between the Fixed-Point and Floating-Point Example Versions

There are two different versions of this example -- a floating-point version and a fixed-point version.
The examples are similar. In particular, most of the Transmitter Baseband Processing and
Receiver Baseband Processing subsystems are identical, and mainly use unsigned integer data
types in their signal paths.

The differences between the two versions are in how the signals are processed by the Byte to M-
tuple Conversion, 64-QAM Constellation Mapping, Square Root Raised Cosine Tx
Interpolation Filter, Square Root Raised Cosine Rx Decimation Filter, 64-QAM
Constellation Demapping, and M-Tuple to Byte Conversion blocks. These blocks use
floating-point (and built-in integer) arithmetic when their input and/or output signals are floating-
point (i.e., data type double or single) or purely built-in integer (e.g., uint8), as is the case in the
floating-point version (commdvbc.slx).

In the fixed-point version (commdvbc_fixpt.slx) however, these blocks use fixed-point arithmetic
because their input and/or output signals are fixed-point data types (i.e., sfix or ufix in Simulink).
Also note that a Fixed-Point Designer™ license is required to run the fixed-point version of the
example.
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The following simulation results show matching BER performance for the chosen settings when
comparing the floating-point version with the fixed-point version.
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Digital Video Broadcasting - Terrestrial
This model shows part of the ETSI (European Telecommunications Standards Institute) EN 300 744
standard for terrestrial transmission of digital television signals. The standard prescribes the
transmitter design and sets minimum performance requirements for the receiver.

The purpose of this example is to

• Model the transmitter in its "2k mode," as prescribed in the standard
• Model one possible receiver design
• Generate error statistics that will help determine whether the receiver model satisfies the

performance requirements

Structure of the Example

Using a list and a schematic, the standard shows the major processes that the data undergoes. The
top row of blocks in the model mimics the structure of the schematic, by including subsystems that
perform major processes.

The table below shows which subsystems correspond to processes from the schematic.
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The bottom row of icons in the model represents subsystems that make up the receiver. The model
also includes a source of random data, a channel model, error statistic calculators, and several sinks.

Variables in the Model

The model uses variables as listed below.

To see how MATLAB® computes the values of these variables, see the script
commdvbt_tablegen.m.

Design of the Receiver

The standard does not specify how to implement the receiver, although some inverse operations, such
as deinterleaving, are clearly defined. This example illustrates one possible receiver design by using
these features:

• A 64-QAM demapper that makes soft decisions, producing a set of six real numbers for each
complex number in its input. These six numbers represent soft decisions on the real and imaginary
components' first bit, second bit, and third bit. The Viterbi Decoder subsystem interprets the soft-
decision numbers and uses them to decode the punctured convolutional code properly. To examine
the exact mapping more closely, see the DVB-T 64-QAM Demapper subsystem, as well as the
dvbt_qam variable.

• A traceback depth of 136 in the Viterbi Decoder library block. This library block appears within
the top-level Viterbi Decoder subsystem.

Receive delay calculation
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The DVB-T inner Interleaver and Deinterleaver contains the following frame size rebuffering and the
corresponding delays:

• 2176 to 756 resulting in 756 sample delay
• 756 to 9072 resulting in 9072 sample delay
• 9072 to 756 resulting in 0 sample delay
• 756 to 2176 resulting in 2176 sample delay

This results in a delay of 12004 samples. Since 2176 is the input frame size to the Viterbi Decoder
mod(12004,2176) results in a delay of 1124 which corresponds to 1124*3/4 = 843 samples due to
rate 3/4 coding. With a traceback depth of 136, the Viterbi decoder also adds a further delay of 136,
bringing the total delay to 843+136 = 979. In order to align the actual codewords before feeding into
the Convolutional Deinterleaver an extra delay of 1632-979 = 653 samples is added. Rate 3/4 coding
also causes the 12004 delay to manifest as 12004*3/4 = 9003. Thus the total delay for the model
excluding Convolutional Interleaving/Deinterleaving is 9003+136+653 = 9792 which is equal to 6
frames as the frame size at the 'inner' Error rate calculation block is 1632.

Convolutional Interleaving/Deinterleaving with 12 rows of shift registers adds a delay of 11 frames.
Due to this the receive delay for the 'outer' error rate calculation block is a total of 6 + 11 = 17
frames.

Results and Displays

To examine the performance of the example, use the sink blocks that are included in it, listed in the
table below.
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             Spectrum Analyzer
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Digital Video Broadcasting-Terrestrial, Alternate Form

The model commdvbt_alt illustrates an alternative way to model the 64-QAM Demapper in the
receiver.
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To see how the alternative version implements the 64-QAM Demapper, compare the alternative DVB-T
64-QAM Demapper subsystem in commdvbt_alt example with the original DVB-T 64-QAM Demapper
subsystem in the commdvbt example.

Original: In the original form, soft decisions are computed using a subsystem-based implementation.
In-phase and quadrature phase signal components are extracted after appropriately scaling the
received signal, and then they are shifted to obtain soft decisions for various bits.

Alternative: In the alternative form, the built-in Rectangular QAM Demodulator block is configured
to compute exact bitwise log-likelihood ratios (LLRs). Noise variance needs to be provided and it is
computed using the received signal and the signal generated by the DVB-T 64-QAM Mapper. This
approach makes derivation of soft decisions easy for any signal constellation through the use of the
built-in block.

Selected Bibliography

ETSI Standard EN 300 744: Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television, European Telecommunications Standards Institute,
Valbonne, France, 1997.
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IEEE 802.16-2009 WirelessMAN-OFDMA PHY Downlink PUSC
This model shows a downlink partial usage of subchannels (PUSC) Physical Layer communication
from base station (BS) to two mobile stations (MS), according to the IEEE® 802.16-2009 standard
[ 1 ].

Structure of the Example

This example models the downlink PUSC of the WirelessMAN-OFDMA PHY. It supports all of the
mandatory coding and modulation options. The purpose of this example is to showcase the variable-
size capability of Simulink®, MATLAB® Function block, DSP System Toolbox™, and Communications
Toolbox™. To simplify the implementation, the restriction of two MS (also referred to as users in the
model) and 1024 FFT size are applied.

Out of 1024 frequency carriers (also called subcarriers), 720 subcarriers can be used to carry user
data (the rest are reserved for pilots and guards). To properly allocate the data carriers to different
MS, the standard organizes 720 subcarriers into 30 subchannels (each subchannel contains 24
subcarriers). A subchannel is the smallest unit that can be allocated to an MS.

The standard allows frequency resources (in subchannels) be dynamically allocated to MS. This
means while the model is running, BS can dynamically change the subchannel allocation to MS1 and
MS2. For example, in one burst, subchannels 0~5 are allocated to MS1 and subchannels 6~25 are
allocated to MS2. In another burst, the allocation may become 2~10 and 15~25 respectively. When
more subchannels are allocated to one MS, more data can be transmitted to this MS in one burst.
This dynamic change introduces variable-size signaling.

The variable-size features of the following tools are shown:

• Simulink blocks
• MATLAB Function block
• DSP System Toolbox blocks
• Communications Toolbox blocks and System objects
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OFDMA Symbol Packing Subsystem

This subsystem, organized into five parts, generates data and packs it into OFDMA symbols:

• Generate Headers and User Data
• Channel Coding
• Allocate Subchannels
• Permutation and Renumbering
• Add Pilots and Guards

Variable-size processing happens in this subsystem. Signals output from Data for MS are variable-
size because the two MS can be dynamically assigned subchannels for data transmission. The
MS1(2) Channel Coding block includes Randomization, Interleaving, and all seven mandatory
coding and modulation specified in the standard:

Channel coding is applied block by block. The block size is dependent of the number of subchannels
allocated. The example illustrates how data is concatenated into blocks and how variable-size signals
are processed by using blocks and System objects. To see more details, go to this block: OFDMA
Symbol Packing-->MS1 Channel Coding--> QPSK-1/2.
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OFDMA Transmitter/Receiver Subsystem

OFDMA Transmitter includes:

• Transforms signal from frequency domain to time domain (A gain block is used to scale the
transmitted signal to unit power)

• Adds Cyclic Prefix
• Sets sample time for the model

In this model, data is driven by the transmitter port. To avoid sample time confusions, we try to set
the system sample time at one place, which is at the output port of the OFDMA Transmitter block.
Signal before this point is considered as data and data is drawn from the source to fit the sample time
specified.

OFDMA Receiver includes:

• Removes cyclic prefix
• Transforms signal from time domain to frequency domain
• Implements the frequency domain equalization

According to the standard, a symbol is divided into 60 basic clusters. Two pilot carriers and 12 data
carriers are allocated within each cluster. The receiver can estimate the response of the channel
based on the known pilot information. Because the channel response may be different at different
frequencies, the actual response for a data subcarrier is interpolated based on measurements of pilot
subcarriers.
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OFDMA Symbol Unpacking Subsystem

This subsystem unpacks the OFDMA symbols it receives by:

• Removing the DC and left/right guards from the Preamble symbol
• Separating FCH and DL-MAP from the user DATA
• Using FCH to detect DL-MAP message
• Using DL-MAP to separate user data for MS1 and MS2
• Performing channel decoding

Exploring the Example

1. Fixed Settings You cannot change the following default settings of the model:

• 1024 FFT size
• Two users

2. Channel Conditions Channel configuration can be set in the two Channel blocks.

The following channels can be simulated:

• AWGN only
• Flat Fading Channel with AWGN
• Frequency-selective Multipath fading with AWGN

SNR and Fading mode are both tunable at run time.

3. Other Model Parameters You can set all the other changeable parameters from the Model
Parameter block.

Among those parameters, the Subchannels allocated to users parameter is tunable at run time.
Based on this parameter, DL-MAP message is packed and transmitted. Receivers use the detected DL-
MAP message to decode information from the subchannels assigned to them. The subchannel
allocation status is shown in Subchannel allocation scope; the subcarrier allocation status is shown
in Subcarrier allocation scope.

You can specify the modulation and coding rate or calculate them adaptively based on the channel
conditions detected. When you select Adapt modulation and coding to channel conditions, you
specify the Adaptive rate control SNR thresholds (dB). When unchecked, you must specify the
Modulation and Coding rate parameters.

To ensure the proper memory usage, this example limits the maximum number of OFDMA symbols in
one burst to 13 (10 data symbols + 3 header symbols).
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Notes

We make effort to follow the standard closely and make certain assumptions when needed. The
following is a list of assumptions applied:

• The number of OFDMA symbol for both MS1 and MS2 in one burst are the same and not tunable
at run time

• IDcell of '0' is used
• The first symbol is always Preamble
• The second and third symbols are FCH+DL-MAP (pad zeros at the end)
• User data starts in the fourth symbol
• Receivers use FCH and DL-MAP message to decode the received signal. If channels are too noisy,

these message may corrupt easily. Since there is no resend request mechanism implemented, the
model will error out. To avoid FCH and DL-MAP messages corruption, configure channels
properly.

Selected References

1 IEEE Standard 802.16-2009, "Part 16: Air Interface for Broadband Wireless Access Systems,"
May 2009. http://ieee802.org/16/published.html
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Defense Communications: US MIL-STD-188-110B Baseband
End-to-End Link

This model shows an end-to-end baseband communications system compliant with the U. S. MIL-
STD-188-110B military standard. In particular, the model implements the data phase transmission,
using a fixed-frequency serial (single-tone) waveform. This model supports these data rates: 150 bps,
300 bps, 600 bps, and 1200 bps. It also implements interleaver lengths of 0.6 s and 4.8 s.

The system described in this standard is intended for long-haul and tactical communications over HF
(high frequency) channels. The system is compatible with the NATO standard STANAG 4539.

Structure of the Example

The communication system in this example performs these tasks:

• Generation of random binary data.
• Coding that depends on the data rate that you select in the Model Parameters block's dialog box.

The Encoder block at the top level of the block diagram is a subsystem whose contents depend on
the selected data rate. In all cases, this subsystem contains a convolutional encoder that uses a
rate 1/2 code with constraint length 7. However, the subsystem can achieve rate 1/4 or 1/8 by
following the encoder with a repetition operation.

• Interleaving using a matrix specified by the standard.
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• Binary-to-Gray mapping.
• Appending the training sequence, also referred to as the known data or the channel probe

symbols. By contrast the unknown symbols are the data that the user wants to transmit.
• Data scrambling, by adding the data to a randomizing sequence modulo 8.
• 8-PSK modulation.
• Watterson channel model, implemented using the SISO Fading Channel library block. Specifically,

the block implements the moderate channel model described in [2], using a Gaussian Doppler
spectrum.

• Receiver equalization using an RLS equalizer. Internally, the equalizer subsystem scrambles the
training sequence so as to compare corresponding data sets, introduces delays to align frame
boundaries, and descrambles the equalized signal.

• Channel symbol demapping.
• Deinterleaving.
• Viterbi decoding. The decoder is a subsystem that mirrors the encoder subsystem. The decoder

includes a reset port, because it is necessary to reset the Viterbi decoder after an initial delay
period elapses.

Other Features of the Example:

• Inside the encoder subsystem is an icon labeled "Compare FEC Encoder." You can double-click it
to open another Simulink model that compares the block diagram appearing in the standard with
the single Convolutional Encoder block in the Communications Toolbox™. The model illustrates
that the two ways of modeling the convolutional code yield the same results.

• Inside the Interleave Matrix subsystem is an icon labeled "Interleave Mapping." You can double-
click it to open a plot that shows the mapping, which depends on your choices in the Model
Parameters dialog box.

Results and Displays

When you run the simulation, it displays these numerical or graphical results:

• The bit error rate of the entire system.
• The data rate at several points during the simulation. The source data rate is the one that you

specify in the Model Parameters dialog box, while the last displayed data rate (before the
Scrambler) is always 2400 bps. The other displayed data rates depend on your choices in the
Model Parameters dialog box.

• The Watterson channel impulse response.

8 Communications Toolbox Featured Examples

8-406



• Constellation diagram of the signal before equalization.
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• Constellation diagram of the signal after equalization.
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Simulink® Techniques Illustrated in the Example

The coding behavior in the standard depends on the data rate. This model varies the behavior of the
coding and decoding subsystems depending on the Information Rate parameter that you select in
the Model Parameters dialog box. Double-clicking the encoder or decoder icon enables you to see the
contents of the subsystem based on the current value of the Information Rate parameter. When you
change the Information Rate parameter, an initialization function associated with the Model
Parameters block sets certain model parameters and also chooses the contents of the encoder and
decoder subsystems.

Selected Bibliography

[1] MIL-STD-188110B: Interoperability and Performance Standards for Data Modems, U. S.
Department of Defense, 2000.

[2] ITU-R Recommendation 520-2: Use of High Frequency Ionospheric Channel Simulators,
1978/1982/1992.

See Also

The Communications Toolbox example Defense Communications: US MIL-STD-188-110A Receiver
shows a MIL-STD-188-110A receiver, with preamble detection, carrier synchronization, and symbol
timing synchronization. It runs at a fixed rate of 1200 bps.
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WCDMA End-to-End Physical Layer
This model shows part of the frequency division duplex (FDD) downlink physical layer of the third
generation wireless communication system known as wideband code division multiple access
(WCDMA).

WCDMA is one of five air interfaces for the third generation of wireless communications developed
within the framework of the International Mobile Telecommunications (IMT)-2000, as defined by the
International Telecommunication Union (ITU). The WCDMA technology is officially known as
IMT-2000 Direct Spread.

The specifications of the WCDMA system are developed by the Third Generation Partnership Project
(3GPP), Release 1999, which is a joint effort among standards bodies from Europe, Japan, Korea,
USA, and China.

The WCDMA air interface is a direct spread technology. This means that it spreads encoded user data
at a relatively low rate over a much wider bandwidth (5 MHz), using a sequence of pseudorandom
units called chips at a much higher rate (3.84 Mcps). By assigning a unique code to each user, the
receiver, which has knowledge of the code of the intended user, can successfully separate the desired
signal from the received waveform.

Structure of the Example

The physical layer is in charge of providing transport support to the data generated at higher layers.
This data is exchanged between the higher layers and the physical layer in the form of transport
channels. There can be up to eight transport channels processed simultaneously. Each transport
channel is associated with a different transport format that contains information on how the data
needs to be processed by the physical layer. The physical layer processes this data before sending it
to the channel.
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The model has seven main subsystems, whose functions are summarized in the following table.

WCDMA DL Tx Channel Coding Scheme. The WCDMA DL Tx Channel Coding Scheme subsystem
processes each transport channel independently according to the transport format parameters
associated with it. This subsystem implements the following functions:

• Cyclic redundancy code (CRC) attachment
• Transport block concatenation and segmentation
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• Channel encoding
• Rate matching
• First interleaving
• Radio frame segmentation

The different transport channels are then combined to generate a coded combined transport channel
(CCTrCH). The CCTrCH is then sent to the WCDMA Tx Physical Mapping subsystem.

WCDMA Tx Physical Mapping. This subsystem implements the following functions:

• Physical channel segmentation
• Second interleaver
• Slot builder

The output of this subsystem constitutes a dedicated physical channel (DPCH), which is passed to the
WCDMA BS Tx Antenna Spreading and Modulation subsystem.

WCDMA BS Tx Antenna. The WCDMA BS Tx Antenna subsystem performs the following functions:

• Modulation
• Spreading by a real-valued orthogonal variable spreading factor (OVSF) code
• Scrambling by a complex-valued Gold code sequence
• Power weighting
• Pulse shaping

WCDMA Channel Model. The WCDMA Channel Model subsystem simulates a wireless link channel
containing additive white Gaussian noise (AWGN) and, if selected, a set of multipath propagation
conditions. You can modify the multipath profile with the Propagation conditions environment
parameter, as described under Exploring the Example.

WCDMA UE Rx Antenna. The received signal at the WCDMA UE Rx Antenna subsystem is the sum
of attenuated and delayed versions of the transmitted signals due to the so-called multipath
propagation introduced by the channel. At the receiver side, a Rake receiver is implemented to
resolve and compensate for such effect. A Rake receiver consists of several rake fingers, each
associated with a different received component. Each rake finger is made of chip correlators to
perform the despreading, channel estimation to gauge the channel, and a derotator that, using the
knowledge provided by the channel estimator, corrects the phase of the data symbol. The subsystem
coherently combines the output of the different rake fingers to recover the energy across the
different delays.

WCDMA Rx Physical Channel Demapping and Channel Decoding Scheme. The WCDMA Rx
Physical Channel Demapping and the WCDMA DL Rx Channel Decoding Scheme subsystem decode
the signal by performing the inverse of the functions of the WCDMA DL Tx Channel Coding Scheme
subsystem, described above.

Exploring the Example

You can view or change parameters in the model by double-clicking the block labeled Model
Parameters. This displays the Block Parameters dialog.

The Power for [DPCH, P-CPICH, PICH, PCCPCH, SCH] in dB parameter consists of a row vector
containing the powers in decibels corresponding to the different physical channels.
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The Show Transport Channel Settings check box enables you to specify the parameters
corresponding to the WCDMA Tx Channel Coding Scheme subsystem, the WCDMA Tx PhCh Mapping
subsystem, and its corresponding subsystems at the receiver side. When the box is selected, the
dialog displays the following parameters:

The Show Antenna Settings check box enables you to specify the parameters corresponding to the
WCDMA BS Tx Antenna and WCDMA UE Rx Antenna subsystems. When the box is selected, the
dialog displays the following parameters:
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The Show Channel Model Settings check box enables you to specify the parameters corresponding
to the WCDMA Channel Model subsystem:

Results and Displays

The following blocks calculate various error rates in the example:

• BLER (Block Error Rate) Calculation shows the block error rate of the combined transport
channels.

• BER (Bit Error Rate) Calculation shows the results of the BER computation block associated with
each transport channel separately.

The following scopes display the signal in various ways. To view the scopes, double-click the icons
when the simulation is running.

• Time scopes show the bit stream before spreading, after spreading, and after combining the
different weighted physical channels. They show both the real and the imaginary part separately.
They also display both the real and the imaginary part of the output of the channel estimator for
the first rake finger.

• Power spectrum plots show the power spectrum of the signal before spreading, after spreading,
after pulse shaping, and at the input of the receiver antenna.

• Scatter plots show the signal constellation at the output of the data correlator, after phase
derotation, and after amplitude correction.
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Accompanying Models

The following two models offer standalone implementation of some of the subsystems included in this
example model:

commwcdmamuxandcoding.slx: shows the WCDMA DL Tx Channel Coding Scheme with Physical
Channel Mapping and WCDMA Physical Channel Demapping with the Rx Channel Decoding Scheme.

commwcdmaspreadandmod.slx : shows WCDMA BS Tx Antenna and WCDMA UE Rx Antenna.

Selected Bibliography

https://www.3gpp.org
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BER Simulations with Parallel Computing Toolbox
This example shows how to improve the execution speed of communication systems involving BER
simulations. To improve the performance of these systems, one of the available options is to
parallelize the simulations. This example introduces the usage of the Parallel Computing Toolbox™
(PCT) in BER simulations. It presents two possible ways of parallelizing BER simulations and
recommends the better method.

License Check and Opening a Parallel Pool

This section checks for the availability of PCT. If available, it opens a parallel pool of workers and
assigns the maximum number of available workers in the pool to the variable numWorkers. If not
available it assigns numWorkers = 1, in which case the example runs on a single core.

[licensePCT,~] = license( 'checkout','Distrib_Computing_Toolbox');
if ( licensePCT && ~isempty(ver('parallel')))
    if isempty(gcp('nocreate'))
        parpool;
    end
    pool = gcp;
    numWorkers = pool.NumWorkers;
else
    numWorkers = 1;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).

Initialization

This example parallelizes the “Spatial Multiplexing” on page 8-212 example to demonstrate the usage
of PCT. The following are the parameters needed to simulate this example.

EbNo = 1:2:11;  % Eb/No in dB
N = 2;          % Number of transmit antennas
M = 2;          % Number of receive antennas
modOrd = 2;     % constellation size = 2^modOrd
numBits = 1e6;  % Number of bits
numErrs =  100; % Number of errors
lenEbNo = length(EbNo);
% Create a local random stream to be used for data generation for
% repeatability. Use the combined multiple recursive generator since it
% supports substreams.
hStr = RandStream('mrg32k3a'); % Setting the random stream
[berZF,berMMSE] = deal(zeros(lenEbNo,3));
[nerrsZF,nbitsZF,nerrsMMSE,nbitsMMSE] = deal(zeros(numWorkers,lenEbNo));

Parallelizing Across the Eb/No Range

The first method parallelizes across the Eb/No range, where one worker processes a single Eb/No
value. Here the performance is limited by the time required to process the highest Eb/No value.

simIndex = 1;
str = 'Across the Eb/No range';
disp('Performing BER simulations with one worker processing one Eb/No value ...');

Performing BER simulations with one worker processing one Eb/No value ...
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tic
parfor idx = 1:lenEbNo
    [BER_ZF,BER_MMSE] = simBERwithPCT(N,M,EbNo,modOrd, ...
        idx,hStr,numBits,numErrs);
    berZF(idx,:) = BER_ZF(idx,:);
    berMMSE(idx,:) = BER_MMSE(idx,:);
end
timeRange = toc;
clockBERwithPCT(simIndex,timeRange,timeRange,str);

Parallelizing Across the Number of Workers in the Parallel Pool

The second method parallelizes across the number of available workers, where each worker
processes the full Eb/No range. However, each worker counts (total errors/numWorkers) errors
before proceeding to the next Eb/No value. This method uses all available cores equally efficiently.

simIndex = simIndex + 1;
str = 'Across the number of available workers';
seed = 0:numWorkers-1;
disp('Performing BER simulations with each worker processing the entire range ...');

Performing BER simulations with each worker processing the entire range ...

tic
parfor n = 1:numWorkers
    hStr = RandStream('mrg32k3a','Seed',seed(n));
    for idx = 1:lenEbNo
        [BER_ZF,BER_MMSE] = simBERwithPCT(N,M,EbNo,modOrd, ...
            idx,hStr,numBits/numWorkers,numErrs/numWorkers);
        nerrsZF(n,idx) = BER_ZF( idx,2);
        nbitsZF(n,idx) = BER_ZF( idx,3);
        nerrsMMSE(n,idx) = BER_MMSE(idx,2);
        nbitsMMSE(n,idx) = BER_MMSE(idx,3);
    end
end
bZF = sum(nerrsZF,1)./sum(nbitsZF,1);
bMMSE = sum(nerrsMMSE,1)./sum(nbitsMMSE,1);
timeWorker = toc;

Below are the results obtained on a Windows® 7, 64-bit, Intel® Xeon® CPU W3550, ~3.1GHz,
12.288GB RAM machine using four cores. The table shows the performance comparison of the above
methods. We see that the second method performs better than the first. These are the results
obtained on a single run and may vary from run to run.

--------------------------------------------------------------------------------------------
Type of Parallelization                             | Elapsed Time (sec)| Speedup Ratio
1. Across the Eb/No range                           |           89.7366 |       1.0000
2. Across the number of available workers           |           28.4443 |       3.1548
--------------------------------------------------------------------------------------------

The plot below shows the BER curves obtained for the zero forcing (ZF) and minimum mean squared
error (MMSE) receivers using the different parallelization methods.

plotBERwithPCT(EbNo,berZF(:,1),berMMSE(:,1),bZF,bMMSE);
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To generate a performance comparison table for your machine, uncomment the following line of code
and run this entire script.

% clockBERwithPCT(simIndex,timeRange,timeWorker,str);

Appendix

The following functions are used in this example:

• simBERwithPCT.m
• plotBERwithPCT.m
• clockBERwithPCT.m
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End to End System Simulation Acceleration Using GPUs
This example shows a comparison of four techniques which can be used to accelerate bit error rate
(BER) simulations using System objects in the MATLAB® Communications Toolbox™ software. A
small system, based on convolutional coding, illustrates the effect of code generation using the
MATLAB® Coder™ product, parallel loop execution using parfor in the Parallel Computing
Toolbox™ product, a combination of code generation and parfor, and GPU-based System objects.

The System objects this example features are accessible in the Communications Toolbox product. In
order to run this example you must have a MATLAB Coder license, a Parallel Computing Toolbox
license, and a sufficient GPU.

System Design and Simulation Parameters

This example uses a simple convolutional coding system to illustrate simulation acceleration
strategies. The system generates random message bits using randi. A transmitter encodes these bits
using a rate 1/2 convolutional encoder, applies a QPSK modulation scheme, and then transmits the
symbols. The symbols pass through an AWGN channel, where signal corruption occurs. QPSK
demodulation occurs at the receiver, and the corrupted bits are decoded using the Viterbi algorithm.
Finally, the bit error rate is computed. The System objects used in this system are :

• comm.ConvolutionalEncoder - convolutional encoding
• comm.PSKModulator - QPSK modulation
• comm.AWGNChannel - AWGN channel
• comm.PSKDemodulator - QPSK demodulation (approx LLR)
• comm.ViterbiDecoder - Viterbi decoding

The code for the transceivers can be found in:

• viterbiTransceiverCPU.m
• viterbiTransceiverGPU.m

Each point along the bit error rate curve represents the result of many iterations of the transceiver
code described above. To obtain accurate results in a reasonable amount of time, the simulation will
gather at least 200 bit errors per signal-to-noise ratio (SNR) value, and at most 5000 packets of data.
A packet represents 2000 message bits. The SNR ranges from 1 dB to 5 dB.

iterCntThreshold = 5000;
minErrThreshold = 200;
msgL = 2000;
snrdb = 1:5;

Initialization

Call the transceiver functions once to factor out setup time and object construction overhead. Objects
are stored in persistent variables in each function.

errs  = zeros(length(snrdb),1);
iters = zeros(length(snrdb),1);

berplot = cell(1,5);
numframes = 500;    %GPU version runs 500 frames in parallel.
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viterbiTransceiverCPU(-10,1,1);
viterbiTransceiverGPU(-10,1,1,numframes);

N=1; %N tracks which simulation variant is run

Workflow

The workflow for this example is:

1 Run a baseline simulation of System objects
2 Use MATLAB Coder to generate a MEX function for the simulation
3 Use parfor to run the bit error rate simulation in parallel
4 Combine the generated MEX function with parfor
5 Use the GPU-based System objects

fprintf(1,'Bit Error Rate Acceleration Analysis Example\n\n');

Bit Error Rate Acceleration Analysis Example

Baseline Simulation

To establish a reference point for various acceleration strategies, a bit error rate curve is generated
using System objects alone. The code for the transceiver is in viterbiTransceiverCPU.m.

fprintf(1,'***Baseline - Standard System object simulation***\n');

% create random stream for each snrdb simulation
s = RandStream.create('mrg32k3a','NumStreams',1,...
    'CellOutput',true,'NormalTransform', 'Inversion');
RandStream.setGlobalStream(s{1});

ts = tic;
for ii=1:numel(snrdb)
    fprintf(1,'Iteration number %d, SNR (dB) = %d\n',ii, snrdb(ii));
    [errs(ii),iters(ii)] =viterbiTransceiverCPU(snrdb(ii), minErrThreshold, iterCntThreshold);
end
ber = errs./ (msgL* iters);
baseTime=toc(ts);
berplot{N} = ber;
desc{N} = 'baseline';
reportResultsCommSysGPU(N, baseTime,baseTime, 'Baseline');

***Baseline - Standard System object simulation***
Iteration number 1, SNR (dB) = 1
Iteration number 2, SNR (dB) = 2
Iteration number 3, SNR (dB) = 3
Iteration number 4, SNR (dB) = 4
Iteration number 5, SNR (dB) = 5
----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |           17.0205 |       1.0000
----------------------------------------------------------------------------------------------
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Code Generation

Using MATLAB Coder, a MEX file can be generated with optimized C code that matches the
precompiled MATLAB code. Because the viterbiTransceiverCPU function conforms to the
MATLAB code generation subset, it can be compiled into a MEX function without modification.

You must have a MATLAB Coder license to run this portion of the example.

fprintf(1,'\n***Baseline + codegen***\n');
N=N+1; %Increase simulation counter

% Create the coder object and turn off checks which will cause low
% performance.
fprintf(1,'Generating Code ...');
config_obj = coder.config('MEX');
config_obj.EnableDebugging = false;
config_obj.IntegrityChecks = false;
config_obj.ResponsivenessChecks = false;
config_obj.EchoExpressions = false;

% Generate a MEX file
codegen('viterbiTransceiverCPU.m', '-config', 'config_obj', '-args', {snrdb(1), minErrThreshold, iterCntThreshold} )
fprintf(1,'  Done.\n');

%Run once to eliminate startup overhead.
viterbiTransceiverCPU_mex(-10,1,1);

s = RandStream.getGlobalStream;
reset(s);

% Use the generated MEX function viterbiTransceiverCPU_mex in the
% simulation loop.
ts = tic;
for ii=1:numel(snrdb)
    fprintf(1,'Iteration number %d, SNR (dB) = %d\n',ii, snrdb(ii));
    [errs(ii),iters(ii)] = viterbiTransceiverCPU_mex(snrdb(ii), minErrThreshold, iterCntThreshold);
end
ber = errs./ (msgL* iters);
trialtime=toc(ts);
berplot{N} = ber;
desc{N} = 'codegen';
reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + codegen');

***Baseline + codegen***
Generating Code ...Code generation successful.

  Done.
Iteration number 1, SNR (dB) = 1
Iteration number 2, SNR (dB) = 2
Iteration number 3, SNR (dB) = 3
Iteration number 4, SNR (dB) = 4
Iteration number 5, SNR (dB) = 5
----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |           17.0205 |       1.0000
2. Baseline + codegen                               |           14.3820 |       1.1835
----------------------------------------------------------------------------------------------
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Parfor - Parallel Loop Execution

Using parfor, MATLAB executes the transceiver code against all SNR values in parallel. This
requires opening the parallel pool and adding a parfor loop.

You must have a Parallel Computing Toolbox license to run this portion of the example.

fprintf(1,'\n***Baseline + parfor***\n');
fprintf(1,'Accessing multiple CPU cores ...\n');
if isempty(gcp('nocreate'))
    pool = parpool;
    poolWasOpen = false;
else
    pool = gcp;
    poolWasOpen = true;
end
nW=pool.NumWorkers;
N=N+1; %Increase simulation counter

snrN = numel(snrdb);

mT = minErrThreshold / nW;
iT = iterCntThreshold / nW;

errN =  zeros(nW, snrN);
itrN =  zeros(nW, snrN);

% replicate snrdb
snrdb_rep=repmat(snrdb,nW,1);

% create an independent stream for each worker
s = RandStream.create('mrg32k3a','NumStreams',nW,...
    'CellOutput',true,'NormalTransform', 'Inversion');

% pre-run
parfor jj=1:nW
    RandStream.setGlobalStream(s{jj});
    viterbiTransceiverCPU(-10, 1, 1);
end

fprintf(1,'Start parfor job ... ');
ts = tic;
parfor jj=1:nW
    for ii=1:snrN
        [err, itr] = viterbiTransceiverCPU(snrdb_rep(jj,ii), mT, iT);
        errN(jj,ii) = err;
        itrN(jj,ii) = itr;
    end
end
ber = sum(errN)./ (msgL*sum(itrN));
trialtime=toc(ts);
fprintf(1,'Done.\n');
berplot{N} = ber;
desc{N} = 'parfor';
reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + parfor');

***Baseline + parfor***
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Accessing multiple CPU cores ...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
Start parfor job ... Done.
----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |           17.0205 |       1.0000
2. Baseline + codegen                               |           14.3820 |       1.1835
3. Baseline + parfor                                |            2.6984 |       6.3075
----------------------------------------------------------------------------------------------

Parfor and Code Generation

You can combine the last two techniques for additional acceleration. The compiled MEX function can
be executed inside of a parfor loop.

You must have a MATLAB Coder license and a Parallel Computing Toolbox license to run
this portion of the example.
fprintf(1,'\n***Baseline + codegen + parfor***\n');
N=N+1; %Increase simulation counter

% pre-run
parfor jj=1:nW
    RandStream.setGlobalStream(s{jj});
    viterbiTransceiverCPU_mex(1, 1, 1); % use the same mex file
end

fprintf(1,'Start parfor job ... ');
ts = tic;
parfor jj=1:nW
    for ii=1:snrN
        [err, itr] = viterbiTransceiverCPU_mex(snrdb_rep(jj,ii), mT, iT);
        errN(jj,ii) = err;
        itrN(jj,ii) = itr;
    end
end
ber = sum(errN)./ (msgL*sum(itrN));
trialtime=toc(ts);
fprintf(1,'Done.\n');
berplot{N} = ber;
desc{N} = 'codegen + parfor';
reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + codegen + parfor');

***Baseline + codegen + parfor***
Start parfor job ... Done.
----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |           17.0205 |       1.0000
2. Baseline + codegen                               |           14.3820 |       1.1835
3. Baseline + parfor                                |            2.6984 |       6.3075
4. Baseline + codegen + parfor                      |            2.7059 |       6.2902
----------------------------------------------------------------------------------------------

GPU

The System objects that the viterbiTransceiverCPU function uses are available for execution on
the GPU. The GPU-based versions are:
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• comm.gpu.ConvolutionalEncoder - convolutional encoding
• comm.gpu.PSKModulator - QPSK modulation
• comm.gpu.AWGNChannel - AWGN channel
• comm.gpu.PSKDemodulator - QPSK demodulation (approx LLR)
• comm.gpu.ViterbiDecoder - Viterbi decoding

A GPU is most effective when processing large quantities of data at once. The GPU-based System
objects can processes multiple frames in a single call to the step method. The numframes variable
represents the number of frames processed per call. This is analogous to parfor except that the
parallelism is on a per object basis, rather than a per viterbiTransceiverCPU call basis.

You must have a Parallel Computing Toolbox license and a CUDA® 1.3 capable GPU to run
this portion of the example.

fprintf(1,'\n***GPU***\n');
N=N+1; %Increase simulation counter

try
    dev = parallel.gpu.GPUDevice.current;
    fprintf(...
        'GPU detected (%s, %d multiprocessors, Compute Capability %s)\n',...
        dev.Name, dev.MultiprocessorCount, dev.ComputeCapability);

    sg = parallel.gpu.RandStream.create('mrg32k3a','NumStreams',1,'NormalTransform','Inversion');
    parallel.gpu.RandStream.setGlobalStream(sg);

    ts = tic;
    for ii=1:numel(snrdb)
        fprintf(1,'Iteration number %d, SNR (dB) = %d\n',ii, snrdb(ii));
        [errs(ii),iters(ii)] =viterbiTransceiverGPU(snrdb(ii), minErrThreshold, iterCntThreshold, numframes);
    end
    ber = errs./ (msgL* iters);
    trialtime=toc(ts);
    berplot{N} = ber;
    desc{N} = 'GPU';
    reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + GPU');

    fprintf(1,'  Done.\n');

catch %#ok<CTCH>

    % Report that the appropriate GPU was not found.
    fprintf(1, ['Could not find an appropriate GPU or could not ', ...
        'execute GPU code.\n']);

end

***GPU***
GPU detected (Tesla V100-PCIE-32GB, 80 multiprocessors, Compute Capability 7.0)
Iteration number 1, SNR (dB) = 1
Iteration number 2, SNR (dB) = 2
Iteration number 3, SNR (dB) = 3
Iteration number 4, SNR (dB) = 4
Iteration number 5, SNR (dB) = 5
----------------------------------------------------------------------------------------------
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Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |           17.0205 |       1.0000
2. Baseline + codegen                               |           14.3820 |       1.1835
3. Baseline + parfor                                |            2.6984 |       6.3075
4. Baseline + codegen + parfor                      |            2.7059 |       6.2902
5. Baseline + GPU                                   |            0.1895 |      89.8137
----------------------------------------------------------------------------------------------
  Done.

Analysis

Comparing the results of these trials, it is clear that the GPU is significantly faster than any other
simulation acceleration technique. This performance boost requires a very modest change to the
simulation code. However, there is no loss in bit error rate performance as the following plot
illustrates. The very slight differences in the curves are a result of different random number
generation algorithms and/or effects of averaging different quantities of data for the same point on
the curve.

lines = {'kx-.', 'ro-', 'cs--', 'm^:', 'g*-'};
for ii=1:numel(desc)
    semilogy(snrdb, berplot{ii}, lines{ii});
    hold on;
end
hold off;
title('Bit Error Rate for Various Acceleration Strategies');
xlabel('Signal to Noise Ratio (dB)');
ylabel('BER');
legend(desc{:});
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Cleanup

Leave the parallel pool in the original state.

if ~poolWasOpen
    delete(gcp);
end

Parallel pool using the 'local' profile is shutting down.
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Simulation Acceleration Using MATLAB Coder and Parallel
Computing Toolbox

This example shows two ways to accelerate the simulation of communications algorithms in
MATLAB®. It showcases the runtime performance effects of using MATLAB to C code generation and
parallel processing runs (using the MATLAB parfor (Parallel Computing Toolbox) function). For a
comprehensive look at all possible acceleration techniques, see Accelerating MATLAB Algorithms and
Applications article.

The combined effect of using these methods may speed up a typical simulation time by an order of
magnitude. The difference is tantamount to running the simulation overnight or within just a few
hours.

To run the MATLAB to C code generation section of this example, you must have MATLAB Coder™
product. To run the parallel processing section of this example, you must have Parallel Computing
Toolbox™ product.

Example Structure

This example examines various implementations of this transceiver system in MATLAB.

This system is composed of a transmitter, a channel model, and a receiver. The transmitter processes
the input bit stream with a convolutional encoder, an interleaver, a modulator, and a MIMO space-
time block encoder (see [ 1 on page 8-0  ], [ 2 on page 8-0  ]). The transmitted signal is then
processed by a 2x2 MIMO block fading channel and an additive white gaussian noise (AWGN)
channel. The receiver processes its input signal with a 2x2 MIMO space-time block decoder, a
demodulator, a deinterleaver, and a Viterbi decoder to recover the best estimate of the input bit
stream at the receiver.

The example follows this workflow:
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1 Create a function that runs the simulation algorithms
2 Use the MATLAB Profiler GUI to identify speed bottlenecks
3 Accelerate the simulation with MATLAB to C code generation
4 Achieve even faster simulation using parallel processing runs

Create Function that Runs Simulation Algorithms

Start with a function that represents the first version or baseline implementation of this algorithm.
The inputs to the helperAccelBaseline function are the Eb/No value of the current frame (EbNo),
minimum number of errors (minNumErr) and the maximum number of bits processed (maxNumBits).
Eb/No is the ratio of energy per bit to noise power spectral density. The function output is the bit
error rate (BER) information for each Eb/No point.

type helperAccelBaseline

function ber = helperAccelBaseline(EbNo, minNumErr, maxNumBits)
%helperAccelBaseline Simulate a communications link
%   BER = helperAccelBaseline(EBNO,MINERR,MAXBIT) returns the bit error
%   rate (BER) of a communications link that includes convolutional coding,
%   interleaving, QAM modulation, an Alamouti space-time block code, and a
%   MIMO block fading channel with AWGN.  EBNO is the energy per bit to
%   noise power spectral density ratio (Eb/No) of the AWGN channel in dB,
%   MINERR is the minimum number of errors to collect, and MAXBIT is the
%   maximum number of simulated bits so that the simulations do not run
%   indefinitely if the Eb/No value is too high.

%   Copyright 2011-2021 The MathWorks, Inc.

M = 16;                                                  % Modulation Order
k = log2(M);                                             % Bits per Symbol
codeRate = 1/2;                                          % Coding Rate
adjSNR = EbNo - 10*log10(1/codeRate) + 10*log10(k);
trellis = poly2trellis(7,[171 133]);
tblen = 32;
dataFrameLen = 1998;

% Add 6 zeros to terminate the convolutional code
chanFrameLen=(dataFrameLen+6)/codeRate;
permvec=[1:3:chanFrameLen 2:3:chanFrameLen 3:3:chanFrameLen]';

ostbcEnc = comm.OSTBCEncoder(NumTransmitAntennas=2);
ostbcComb = comm.OSTBCCombiner(NumTransmitAntennas=2,NumReceiveAntennas=2);
mimoChan = comm.MIMOChannel(MaximumDopplerShift=0,PathGainsOutputPort=true);
berCalc = comm.ErrorRate;

% Run Simulation
ber = zeros(3,1);
while (ber(3) <= maxNumBits) && (ber(2) < minNumErr)
    data = [randi([0 1],dataFrameLen,1);false(6,1)];
    encOut = convenc(data,trellis);           % Convolutional Encoder
    intOut = intrlv(double(encOut),permvec'); % Interleaver
    modOut = qammod(intOut,M,...
      'InputType','bit');                     % QAM Modulator
    stbcOut = ostbcEnc(modOut);               % Alamouti Space-Time Block Encoder
    [chanOut, pathGains] = mimoChan(stbcOut); % 2x2 MIMO Channel
    chEst = squeeze(sum(pathGains,2));
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    rcvd = awgn(chanOut,adjSNR,'measured');   % AWGN channel
    stbcDec = ostbcComb(rcvd,chEst);          % Alamouti Space-Time Block Decoder
    demodOut = qamdemod(stbcDec,M,...
      'OutputType','bit');                    % QAM Demodulator
    deintOut = deintrlv(demodOut,permvec');   % Deinterleaver
    decOut = vitdec(deintOut(:),trellis, ...  % Viterbi Decoder
        tblen,'term','hard');
    ber = berCalc(decOut(1:dataFrameLen),data(1:dataFrameLen));
end

As a starting point, measure the time it takes to run this baseline algorithm in MATLAB. Use the
MATLAB timing functions (tic and toc) to record the elapsed runtime to complete processing of a
for-loop that iterates over Eb/No values from 0 to 7 dB.

minEbNodB=0;
maxEbNodB=7;
EbNoVec = minEbNodB:maxEbNodB;
minNumErr=100;
maxNumBits=1e6;
N=1;
str='Baseline';
% Run the function once to load it into memory and remove overhead from
% runtime measurements
helperAccelBaseline(3,10,1e4);
berBaseline=zeros(size(minEbNodB:maxEbNodB));
disp('Processing the baseline algorithm.');

Processing the baseline algorithm.

tic;
for EbNoIdx=1:length(EbNoVec)
  EbNo = EbNoVec(EbNoIdx);
  y=helperAccelBaseline(EbNo,minNumErr,maxNumBits);
  berBaseline(EbNoIdx)=y(1);
end
rtBaseline=toc;

The result shows the simulation time (in seconds) of the baseline algorithm. Use this timing
measurement to compare with subsequent accelerated simulation runtimes.

helperAccelReportResults(N,rtBaseline,rtBaseline,str,str);

----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |            4.4886 |       1.0000
----------------------------------------------------------------------------------------------

Identify Speed Bottlenecks by Using MATLAB Profiler App

Identify the processing bottlenecks and problem areas of the baseline algorithm by using the
MATLAB Profiler. Obtain the profiler information by executing the following script:

profile on
y=helperAccelBaseline(6,100,1e6);
profile off
profile viewer

The Profiler report presents the execution time for each function call of the algorithm. You can sort
the functions according to their self-time in a descending order. The first few functions that the
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Profiler window depicts represent the speed bottleneck of the algorithm. In this case, the vitdec
function is identified as the major speed bottleneck.

Accelerate Simulation with MATLAB to C Code Generation

MATLAB Coder generates portable and readable C code from algorithms that are part of the MATLAB
code generation subset. You can create a MATLAB executable (MEX) of the helperAccelBaseline,
function because it uses functions and System objects that support code generation. Use the
codegen (MATLAB Coder) function to compile the helperAccelBaseline function into a MEX
function. After successful code generation by codegen, you will see a MEX file in the workspace that
appends '_mex' to the function, helperAccelBaseline_mex.

codegen('helperAccelBaseline.m','-args',{EbNo,minNumErr,maxNumBits})

Code generation successful.

Measure the simulation time for the MEX version of the algorithm. Record the elapsed time for
running this function in the same for-loop as before.

N=N+1;
str='MATLAB to C code generation';
tag='Codegen';
helperAccelBaseline_mex(3,10,1e4);
berCodegen=zeros(size(berBaseline));
disp('Processing the MEX function of the algorithm.');

Processing the MEX function of the algorithm.

tic;
for EbNoIdx=1:length(EbNoVec)
  EbNo = EbNoVec(EbNoIdx);
  y=helperAccelBaseline_mex(EbNo,minNumErr,maxNumBits);
  berCodegen(EbNoIdx)=y(1);
end
rt=toc;

The results here show the MEX version of this algorithm runs faster than the baseline versions of the
algorithm. The amount of acceleration achieved depends on the nature of the algorithm. The best way
to determine the acceleration is to generate a MEX-function using MATLAB Coder and test the
speedup firsthand. If your algorithm contains single-precision data types, fixed-point data types, loops
with states, or code that cannot be vectorized, you are likely to see speedups. On the other hand, if
your algorithm contains MATLAB implicitly multithreaded computations such as fft and svd,
functions that call IPP or BLAS libraries, functions optimized for execution in MATLAB on a PC such
as FFTs, or algorithms where you can vectorize the code, speedups are less likely.

helperAccelReportResults(N,rtBaseline,rt,str,tag);

----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |            4.4886 |       1.0000
2. MATLAB to C code generation                      |            1.6402 |       2.7367
----------------------------------------------------------------------------------------------

Achieve Even Faster Simulation Using Parallel Processing Runs

Utilize multiple cores to increase simulation acceleration by running tasks in parallel. Use parallel
processing runs (parfor loops) in MATLAB to perform the work on the number of available workers.
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Parallel Computing Toolbox enables you to run different iterations of the simulation in parallel. Use
the gcp (Parallel Computing Toolbox) function to get the current parallel pool. If a pool is available
but not open, the gcp opens the pool and reserves several MATLAB workers to execute iterations of a
subsequent parfor-loop. In this example, six workers run locally on a MATLAB client machine.

pool = gcp

pool = 

 ProcessPool with properties: 

            Connected: true
           NumWorkers: 6
              Cluster: local
        AttachedFiles: {}
    AutoAddClientPath: true
          IdleTimeout: 30 minutes (5 minutes remaining)
          SpmdEnabled: true

Run Parallel Over Eb/No Values

Run Eb/No points in parallel using six workers using a parfor-loop rather than a for-loop as used in
the previous cases. Measure the simulation time.

N=N+1;
str='Parallel runs with parfor over Eb/No';
tag='Parfor Eb/No';
helperAccelBaseline_mex(3,10,1e4);
berParfor1=zeros(size(berBaseline));
disp('Processing the MEX function of the algorithm within a parfor-loop.');

Processing the MEX function of the algorithm within a parfor-loop.

tic;
parfor EbNoIdx=1:length(EbNoVec)
  EbNo = EbNoVec(EbNoIdx);
  y=helperAccelBaseline_mex(EbNo,minNumErr,maxNumBits);
  berParfor1(EbNoIdx)=y(1);
end
rt=toc;

The result adds the simulation time of the MEX version of the algorithm executing within a parfor-
loop to the previous results. Note that by running the algorithm within a parfor-loop, the elapsed
time to complete the simulation is shorter. The basic concept of a parfor-loop is the same as the
standard MATLAB for-loop. The difference is that parfor divides the loop iterations into groups so
that each worker executes some portion of the total number of iterations. Because several MATLAB
workers can be computing concurrently on the same loop, a parfor-loop provides significantly better
performance than a normal serial for-loop.

helperAccelReportResults(N,rtBaseline,rt,str,tag);

----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |            4.4886 |       1.0000
2. MATLAB to C code generation                      |            1.6402 |       2.7367
3. Parallel runs with parfor over Eb/No             |            1.0943 |       4.1020
----------------------------------------------------------------------------------------------
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Run Parallel Over Number of Bits

In the previous section, the total simulation time is mainly determined by the highest Eb/No point.
You can further accelerate the simulations by dividing up the number of bits simulated for each Eb/No
point over the workers. Run each Eb/No point in parallel using six workers using a parfor-loop.
Measure the simulation time.

N=N+1;
str='Parallel runs with parfor over number of bits';
tag='Parfor # Bits';
helperAccelBaseline_mex(3,10,1e4);
berParfor2=zeros(size(berBaseline));
disp('Processing the MEX function of the second version of the algorithm within a parfor-loop.');

Processing the MEX function of the second version of the algorithm within a parfor-loop.

tic;
% Calculate number of bits to be simulated on each worker
minNumErrPerWorker = minNumErr / pool.NumWorkers;
maxNumBitsPerWorker = maxNumBits / pool.NumWorkers;
for EbNoIdx=1:length(EbNoVec)
  EbNo = EbNoVec(EbNoIdx);
  numErr = zeros(pool.NumWorkers,1);
  parfor w=1:pool.NumWorkers
    y=helperAccelBaseline_mex(EbNo,minNumErrPerWorker,maxNumBitsPerWorker);
    numErr(w)=y(2);
    numBits(w)=y(3);
  end
  berParfor2(EbNoIdx)=sum(numErr)/sum(numBits);
end
rt=toc;

The result adds the simulation time of the MEX version of the algorithm executing within a parfor-
loop where this time each worker simulates the same Eb/No point. Note that by running this version
within a parfor-loop we get the fastest simulation performance. The difference is that parfor
divides the number of bits that needs to be simulated over the workers. This approach reduces the
simulation time of even the highest Eb/No value by evenly distributing load (specifically, the number
of bits to simulate) over workers.

helperAccelReportResults(N,rtBaseline,rt,str,tag);

----------------------------------------------------------------------------------------------
Versions of the Transceiver                         | Elapsed Time (sec)| Acceleration Ratio
1. Baseline                                         |            4.4886 |       1.0000
2. MATLAB to C code generation                      |            1.6402 |       2.7367
3. Parallel runs with parfor over Eb/No             |            1.0943 |       4.1020
4. Parallel runs with parfor over number of bits    |            0.6501 |       6.9043
----------------------------------------------------------------------------------------------

Summary

You can significantly speed up simulations of your communications algorithms with the combined
effects of MATLAB to C code generation and Parallel processing runs.

• MATLAB to C code generation accelerates the simulation by locking-down datatypes and sizes of
every variable and by reducing the overhead of the interpreted language that checks for the size
and datatype of variables in every line of the code.
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• Parallel processing runs can substantially accelerate simulation by computing different iterations
of your algorithm concurrently across a number of MATLAB workers.

• Parallelizing each Eb/No point individually can accelerate further by speeding up even the longest
running Eb/No point.

The following shows the run time of all four approaches as a bar graph. The results may vary based
on the specific algorithm, available workers, and selection of minimum number of errors and
maximum number of bits.

results = helperAccelReportResults;

This plot shows the BER curves for the different simulation processing approaches match each other
closely. For each plotted Eb/N0 each of the four versions of the algorithm ran with the maximum
number of input bits set to ten million (maxNumBits=1e7) and the minimum number of bit errors set
to five thousand (minNumErr=5000).
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Further Exploration

This example uses the gcp function to reserve several MATLAB workers that run locally on your
MATLAB client machine. By modifying the parallel configurations, you can accelerate the simulation
even further by running the algorithm on a larger cluster of workers that are not on your MATLAB
client machine. For a description of how to manage and use parallel configurations, see the “Discover
Clusters and Use Cluster Profiles” (Parallel Computing Toolbox) topic.

The following functions are used in this example.

• helperAccelBaseline.m
• helperAccelReportResults.m

Selected References

1 S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE®
Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

2 V. Tarokh, H. Jafarkhami, and A. R. Calderbank, "Space-time block codes from orthogonal
designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
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Using GPUs to Accelerate Turbo Coding Bit Error Rate
Simulations

This example shows how you can use GPUs to dramatically accelerate bit error rate simulations.
Turbo Codes form the backbone of many modern communication systems. Because of the intense
amount of computation involved in a Turbo Decoder and the massive amount of trials required for a
valid bit error rate simulation, the Turbo Decoder is an ideal candidate for GPU acceleration. See the
“Parallel Concatenated Convolutional Coding: Turbo Codes” on page 8-59 example, which explains
the data processing chain, for more information on Turbo Codes.

You must have a Parallel Computing Toolbox™ license to use the Turbo Decoder GPU example.

This example illustrates two approaches for GPU acceleration of the Turbo Coding bit error rate
simulation. The baseline system consists of random message generation, a Turbo Encoder
(comm.TurboEncoder), BPSK modulation using MATLAB® code, an AWGN channel
(comm.AWGNChannel), BPSK demodulation using MATLAB code, a Turbo Decoder
(comm.TurboDecoder), and finally bit error rate computation (comm.ErrorRate).

Notice: Supply of this software does not convey a license nor imply any right to use any Turbo codes
patents owned by France Telecom, Telediffusion de France and/or Groupe des Ecoles des
Telecommunications except in connection with use of the software for the purposes of design,
simulation and analysis. Code generated from Turbo codes technology in this software is not intended
and/or suitable for implementation or incorporation in any commercial products.

Please contact France Telecom for information about Turbo Codes Licensing program at the following
address: France Telecom R&D - PIV/TurboCodes 38-40, rue du General Leclerc 92794 Issy-les-
Moulineaux Cedex 9, France.

Launch the TurboDecoderBERsim GUI

TurboDecoderBER_GPU
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Overview of the Simulation

In the Simulation options button group select the CPU option for a CPU only simulation. The
Simple GPU option makes very modest changes to the CPU version by replacing the CPU-based
Turbo Decoder (comm.TurboDecoder) with the GPU implementation (comm.gpu.TurboDecoder).

The Optimized GPU option uses the comm.gpu.TurboDecoder object, and runs the BPSK modulation
and demodulation code on the GPU, using gpuArray overloads. This option also uses the GPU-
accelerated AWGN channel. As a GPU computing best practice, multiple frames of data are processed
in each call to a System object®'s step method.

You should process multiple frames of data together (or in parallel) whenever possible on the GPU. In
general, the GPU has far more compute power than necessary to process one frame of data. Giving
the GPU multiple frames of data to process in one function call more efficiently utilizes the GPU's
processing power. To use multiframe processing, a random message is created that is an integer
multiple of the frame size in length. The Turbo Encoder encodes this long, multiframe vector one
frame at a time. (There is no real advantage to multiframe processing on the CPU, and the CPU Turbo
Encoder does not have a multiframe mode.) Data is then sent to the GPU using the gpuArray function.
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The rest of the data processing chain is written as before because there is no notion of framing for
the channel, modulator or demodulator. To have the Turbo Decoder run in multiframe mode, set the
NumFrames property equal to the number of frames in the multiframe data vector (the default is
one). The Turbo Decoder decodes each frame independently and in parallel in a single call to the step
method (in particular, it does not treat the data as one long frame).

Code Differences

To see the changes in the original CPU source code necessary for the two GPU implementations, click
on the appropriate GPU radio button (either Simple GPU or Optimized GPU) and then click the
Show Code Differences button. This launches the comparison tool to view the changes necessary
for GPU acceleration.

Error Rate Performance

You can plot the bit error rate curve for any of the three versions of the code. The number of errors
required to plot a single point can be changed in the Minimum Number of Errors field. Enter the
desired number of errors and click the Start Simulation button. Click the same button to stop the
simulation early.

The bit error rate curves for the CPU and Simple GPU version match exactly. This indicates that the
GPU version of the Turbo Decoder achieves exactly the same bit error rate as the CPU version at a
much higher speed. In some cases, the Optimized GPU version may have a slightly different bit error
rate because it runs multiple frames in parallel. Therefore, it may run a few frames more than
necessary to pass the Minimum Number of Errors.

Results

As the simulation runs it displays number of message bits processed through the main simulation
loop per second in the plot legend. This gives some measure of how quickly the simulation is running
for each version of the code. Long simulations have been completed on a computer using an Intel®
Xeon® X5650 processor and an NVIDIA® K20c GPU. Those simulations have shown that the Simple
GPU is more than 2 times faster than the CPU version and that the Optimized GPU version is 6 times
faster than the CPU version.

8 Communications Toolbox Featured Examples

8-438



DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder
System Object

This example shows how to use a GPU-based LDPC Decoder System object™ to increase the speed of
a communications system simulation. The performance improvement is illustrated by modeling part
of the ETSI (European Telecommunications Standards Institute) EN 302 307 standard for
Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-
S.2) [ 1 on page 8-0  ]. For further information on using System objects to simulate the DVB-S.2
system see “DVB-S.2 Link, Including LDPC Coding in Simulink” on page 8-372. You must have a
Parallel Computing Toolbox™ user license to use the GPU-based LDPC Decoder.

Introduction

The LDPC Decoding algorithm is computationally expensive and constitutes the vast majority of the
time spent in a DVB-S.2 simulation. Using the comm.gpu.LDPCDecoder System object to execute the
decoding algorithm on a GPU dramatically improves simulation run time. The example simulates the
DVB-S.2 system, obtaining a benchmark for speed (run time), once with a CPU-based LDPC decoder
function (ldpcDecode) and once with a GPU-based LDPC Decoder (comm.gpu.LDPCDecoder). The
example captures the bit error rate for both versions, to show there is no loss in decoding
performance using the GPU.

fprintf(...
    'DVB-S.2 Digital Video Broadcast Standard Bit Error Rate Simulation\n\n');

DVB-S.2 Digital Video Broadcast Standard Bit Error Rate Simulation

fprintf(...
    'Performance comparison of CPU- and GPU- accelerated decoders.\n');

Performance comparison of CPU- and GPU- accelerated decoders.

GPU Presence Detection

The example attempts to query the GPU to detect a Parallel Computing Toolbox user license and the
presence of a supported GPU. If the GPU or the Parallel Computing Toolbox is unavailable, a CPU-only
simulation can be performed.

try
    % Query the GPU
    dev = parallel.gpu.GPUDevice.current;
    
    % Print out information about the GPU that was found
    fprintf(...
        'GPU detected (%s, %d multiprocessors, Compute Capability %s)\n',...
        dev.Name,dev.MultiprocessorCount,dev.ComputeCapability);
    
    % Include a GPU-based simulation.
    doGPU = true;
    
catch % #ok<CTCH>
    
    % The GPU is not supported or not present, or the Parallel Computing
    %Toolbox was not present and licensed. Consider a CPU-only simulation.
    
    inp = input(['***NOTE: GPU not detected. ', ...
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        'Continue with CPU-only simulation? [Y]/N '],'s');
    if strcmpi(inp, 'y') || isempty(inp)
        doGPU = false;
    else
        return;
    end
end

GPU detected (Tesla V100-PCIE-32GB, 80 multiprocessors, Compute Capability 7.0)

Initialization

The getParamsDVBS2Demo.m function generates a structure, dvb, which holds the configuration
information for the DVB-S.2 system given the parameters below. Subsequently, the example includes
creating and configuring System objects, based on the dvb structure.

The createSimObjDVBS2Demo.m script constructs most of the System objects used in DVB-S.2 and
configures them based on the dvb structure.

Then an LDPC decoder configuration object and a GPU-based LDPC Decoder System object are
created. The LDPC decoder configuration object is passed to the CPU-based ldpcDecode function
which uses options equivalent to those used by the GPU-based LDPC Decoder System object.

% DVB-S.2 System Parameters
subsystemType = 'QPSK 1/2'; % Constellation and LDPC code rate
EsNodB = 0.75;              % Energy per symbol to noise PSD ratio in dB
numFrames = 10;             % Number of frames to simulate
maxNumLDPCIterations = 50;  % LDPC Decoder iterations

dvb = getParamsDVBS2Demo(subsystemType,EsNodB,maxNumLDPCIterations);

% Create and configure the BCH Encoder and Decoder, Modulator, Demodulator,
% AWGN Channel.

createSimObjDVBS2Demo;

% Construct an LDPC Encoder configuration object
encoderCfg = ldpcEncoderConfig(dvb.LDPCParityCheckMatrix);

% LDPC Decoder Configuration
ldpcPropertyValuePairs = { ...
    'MaximumIterationCount',dvb.LDPCNumIterations, ...
    'ParityCheckMatrix',dvb.LDPCParityCheckMatrix, ...
    'DecisionMethod','Hard Decision', ...
    'IterationTerminationCondition','Maximum iteration count', ...
    'OutputValue','Information part'};

% Construct an LDPC Decoder configuration object
decoderCfg = ldpcDecoderConfig(dvb.LDPCParityCheckMatrix);
if doGPU
    % Construct a GPU-based LDPC Decoder System object
    gpuLDPCDecoder = comm.gpu.LDPCDecoder(ldpcPropertyValuePairs{:});
end

% Create an ErrorRate object to analyze the differences in bit error rate
% between the CPU and GPU.

BER = comm.ErrorRate;
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CPU and GPU Performance Comparison

This example simulates the DVB-S.2 system using the CPU-based LDPC Decoder function first, and
then the GPU-based LDPC Decoder System object. The example obtains system benchmarks for each
LDPC Decoder by passing several frames of data through the system and measuring the total system
simulation time. The first frame of data incurs a large simulation initialization time, and so, it is
excluded from the benchmark calculations. The per frame and average system simulation times are
printed to the Command Window. The bit error rate (BER) of the system is also printed to the
Command Window to illustrate that both CPU-based and GPU-based LDPC Decoders achieve the
same BER.

if doGPU
    architectures = 2;
else
    architectures = 1;
end

% Initialize run time results vectors
runtime = zeros(architectures,numFrames);
avgtime = zeros(1,architectures);

% Seed the random number generator used for the channel and message
% creation.  This will allow a fair BER comparison between CPU and GPU.
% Cache the original random stream to restore later.

original_rs = RandStream.getGlobalStream;
rs = RandStream.create('mrg32k3a','seed',25);
RandStream.setGlobalStream(rs);

% Loop for each processing unit - CPU and GPU
for ii = 1:architectures
    
    % Do some initial setup for the execution loop
    if (ii == 1)
        arch = 'CPU'; % Use CPU LDPC Decoder
    else
        arch = 'GPU';
        decoder = gpuLDPCDecoder;% Use GPU LDPC Decoder
    end
    
    % Reset the Error Rate object
    reset(BER);
    
    % Reset the random stream
    reset(rs);
    
    % Notice to the user that DVB-S.2 simulation is beginning.
    fprintf(['\nUsing ' arch '-based LDPC Decoder:\n']);
    dels = repmat('\b',1,fprintf('  Initializing ...'));
    
    
    % Main simulation loop. Run numFrames+1 times and ignore the first
    % frame (which has initialization overhead) for the run time
    % calculation. Use the first run for the BER calculation.
    for rr = 1:(numFrames+1)
        
        % Start timer
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        ts = tic;
        
        % ***Create an input Message*** %
        msg = zeros(encbch.MessageLength, 1);
        msg(1:dvb.NumInfoBitsPerCodeword) = ...
            logical(randi([0 1],dvb.NumInfoBitsPerCodeword,1));
        
        % ***Transmit*** %
        bchencOut = encbch(msg);
        ldpcencOut = ldpcEncode(bchencOut,encoderCfg);
        xlvrOut = intrlv(ldpcencOut,dvb.InterleaveOrder);
        modOut = pskModulator(xlvrOut);
        
        % ***Corrupt with noise*** %
        chanOut = chan(modOut);
        
        % ***Receive*** %y
        demodOut = pskDemodulator(chanOut);
        dexlvrOut = deintrlv(demodOut,dvb.InterleaveOrder);
        
        % Use the appropriate LDPC Decoder.
        if strcmp(arch,'CPU')
            ldpcdecOut = logical(ldpcDecode(dexlvrOut,decoderCfg,dvb.LDPCNumIterations,'DecisionType','hard','Termination','max','OutputFormat','info'));
        else
            ldpcdecOut = decoder(dexlvrOut);
        end
        
        bchdecOut = decbch(ldpcdecOut);
        
        % ***Compute BER *** % Calculate BER at output of LDPC, not BCH.
        ber = BER(logical(bchencOut),ldpcdecOut);
        
        % Stop timer
        runtime(ii, rr) = toc(ts);
        
        % Don't report the first frame with the initialization overhead.
        if (rr > 1)
            fprintf(dels);
            newCharsToDelete = fprintf('  Frame %d decode : %.2f sec', ...
                rr-1, runtime(ii,rr));
            dels = repmat('\b',1,newCharsToDelete);
        end
    end % end of running a frame through the DVB-S.2 system.
    
    
    % Report the run time results to the Command Window.
    fprintf(dels); % Delete the last line printed out.
    
    % Calculate the average run time. Don't include frame 1 because it
    % includes some System object initialization time.
    avgtime(ii) = mean(runtime(ii,2:end));
    
    fprintf('  %d frames decoded, %.2f sec/frame\n',numFrames,avgtime(ii));
    fprintf('  Bit error rate: %g \n',ber(1) );
    
end % architecture loop

Using CPU-based LDPC Decoder:
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  Initializing ...

  Frame 1 decode : 0.29 sec  Frame 2 decode : 0.30 sec  Frame 3 decode : 0.32 sec  Frame 4 decode : 0.29 sec  Frame 5 decode : 0.25 sec  Frame 6 decode : 0.29 sec  Frame 7 decode : 0.26 sec  Frame 8 decode : 0.29 sec  Frame 9 decode : 0.28 sec  Frame 10 decode : 0.26 sec

  10 frames decoded, 0.28 sec/frame

  Bit error rate: 0.00785634 

Using GPU-based LDPC Decoder:

  Initializing ...

  Frame 1 decode : 0.12 sec  Frame 2 decode : 0.12 sec  Frame 3 decode : 0.12 sec  Frame 4 decode : 0.11 sec  Frame 5 decode : 0.09 sec  Frame 6 decode : 0.12 sec  Frame 7 decode : 0.09 sec  Frame 8 decode : 0.12 sec  Frame 9 decode : 0.12 sec  Frame 10 decode : 0.09 sec

  10 frames decoded, 0.11 sec/frame

  Bit error rate: 0.00785634 

% Reset the random stream to the cached object
RandStream.setGlobalStream(original_rs);

Using code similar to what is shown above, a bit error rate measurement was made offline. The bit
error rate performance of the GPU- and CPU-based LDPC Decoders are identical as seen in this plot.

 DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System Object

8-443



Summary

If a GPU was used, show the speedup based on the average run time of a DVB-S.2 system using a
GPU LDPC Decoder vs a CPU LDPC Decoder.

if ~doGPU
    fprintf('\n*** GPU not present ***\n\n');
else
    %Calculate system-wide speedup
    fprintf(['\nFull system simulation runs %.2f times faster using ' ...
        'the GPU-based LDPC Decoder.\n\n'],avgtime(1) / avgtime(2));
end

Full system simulation runs 2.60 times faster using the GPU-based LDPC Decoder.

Appendix

This example uses the createSimObjDVBS2Demo.m script and getParamsDVBS2Demo.m helper
function.

Selected Bibliography

1 ETSI Standard EN 302 307 V1.1.1: Digital Video Broadcasting (DVB); Second generation framing
structure, channel coding and modulation systems for Broadcasting, Interactive Services, New
Gathering and other broadband satellite applications (DVB-S.2), European Telecommunications
Standards Institute, Valbonne, France, 2005-03.
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HDL Code Generation for Viterbi Decoder
This example shows HDL code generation support for the Viterbi Decoder block. It shows how to
check, generate, and verify the HDL code you generate from a fixed-point Viterbi Decoder model.
This example also discusses the settings you can use to alter the HDL code you generate.

In order to run this example, you must have an HDL Coder™ license.

Introduction

The model shows HDL code generation for a fixed-point Viterbi Decoder block used in soft decision
convolutional decoding. To learn more about HDL support for Viterbi Decoder, refer to the “HDL
Code Generation” section of the block page in documentation.

To open the model, run the following commands:

modelname = 'commviterbihdl';
open_system(modelname);

In this model, the top-level subsystem Viterbi Decoder Subsystem contains the Viterbi Decoder block.
To open this subsystem, run the following commands:

systemname = [modelname '/Viterbi Decoder Subsystem'];
open_system(systemname);
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The Viterbi Decoding Algorithm

There are three main components to the Viterbi decoding algorithm. They are the branch metric
computation (BMC), add-compare-select (ACS), and traceback decoding. The following diagram
illustrates the three units in the Viterbi decoding algorithm:

The Renormalization Method

The Viterbi Decoder prevents the overflow of the state metrics in the ACS component by subtracting
the minimum value of the state metrics at each time step, as shown in the following figure:

Obtaining the minimum value of all the state metric elements in one clock cycle results in a poor
clock frequency for the circuit. The performance of the circuit may be improved by adding pipeline
registers. However, simply subtracting the minimum value delayed by pipeline registers from the
state metrics may still lead to overflow. The hardware architecture modifies the renormalization
method and avoids the state metric overflow in three steps. First, the architecture calculates values
for the threshold and step parameters, based on the trellis structure and the number of soft decision
bits. Second, the delayed minimum value is compared to the threshold. Last, if the minimum value is
greater than or equal to the threshold value, the implementation subtracts the step value from the
state metric; otherwise no adjustment is performed. The following figure illustrates the modified
renormalization method:

Optimal State Metric Word Length Calculation

The hardware implementation calculates the optimal word length of the state metric and compares it
with the value you specify for the block. The hardware architecture uses the optimal value if it is
smaller than the one you specify. A message is displayed to show the value during HDL code
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generation. If the calculated value is larger than the value you specify, an error message is reported
and the optimal value is displayed.

Applying the calculated optimal state metric word length in the hardware implementation may
significantly reduce the hardware resource if the value you specify is too large. For example, if you
set 16 bits as the state metric word length but only 9 bits are required to achieve the same numerical
results, applying the calculated optimal state metric word length in the hardware architecture saves
approximately 40 percent of the register resources. The calculated optimal state metric word length
for some typical trellises is displayed in the following table:

Check and Generate Code for a Fixed-point Viterbi Model

This model decodes a DVB rate 1/2 , constraint length 7,(171,133) convolutional code with 3 bits soft
decision. The decoder runs at continuous mode with the traceback depth of 32. The state metric word
length is set to 16 bits. To validate the parameter settings of the Viterbi Decoder block, you can run
the following commands:

• workingdir = tempname;
• checkhdl(systemname,'TargetDirectory',workingdir);

Running checkhdl generates messages that report:

• the default value of TracebackStagesPerPipeline. More information on this parameter can be
found in the section Pipelining the register-based traceback unit,

• the state metric word length used in the HDL code compared with the one set on the block mask,
• the total delay introduced by the pipeline registers with respect to the original Viterbi block.

To generate HDL for the subsystem containing the Viterbi Decoder block, run the following
commands: workingdir = tempname; makehdl(systemname,'TargetDirectory',workingdir);

The top level VHDL® file name matches the name of the block in the model. The Viterbi_Decoder
component generated in the Viterbi_Decoder.vhd contains three components: BranchMetric, ACS, and
Traceback. The ACS and Traceback components instantiate components ACSUnit and TracebackUnit
multiple times respectively. Data type definitions are included in the package file
Viterbi_Decoder_Subsystem_pkg.vhd.

To generate a testbench for the subsystem containing the Viterbi Decoder block, run the following
command: makehdltb(systemname,'TargetDirectory',workingdir);

Optimization of The Traceback Unit

They are two methods to optimize the traceback unit: pipelining the register-based traceback or
using the RAM-based traceback architecture.
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• Pipelining the register-based traceback unit

The Viterbi Decoder block decodes every bit by tracing back through a traceback depth you define for
the block. Because the block implements a complete traceback for each decision bit, registers are
used to store the minimum state index and branch decision in the Traceback Decoding unit. This unit
may be pipelined in order to improve the performance of the generated circuit. Pipeline registers can
be added to the traceback unit by specifying the number of traceback stages per pipeline register.
This can be done by setting the TracebackStagesPerPipeline implementation parameter for the
Viterbi Decoder in the HDL block properties dialog. Right click the Viterbi Decoder block to navigate
to the HDL Block Properties menu.

Setting the property value to 4 results in the insertion of a pipeline register for every four traceback
units in the model, as illustrated in the following figure:

The TracebackStagesPerPipeline implementation parameter provides you a way of balancing the
circuit performance based on system requirements. A smaller parameter value indicates the
requirement to add more registers to increase the speed of the traceback circuit. Increasing the
number results in a lower usage of registers along with a decrease in the circuit speed. In our
experiment with the rate 1/2 , constraint length 7,(171,133) convolutional code, adjusting the
TracebackStagesPerPipeline parameter from 4 to 8 reduces the pipeline register usage in half, with
the circuit speed changing from 173MHz to 94 MHz.

• RAM-based traceback
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Instead of using registers, you can choose to use RAMs to save the survivor branch information. This
can be done by setting the HDL Architecture property of the Viterbi Decoder block to RAM-based
Traceback.

There are two major differences between the register-based and the RAM-based traceback
architectures.

Firstly, the register-based implementation combines the traceback and decode operations into one
step and uses the best state found from the minimum operation as the decoding initial state. The
RAM-based implementation traces back through one set of data to find the initial state to decode the
previous set of data.

Secondly, the register-based implementation decodes one bit after a complete trackback; while the
RAM-based implementation traces back through M samples, decodes the previous M bits in reverse
order, and releases one bit in order at each clock cycle.

Due to the differences in the two traceback algorithms, the RAM-based implementation produces
different numerical results than the register-based traceback. A longer traceback depth, for example,
10 times of constraint length, is recommended in the RAM-based traceback to achieve a similar bit
error rate (BER) as the register-based implementation.

The size of RAM required for the implementation depends on the trellis and the traceback depth. The
following table summarizes the RAM usage for some typical trellis structures.
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Our experiment with the rate 1/2, constraint length 7, (171, 133) convolutional code shows that the
RAM-based traceback unit uses 90% fewer registers than the register-based traceback unit (with
pipelining every 4 stages) ) using similar clock constraints in synthesis. The two implementations
provide a register-RAM tradeoff that can be tailored to the individual design.

Selected References

1 Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications, New York,
Plenum Press, 1981.

2 G. Feygin and P. G. Gulak, "Architectural tradeoffs for survivor sequence memory management in
Viterbi decoders," IEEE Transactions on Communications, vol. 41, no. 3, pp. 425-429, March
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Using HDL Optimized CRC Library Blocks
This example shows how to use the HDL Optimized CRC Generator and CRC Detector library blocks
and then configure these blocks to meet the IEEE® 802.11 standard [1].

Introduction

The model shows how to use HDL Optimized CRC Generator and Detector library blocks for
simulation and HDL Code generation. The 802.11 standard is used as the application. To learn more
about HDL support for HDL Optimized CRC blocks, refer to the documentation. To learn more about
the algorithm used in the blocks, refer to the paper in [2].

To open this example model, run the following commands:

modelname = 'commcrchdl';
open_system(modelname);

In this model, the top-level subsystem CRC Subsystem contains the HDL Optimized CRC Generator
and Detector blocks. This subsystem also has an AddNoise subsystem that you can choose to add
noise to the generated CRC checksum. To open this subsystem, run the following commands:

systemname = [modelname '/CRC Subsystem'];
open_system(systemname);
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Parameter Settings

• Polynomial

CRC-CCITT is used in the IEEE® 802.11 standard to protect the SIGNAL, SERVICE and LENGTH
fields. The row vector [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] represent the polynomial:

• Initial State

The HDL optimized CRC Generator block in the demo uses the Direct Method, i.e. it feeds the
message into the most significant bit (MSB) of the checksum shift register and processes the message
without padding zeros. The details of the CRC implementation can be found in this model. The
diagram of the IEEE 802.11 CRC implementation is illustrated in Figure 15-2 of the 802.11 standard.
The initial state is set as 1.

• Final XOR Value

The final XOR value is set as 0xFFFF to implement the ones complement of the CRC Checksum.

Input Signals

The test vector in this model uses the example DBPSK signal specified in the 802.11 standard. The
test data padded with CRC_length zeros is processed at 16 bits/sample in streaming mode. Parameter
dataIn_width, which is the port width of the CRC Generator input port dataIn, defines the data
processing speed. mlen defines the period in the controls signals startIn, endIn, and validIn. dlen
defines the pulse width of the validIn signal. The input signals are configured in the InitFcn callback
function in the Model Properties dialog box.

 %DBPSK data
 data = [0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0];
 crc_len = 16;
 % pad crc_len zero
 msg = [data zeros(1,crc_len)];
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 dataIn_width = 16;
 mlen = length(msg)/dataIn_width;
 dlen = length(data)/dataIn_width;

You can alter the dataIn_width to 8,4,2,1 bit(s) in this example to meet your design requirements.For
example, if you are processing data with length 56, aside from padding 8 bit zeros and using
dataIn_with 16, you can choose dataIn_width to be 8 to ensure mlen and dlen are all integer numbers.

Output Signals

Run the model using the following command:

sim(modelname);

Several of the key signals have been logged into the workspace. These signals can be viewed in a
Logic Analyzer window. The function commcrchdl_plot shows how to set the Logic Analyzer display.
For further information on the Logic Analyzer System object™, refer to the dsp.LogicAnalyzer.

h = commcrchdl_plot(dataIn,startIn,endIn,validIn,...
                dataOut_gen,startOut_gen,endOut_gen,validOut_gen,...
                dataIn_det,dataOut_det,startOut_det,endOut_det,validOut_det,err);
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dataIn, startIn, endIn, and validIn are input data and control signals to the HDL CRC generator.
dataOut_gen (output of CRC generator) displays the message with the checksum appended every
dataIn_width bits per sample. You can read the checksum when endOut_gen is high in the output
waveform. The value 0x5B57 matches the CRC-16 FCS specified in 802.11 standard Section 15.2.3.6.
dataIn_det shows the message with the corrupted checksum. dataOut_det displays the message
output of the CRC detector. Error is detected when the err signal is high. err is valid when the
endOut_det is active.

Initial delays are introduced at the output of the CRC generator and detector. You can calculate the
initial delays using the following command:

 initial_delay_gen =  crc_len/dataIn_width + 2;
 initial_delay_det =  4*crc_len/dataIn_width + 4;

Check and Generate HDL Code

To check and generate HDL code of this example, you must have an HDL Coder™ license.

You can use the commands makehdl(subsystemname) and makehdltb(subsystemname) to generate
the HDL code and testbench for the subsystems HDL CRC in Transmitter and HDL CRC in
Receiver.

Specify the subsystemname as 'commcrchdl/CRC Subsystem/HDL CRC in Transmitter' or
'commcrchdl/CRC Subsystem/HDL CRC in Receiver'.

Selected References

1 IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. (2007 revision). IEEE-SA. 12 June 2007.

1 Giuseppe Campobello, Giuseppe Patane, Marco Russo. "Parallel CRC Realization," IEEE
Transactions on Computers, vol. 52, no. 10, pp. 1312-1319, October, 2003.
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Using HDL Optimized RS Encoder/Decoder Library Blocks
This example shows how to implement encoder and decoder for the IEEE® 802.16 standard [ 1 ]
using the HDL Optimized Reed-Solomon (RS) Encoder and Decoder library blocks.

Introduction

The RS code is a nonbinary block code. A RS code that maps  information symbols into a codeword
of symbol length  is denoted as RS( , ) code. The symbols for the code are integers between 
and , which represent elements of the finite field GF( ). The IEEE 802.16 Broadband
Wireless Access standard [ 1 ] employs a “Shortening, Puncturing, and Erasures” on page 16-25 of
the RS(255,239) code generated on GF(256), i.e., , , and . RS encoder
introduces  parity symbols, which are used by the RS decoder to detect and correct
symbol errors. The code can correct up to  symbol errors in each
codeword.

This model shows how to use HDL Optimized RS Encoder and Decoder library blocks for simulation
and HDL Code generation. It implements the encoding and error correction for the IEEE 802.16
standard. For details about HDL support for HDL Optimized RS Encoder and Decoder blocks, refer to
Integer-Input RS Encoder HDL Optimized or Integer-Output RS Decoder HDL Optimized. To learn
more about the algorithm used in the blocks refer to [ 2 ].

To open this example model, run the following commands:

modelname = 'commrshdl';
open_system(modelname);
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Source

The Source subsystem generates the information symbols for the RS Encoder. To open the Source
subsystem, run the following commands:

systemname = [modelname '/Source'];
open_system(systemname);
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One of the messages (information symbols) employed by the IEEE 802.16 standard contains the
following 36 bytes (Randomized data specified on page 827 of [ 1 ]).

  message = [D4 BA A1 12 F2 74 96 30 27 D4 88 9C 96 E3 A9 52 B3 15 AB FD
  92 53 07 32 C0 62 48 F0 19 22 E0 91 62 1A C1 00].

The Source repeatedly transmits the message followed by a guard interval. The model has
parameters messagelength, for the number of symbols in the message to encode; and period, which
includes the messagelength and the length of the guard interval. The guard interval between
messages accommodates the latency of the encoder adding parity check symbols to the message, and
the decoder performing a Chien search. In the initFcn callback of the model, the messagelength is
set to 36 and period is set to 236 (which suggest that the guard interval has a length of 200
symbols).

Note that the values of messagelength and period can be varied as desired.

The top-level RS Subsystem contains the HDL Optimized RS Encoder and Decoder blocks. To open
the RS subsystem, run the following commands:

systemname = [modelname '/RS Subsystem'];
open_system(systemname);

The values of  and  are set in the InitFcn callback of the model and are used to configure the HDL
Optimized RS Encoder and Decoder blocks. The values of  and  cannot be changed in this model.
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The RS encoder infers a shortened code if the message length is less than  symbols. In this case, it
will pad the input message with  zeros, encodes the padded message, and appends 16
parity check symbols. The block then removes the added zeros symbols, creating a 
symbol output.

The field generator polynomial employed by IEEE 802.16 standard is .
Accordingly, for both RS encoder and decoder, the Source of primitive polynomial is set as
Property, the Primitive polynomial is set as [1 0 0 0 1 1 1 0 1], the Source of B which is the
starting power for roots of the primitive polynomial is set as Property, and the B value is set as
0. The code generator polynomial used by IEEE 802.16 standard is

, where .

Restrictions on  and the codeword length  are detailed on the Integer-Input RS Encoder block
reference page. The ErrorGen subsystem adds noise to the RS encoded message. To open the
ErrorGen subsystem, run the following commands:

systemname = [modelname '/RS Subsystem/ErrorGen'];
open_system(systemname);

The ErrorGen subsystem implements the logic to add noise to the codewords at locations specified in
the Noise Locations constant. The location can be changed as desired. In this example, the noise
will be added to the 5th, 23rd, 34th, and 12th codewords, corresponding to the symbols F2, 07, 1A,
and 9C. The MATLAB® function block outputs logical true only at these four time instances for each
packet, and activates a bitwise XOR operation between the original symbols and the noise.

Output Signals

Run the model using the following command:

sim(modelname);

Viewing the Signals

The Logic Analyzer can be used to view multiple signals in one window and viewing signals this way
makes it easier to observe transitions. Signals in this model at various stages, namely, before
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encoding, after encoding, after adding noise, and after decoding are streamed. The blue icon in the
model indicates streamed signals. Launch the Logic Analyzer from the model's toolstrip.

Analysis of Results

In the Logic Analyzer output the inputdata signal represents the input of the RS encoder block and
this is the 36 byte message given in the IEEE 802.16 specification. The encoded data shows the
output of the RS encoder block. Note that the IEEE 802.16 specification performs puncturing of the
parity bytes and retains only the first four bytes of the 16 bytes. In this demo all 16 bytes of parity are
used and the first four bytes of parity are 49, 31, 40, and BF, matching the IEEE 802.16 specification.

The errdata signal represents the encoded data with noise added in the specified noise locations.
These noise locations are marked with 1s in the inserterr signal.

The decoded and corrected message out of the RS decoder block is shown by the outputdata signal.
Note that the RS decoder block introduces about 3 period lengths of latency. Observe outputdata to
see that the errors induced by noise are corrected.

Generate HDL Code and Test Bench

To check and generate HDL code for this example, you must have an HDL Coder™ license.
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Get a unique temporary directory name for the generated files,

    workingdir = tempname;

To check whether there are any issues with the model for HDL code generation, you can run the
following command:

    checkhdl('commrshdl/RS Subsystem','TargetDirectory',workingdir);

Enter the following command to generate HDL code:

    makehdl('commrshdl/RS Subsystem','TargetDirectory',workingdir);

Enter the following command to generate the test bench:

    makehdltb('commrshdl/RS Subsystem','TargetDirectory',workingdir);

ModelSim® Output

The following figure shows the ModelSim HDL simulator after running the generated .do file scripts
for the test bench. Compare the ModelSim result with the Simulink® result as plotted before.

Selected References

1. IEEE 802.16: IEEE Standard for Air Interface for Broadband Wireless Access Systems(Revision of
IEEE Std 802.16-2009). IEEE-SA. 8 June 2012.

2. George C. Clark Jr, J. Bibb Cain, Error-Correction Coding for Digital Communications, New York:
Springer, 1981.

8 Communications Toolbox Featured Examples

8-460



Frequency Offset Calibration for Receivers
This example shows how to measure and calibrate for the frequency offset between a transmitter and
a receiver at the receiver using MATLAB® and Communications Toolbox™. You can either use
captured signals or receive signals in real time using the Communications Toolbox Support Package
for RTL-SDR Radio. The receiver monitors the received signal, calculates the frequency offset
between the transmitter and the receiver and displays it in the MATLAB® command window.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox™

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

If you choose to receive signals in real time using a radio, you need to tune to a known broadcast
pilot tone or provide a signal source with a known center frequency to establish a baseline. If you do
not have a signal generator available, you can use a low-cost Family Radio Service walkie-talkie as a
source. Note that the signal source must be narrowband, with a sine wave being an ideal source.

Background

All radio receivers exhibit a frequency offset as compared to the transmitter. In some cases, the
frequency offset may be more than the receiver algorithm can handle. Therefore, you may need to
calibrate your receiver to minimize the frequency offset.

The example provides the following information about the communication link:

• The quantitative value of the frequency offset in Hz and PPM
• A graphical view of the qualitative SNR level of the received signal

If you have a transmitter, you can use it to generate a narrowband signal, such as a tone.

If you do not have a transmitter, you may be able to use a broadcast signal. For example, in USA, the
ATSC digital TV signals include a narrowband pilot tone on the RF carrier. The pilot tone is usually at
a nominal frequency of 309.440 kHz above the bottom edge of the channel. If such a signal is present
in your area, you can set the expected center frequency value to the frequency of the tone. This
example uses the pilot tone of channel 29, which is at approximately 560e6 + 309.440e3 Hz. For a list
of channel number and frequency values, see North American television frequencies.

If you are using an RTL-SDR radio as the receiver, specify the displayed PPM correction value as the
FrequencyCorrection property of the RTL-SDR Receiver System object™ to compensate for the
frequency offset. Be sure to use the sign of the offset in your specification. Once you've done that, the
spectrum displayed by the receiver's spectrum analyzer System object should have its maximum
amplitude at roughly 0 Hz.
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Run the Example

Begin transmitting with your known signal source. If you are in the USA, you can set the expected
center frequency to the pilot tone of a near by digital TV transmitter. Then, type
FrequencyOffsetCalibrationForReceiversExample in the MATLAB Command Window or
click the 'Open example' button to open and run the example.

The example displays the spectrum of the received signal on a frequency range of -200 kHz to 200
kHz and prints the estimated frequency offset in Hz and PPM in the command window. In the case
shown below, the frequency of the maximum received signal power is about -35 kHz.

Example Code

The receiver asks for user input and initializes variables. Then it calls the signal source, DC blocker,
coarse tone frequency offset estimator, and spectrum analyzer in a loop. The loop also keeps track of
the radio time using the frame duration.

% Request user input from command-line for application parameters
userInput = helperFrequencyCalibrationUserInput;

% Calculate system parameters based on the user input
[fcParam,sigSrc] = helperFrequencyCalibrationConfig(userInput);

% Create a DC blocker system object to remove the DC component of the
% received signal and increase accuracy of the frequency offset estimation.
dcBlocker = dsp.DCBlocker('Algorithm', 'Subtract mean');

% Create a coarse frequency offset estimation System Object to calculate
% the offset. The system object performs an FFT on its input signal and
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% finds the frequency of maximum power. This quantity is the frequency
% offset.
CFO = comm.CoarseFrequencyCompensator( ...
    'FrequencyResolution',  25, ...
    'SampleRate',           fcParam.FrontEndSampleRate);

% Create a spectrum analyzer scope to visualize the signal spectrum
scope = dsp.SpectrumAnalyzer(...
    'Name',             'Actual Frequency Offset',...
    'Title',            'Actual Frequency Offset', ...
    'SpectrumType',     'Power',...
    'FrequencySpan',    'Full', ...
    'SampleRate',       fcParam.FrontEndSampleRate, ...
    'YLimits',          [-40,10],...
    'SpectralAverages', 50, ...
    'FrequencySpan',    'Start and stop frequencies', ...
    'StartFrequency',   -200e3, ...
    'StopFrequency',    200e3,...
    'Position',         figposition([50 30 30 40]));

Stream Processing

msgLength = 0;
radioTime = 0;
secondCounter = 1;
while radioTime < userInput.Duration
  rxSig = sigSrc();
  rxSig = dcBlocker(rxSig);
  [~, offset] = CFO(rxSig);
  freqCorrection = (-offset / fcParam.ExpectedFrequency) * fcParam.FrontEndSampleRate;

  % Visualize spectrum and print results
  scope(rxSig);
  if radioTime > secondCounter
    fprintf(repmat('\b', 1, msgLength));
    msg = sprintf(['Frequency offset = %f Hz,\n' ...
      'Frequency correction value (Hz) = %f \n' ...
      'Frequency correction value (PPM) = %f \n'], ...
      offset, -offset, freqCorrection);
    fprintf(msg);
    msgLength = numel(msg);
    secondCounter = secondCounter + 1;
  end

  % Update radio time
  radioTime = radioTime + fcParam.FrameDuration;
end

% Release all System objects
release(sigSrc);
release(dcBlocker);
release(CFO);

Conclusion

In this example, you used Communications Toolbox™ System objects to build a receiver that
calculates the relative frequency offset between a transmitter and a receiver.
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Airplane Tracking Using ADS-B Signals
This example shows you how to track planes by processing Automatic Dependent Surveillance-
Broadcast (ADS-B) signals using MATLAB® and Communications Toolbox™. You can either use
captured signals or receive signals in real time using the RTL-SDR Radio or ADALM-PLUTO Radio.
The example can show the tracked planes on a map, if you have the Mapping Toolbox™.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox™

To receive signals in real time, you also need one of the following SDR devices and the corresponding
support package Add-On:

• RTL-SDR radio and the corresponding Communications Toolbox Support Package for RTL-SDR
Radio software Add-On

• ADALM-PLUTO radio and the corresponding Communications Toolbox Support Package for
ADALM-PLUTO Radio software Add-On

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Background

ADS-B is a cooperative surveillance technology for tracking aircraft. This technology enables an
aircraft to periodically broadcast its position information (altitude, GPS coordinates, heading, etc.)
using the Mode-S signaling scheme.

Mode-S is a type of aviation transponder interrogation mode. When an aircraft receives an
interrogation request, it sends back a transponder's squawk code. This is referred to as Mode 3A.
Mode-S (Select) is another type of interrogation mode that is designed to help avoid interrogating the
transponder too often. More details about Mode-S can be found in [ 1 ]. This mode is widely adopted
in Europe and is being phased in for North America.

Mode-S signaling scheme uses squitter messages, which are defined as a non-solicited messages used
in aviation radio systems. Mode-S has the following properties:

• Transmit Frequency: 1090 MHz
• Modulation: Pulse Position Modulation
• Data Rate: 1 Mbit/s
• Short Squitter Length: 56 microseconds
• Extended Squitter Length: 112 microseconds

Short squitter messages contain the following information:

• Downlink Format (DF)
• Capability (CA)
• Aircraft ID (Unique 24-bit sequence)
• CRC Checksum
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Extended squitter (ADS-B) messages contain all the information in a short squitter and one of these:

• Altitude
• Position
• Heading
• Horizontal and Vertical Velocity

The signal format of Mode-S has a sync pulse that is 8 microseconds long followed by either 56 or
112 microseconds of data as illustrated in the following figure.

Run the Example

Type ADSBExample in the MATLAB command window or click the link to run the example. You need
to enter the following information when you run the example:

1 Reception duration in seconds,
2 Signal source (captured data or RTL-SDR radio or ADALM-PLUTO radio),
3 Optional output methods (map and/or text file).

The example shows the information on the detected airplanes in a tabular form as shown in the
following figure.
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You can also observe the airplanes on a map, if you have a valid license for the Mapping Toolbox.
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Receiver Structure

The following block diagram summarizes the receiver code structure. The processing has four main
parts: Signal Source, Physical Layer, Message Parser, and Data Viewer.

Signal Source

This example can use three signal sources:
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1 ''Captured Signal'': Over-the-air signals written to a file and sourced from a Baseband File
Reader object at 2.4 Msps

2 ''RTL-SDR Radio'': RTL-SDR radio at 2.4 Msps
3 ''ADALM-PLUTO Radio'': ADALM-PLUTO radio at 12 Msps

If you assign ''RTL-SDR'' or ''ADALM-PLUTO'' as the signal source, the example searches your
computer for the radio you specified, either an RTL-SDR radio at radio address '0' or an ADALM-
PLUTO radio at radio address 'usb:0' and uses it as the signal source.

Here the extended squitter message is 120 micro seconds long, so the signal source is configured to
process enough samples to contain 180 extended squitter messages at once, and set
SamplesPerFrame of the signal property accordingly. The rest of the algorithm searches for Mode-S
packets in this frame of data and outputs all correctly identified packets. This type of processing is
defined as batch processing. An alternative approach is to process one extended squitter message at
a time. This single packet processing approach incurs 180 times more overhead than the batch
processing, while it has 180 times less delay. Since the ADS-B receiver is delay tolerant, batch
processing was used.

Physical Layer

The baseband samples received from the signal source are processed by the physical (PHY) layer to
produce packets that contain the PHY layer header information and raw message bits. The following
diagram shows the physical layer structure.

The RTL-SDR radio is capable of using a sampling rate in the range [200e3, 2.8e6] Hz. When RTL-
SDR radio is the source, the example uses a sampling rate of 2.4e6 Hz and interpolates by a factor of
5 to a practical sampling rate of 12e6 Hz.

The ADALM-PLUTO radio is capable of using a sampling rate in the range [520e3, 61.44e6] Hz. When
the ADALM-PLUTO radio is the source, the example samples the input directly at 12 MHz.

With the data rate of 1 Mbit/s and a practical sampling rate of 12 MHz, there are 12 samples per
symbol. The receive processing chain uses the magnitude of the complex symbols.

The packet synchronizer works on subframes of data equivalent to two extended squitter packets,
that is, 1440 samples at 12 MHz or 120 micro seconds. This subframe length ensures that a whole
extended squitter packet is contained in the subframe. The Packet synchronizer first correlates the
received signal with the 8 microsecond preamble and finds the peak value. Then, it validates the
synchronization point by checking if it matches the preamble sequence, [1 0 0 0 0 0 1 0 1 0 0 0 0 0 0],
where a '1' represents a high value and a '0' represents a low value.
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The Mode-S PPM modulation scheme defines two symbols. Each symbol has two chips, where one has
a high value and the other has a low value. If the first chip is high followed by low chip, this
corresponds to the symbol being a 1. Alternatively, if the first chip is low followed by high chip, then
the symbol is 0. The bit parser demodulates the received chips and creates a binary message. The
binary message is validated using a CRC checker. The output of bit parser is a vector of Mode-S
physical layer header packets that contains the following fields:

• RawBits: Raw message bits
• CRCError: FALSE if CRC checks, TRUE if CRC fails
• Time: Time of reception in seconds from start of receiver
• DF: Downlink format (packet type)
• CA: Capability

Message Parser

The message parser extracts data from the raw bits based on the packet type as described in [ 2 ].
This example can parse short squitter packets and extended squitter packets that contain airborne
velocity, identification, and airborne position data.

Data Viewer

The data viewer shows the received messages on a graphical user interface (GUI). For each packet
type, the number of detected packets, the number of correctly decoded packets, and the packet error
rate (PER) is shown. As data is captured, the application lists information decoded from these
messages in a tabular form.

Example Code

The receiver asks for user input and initializes variables. Then it calls the signal source, physical
layer, message parser, and data viewer in a loop. The loop keeps track of the radio time using the
frame duration.

%For the option to change default settings, set |cmdlineInput| to 1.
cmdlineInput = 0;
if cmdlineInput
    % Request user input from the command-line for application parameters
    userInput = helperAdsbUserInput;
else
    load('defaultinputsADSB.mat');
end

% Calculate ADS-B system parameters based on the user input
[adsbParam,sigSrc] = helperAdsbConfig(userInput);

% Create the data viewer object and configure based on user input
viewer = helperAdsbViewer('LogFileName',userInput.LogFilename, ...
    'SignalSourceType',userInput.SignalSourceType);
if userInput.LogData
  startDataLog(viewer);
end
if userInput.LaunchMap
  startMapUpdate(viewer);
end

% Create message parser object
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msgParser = helperAdsbRxMsgParser(adsbParam);

% Start the viewer and initialize radio time
start(viewer)
radioTime = 0;

% Main loop
while radioTime < userInput.Duration

     if adsbParam.isSourceRadio
        if adsbParam.isSourcePlutoSDR
            [rcv,~,lostFlag] = sigSrc();
        else
            [rcv,~,lost] = sigSrc();
            lostFlag = logical(lost);
        end
    else
        rcv = sigSrc();
        lostFlag = false;
     end

  % Process physical layer information (Physical Layer)
  [pkt,pktCnt] = helperAdsbRxPhy(rcv,radioTime,adsbParam);

  % Parse message bits (Message Parser)
  [msg,msgCnt] = msgParser(pkt,pktCnt);

  % View results packet contents (Data Viewer)
  update(viewer,msg,msgCnt,lostFlag);

  % Update radio time
  radioTime = radioTime + adsbParam.FrameDuration;
end

% Stop the viewer and release the signal source
stop(viewer)
release(sigSrc)
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Further Exploration

You can further explore ADS-B signals using the ADSBExampleApp app. This app allows you to select
the signal source and change the duration. To launch the app, type DSBExampleApp in the MATLAB
command window or click the link.

You can explore following helper functions for details of the physical layer implementation:

• helperAdsbRxPhy.m
• helperAdsbRxPhySync.m
• helperAdsbRxPhyBitParser.m
• helperAdsbRxMsgParser.m

Selected Bibliography

1 International Civil Aviation Organization, Annex 10, Volume 4. Surveillance and Collision
Avoidance Systems.

2 Technical Provisions For Mode S Services and Extended Squitter (Doc 9871)
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Automatic Meter Reading
This example shows you how to use Communications Toolbox™ to read utility meters by processing
Standard Consumption Message (SCM) signals and Interval Data Message (IDM) signals which are
emitted by Encoder-Receiver-Transmitter (ERT) compatible meters. You can either use recorded data
from a file, or receive over-the-air signals in real time using an RTL-SDR or ADALM-PLUTO radio.

In Simulink®, you can explore the “Automatic Meter Reading in Simulink” on page 8-522 example.

Required Hardware and Software

To run this example using recorded data from a file, you need Communications Toolbox™.

To receive signals in real time, you also need one of these SDR devices and the corresponding
support package Add-On:

• RTL-SDR radio and the corresponding Communications Toolbox Support Package for RTL-SDR
Radio

• ADALM-PLUTO radio and the corresponding Communications Toolbox Support Package for
ADALM-PLUTO Radio

For more information, see the Software Defined Radio (SDR) discovery page.

Background

Automatic Meter Reading (AMR) is a technology that autonomously collects the consumption and
status data from utility meters (such as electric, gas, or water meters) and delivers the data to utility
providers for billing or analysis purposes. The AMR system utilizes low power radio frequency (RF)
communication to transmit meter readings to a remote receiver. The RF transmission properties
include:

• Transmission frequency within range: 910-920 MHz
• Data rate: 32768 bps
• On-off keyed Manchester coded signaling

The SCM and IDM are two types of the conventional message types that the meters send out. The
SCM packets are used with a fixed length of 96 bits, whereas IDM packets are used with a fixed
length of 736 bits. These tables show the packet format of the SCM and IDM messages:
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Meters capable of sending both SCM and IDM messages transmit them on the same channel with
separation of roughly 275 msec. Each meter transmits the SCM and IDM messages over multiple
frequencies using a hopping pattern. The actual transmission frequencies, the frequency hopping
pattern, and the time interval between transmissions are random to avoid interference from other
transmissions. For more information, see reference [ 1 ].

Run Example

When you run the example:

• The receiver initializes the simulation parameters and calculates the AMR parameters.
• A data viewer display shows the meter ID, consumption information, and commodity type.
• The simulation loop calls the signal source, physical layer, message parser, and data viewer.
• The processing loop keeps track of the radio time using the frame duration.
• The display updates for each data capture, showing unique meter IDs with the latest consumption

information.

Initialize Parameters

The default signal source is 'File', which runs the example using the recorded baseband signal file
amr_capture_01.bb. To run the example using your RTL or ADALM-PLUTO SDR, change the
setting for signalSource when you call the helperAMRInit.m file. Valid options for signalSource
are 'File', 'RTL-SDR', and 'ADALM-PLUTO'.

signalSource = 'File';
initParam = helperAMRInit(signalSource);

% Calculate AMR system parameters based on the initialized parameters
[amrParam,sigSrc] = helperAMRConfig(initParam);

% Create the data viewer object
viewer = helperAMRViewer('MeterID',initParam.MeterID, ...
    'LogData',initParam.LogData, ...
    'LogFilename',initParam.LogFilename, ...
    'Fc',amrParam.CenterFrequency, ...
    'SignalSourceType',initParam.SignalSourceType);
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start(viewer);
radioTime = 0; % Initialize the radio time

% Main Processing Loop
while radioTime < initParam.Duration
    rcvdSignal = sigSrc();
    amrBits = helperAMRRxPHY(rcvdSignal,amrParam);
    amrMessages = helperAMRMessageParser(amrBits,amrParam);
    update(viewer,amrMessages);
    radioTime = radioTime + amrParam.FrameDuration;
end

stop(viewer); % Stop the viewer
release(sigSrc); % Release the signal source

Receiver Code Structure

The flow chart summarizes the receiver code structure. The processing has four main parts: Signal
Source, Physical Layer, Message Parser and Data Viewer.

Signal Source

This example can use three signal sources:
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1 ''File'': Over-the-air signals written to a file and read using a Baseband File Reader object at 1.0
Msps

2 ''RTL-SDR'': RTL-SDR radio at a sample rate of 1.0 Msps
3 ''ADALM-PLUTO'': ADALM-PLUTO radio at a sample rate of 1.0 Msps

If you assign ''RTL-SDR'' or ''ADALM-PLUTO'' as the signal source, the example searches your
computer for the radio you specified, either an RTL-SDR radio at radio address '0' or an ADALM-
PLUTO radio at radio address 'usb:0' and uses it as the signal source.

Physical Layer

The baseband samples received from the signal source are processed by the physical layer (PHY) to
produce packets that contain the SCM or IDM information. This diagram shows the physical layer
receive processing.

The RTL-SDR radio is capable of using a sampling rate in the range of 225-300 kHz or 900-2560 kHz.
The ADALM-PLUTO radio is capable of using a sampling rate in the range of 520 kHz-61.44 MHz. A
sampling rate of 1.0 Msps is used to produce a sufficient number of samples per Manchester encoded
data bit. For each frequency in the hopping pattern, every AMR data packet is transmitted. The
frequency hopping allows for increased reliability over time. Since every packet is transmitted on
each frequency hop, it is sufficient to monitor only one frequency for this example. The radio is tuned
to a center frequency of 915 MHz for the entire simulation runtime.

The received complex samples are amplitude demodulated by extracting their magnitude. The on-off
keyed Manchester coding implies the bit selection block includes clock recovery. This block outputs
bit sequences (ignoring the idle times in the transmission) which are subsequently checked for the
known preamble. If the preamble matches, the bit sequence is further decoded, otherwise, it is
discarded and the next sequence is processed.

When the known SCM preamble is found for a bit sequence, the received message bits are decoded
using a shortened (255,239) BCH code which can correct up to two bit errors. In the case where the
known IDM preamble is found, the receiver performs a cyclic redundancy check (CRC) of the meter
serial number and of the whole packet starting at the Packet type (the 5th byte) to determine if the
packet is valid. Valid, corrected messages are passed onto the AMR message parser.

Message Parser

For a valid message, the bits are then parsed into the specific fields of the SCM or the IDM format.

Data Viewer

The data viewer shows the decoded packets on a separate MATLAB figure. For each successfully
decoded packet, the meter ID, commodity type, AMR packet type, consumption information and the
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capture time is shown. As data is captured and decoded, the application lists the information decoded
from these messages in a tabular form. The table lists only the unique meter IDs with their latest
consumption information.

You can also change the meter ID and start text file logging using the data viewer.

• Meter ID - Change the meter ID from 0, which is the default value and is reserved for displaying
all detected meters, to a specific meter ID which you would like to be displayed.

• Log data to file - Save the decoded messages in a TXT file. You can use the saved data for post
processing.

Further Exploration

The data file accompanying the example has only one meter reading and has been captured at center
frequency of 915 MHz. Using RTL-SDR or ADALM-PLUTO, the example will display readings from
multiple meters when it is run for a longer period in a residential neighborhood.

You can further explore AMR signals using the AMRExampleApp user interface. This app allows you
to select the signal source and change the center frequency of the RTL-SDR or ADALM-PLUTO. This
link launchs the AMRExampleApp app shown here.

You can also explore the following functions for details of the physical layer, AMR message formats:

• helperAMRRxPHY.m
• helperAMRRxDiscreteEvent.m
• helperAMRRxBitParser.m
• helperAMRMessageParser.m
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A version of the example that works with multiple radios is AMRMultipleRadios.m. This allows you to
examine the frequency hop patterns for a meter by setting different center frequencies per radio
device available. The script is set for two radios, but can be extended for any number.

Selected Bibliography

1 Automatic meter reading, https://en.wikipedia.org/wiki/Encoder_receiver_transmitter, 2016.
2 Itron Electricity meters, https://www.itron.com/solutions/who-we-serve/electricity, 2017.
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Packetized Modem with Data Link Layer
This example shows you how to implement a packetized modem with Data Link Layer [ 1 ] using
MATLAB® and Communications Toolbox™. The modem features a packet-based physical layer and an
ALOHA-based Data Link Layer. You can either simulate the system or run with radios using the
Communications Toolbox Support Package for USRP® Radio.

Required Hardware and Software

To simulate the system performance, you need the following software:

• Communications Toolbox™

To measure system performance with radios, you also need the following hardware:

• USRP® radios (B2xx, N2xx, or X3xx)

and the following software

• Communications Toolbox Support Package for USRP® Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

Packetized wireless modems are communications systems that transmit information in bursts called
packets through a wireless channel. Each modem, also called a node, features a physical layer where
packets are modulated, transmitted and received on a shared frequency band, and demodulated.
Since the same frequency band is used by all nodes, a medium access control (MAC) algorithm is
required to reduce the packet loss due to collisions (i.e. simultaneous transmissions). Data Link Layer
includes a MAC sublayer and a logical link control sublayer to share the same channel and provides
an error-free link between two nodes. Data Link Layer is also called Layer 2 and sits between
Network Layer (Layer 3) and Physical Layer (Layer 1).

Run the Example

The example code creates three packetized modem node objects and connects them through a
channel object. Each node can send packets to the other two nodes. ACKTimeout determines the
timeout duration before a node decides the DATA packet transmission was not successful.
ACKTimeout must be greater than the round trip duration for a DATA-ACK exchange, which is 0.21
seconds for this example. The simulation is time-based and simulates the full physical layer
processing together with the data link layer.

Set simulation parameters

runDuration = 10;         % Seconds
numPayloadBits = 19530;   % Bits
packetArrivalRate = 0.2;  % Packets per second
ackTimeOut = 0.25;        % ACK time out in seconds
maxBackoffTime = 10;      % Maximum backoff time in ackTimeOut durations
mMaxDataRetries = 5;      % Maximum DATA retries
queueSize = 10;           % Data Link Layer queue size in packets
samplesPerFrame = 2000;   % Number of samples processed every iteration
verbose = true;           % Print packet activity to command line
sampleRate = 200e3;
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Fix random number generation seed for repeatable simulations.

rng(12345)

Create packetized modem nodes by using the helperPacketizedModemNode object.

node1 = helperPacketizedModemNode('Address',1, ...
    'DestinationList',[2, 3],'NumPayloadBits',numPayloadBits, ...
    'PacketArrivalRate',packetArrivalRate,'ACKTimeOut',ackTimeOut, ...
    'MaxBackoffTime',maxBackoffTime,'MaxDataRetries',mMaxDataRetries, ...
    'QueueSize',queueSize,'CarrierDetectorThreshold',1e-5, ...
    'AGCMaxPowerGain',65,'SamplesPerFrame',samplesPerFrame, ...
    'Verbose',verbose,'SampleRate',sampleRate);
node2 = helperPacketizedModemNode('Address',2, ...
    'DestinationList',[1 3],'NumPayloadBits',numPayloadBits, ...
    'PacketArrivalRate',packetArrivalRate,'ACKTimeOut',ackTimeOut, ...
    'MaxBackoffTime',maxBackoffTime,'MaxDataRetries',mMaxDataRetries, ...
    'QueueSize',queueSize,'CarrierDetectorThreshold',1e-5, ...
    'AGCMaxPowerGain',65,'SamplesPerFrame',samplesPerFrame, ...
    'Verbose',verbose,'SampleRate',sampleRate);
node3 = helperPacketizedModemNode('Address',3, ...
    'DestinationList',[1 2],'NumPayloadBits',numPayloadBits, ...
    'PacketArrivalRate',packetArrivalRate,'ACKTimeOut',ackTimeOut, ...
    'MaxBackoffTime',maxBackoffTime,'MaxDataRetries',mMaxDataRetries, ...
    'QueueSize',queueSize,'CarrierDetectorThreshold',1e-5, ...
    'AGCMaxPowerGain',65,'SamplesPerFrame',samplesPerFrame, ...
    'Verbose',verbose,'SampleRate',sampleRate);

Configure the propagation channel by using the helperMultiUserChannel object.

channel = helperMultiUserChannel( ...
    'NumNodes',3,'EnableTimingSkew',true,'DelayType','Triangle', ...
    'TimingError',20,'EnableFrequencyOffset',true, ...
    'PhaseOffset',47,'FrequencyOffset',2000,'EnableAWGN',true, ...
    'EbNo',25,'BitsPerSymbol',2,'SamplesPerSymbol',4, ...
    'EnableRicianMultipath', true, ...
    'PathDelays',[0 node1.SamplesPerSymbol/node1.SampleRate], ...
    'AveragePathGains',[15 0],'KFactor',15,'MaximumDopplerShift',10, ...
    'SampleRate',node1.SampleRate);

Main simulation loop

radioTime = 0;
nodeInfo = info(node1);
frameDuration = node1.SamplesPerFrame/node1.SampleRate;
[rcvd1,rcvd2,rcvd3] = deal(complex(zeros(node1.SamplesPerFrame,1)));
while radioTime < runDuration
    trans1 = node1(rcvd1, radioTime);
    trans2 = node2(rcvd2, radioTime);
    trans3 = node3(rcvd3, radioTime);

    % Multi-user channel
    [rcvd1,rcvd2,rcvd3] = channel(trans1,trans2,trans3);

    % Update radio time.
    radioTime = radioTime + frameDuration;
end
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|   Time    |     Link    |   Action   |  Seq #  | Backoff (Node 1)
-----------------------------------------------------------
|   Time    |     Link    |   Action   |  Seq #  | Backoff (Node 2)
-----------------------------------------------------------
|   Time    |     Link    |   Action   |  Seq #  | Backoff (Node 3)
-----------------------------------------------------------
| 4.46000 s |   3 ->>   1 |       DATA | #     0 |
| 4.67000 s |   1 <<-   3 |       DATA | #     0 |
| 4.67000 s |   1 ->>   3 |        ACK | #     0 |
| 4.68000 s |   3 <<-   1 |        ACK | #     0 |
| 5.04000 s |   1 ->>   3 |       DATA | #     0 |
| 5.16000 s |   2 ->>   3 |       DATA | #     0 |
| 5.30000 s |   1 ->>   3 |   Back Off | #     0 | 1.00000 s |
| 5.42000 s |   2 ->>   3 |   Back Off | #     0 | 1.00000 s |
| 6.31000 s |   1 ->>   3 |       DATA | #     0 |
| 6.43000 s |   2 ->>   3 |       DATA | #     0 |
| 6.57000 s |   1 ->>   3 |   Back Off | #     0 | 2.25000 s |
| 6.69000 s |   2 ->>   3 |   Back Off | #     0 | 1.75000 s |
| 8.45000 s |   2 ->>   3 |       DATA | #     0 |
| 8.66000 s |   3 <<-   2 |       DATA | #     0 |
| 8.66000 s |   3 ->>   2 |        ACK | #     0 |
| 8.67000 s |   2 <<-   3 |        ACK | #     0 |
| 8.83000 s |   1 ->>   3 |       DATA | #     0 |
| 9.09000 s |   1 ->>   3 |   Back Off | #     0 | 2.25000 s |
| 9.52000 s |   3 ->>   2 |       DATA | #     1 |
| 9.73000 s |   2 <<-   3 |       DATA | #     1 |
| 9.73000 s |   2 ->>   3 |        ACK | #     1 |
| 9.74000 s |   3 <<-   2 |        ACK | #     1 |

Results

The packetized modem node objects collect statistics on the performance of the data link layer
algorithm. Call the info method of the Node object to access these statistics. Sample results for a 10
second simulated time with a packet arrival rate of 0.2 packets/second are shown here. Each data
packet is 200 msec long.

Display statistics

nodeInfo(1) = info(node1);
nodeInfo(2) = info(node2);
nodeInfo(3) = info(node3);

for p=1:length(nodeInfo)
    fprintf('\nNode %d:\n', p);
    fprintf('\tNumGeneratedPackets: %d\n', nodeInfo(p).NumGeneratedPackets)
    fprintf('\tNumReceivedPackets: %d\n', nodeInfo(p).NumReceivedPackets)
    fprintf('\tAverageRetries: %f\n', nodeInfo(p).Layer2.AverageRetries)
    fprintf('\tAverageRoundTripTime: %f\n', ...
        nodeInfo(p).Layer2.AverageRoundTripTime)
    fprintf('\tNumDroppedPackets: %d\n', ...
        nodeInfo(p).Layer2.NumDroppedPackets)
    fprintf('\tNumDroppedPackets (Max retries): %d\n', ...
        nodeInfo(p).Layer2.NumDroppedPacketsDueToRetries)
    fprintf('\tThroughput: %d\n', ...
        numPayloadBits / nodeInfo(p).Layer2.AverageRoundTripTime)
    fprintf('\tLatency: %d\n', nodeInfo(p).Layer2.AverageLatency)
end
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Node 1:
    NumGeneratedPackets: 2
    NumReceivedPackets: 1
    AverageRetries: NaN
    AverageRoundTripTime: NaN
    NumDroppedPackets: 0
    NumDroppedPackets (Max retries): 0
    Throughput: NaN
    Latency: Inf

Node 2:
    NumGeneratedPackets: 1
    NumReceivedPackets: 1
    AverageRetries: 2.000000
    AverageRoundTripTime: 3.509844
    NumDroppedPackets: 0
    NumDroppedPackets (Max retries): 0
    Throughput: 5.564350e+03
    Latency: 2.104687e-01

Node 3:
    NumGeneratedPackets: 2
    NumReceivedPackets: 1
    AverageRetries: 0.000000
    AverageRoundTripTime: 0.220254
    NumDroppedPackets: 0
    NumDroppedPackets (Max retries): 0
    Throughput: 8.867039e+04
    Latency: 1.749922e+00

Data Link Layer (Layer 2)

This example implements a Data Link Layer based on the ALOHA random access protocol [ 2 ]. The
following flow diagram shows how the ALOHA protocol transmits and receives data packets.
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When Data Link Layer has a Layer 3 packet to transmit, it starts a new session and sends the packet
right away using a DATA packet. The algorithm waits for an acknowledgment (ACK) packet. If an ACK
is not received before the timeout period, it backs off a random amount of time and sends the DATA
packet again. If it fails to receive an ACK after a number of retries, it drops the packet. If during this
session, a new Layer 3 packet is received, the Layer 3 packet is put in a first-in-first-out (FIFO)
queue. If the FIFO queue is full, packet is dropped.

The algorithm is implemented in the helperPacketizedModemDataLinkLayer helper System object™.
The helperPacketizedModemDataLinkLayer System object defines a state machine with three
states: IDLE, ACK_WAIT, and BACKOFF. The following state machine describes how the data link
layer algorithm is implemented in this object. Statements in brackets, [...], and curly braces, {...}, are
conditions and actions, respectively. Small circles are passthrough states used to represent multiple
conditions.
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The original ALOHA protocol uses a hub/star topology. The uplink and downlink utilizes two separate
frequency bands. The following example employs a mesh network topology where nodes transmit and
receive using the same frequency band.

Modem Structure

The modem code structure executes these six main processing parts:

1 Source Controller
2 Message Generator
3 PHY Decoder
4 Data Link Layer
5 Message Parser
6 PHY Encoder

The Data Link Layer processes outputs of the Message Generator and PHY Decoder, so it must run
after those two operations. The Message Parser and PHY Encoder process outputs of the Data Link
Layer. This sequence ensures that the modem can receive packets and respond to them in the same
time interval. The helperPacketizedModemNode object implements the modem.

Source Controller

The Source Controller generates an enable signal and a random destination address based on the
user-selected packet arrival distribution.

Message Generator

The Message Generator starts creating layer 3 data packets when enabled by the source controller.
The packets contain a digitized text message. If the message does not fit into one packet, the
generator creates multiple packets. The packet structure is as follows:

• To Address: 8 bits
• From Address: 8 bits
• Packet Number: 16 bits
• Payload: M bits

PHY Decoder

The PHY Decoder receives baseband I/Q samples and creates layer 2 packets. PHY Decoder can
correct for amplitude variations using an AGC, frequency offsets with a frequency offset estimator
and compensator, and timing skews and multipath using a fractionally spaced decision feedback
equalizer (DFE). The block diagram of the physical layer (Layer 1) receiver is as follows:
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When data payload size is set to 19530 bits, the total packet length of the modem is 39956 samples.
The modem processes SamplesPerFrame samples, which is 2000 samples for this example, at each
iteration. A smaller SamplesPerFrame results in smaller latency but increases the overhead of the
modem algorithm. An increased overhead may increase the processing time such that the modem
does not run in real-time anymore.

Data Link Layer

Data Link Layer provides a link between two neighboring nodes. It employs the ALOHA-based
protocol described in the Data Link Layer (Layer 2) section. The packet structure contains these
fields:

• Type: 4 bits
• Version: 2 bits
• Reserved: 2 bits
• To Address: 8 bits
• From Address: 8 bits
• Sequence Number: 8 bits
• Time stamp: 32 bits
• Payload: N ( = M+32) bits

The data link layer also collects these statistics:

• Number of successful packet transfers, which is defined as the number of successfully received
ACK packets

• Average retries
• Average round trip time in seconds
• Number of dropped packets due to layer 3 packet queue being full
• Number of dropped packets due to retries
• Throughput defined as successful data delivery rate in bits per second
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• Average latency in seconds defined as the time between the generation of the layer 3 data packet
and reception of it at the destination node

Message Parser

The message parser parses the received layer 2 payload and creates layer 3 packet. The message
parser collects these statistics:

• Number of received packets
• Number of received duplicate packets

PHY Encoder

The PHY encoder creates physical layer packets by modulating the layer 2 packets into baseband I/Q
samples. The packet structure is shown here.

The dummy symbols are used to train the AGC and for carrier detection. The synchronization symbols
are a modulated PN-sequence. The header has these fields:

• Payload length: 16 bits
• CRC: 16 bits

This image shows the block diagram of the physical layer (Layer 1) transmitter.

Channel Model

This example simulates a three-node network but any number of nodes can be simulated. The output
of each node is passed to the channel simulator. The channel adds baseband signals from all three
nodes after imposing the these channel impairments:

• Timing skew
• Frequency offset
• Rician multipath
• AWGN

In addition to these impairments, the signals from neighboring nodes are applied a path loss of 20 dB,
while the self-interference is added directly.
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Running Using Radios

You can also run this example using radios instead of a simulated channel. The combination of an
SDR hardware and a host computer that runs a MATLAB session comprises a node. The following
steps show you how to set up a three-node network. This example uses USRP® B200 and B210
radios.

1) Connect a USRP® radio to host computer A, which we will call Node 1. Follow the instruction in
“Installation and Setup” (Communications Toolbox Support Package for USRP Radio) to install and
setup your host computer for use with USRP® radios. Start a MATLAB session.

2) Set up Node 1 as a transmitter for initialization. The helperPacketizedModemInitializeRadio
initializes the connected USRP® radio. Run helperPacketizedModemInitializeRadio('tx',
PLATFORM, ADDRESS, FC, RT), where PLATFORM is the type of the USRP® radio, ADDRESS is
the serial number or IP address, FC is the center frequency, and RT is run time in seconds. This
example uses 915 MHz for the center frequency. Assuming that your radio is a B200 with serial
number 'ABCDE', the function call will be helperPacketizedModemInitializeRadio('tx',
'B200', 'ABCDE', 915e6, 120). This function will run the transmitter for 120 seconds. If you
need more time to finish the initialization, rerun the command with a longer run time.

3) Repeat step 1 for a second radio and host computer and call this node Node 2.

4) Set up Node 2 as a receiver for initialization. Run [CDT, MAXGAIN, RXGAIN] =
helperPacketizedModemInitializeRadio('rx', PLATFORM, ADDRESS, FC, RT). Assuming
that your radio is a B210 with serial number '12345', the function call will be [CDT1, MAXGAIN1,
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RXGAIN1] = helperPacketizedModemInitializeRadio('rx', 'B210', '12345', 915e6,
120). The function will run until it determines the best values for carrier detector threshold (CDT),
maximum AGC gain (MAXGAIN), and radio receive gain (RXGAIN) or until RT seconds have elapsed.
If the initialization algorithm cannot determine suitable parameters, it may suggest increasing or
decreasing the transmitter power and retrying the initialization.

5) Run the same experiment with Node 1 as the receiver and Node 2 as the transmitter to determine
best receiver parameters for Node 1. In most cases the channel should be dual and the parameters
will be very close.

6) Repeat steps 1-5 for all other pairs of radios, i.e. Node 1 and Node 3, Node 3 and Node 2. Obtain
CDT, MAXGAIN, and RXGAIN values for each node. If you get different values for the same node
while initializing for different links, choose the maximum values for MAXGAIN and RXGAIN, and
minimum of CDT.

7) Start Node 1 by running the helperPacketizedModemRadio helper function. Use the command
helperPacketizedModemRadio(P,RA,NA,DA,FC,CDT,MAXG,RGAIN,D), where P is platform, RA
is radio address, NA is node address, DA is destination address list, FC is center frequency, CDT is
carrier detection threshold, MAXG is maximum AGC gain, RGAIN is radio receiver gain, and D is
duration. For example, run as helperPacketizedModemRadio('B200','ABCDE',1,[2
3],915e6,CDT1,MAXGAIN1,RXGAIN1,120).

8) Start Node 2 by running helperPacketizedModemRadio('B210','12345',2,[1
3],915e6,CDT2,MAXGAIN2,RXGAIN2,120).

9) Start Node 3 by running helperPacketizedModemRadio('B200','A1B2C',3,[1
2],915e6,CDT3,MAXGAIN3,RXGAIN3,120).

10) Once the session ends, each node prints out its statistics.

A three network setup operated for two hours. Each node generated packets at a rate of 0.2 packets/
second according to a Poisson distribution. The nodes were placed approximately equal distance. One
of the links had line-of-sight while other two did not. The following are the results collected on all
three nodes. Since the round trip time of a DATA-ACK exchange using the B2xx radios connected over
USB can be as high as 800 msec, the average round trip time of the network is greater than 3 sec.
The algorithm minimizes packet loss and provides a fair access to the shared channel to all nodes.

Node 1:
 NumGeneratedPackets: 1440
 NumReceivedPackets: 1389
 AverageRetries: 0.533738
 AverageRoundTripTime: 3.725093
 NumDroppedPackets: 95
 NumDroppedPackets (Max retries): 23
 Throughput: 5.242823e+03

Node 2:
 NumGeneratedPackets: 1440
 NumReceivedPackets: 1340
 AverageRetries: 0.473157
 AverageRoundTripTime: 3.290775
 NumDroppedPackets: 31
 NumDroppedPackets (Max retries): 9
 Throughput: 5.934772e+03

Node 3:
 NumGeneratedPackets: 1440
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 NumReceivedPackets: 1385
 AverageRetries: 0.516129
 AverageRoundTripTime: 3.558408
 NumDroppedPackets: 107
 NumDroppedPackets (Max retries): 29
 Throughput: 5.488410e+03

Discussions

The simulation code from previous sections and the helperPacketizedModemRadio helper function
both utilize the helperPacketizedModemNode System object to implement the modem node. In this
example, the same code is used to evaluate a system, first using a simulated channel, then using SDR
hardware and over-the-air channels.

Even though the code using simulated channels is time-based, the modem node object could be used
to run an event-based simulation. This example does not provide an event-based simulation kernel.

Further Exploration

You can vary these parameters to investigate their effect on data link layer performance:

• PacketArrivalRate
• ACKTimeOut
• MaxBackoffTime
• MaxDataRetries
• QueueSize

You can also explore the helper functions for implementation details of the algorithms:

• helperPacketizedModemNode.m
• helperPacketizedSourceController.m
• helperPacketizedModemMessageGenerator.m
• helperPacketizedModemDataLinkLayer.m
• helperPacketizedModemPHYEncoder.m
• helperPacketizedModemPHYDecoder.m
• helperPacketizedModemMessageParser.m
• helperMultiUserChannel.m

You can examine the physical layer only performance using the
PacketizedModemPhysicalLayerTxRxExample script.

Selected Bibliography
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FM Broadcast Receiver
This example shows how to build an FM mono or stereo receiver using MATLAB® and
Communications Toolbox™. You can either use captured signals, or receive signals in real time using
the RTL-SDR Radio or ADALM-PLUTO Radio.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox

To receive signals in real time, you also need one of the following hardware:

• RTL-SDR radio and the corresponding software Communications Toolbox Support Package for
RTL-SDR Radio

• ADALM-PLUTO radio and the corresponding software Communications Toolbox Support Package
for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the "MATLAB and
Simulink Hardware Support for SDR" section of Software-Defined Radio (SDR).

Background

FM broadcasting uses frequency modulation (FM) to provide high-fidelity sound transmission over
broadcast radio channels. Pre-emphasis and de-emphasis filters are used to reduce the effect of noise
on high audio frequencies. Stereo encoding enables simultaneous transmission of both left and right
audio channels over the same FM channel [ 1 ].

Run the Example

Type FMReceiverExample in the MATLAB Command Window or click the ‘Open example’ button to
open and run the example. You need to enter the following information:

1 Reception duration in seconds
2 Signal source (captured data, RTL-SDR radio or ADALM-PLUTO radio)
3 FM channel frequency

The example plays the received audio over your computer's speakers.

NOTE: This example utilizes a center frequency that is outside the default PlutoSDR tuning range.
Click configurePlutoRadio('AD9364') to use your ADALM-PLUTO radio outside the qualified tuning
range.

Receiver Structure

The FM Broadcast Demodulator Baseband System object™ converts the input sampling rate of the
228 kHz to 45.6 kHz, the sampling rate for your host computer's audio device. According to the FM
broadcast standard in the United States, the de-emphasis lowpass filter time constant is set to 75
microseconds. This example processes the received mono signals. The demodulator can also process
stereo signals.

To perform stereo decoding, the FM Broadcast Demodulator Baseband object uses a peaking filter
which picks out the 19 kHz pilot tone from which the 38 kHz carrier is created. Using the resulting
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carrier signal, the FM Broadcast Demodulator Baseband block downconverts the L-R signal, centered
at 38 kHz, to baseband. Afterwards, the L-R and L+R signals pass through a 75 microsecond de-
emphasis filter . The FM Broadcast Demodulator Baseband block separates the L and R signals and
converts them to the 45.6 kHz audio signal.

Example Code

The receiver asks for user input and initializes variables. Then, it calls the signal source and FM
broadcast receiver in a loop. The loop also keeps track of the radio time using the frame duration and
lost samples reported by the signal source.

The latency output of the signal source is an indication of when the samples were actually received
and can be used to determine how close to real time the receiver is running. A latency value of 1 and
a lost samples value of 0 indicates that the system is running in real time. A latency value of greater
than one indicates that the receiver was not able to process the samples in real time. Latency is
reported in terms of the number of frames. It can be between 1 and 128. If latency is greater than
128, then samples are lost.

% Request user input from the command-line for application parameters
userInput = helperFMUserInput;

% Calculate FM system parameters based on the user input
[fmRxParams,sigSrc] = helperFMConfig(userInput);

% Create FM broadcast receiver object and configure based on user input
fmBroadcastDemod = comm.FMBroadcastDemodulator(...
    'SampleRate', fmRxParams.FrontEndSampleRate, ...
    'FrequencyDeviation', fmRxParams.FrequencyDeviation, ...
    'FilterTimeConstant', fmRxParams.FilterTimeConstant, ...
    'AudioSampleRate', fmRxParams.AudioSampleRate, ...
    'Stereo', false);

% Create audio player
player = audioDeviceWriter('SampleRate',fmRxParams.AudioSampleRate);

% Initialize radio time
radioTime = 0;

% Main loop
while radioTime < userInput.Duration
  % Receive baseband samples (Signal Source)
  if fmRxParams.isSourceRadio
      if fmRxParams.isSourcePlutoSDR
          rcv = sigSrc();
          lost = 0;
          late = 1;
      else
          [rcv,~,lost,late] = sigSrc();
      end
  else
    rcv = sigSrc();
    lost = 0;
    late = 1;
  end

  % Demodulate FM broadcast signals and play the decoded audio
  audioSig = fmBroadcastDemod(rcv);
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  player(audioSig);

  % Update radio time. If there were lost samples, add those too.
  radioTime = radioTime + fmRxParams.FrontEndFrameTime + ...
    double(lost)/fmRxParams.FrontEndSampleRate;
end

% Release the audio and the signal source
release(sigSrc)
release(fmBroadcastDemod)
release(player)

Further Exploration

To further explore the example, you can vary the center frequency of the RTL-SDR radio or ADALM-
PLUTO radio and listen to other radio stations.

You can set the Stereo property of the FM demodulator object to true to process the signals in stereo
fashion and compare the sound quality.

You can explore following function for details of the system parameters:

• helperFMConfig.m

You can further explore the FM signals using FMReceiverExampleApp user interface. This app allows
you to select the signal source and change the center frequency of the RTL-SDR radio or ADALM-
PLUTO radio. To launch the app, type FMReceiverExampleApp in the MATLAB Command Window.
This user interface is shown in the following figure
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RDS/RBDS and RadioText Plus (RT+) FM Receiver
This example shows how you can use MATLAB® and the Communications Toolbox™ to extract
program or song information from FM radio stations using the RDS or RBDS standard and, optionally,
the RadioText Plus (RT+) standard. You can either use captured signals or receive signals in real time
using the RTL-SDR Radio or ADALM-PLUTO Radio.

Required Hardware and Software

To run this example using captured signals, you need the Communications Toolbox™. To receive
signals in real time, you also need one of the following hardware:

• RTL-SDR radio and the corresponding software Communications Toolbox Support Package for
RTL-SDR Radio

• ADALM-PLUTO radio and the corresponding software Communications Toolbox Support Package
for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR).

Background

RBDS and RDS are very similar standards specifying how to supplement FM radio signals with
additional information. RBDS is used in North America, while RDS was originally used in Europe and
evolved to an international standard. RBDS and RDS comprise 3 layers:

• Physical Layer (Layer 1)
• Data-link Layer (Layer 2)
• Session and presentation Layer (Layer 3)

Physical Layer (Layer 1)

The RDS/RBDS PHY decoder receives the captured signal from a file or the live signal from the radio
and performs the following steps:

• FM demodulation: Once the FM signal is demodulated, the RDS/RBDS signal resides at the 57
kHz +/- 2.4 kHz band:

8 Communications Toolbox Featured Examples

8-494



Be aware that the RDS and RBDS signals are transmitted with relatively low power, so it is not always
visible in the FM spectrum as in the above figure.

FM signals contain a pilot tone at 19 kHz, which can be used as a phase and frequency reference for
coherent demodulation of the RDS/RBDS signal at 57 kHz and the stereo audio at 38 kHz. Pilot tones
at 38 kHz and 57 kHz can be generated by doubling and tripling the frequency of the 19 kHz pilot
tone [ 2 ].

Processing steps for coherent demodulation of the RDS/RBDS signal are:

• Bandpass filtering: The PHY receiver conducts bandpass filtering at 19 kHz and 57 kHz, to
isolate the pilot tone and the RDS/RBDS signal, respectively.

• Frequency tripling: Raise the complex representation of the 19 kHz pilot tone to the 3rd power
to triple its frequency and obtain a 57 kHz pilot tone.

• AM Demodulation: RDS and RBDS symbols are generated at an 1187.5 Hz rate and are AM-
modulated to a 57 kHz carrier. The 57 kHz RDS/RBDS signal can be coherently demodulated with
a 57 kHz carrier that is locked in frequency and phase. Typically, the frequency-tripled 19 kHz
pilot tone suffices for coherent demodulation. The next figures show the 19 kHz and 57 kHz pilot
tones, the 57 kHz RDS/RBDS signal, and the AM-demodulated baseband RDS/RBDS signal.
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At the same time, there exist several FM stations whose 57 kHz RDS/RBDS signal exhibits a time-
varying phase offset from the 19 kHz pilot tone and its frequency-tripled version. The PHY receiver
contains a Costas loop to compensate for such time-varying phase offsets.

• Costas loop: The Costas loop performs 2 orthogonal AM demodulations, one demodulation with a
57 kHz sine and another with a 57 kHz cosine. The sampling rate of the received signal is
carefully chosen as 228 kHz, which provides 4 samples per 57 kHz cycle. Therefore, a one sample
delay of the 57 kHz pilot tone results to a one quarter wavelength phase offset, and allows us to
generate a cosine wave from a sine wave. The sine-demodulated signal corresponds to the
coherent demodulation output. The cosine-demodulated signal is used for detection of phase error.
The products of the 57 kHz RDS/RBDS signal with the sine/cosine waves are low-pass filtered with
the filter specified in Sec. 1.7 of [ 1 ]. The product of the two filter outputs is an error signal. The
larger it is, the more the 19 kHz pilot tone is delayed to behave more like the cosine-based
demodulator.

• Clock extraction: To perform biphase symbol decoding, a clock matching the RDS/RBDS symbol
rate of 1187.5 Hz is extracted from the 19 kHz pilot tone. Note, 1187.5 Hz x 16 = 19 kHz. To
account for frequency offsets, frequency division is used to extract the clock from the 19 kHz pilot
tone. Since the frequency division operation provides multiple correct answers, the baseband
RDS/RBDS signal serves as training data that aid in the determination of the desired output.
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• Biphase symbol decoder: RDS and RBDS use bi-phase-level (bi-  -L) coding, which is commonly
known as Manchester coding. In each clock cycle, the RDS/RBDS symbol takes two opposite
amplitude values, either a positive followed by a negative, or a negative followed by a positive.
The biphase symbol decoder negates the second amplitude level, so that each symbol holds the
same amplitude level throughout the entire clock cycle. The new clock-wide amplitude level
corresponds to the symbol's bit representation. The following two screenshots correspond to the
waveforms #1-6 in Figure 2 of [ 1 ].

To obtain each symbol's bit value, the waveform is integrated over each clock cycle, and the outcome
is compared to zero (slicer).
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• Differential decoding: Finally, the bits are differentially decoded to revert the differential
encoding at the transmitter.

Data-link Layer (Layer 2)

Layer 2 is implemented using the RBDSDataLinkDecoder System object™. This layer is responsible
for synchronization and error correction.

The bit output of the PHY layer is logically organized in 104-bit groups comprising four 26-bit blocks.
Each block contains a 16-bit information word and 10 parity bits (see Figure 8 in [ 1 ]). A distinct 10-
bit offset word is modulo-2 added to the parity bits of each block.

• Synchronization: Initially, block and group boundaries are sought exhaustively using a sliding
window of 104 bits. For each 104-bit window, the 4 offset words are sought at the last 10 bits of
each 26-bit block. An offset word is identified if no bit errors are detected in its block. Once the
offset words are identified, group-level synchronization is attained and the exhaustive sliding-
window processing stops. Subsequently, the next 104 bits will be treated as the next group.
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If future groups contain bit errors and the offset words cannot be identified at their expected
position, synchronization may be lost. In this case, Layer 2 first examines the possibility of 1-bit
synchronization slips, exploiting the fact that the first information word (16 bits) is always the same
for all bit groups. If the first information word is found dislocated by 1 bit (either leftward or
rightward), synchronization is retained and the group boundaries are adjusted accordingly. If bit
errors persist for 25 group receptions and at the same time synchronization cannot be reestablished
using such leftward/rightward 1-bit shifts, then synchronization is lost and Layer 2 re-enters the
exhaustive, sliding-window-based search for synchronization.

• Error correction: The RDS/RBDS error correction code is a (26, 16) cyclic code shortened from
(341, 331). The error correction implementation uses the shift-register scheme described in Annex
B of [ 1 ].

Session and Presentation Layer (Layer 3)

Layer 2 removes the parity/offset bits, therefore Layer 3 receives groups of 64-bits, comprising four
16-bit blocks. There exist up to 32 different group types, each labeled with a number from 0 to 15 and
the letter 'A' or 'B', for example, 0B, 2A, 3A. The format of each group can be fixed or it can be
abstract if this group is allocated for an Open Data Application (ODA, see list in [ 3 ]).

Layer 3 is implemented using the RBDSSessionDecoder System object. This object supports decoding
of the 0A, 0B, 2A, 2B, 3A, 4A, 10A fixed-format group types.

• 0A and 0B convey an 8-character string, which typically changes in a scrolling-text fashion.
• 2A and 2B convey longer 64- or 32-character strings.
• 3A registers ODAs and specifies their dedicated abstract-format group type.
• 4A conveys the system time.
• 10A further categorizes the program type (e.g., 'Football' for 'Sports' program type).

For ODAs, the RDS/RBDS receiver supports decoding of RadioText Plus (RT+). This ODA can break
down the long 32- or 64-character string from group types 2A or 2B into two specific content types
(for example, artist and song).

Registering ODA Implementations: RadioText Plus (RT+)

The RDS/RBDS receiver is extensible. ODA implementations can be specified using the registerODA
function of the RBDSSessionDecoder System object. This function accepts the hexadecimal ID of the
ODA (ODA IDs can be found in [ 3 ]), and handles to the functions that process the main ODA group
type, as well as the ODA-specific part of the 3A group type. For example, the sessionDecoder
RBDSSessionDecoder object can be extended for RadioText Plus (RT+) using this code:

rtID = '4BD7'; % hexadecimal ID of RadioText Plus (RT+)
registerODA(sessionDecoder, rtID, @RadioTextPlusMainGroup, @RadioTextPlus3A);

Run the Example Code

Type RBDSExample in the MATLAB Command Window or click this link to run the example.

% Set RDS/RBDS system parameters
userInput = helperRBDSInit();
userInput.Duration = 10.8;
userInput.SignalSource = 'File';
userInput.SignalFilename = 'rbds_capture.bb';
% userInput.SignalSource = 'RTL-SDR';
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% userInput.CenterFrequency = 98.5e6;
% userInput.SignalSource = 'ADALM-PLUTO';
% userInput.CenterFrequency = 98.5e6;

[rbdsParam, sigSrc] = helperRBDSConfig(userInput);

% Create FM broadcast receiver object and configure based on RDS/RBDS parameters
fmBroadcastDemod = comm.FMBroadcastDemodulator(...
    'SampleRate',         rbdsParam.FrontEndSampleRate, ...
    'FrequencyDeviation', rbdsParam.FrequencyDeviation, ...
    'FilterTimeConstant', rbdsParam.FilterTimeConstant, ...
    'AudioSampleRate',    rbdsParam.AudioSampleRate, ...
    'Stereo', true);

% Create audio player
player = audioDeviceWriter('SampleRate', rbdsParam.AudioSampleRate);

% Layer 2 object
datalinkDecoder = RBDSDataLinkDecoder();

% Layer 3 object
sessionDecoder  = RBDSSessionDecoder();
% register processing implementation for RadioText Plus (RT+) ODA:
rtID = '4BD7';
registerODA(sessionDecoder, rtID, @RadioTextPlusMainGroup, @RadioTextPlus3A);

% Create the data viewer object
viewer = helperRBDSViewer();

% Start the viewer and initialize radio time
start(viewer)
radioTime = 0;

% Main loop
while radioTime < rbdsParam.Duration
  % Receive baseband samples (Signal Source)
  rcv = sigSrc();

  % Demodulate FM broadcast signals and play the decoded audio
  audioSig = fmBroadcastDemod(rcv);
  player(audioSig);

  % Process physical layer (Layer 1)
  bitsPHY = RBDSPhyDecoder(rcv, rbdsParam);

  % Process data-link layer (Layer 2)
  [enabled, iw1, iw2, iw3, iw4] = datalinkDecoder(bitsPHY);

  % Process session and presentation layer (Layer 3)
  outStruct = sessionDecoder(enabled, iw1, iw2, iw3, iw4);

  % View results packet contents (Data Viewer)
  update(viewer, outStruct);

  % Update radio time
  radioTime = radioTime + rbdsParam.FrameDuration;
end
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% Stop the viewer and release the signal source and audio writer
stop(viewer);
release(sigSrc);
release(player);

Viewing Results

The above screenshot illustrates the graphical display of the processed RDS/RBDS data.

• Basic RDS/RBDS information:

1 The first field corresponds to the program type, which is conveyed by the second information
word of all group types. If 10A group types are received, the first field also provides further
characterization, such as, Sports \ Football.
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2 The second field illustrates the 8-character text conveyed by 0A/0B groups.
3 The third field illustrates the longer 32/64-character text conveyed by 2A/2B group types.

• RadioText Plus (RT+): This section is used if any 3A groups indicate that the RadioText Plus (RT
+) ODA uses an abstract-format group type, e.g., 11A. Then, upon receptions of this abstract
group type, the 32/64-character text conveyed by groups 2A/2B will be split to two substrings.
Moreover, the two labels will be updated to characterize the substrings (such as Artist and Song).

• Group type receptions: The tables act as a histogram illustrating which group types have been
received from a station and with what frequency. As a result, users may want to look at the logged
data for further information that is not depicted in the graphical viewer (specifically, system time
in 4A, alternate frequencies in 0A etc.).

• Open data applications (ODA): If any 3A group types are received, then the list of encountered
ODAs is updated with the ODA name and their dedicated group type.

Further Exploration

You can further explore RDS/RBDS signals using the RBDSExampleApp user interface. You can
launch it by clicking at this link or by typing RBDSExampleApp in the command window:

This user interface allows you to:

• Select the source of the signal (capture file or RTL-SDR or ADALM-PLUTO)

• Specify the station frequency (for RTL-SDR or ADALM-PLUTO)

• Run Layers 1 and 2 of the RDS/RBDS receiver though generated C code. These are the most time-
consuming parts of the RDS/RBDS chain and generating code can help you achieve real-time
processing.

• Disable audio playback

• Open scopes, such as a Spectrum Analyzer and Time Scopes, that analyze the received signal and
illustrate the decoding process. Enabling scopes requires extra computational effort and may
preclude real-time decoding. In this case, RDS/RBDS decoding may only be successful for
captured signals loaded from a file.

Moreover, you can enable the 'Log data to file' checkbox in order to log further fields from all group
types.

You can also explore the implementation of the following functions and System objects:

• RBDSPhyDecoder.m
• RBDSCostasLoop.m
• RBDSDataLinkDecoder.m
• RBDSSessionDecoder.m
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FRS/GMRS Walkie-Talkie Receiver
This example shows how to build a walkie-talkie receiver using MATLAB® and Communications
Toolbox™. The specific radio standard this example follows is FRS/GMRS (Family Radio Service /
General Mobile Radio Service) with CTCSS (Continuous Tone-Coded Squelch System). You can use
simulated signals, captured signals, or received signals from a commercial walkie-talkie using the
Communications Toolbox Support Package for RTL-SDR Radio.

This example is designed to work with USA standards for FRS/GMRS operation. The technical
specifications for these standards can be found in the reference list below. Operation in other
countries may or may not work.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio
• Walkie-talkie

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the "MATLAB and
Simulink Hardware Support for SDR" section of Software-Defined Radio (SDR).

Background

Walkie-talkies provide a subscription-free method of communicating over short distances. Although
their popularity has been diminished by the rise of cell phones, walkie-talkies are still useful when
lack of reception or high per-minute charges hinders cell phone use.

Modern walkie-talkies operate on the FRS/GMRS standards. Both standards use frequency
modulation (FM) at 462 or 467 MHz, which is in the UHF (Ultra High Frequency) band.

Run the Example

Type FRSReceiverExample in the MATLAB Command Window or click the 'Open example' button to
open and run the example. You need to enter the following information:

1 Reception duration in seconds
2 Signal source (simulated signal, captured signal or RTL-SDR radio)
3 Channel number (1-14)
4 CTCSS code (1-38, 0 no CTCSS filtering)
5 Detection threshold for received signal

The example plays the received audio over your computer's speakers.
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Receiver Structure

The following block diagram summarizes the receiver code structure. The processing has four main
parts: Signal Source, Channel Selector, FM Demodulator, and CTCSS processing.

Signal Source

This example can use three signal sources:

1 ''Simulated Signal'': Simulated FRS/GMRS signal at 240e3 samples/sec
2 ''Captured Signal'': Over-the-air signals written to a file and sourced from a baseband file reader

object at 240e3 samples/sec
3 ''RTL-SDR Radio'': RTL-SDR radio at 240e3 samples/sec

If you choose ''RTL-SDR Radio'' as the signal source, this application will search your computer for
RTL-SDR radios and ask you to choose one of them as the signal source.

Channel Selector

The receiver removes the DC component and applies a variable gain to the received signal to obtain
an approximately known amplitude signal with reduced interference. The receiver then applies a low
pass channel separation filter to reduce the signals from adjacent channels. The gap between
adjacent channels is 25 kHz, which means the baseband bandwidth is, at most, 12.5 kHz. Thus, we
choose the cutoff frequency to be 10 kHz.

Next, a channel selector computes the average power of the filtered signal. If it is greater than a
threshold (set to a default of 10%), the channel selector determines that the received signal is from
the correct channel and allows the signal to pass through. In the case of an out-of-band signal,
although the channel separation filter reduces its magnitude, it is still FM modulated and the
modulating signal will be present after FM demodulation. To completely reject such a signal, the
channel selector outputs all zeros.

FM Demodulator

This example uses the FM Demodulator Baseband System object™ whose sample rate and maximum
frequency deviation are set to 240 kHz and 2.5 kHz, respectively.

CTCSS

First, a decimation filter converts the sampling rate from 240 kHz to 8 kHz. This rate is one of the
native sampling rates of your host computer's output audio device. Then, the CTCSS decoder
computes the power at each CTCSS tone frequency using the Goertzel algorithm and outputs the
code with the largest power. The Goertzel algorithm provides an efficient method to compute the
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frequency components at predetermined frequencies, that is, the tone code frequencies used by FRS/
GMRS.

The script compares the estimated received code with the preselected code. If the two codes match,
the signals are passed to the audio device. When the preselected code is zero, it indicates no squelch
system is used and the decision block passes the signal at the channel to the audio device no matter
which code is used.

Finally, a high pass filter with a cutoff frequency of 260 Hz filters out the CTCSS tones, which have a
maximum frequency of 250 Hz. Use an audioDeviceWriter System object™ to play the received
signals through your computer's speakers. If you do not hear any sound, select another device using
the DeviceName property of the audio device writer object, audioPlayer.

Example Code

The receiver asks for user input and initializes variables. Then it calls the signal source, channel
selector, FM demodulator, and CTCSS processor in a loop. The loop also keeps track of the radio time
using the frame duration and lost samples reported by the signal source.

The latency output of the signal source is an indication of when the samples were actually received
and can be used to determine how close to real time the receiver is running. A latency value of 1 and
a lost samples value of 0 indicates that the system is running in real-time. A latency value of greater
than one indicates that the receiver was not able to process the samples in real time. Latency is
reported in terms of the number of frames. It can be between 1 and 128. If latency is greater than
128, then samples are lost.

% Request user input from the command-line for application parameters
userInput = helperFRSReceiverUserInput;

% Calculate FRS receiver parameters based on the user input
[frsRxParams,sigSrc] = helperFRSReceiverConfig(userInput);

% Create channel selector components
dcBlocker = dsp.DCBlocker('Algorithm', 'Subtract mean');
agc = comm.AGC;
channelFilter = frsRxParams.ChannelFilter;

% Create FM demodulator
fmDemod = comm.FMDemodulator(...
  'SampleRate', frsRxParams.FrontEndSampleRate, ...
  'FrequencyDeviation', frsRxParams.FrequencyDeviation);

% Create CTCSS and audio output components
decimator = dsp.FIRDecimator(...
  frsRxParams.DecimationFactor, ...
  frsRxParams.DecimationNumerator);
decoder = helperFRSCTCSSDecoder( ...
  'MinimumBlockLength', frsRxParams.CTCSSDecodeBlockLength, ...
  'SampleRate', frsRxParams.AudioSampleRate);
audioFilter = frsRxParams.AudioFilter;
audioPlayer = audioDeviceWriter(frsRxParams.AudioSampleRate);

% Initialize radio time
radioTime = 0;

% Main loop
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while radioTime < userInput.Duration
  % Receive baseband samples (Signal Source)
  if frsRxParams.isSourceRadio
    [rcv,~,lost,late] = sigSrc();
  else
    rcv = sigSrc();
    lost = 0;
    late = 1;
  end

  % Channel selector
  rcv = dcBlocker(rcv);
  outAGC = agc(rcv);
  outChanFilt = channelFilter(outAGC);
  rxAmp = mean(abs(outChanFilt));
  if rxAmp > frsRxParams.DetectionThreshold
    x = outChanFilt;
  else
    x = complex(single(zeros(frsRxParams.FrontEndSamplesPerFrame, 1)));
  end

  % FM demodulator
  y = fmDemod(x);

  % CTCSS decoder and audio output
  outRC = decimator(y);
  rcvdCode = decoder(outRC);
  if (rcvdCode == frsRxParams.CTCSSCode) || (frsRxParams.CTCSSCode == 0)
    rcvdSig = outRC;
  else
    rcvdSig = single(zeros(frsRxParams.AudioFrameLength, 1));
  end
  audioSig = audioFilter(rcvdSig);
  audioPlayer(audioSig);

  % Update radio time. If there were lost samples, add those too.
  radioTime = radioTime + frsRxParams.FrontEndFrameTime + ...
    double(lost)/frsRxParams.FrontEndSampleRate;
end

% Release the resources
release(fmDemod)
release(audioPlayer)
release(sigSrc)

Further Exploration

The CTCSS decoding computes the DFT (Discrete Fourier Transform) of the incoming signal using
the Goertzel algorithm and computes the power at the tone frequencies. Because the tone
frequencies are very close to each other (only 3-4 Hz apart) the block length of the DFT should be
large enough to provide enough resolution for the frequency analysis. However, long block lengths
cause decoding delay. For example, a block length of 16384 will cause 2 seconds of delay because the
CTCSS decoder operates at an 8 kHz sampling rate. This creates a trade-off between detection
performance and processing latency. The optimal block length may depend on the quality of the
transmitter and receiver, the distance between the transmitter and receiver, and other factors. You
are encouraged to change the block length in the initialization function by navigating to the
helperFRSReceiverConfig function and changing the value of the CTCSSDecodeBlockLength field.
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This will enable you to observe the trade-off and find the optimal value for your transmitter/receiver
pair.

You can explore following functions and System objects for details of the physical layer
implementation:

• helperFRSReceiverConfig.m
• helperFRSCTCSSDecoder.m
• helperFRSSignalGenerator.m

References

• Family Radio Service
• General Mobile Radio Service
• Continuous Tone-Coded Squelch System
• Goertzel Algorithm
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Frequency Offset Calibration for Receivers in Simulink
This example shows how to measure and calibrate for transmitter/receiver frequency offset at the
receiver using Simulink® and Communications Toolbox™. You can either use captured signals or
receive signals in real time using the Communications Toolbox Support Package for RTL-SDR Radio.
The receiver monitors the received signal, calculates and display the transmitter/receiver frequency
offset.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

For an introduction on the frequency offset calibration for receivers, refer to the “Frequency Offset
Calibration for Receivers” on page 8-461 example.

Running the Example

To run the example using captured signals, select the Frequency Offset Captured Signal block
as the source using the Signal Source Selector block. Then click the run button. The model
processes signals that were captured with an RTL-SDR radio at a center frequency of 560309440 Hz.
This value corresponds to the pilot tone of channel 29 of digital TV signals in the USA.

To run the example using the RTL-SDR radio as the source, select the RTL-SDR Receiver block as
the source using the Signal Source Selector block. Double-click the Expected Center
Frequency block and set to the expected tone frequency. Begin transmitting with your known signal
source. If you are in the USA, you can set the expected center frequency to the pilot tone of a near by
digital TV transmitter. For a list of channel number and frequency values, see North American
television frequencies. Then click the run button.

If you use the RTL-SDR radio as the source, to compensate for a transmitter/receiver frequency
offset, specify the displayed PPM correction value as the Frequency correction (ppm) parameter of
the RTL-SDR Receiver block. Be sure to use the sign of the offset in your specification. The spectrum
displayed by the Spectrum Analyzer block should then have its maximum at 0 Hz.

Structure of the Example

The following figure shows the receiver model:
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The following figure shows the detailed structure of the Receiver subsystem:

• The Find Peak Frequency block - uses an FFT to find the frequency with the maximum power in
the received signal.

• The Spectrum Analyzer block - computes and displays the power spectral density of the received
signal.

Find Peak Frequency

The Find Peak Frequency subsystem finds the frequency with the maximum power in the received
signal, which equals the frequency offset. The following diagram shows the subsystem. In this
subsystem, the Periodogram block returns the PSD estimate of the received signal. The Probe block
finds the frame size and the frame sample time. With this information, this subsystem finds the index
of the maximum amplitude across the frequency band and converts the index to the frequency value
according to

Foffset = IndexofMaxAmplitude * FrameSize / (FFTLength * FrameSampleTime)

The MATLAB function findpeakfreq.m performs this conversion.
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Spectrum Analyzer

The following figure shows the output of the Spectrum Analyzer on a frequency range of -200 kHz to
200 kHz. In the case shown below, the frequency with the maximum power of the received signal is
about -35 kHz.
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Airplane Tracking Using ADS-B Signals in Simulink
This example shows you how to track planes by processing Automatic Dependent Surveillance-
Broadcast (ADS-B) signals using Simulink® and Communications Toolbox™. You can either use
captured and saved signals, or receive signals in real time using the RTL-SDR Radio or ADALM-
PLUTO Radio. The example can show the tracked planes on a map, if you have the Mapping
Toolbox™.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need one of the following SDR devices and the corresponding
support package Add-On:

• RTL-SDR radio and the corresponding Communications Toolbox Support Package for RTL-SDR
Radio Add-On

• ADALM-PLUTO radio and the corresponding Communications Toolbox Support Package for
ADALM-PLUTO Radio Add-On

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

For an introduction on the Mode-S signaling scheme and ADS-B technology for tracking aircraft, refer
to the “Airplane Tracking Using ADS-B Signals” on page 8-464 MATLAB® example.

Receiver Structure

The following block diagram summarizes the receiver code structure. The processing has four main
parts: Signal Source, Physical Layer, Message Parser, and Data Viewer.
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Signal Source

This example can use signal sources from a:

1 ''Captured Signal'': Over-the-air signals written to a file and sourced using a baseband file reader
block at 2.4 Msps

2 ''RTL-SDR Radio'': RTL-SDR radio at 2.4 Msps
3 ''ADALM-PLUTO'': ADALM-PLUTO radio at a sample rate of 12 Msps

Here the extended squitter message is 120 micro seconds long, so the signal source is configured to
process enough samples to contain 180 extended squitter messages at once, and set
SamplesPerFrame of the signal property accordingly. The rest of the algorithm searches for Mode-S
packets in this frame of data and outputs all correctly identified packets. This type of processing is
defined as batch processing. An alternative approach is to process one extended squitter message at
a time. This single packet processing approach incurs 180 times more overhead than the batch
processing, while it has 180 times less delay. Since the ADS-B receiver is delay tolerant, batch
processing was used.

Physical Layer

The baseband samples received from the signal source are processed by the physical (PHY) layer to
produce packets that contain the PHY layer header information and the raw message bits. The
following diagram shows the physical layer structure.
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The RTL-SDR radio is capable of using a sampling rate in the range [200e3, 2.8e6] Hz. When RTL-
SDR radio is the source, the example uses a sampling rate of 2.4e6 Hz and interpolates by a factor of
5 to a practical sampling rate of 12e6 Hz.

The ADALM-PLUTO radio is capable of using a sampling rate in the range [520e3, 61.44e6] Hz. When
the ADALM-PLUTO radio is the source, the example samples the input directly at 12 MHz.

With the data rate of 1 Mbit/s and a practical sampling rate of 12 MHz, there are 12 samples per
symbol. The receive processing chain uses the magnitude of the complex symbols.

The packet synchronizer works on subframes of data that is equivalent to two extended squitter
packets, i.e. 1440 samples at 12 MHz or 120 micro seconds. This subframe length ensures that a
whole extended squitter packet can be found in the subframe. Packet synchronizer first correlates the
received signal with the 8 microsecond preamble and find the peak value. Then, it validates the found
synchronization point by checking if it confirms to the preamble sequence, [1 0 0 0 0 0 1 0 1 0 0 0 0 0
0], where a '1' represents a high value and a '0' represents a low value.

The Mode-S PPM modulation scheme defines two symbols. Each symbol has two chips, where one has
a high value and the other has a low value. If the first chip is high followed by low chip, this
corresponds to the symbol being a 1. Alternatively, if the first chip is low followed by high chip, then
the symbol is 0. The bit parser demodulates the received chips and creates a binary message. The
binary message is validated using a CRC checker. The output of bit parser is a vector of Mode-S
physical layer header packets that contains the following fields:

• RawBits: Raw message bits
• CRCError: FALSE if CRC checks, TRUE if CRC fails
• Time: Time of reception in seconds from start of receiver
• DF: Downlink format (packet type)
• CA: Capability

Message Parser

The message parser processes the raw bits based on the packet type as described in [ 2 ]. This
example can parse short squitter packets and extended squitter packets that contain airborne
velocity, identification, and airborne position data.

Data Viewer

The data viewer shows the received messages on a graphical user interface (GUI). For each packet
type, the number of detected packets, the number of correctly decoded packets and the packet error
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rate (PER) is shown. As data is captured, the application lists information decoded from these
messages in a tabular form.

Launch Map and Log Data

You can also launch the map and start text file logging using the two slider switches(Launch Map and
Log Data).

• Log Data* - When Log Data is On, it Saves the captured data in a TXT file. You can use the saved
data for later for post processing.

• Launch Map - When Launch Map is On, map will be launched where the tracked flights can be
viewed. NOTE: You must have a valid license for the Mapping Toolbox if you want to use this
feature.

The following figures illustrate how the application tracks and lists flight details and displays them on
a map.
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Airplane Tracking Using ADS-B Signals with Raspberry Pi and
RTL-SDR

This example shows you how to create a remote sensing station that tracks planes using a Raspberry
Pi™ and RTL-SDR radio. You will learn how to deploy a Simulink® model that processes Automatic
Dependent Surveillance-Broadcast (ADS-B) signals and sends the demodulated data to a host PC
using UDP packets for visualization.

Required Hardware and Software

To run this example, you need the following hardware:

• RTL-SDR radio
• Raspberry Pi

and the following software

• Simulink
• Communications Toolbox™
• Communications Toolbox Support Package for RTL-SDR Radio
• Simulink Support Package for Raspberry Pi Hardware
• Optionally, Mapping Toolbox™ (to track planes on a map)

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

For an introduction on implementing a ADS-B receiver in Simulink, refer to the “Airplane Tracking
Using ADS-B Signals in Simulink” on page 8-512 example, pictured below. We also recommend
completing “Getting Started with MATLAB Support Package for Raspberry Pi Hardware” (MATLAB
Support Package for Raspberry Pi Hardware) example.

modelName = 'ADSBSimulinkExample';
open_system(modelName);
set_param(modelName, 'SimulationCommand', 'update');
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Remote ADS-B Receiver with Raspberry Pi

You can set up a remote sensing station for airplane tracking using the Raspberry Pi hardware with
an RTL-SDR radio attached to it. You can run the PHY Layer block of the ADS-B receiver on the
Raspberry Pi and send the received data over the Internet using UDP packets. You can receive these
UDP packets on your local computer and run the Message Parser and Data Viewer blocks to
visualize the results. The following is the modified remote ADS-B receiver model that runs on
Raspberry Pi.

close_system(modelName)
modelName = 'ADSBRaspberryPiSimulinkExample';
open_system(modelName);
set_param(modelName, 'SimulationCommand', 'update');
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Run ADS-B Receiver Model on Raspberry Pi Hardware

Follow the following steps to run the ADS-B receiver model on the Raspberry Pi hardware.

1. Attach an RTL-SDR radio to one of the USB ports of the Raspberry Pi hardware

2. Open the Tracking Airplanes Using ADS-B Signals with Raspberry Pi - Sensor model

3. Double-click on the UDP Send block. Open the block mask and enter the IP address of your
host computer in the Remote IP address edit box. For example, if the IP address of your host
computer is 10.10.10.1, enter '10.10.10.1' in the block mask. Do not change the Remote IP port
parameter. Click OK to save and close the block mask.

4. In your Simulink model, click the Deploy To Hardware button on the toolbar.

5. The model running on Raspberry Pi hardware will start sending UDP packets to port 25000 of your
host computer.

Run ADS-B Aggregator Model on the Host Computer

Follow the following steps to run the host model that receives the UDP packets sent by the model
running on Raspberry Pi hardware.

1. Open the Tracking Airplanes Using ADS-B Signals - Aggregator. This model has a UDP Receive
block that is configured to receive UDP packets sent by the model running on Raspberry Pi hardware.
Double-click on the UDP Receive block mask. Note that the Local IP port is set to 25000, and the
output data type is set to "uint8".

2. Click the Play button to start the model.

close_system(modelName)
modelName = 'ADSBAggregatorSimulinkExample';
open_system(modelName);
set_param(modelName, 'SimulationCommand', 'update');
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The following figures illustrate how the application tracks and lists flight details and displays them on
a map.
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Stop the Model Running on Raspberry Pi Hardware

When you want to stop the model running on Raspberry Pi, execute the following on MATLAB®
command line.

rPi = raspberrypi;
stop(rPi,'ADSBRaspberryPiSimulinkExample');

Troubleshooting

If you cannot receive any data on the host model, make sure that the Raspberry Pi and your host
computer are on the same local area network. In other words, make sure that the first three numbers
of the IP addresses are the same.

Also, make sure that your Internet security software allows the transmission and reception of UDP
packets on port 25000.

close_system(modelName)
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Automatic Meter Reading in Simulink
This example shows you how to use Simulink® and Communications Toolbox™ to read utility meters
by processing Standard Consumption Message (SCM) or Interval Data Message (IDM) signals
emitted by meters. You can either use recorded data from a file, or receive over-the-air signals in real
time using the RTL-SDR Radio or ADALM-PLUTO Radio.

Required Hardware and Software

To run this example using recorded data from a file, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need one of the following SDR devices and the corresponding
support package Add-On:

• RTL-SDR radio and the corresponding Communications Toolbox Support Package for RTL-SDR
Radio

• ADALM-PLUTO radio and the corresponding Communications Toolbox Support Package for
ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of the Software Defined Radio (SDR) discovery page.

Introduction

For an introduction to the SCM/IDM signaling scheme and AMR technology for reading utility meters,
refer to the “Automatic Meter Reading” on page 8-472 example in MATLAB®.

Receiver Model Structure

The following block diagram summarizes the receiver structure. The processing has four main parts:
Signal Source, Physical Layer, Message Parser, and Data Viewer.
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Signal Source

This example can use three signal sources:

1 ''File'': Over-the-air signals written to a file and read using a Baseband File Reader block at 1.0
Msps

2 ''RTL-SDR Radio'': RTL-SDR radio at a sample rate of 1.0 Msps
3 ''ADALM-PLUTO Radio'': ADALM-PLUTO radio at a sample rate of 1.0 Msps

If you assign ''RTL-SDR'' or ''ADALM-PLUTO'' as the signal source, the example searches your
computer for the radio you specified, either an RTL-SDR radio at radio address '0' or an ADALM-
PLUTO radio at radio address 'usb:0' and uses the radio as the signal source.

Physical Layer

The baseband samples received from the signal source are processed by the physical layer (PHY) to
produce packets that contain the SCM or IDM information. This diagram shows the physical layer
receive processing.

The RTL-SDR radio is capable of using a sampling rate in the range of 225-300 kHz or 900-2560 kHz
and ADALM-PLUTO radio is capable of using a sampling rate in the range of 520 kHz-61.44 MHz. A
sampling rate of 1.0 Msps is used to produce a sufficient number of samples per Manchester encoded
data bit. For each frequency in the hopping pattern, every AMR data packet is transmitted. The
frequency hopping allows for increased reliability over time. Since every packet is transmitted on
each frequency hop, it is sufficient to monitor only one frequency for this example. The radio is tuned
to a center frequency of 915 MHz for the entire simulation runtime.

The received complex samples are amplitude demodulated by extracting their magnitude. The on-off
keyed Manchester coding implies that the bit selection block includes clock recovery. The output of
this block is bit sequences (ignoring the idle times in the transmission) which are subsequently
checked for the known preamble. If the preamble matches, the bit sequence is further decoded,
otherwise, it is discarded and the next sequence is processed.

When the known SCM preamble is found for a bit sequence, the received message bits are decoded
using a shortened (255,239) BCH code which can correct up to two bit errors. In the case where the
known IDM preamble is found, the receiver performs a cyclic redundancy check (CRC) of the meter
serial number and of the whole packet starting at the Packet type (the 5th byte) to determine if the
packet is valid. Valid, corrected messages are passed onto the AMR Message parser.

Message parser

For a valid message, the bits are then parsed into the specific fields of either the IDM or SCM format.
This example can parse both the SCM format and the IDM format.
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Data Viewer

The data viewer shows the decoded SCM or IDM messages on a user interface. For each successfully
decoded SCM/IDM, the commodity type, meter ID, consumption information and the capture time is
shown. As data is captured and decoded, the application lists the information decoded from these
messages in a tabular form. The table lists only the unique meter IDs with their latest consumption
information.

You can also change the meter ID and start text file logging using the user interface.

• Meter ID - The default value, 0, is reserved for displaying all detected meters. You can enter the
ID of a specific meter to display readings from only that meter ID.

• Log data to file - Save the decoded messages in a TXT file. You can use the saved data for post
processing.

This figures shows the meter readings displayed in the user interface.

Further Exploration

The data file accompanying the example has only one meter reading and has been captured at center
frequency of 915 MHz. Using RTL-SDR or ADALM-PLUTO radio, the example will display readings
from multiple meters when it is run for a longer period in a residential neighborhood.

You can further explore AMR signals using the AMRSimulinkExampleApp app. The app allows you to
set the run duration, select the signal source, change the center frequency of the radio, and run to
log meter readings.
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FM Broadcast Receiver
This example shows how to build an FM mono or stereo receiver using Simulink® and
Communications Toolbox™. You can either use captured signals, or receive signals in real time using
the RTL-SDR or ADALM-PLUTO.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need one of the following hardware:

• RTL-SDR radio and the corresponding software Communications Toolbox Support Package for
RTL-SDR Radio

• ADALM-PLUTO radio and the corresponding software Communications Toolbox Support Package
for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR).

Introduction

For an introduction to the FM broadcasting technology and demodulation of these signals, refer to
the “FM Broadcast Receiver” on page 8-490 example.

Running the Example

To run the example using captured signals, select the FM Broadcast Captured Signal block as
the source using the Signal Source Selector block. Then click the run button.

To run the example using the RTL-SDR radio or ADALM-PLUTO radio as the source, select the
corresponding RTL-SDR Receiver or ADALM-PLUTO Radio Receiver block as the source using
the Signal Source Selector block. Double-click the Center Frequency (MHz) block and
select the value to the center frequency to a broadcast FM radio station near you.

If you hear some dropouts or delay in the sound, run the model in Accelerator mode. From the model
menu, select Simulation->Accelerator, then click the run button. If you still experience dropouts or
delay in Accelerator mode, try running the model in Rapid Accelerator mode.

Receiver Structure

The following block diagram summarizes the receiver structure. The processing has three main parts:
signal source, FM broadcast demodulation, and audio output.
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Signal Source

This example can use three signal sources:

1 ''Captured Signal'': Over-the-air signals written to a file and sourced using a Baseband File
Reader block at 228e3 samples/sec.

2 ''RTL-SDR Radio'': RTL-SDR radio running at 228e3 samples/sec. Set the center frequency to a
broadcast FM radio station near you.

3 ''ADALM-PLUTO Radio Receiver'': ADALM-PLUTO radio running at 228e3 samples/sec. Set the
center frequency to a broadcast FM radio station near you.

FM Broadcast Demodulation

The baseband samples received from the signal source are processed by the FM Broadcast
Demodulation Baseband block. This block converts the input sampling rate of 228 kHz to 45.6
kHz, the sampling rate for your host computer's audio device. According to the FM broadcast
standard in the United States, the de-emphasis lowpass filter time constant is set to 75 microseconds.
This example processes received mono signals. The demodulator can also process stereo signals.

To perform stereo decoding, the FM Broadcast Demodulator Baseband object uses a peaking filter
which picks out the 19 kHz pilot tone from which the 38 kHz carrier is created. Using the resulting
carrier signal, the FM Broadcast Demodulator Baseband block downconverts the L-R signal, centered
at 38 kHz, to baseband. Afterwards, the L-R and L+R signals pass through a 75 microsecond de-
emphasis filter. The FM Broadcast Demodulator Baseband block separates the L and R signals and
converts them to the 45.6 kHz audio signal.

Audio Device Writer
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Play the demodulated audio signals through your computer's speakers using the Audio Device
Writer block.

Further Exploration

To further explore the example, you can vary the center frequency of the RTL-SDR radio or ADALM-
PLUTO radio and listen to other radio stations using the Center Frequency (MHz) block.

You can set the Stereo property of the FM Broadcast Demodulator Baseband block to true to
process the signals in stereo fashion and compare the sound quality.

Selected Bibliography

https://en.wikipedia.org/wiki/FM_broadcasting

8 Communications Toolbox Featured Examples

8-528

https://en.wikipedia.org/wiki/FM_broadcasting


FM Reception with RTL-SDR Radio on Raspberry Pi Hardware
This example shows how to build an FM mono receiver using a Raspberry Pi™ and RTL-SDR radio.
You will learn how to deploy a Simulink® model that processes FM broadcast signals and play the
audio through the Raspberry Pi's speaker.

Required Hardware and Software

To run this example, you need the following hardware:

• RTL-SDR radio
• Raspberry Pi

and the following software

• Simulink
• Communications Toolbox™
• Communications Toolbox Support Package for RTL-SDR Radio
• Simulink Support Package for Raspberry Pi Hardware

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

Simulink Support Package for Raspberry Pi Hardware enables you to create and run Simulink models
on Raspberry Pi hardware. Communications Toolbox Support Package for RTL-SDR Radio enables you
to receive radio signals from the RTL-SDR radio. You can use these two support packages together to
receive and process RF signals on the Raspberry Pi hardware using Simulink software. In this
example, you will learn how to run an FM receiver model as a standalone application on the
Raspberry Pi hardware.

For an introduction on implementing an FM broadcast receiver in Simulink, refer to the “FM
Broadcast Receiver” on page 8-526 example. We also recommend completing “Getting Started with
MATLAB Support Package for Raspberry Pi Hardware” (MATLAB Support Package for Raspberry Pi
Hardware) example.

FM Receiver

The following shows the FM receiver model. The model uses the RTL-SDR Receiver block to
receive radio signals and sends them to the FM Broadcast Demodulator Baseband block. The
FM demodulator block demodulates the received signal and generates mono audio. The mono signals
are sent to the ALSA Audio Playback block optimized for the Raspberry Pi hardware.
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Configure and Run the Model as a Standalone Application

The following steps show you how to configure the model to run on the Raspberry Pi hardware.

1. If your Raspberry Pi hardware is not connected to an Ethernet network, follow the instructions in
“Configure Network Settings on Raspberry Pi Hardware” (Simulink Support Package for Raspberry Pi
Hardware).

2. In the model, set simulation stop time to 'inf' to run the simulation until you explicitly pause or stop
the model.

3. In the Simulink model, click Tools > Run on Target Hardware> Options....

4. When the Configuration Parameters page opens up, set the Target hardware parameter to
Raspberry Pi. Review the other parameters on that page. If you performed a Firmware Update, Board
information will be automatically populated with the IP address, user name and password of your
Raspberry Pi hardware. Also, notice the TCP/IP port edit box under Signal monitoring and
parameter tuning. The default value of TCP/IP port is 17725. Simulink uses this TCP/IP port to
communicate with Raspberry Pi hardware. Leave the TCP/IP port parameter at its default value. Click
OK when you are done.
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5. In the Simulink model, click the Deploy to Hardware button on the toolbar or press Ctrl+B.

6. The model will now run on the Raspberry Pi hardware. A system command window will open that
shows the messages coming from the model running on Raspberry Pi hardware.

7. Connect speakers to the audio output of the Raspberry Pi hardware to listen to the radio.

8. Stop the model running on the Raspberry Pi hardware by executing the following on the
MATLAB® command line

h = raspberrypi;
stopModel(h,'FMReceiverRaspberryPiSimulinkExample');
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Running and Stopping the Model on Raspberry Pi Hardware

Simulink Support Package for Raspberry Pi Hardware generates a Linux® executable for each
Simulink model you run on the Raspberry Pi hardware.

1. To run/stop a Simulink model, you use the run and stop methods of the raspberrypi communication
object. First, create a communication object to the Raspberry Pi hardware:

rpi = raspberrypi;

This command generates a Raspberry Pi object that is your gateway to communicating with your
Raspberry Pi hardware from MATLAB command line.

2. Execute the following on the MATLAB command line to stop the Simulink model you ran in
previous section:

stopModel(rpi, 'FMReceiverRaspberryPiSimulinkExample')

3. To run a previously built Simulink model on your board, you use runModel method. In order to run
the FMReceiverRaspberryPiSimulinkExample model, execute the following on the MATLAB command
line:

runModel(rpi, 'FMReceiverRaspberryPiSimulinkExample')

Summary

This example introduced the workflow for receiving radio signals with an RTL-SDR radio and
processing the received signals using a Simulink model running on Raspberry Pi hardware.
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RDS/RBDS and RadioText Plus (RT+) FM Receiver
This example shows how you can use Simulink® and the Communications Toolbox™ to extract
program or song information from FM radio stations using the RDS or RBDS standard and, optionally,
the RadioText Plus (RT+) standard. You can either use captured signals or receive signals in real time
using the RTL-SDR Radio or ADALM-PLUTO Radio.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need one of the following hardware:

• RTL-SDR radio and the corresponding software Communications Toolbox Support Package for
RTL-SDR Radio

• ADALM-PLUTO radio and the corresponding software Communications Toolbox Support Package
for ADALM-PLUTO Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR).

Background

RBDS and RDS are very similar standards specifying how to supplement FM radio signals with
additional information. RBDS is used in North America, while RDS was originally used in Europe and
evolved to an international standard. RBDS and RDS comprise 3 layers:

• Physical layer (Layer 1)
• Data-link layer (Layer 2)
• Session and presentation layer (Layer 3)
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Physical Layer (Layer 1)

The physical layer subsystem receives the captured signal from a file or the live signal from the radio
and performs the following steps:

• FM demodulation: Once the FM signal is demodulated, the RDS/RBDS signal resides at the 57
kHz +/- 2.4 kHz band:

Be aware that the RDS/RBDS signal is transmitted with relatively low power, so it is not always visible
in the FM spectrum as in the above figure.

FM signals contain a pilot tone at 19 kHz, which can be used as a phase and frequency reference for
coherent demodulation of the RDS/RBDS signal at 57 kHz and the stereo audio at 38 kHz. Pilot tones
at 38 kHz and 57 kHz can be generated by doubling and tripling the frequency of the 19 kHz pilot
tone [ 2 ].
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Processing steps for coherent demodulation of the RDS/RBDS signal are:

• Bandpass filtering: The PHY receiver conducts bandpass filtering at 19 kHz and 57 kHz, to
isolate the pilot tone and the RDS/RBDS signal, respectively.

• Frequency tripling: Raise the complex representation of the 19 kHz pilot tone to the 3rd power
to triple its frequency and obtain a 57 kHz pilot tone.

• AM Demodulation: RDS and RBDS symbols are generated at an 1187.5 Hz rate and are AM-
modulated to a 57 kHz carrier. The 57 kHz RDS/RBDS signal can be coherently demodulated with
a 57 kHz carrier that is locked in frequency and phase. Typically, the frequency-tripled 19 kHz
pilot tone suffices for coherent demodulation. The next figures show the 19 kHz and 57 kHz pilot
tones, the 57 kHz RDS/RBDS signal, and the AM-demodulated baseband RDS/RBDS signal.

At the same time, there exist several FM stations whose 57 kHz RDS/RBDS signal exhibits a time-
varying phase offset from the 19 kHz pilot tone and its frequency-tripled version. The PHY receiver
contains a Costas loop to compensate for such time-varying phase offsets.

• Costas loop: The Costas loop performs 2 orthogonal AM demodulations, one demodulation with a
57 kHz sine and another with a 57 kHz cosine. The sampling rate of the received signal is
carefully chosen as 228 kHz, which provides 4 samples per 57 kHz cycle. Therefore, a one sample
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delay of the 57 kHz pilot tone results to a one quarter wavelength phase offset, and allows us to
generate a cosine wave from a sine wave. The sine-demodulated signal corresponds to the
coherent demodulation output. The cosine-demodulated signal is used for detection of phase error.
The products of the 57 kHz RDS/RBDS signal with the sine/cosine waves are low-pass filtered with
the filter specified in Sec. 1.7 of [ 1 ]. The product of the two filter outputs is an error signal. The
larger it is, the more the 19 kHz pilot tone is delayed to behave more like the cosine-based
demodulator.

• Clock extraction: To perform biphase symbol decoding, a clock matching the RDS/RBDS symbol
rate of 1187.5 Hz is extracted from the 19 kHz pilot tone. Note, 1187.5 Hz x 16 = 19 kHz. To
account for frequency offsets, frequency division is used to extract the clock from the 19 kHz pilot
tone. Since the frequency division operation provides multiple correct answers, the baseband
RDS/RBDS signal serves as training data that aid in the determination of the desired output.

• Biphase symbol decoder: RDS and RBDS use bi-phase-level (bi-  -L) coding, which is commonly
known as Manchester coding. In each clock cycle, the RDS/RBDS symbol takes two opposite
amplitude values, either a positive followed by a negative, or a negative followed by a positive.
The biphase symbol decoder negates the second amplitude level, so that each symbol holds the
same amplitude level throughout the entire clock cycle. The new clock-wide amplitude level
corresponds to the symbol's bit representation. The following two screenshots correspond to the
waveforms #1-6 in Figure 2 of [ 1 ].
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To obtain each symbol's bit value, the waveform is integrated over each clock cycle, and the outcome
is compared to zero (slicer).
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• Differential decoding: Finally, the bits are differentially decoded to revert the differential
encoding at the transmitter.

Data-link Layer (Layer 2)

Layer 2 is implemented using the RBDSDataLinkDecoder System block. This layer is responsible for
synchronization and error correction.

The bit output of the PHY layer is logically organized in 104-bit groups comprising four 26-bit blocks.
Each block contains a 16-bit information word and 10 parity bits (see Figure 8 in [ 1 ]). A distinct 10-
bit offset word is modulo-2 added to the parity bits of each block.

• Synchronization: Initially, block and group boundaries are sought exhaustively using a sliding
window of 104 bits. For each 104-bit window, the 4 offset words are sought at the last 10 bits of
each 26-bit block. An offset word is identified if no bit errors are detected in its block. Once the
offset words are identified, group-level synchronization is attained and the exhaustive sliding-
window processing stops. Subsequently, the next 104 bits will be treated as the next group.
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If future groups contain bit errors and the offset words cannot be identified at their expected
position, synchronization may be lost. In this case, Layer 2 first examines the possibility of 1-bit
synchronization slips, exploiting the fact that the first information word (16 bits) is always the same
for all bit groups. If the first information word is found dislocated by 1 bit (either leftward or
rightward), synchronization is retained and the group boundaries are adjusted accordingly. If bit
errors persist for 25 group receptions and at the same time synchronization cannot be reestablished
using such leftward/rightward 1-bit shifts, then synchronization is lost and Layer 2 re-enters the
exhaustive, sliding-window-based search for synchronization.

• Error correction: The RDS and RBDS error correction code is a (26, 16) cyclic code shortened
from (341, 331). The error correction implementation uses the shift-register scheme described in
Annex B of [ 1 ].

Session and Presentation Layer (Layer 3)

Layer 2 removes the parity/offset bits, therefore Layer 3 receives groups of 64-bits, comprising four
16-bit blocks. There exist up to 32 different group types, each labeled with a number from 0 to 15 and
the letter 'A' or 'B', for example, 0B, 2A, 3A. The format of each group can be fixed or it can be
abstract if this group is allocated for an Open Data Application (ODA, see list in [ 3 ]).

Layer 3 is implemented using the RBDSSessionDecoder System block. This block supports decoding
of the 0A, 0B, 2A, 2B, 3A, 4A, 10A fixed-format group types.

• 0A and 0B convey an 8-character string, which typically changes in a scrolling-text fashion.
• 2A and 2B convey longer 64- or 32-character strings.
• 3A registers ODAs and specifies their dedicated abstract-format group type.
• 4A conveys the system time.
• 10A further categorizes the program type (e.g., 'Football' for 'Sports' program type).

For ODAs, the RDS/RBDS receiver supports decoding of RadioText Plus (RT+) [ 4 ]. This ODA can
break down the long 32 or 64-character string from group types 2A and 2B into two specific content
types (for example, artist and song).

Viewing Results

The following screenshot illustrates the graphical display of the processed RDS/RBDS data:
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• Basic RDS/RBDS information:

1 The first field corresponds to the program type, which is conveyed by the second information
word of all group types. If 10A group types are received, the first field also provides further
characterization, e.g., Sports \ Football.

2 The second field illustrates the 8-character text conveyed by 0A/0B groups.
3 The third field illustrates the longer 32/64-character text conveyed by 2A/2B group types.

• RadioText Plus (RT+): This section is used if any 3A groups indicate that the RadioText Plus (RT
+) ODA [ 4 ] uses a certain abstract-format group type, e.g., 11A. Then, upon receptions of this
abstract group type, the 32/64-character text conveyed by groups 2A/2B will be split to two
substrings. Moreover, the two labels will be updated to characterize the substrings (e.g., Artist
and Song).
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• Group type receptions: The tables act as a histogram illustrating which group types have been
received from a station and with what frequency. As a result, users may want to look at the logged
data for further information that is not depicted in the graphical viewer (e.g., system time in 4A,
alternate frequencies in 0A etc.).

• Open data applications (ODA): If any 3A group types are received, then the list of encountered
ODAs is updated with the ODA name and their dedicated group type.

Moreover, you can enable the 'Log data to file' checkbox in order to log further fields from all group
types.

Selected Bibliography

1 National Radio Systems Committee, United States RBDS standard, April 1998
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FRS/GMRS Receiver in Simulink
This example shows how to implement a walkie-talkie receiver using Simulink® and Communications
Toolbox™. The specific radio standard that this example follows is FRS/GMRS (Family Radio Service /
General Mobile Radio Service) with CTCSS (Continuous Tone-Coded Squelch System). You can use
simulated signals, captured signals, or received signals from a commercial walkie-talkie using the
Communications Toolbox Support Package for RTL-SDR Radio.

This example is designed to work with USA standards for FRS/GMRS operation. The technical
specifications for these standards can be found in the reference list below. Operation in other
countries may or may not work.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio
• Walkie-talkie

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the "MATLAB and
Simulink Hardware Support for SDR" section of Software-Defined Radio (SDR).

Introduction

For an introduction on FRS/GMRS technology and demodulation of these signals, refer to the “FRS/
GMRS Walkie-Talkie Receiver” on page 8-504 example.

Running the Example

To run the example using simulated signals, select the FRS/GMRS Signal Generator block as the
source using the Signal Source Selector block. Double click the FRS/GMRS Signal
Generator block to select the CTCSS code and source type as one of 'Single tone', 'Chirp', or
'Audio'. Then click the run button.

To run the example using captured signals, select the FRS/GMRS Captured Signal block as the
source using the Signal Source Selector block. Then click the run button.

To run the example using the RTL-SDR radio as the source, select the RTL-SDR Receiver block as
the source using the Signal Source Selector block. Then click the run button. Turn on your
walkie-talkie, set the channel to be one of the 14 channels (numbered 1 to 14) and the private code to
be either one of the 38 private codes (numbered 1 to 38) or 0, in which case no squelch system is
used and all received messages are accepted. Note that the private codes above 38 are digital codes
and are not implemented in this example.

Double-click the Channel Number block and select the same channel number as the walkie-talkie.
Double-click the CTCSS Code block and set the CTCSS Code to the private code you set in the

8 Communications Toolbox Featured Examples

8-542

https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/discovery/sdr.html


walkie-talkie. Run the model, and see if you can hear your voice come out of the computer speakers.
If not, try adjusting the Detection Threshold block value downward slightly. You can change the
channel and private code without stopping and restarting the model.

If you hear some dropouts or delay in the sound, run the model in Accelerator mode. From the model
menu, select Simulation->Accelerator, then click the run button. If you still experience dropouts or
delay in Accelerator mode, try running the model in Rapid Accelerator mode.

The "Signal Spectrum" shows the spectrum of the received signal at the input of the Channel
Selector block. You can observe how the spectrum changes as you speak into your walkie-talkie.

Receiver Structure

The following block diagram summarizes the receiver structure. The processing has four main parts:
Signal Source, Channel Selector, FM Demodulator, and CTCSS processing.
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Signal Source

This example can use three signal sources:

1 ''Simulated Signal'': Simulated FRS/GMRS signal at 240e3 samples/sec
2 ''Captured Signal'': Over-the-air signals written to a file and sourced using a baseband file reader

block at 240e3 samples/sec
3 ''RTL-SDR Radio'': RTL-SDR radio at 240e3 samples/sec. Use a walkie-talkie as a transmitter. Set

the channel number to the channel number of your walkie-talkie.

Channel Selector

The receiver removes the DC component and applies a variable gain to the received signal to obtain
an approximately known amplitude signal with reduced interference. The receiver then applies a low
pass channel separation filter to reduce the signals from adjacent channels. The gap between
adjacent channels is 25 kHz, which means the baseband bandwidth is, at most, 12.5 kHz. Thus, we
choose the cutoff frequency to be 10 kHz.

Next, a channel selector computes the average power of the filtered signal. If it is greater than a
threshold (set to a default of 10%), the channel selector determines that the received signal is from
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the correct channel and allows the signal to pass through. In the case of an out-of-band signal,
although the channel separation filter reduces its magnitude, it is still FM modulated and the
modulating signal will be present after FM demodulation. To completely reject such a signal, the
channel selector outputs all zeros.

FM Demodulator

This example uses the FM Demodulator Baseband block whose sample rate and maximum
frequency deviation are set to 240 kHz and 2.5 kHz, respectively.

CTCSS

First, a decimation filter converts the sampling rate from 240 kHz to 8 kHz. This rate is one of the
native sampling rates of your host computer's output audio device. Then, the CTCSS decoder
computes the power at each CTCSS tone frequency using the Goertzel algorithm and outputs the
code with the largest power. The Goertzel algorithm provides an efficient method to compute the
frequency components at predetermined frequencies, that is, the tone code frequencies used by FRS/
GMRS.

The model compares the estimated received code with the preselected code and then sends the signal
to the audio device if the two codes match. When the preselected code is zero, it indicates no squelch
system is used and the decision block passes the signal at the channel to the audio device no matter
which code is used.

Finally, a high pass filter with a cutoff frequency of 260 Hz filters out the CTCSS tones, which have a
maximum frequency of 250 Hz. Use an Audio Device Writer block to play the received signals
through your computer's speakers. If you do not hear any sound, please select another device using
the DeviceName parameter of the Audio Device Writer block.

Audio Output

Before the audio device, a high pass filter with a cutoff frequency of 260 Hz is used to filter out the
CTCSS tones (which have a maximum frequency of 250 Hz) so that they are not heard.

The Audio Device Writer block is set up by default to output to the current audio device in your
system preferences.

Exploring the Example

The CTCSS decoding computes the DTFT (Discrete-Time Fourier Transform) of the incoming signal
using the Goertzel algorithm and computes the power at the tone frequencies. Because the tone
frequencies are very close to each other (only 3-4 Hz apart) the block length of the DTFT should be
large enough to provide enough resolution for the frequency analysis. However, long block lengths
cause decoding delay. For example, a block length of 16384 will cause 2 seconds of delay, since the
CTCSS decoder operates at an 8 kHz sampling rate. This creates a tradeoff between detection
performance and processing latency. The optimal block length may depend on the quality of the
transmitter and receiver, the distance between the transmitter and receiver, and other factors. You
are encouraged to change the block length in the initialization function by navigating to the
helperFRSReceiverConfig function and changing the value of the CTCSSDecodeBlockLength field.
This will enable you to observe the tradeoff and find the optimal value for your transmitter/receiver
pair.

When the FRS/GMRS Signal Generator is selected as the source, you can change the CTCSS
tone amplitude parameter of this block and observe how this affects the signal spectrum.
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Appendix

The following script is used in this example:

• helperFRSReceiverConfig.m

References

• Family Radio Service
• General Mobile Radio Service
• Continuous Tone-Coded Squelch System
• Goertzel Algorithm
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ALOHA and CSMA/CA Packetized Wireless Networks
This example shows how to simulate a basic ALOHA or CSMA/CA MAC using Simulink®, Stateflow®
and the Communications Toolbox™.

Background

ALOHA: ALOHA is a seminal random-access protocol that became operational in 1971. In ALOHA,
nodes transmit packets as soon as these are available, without sensing the wireless carrier. As a
result, wireless packets may collide at a receiver if they are transmitted simultaneously. Hence,
successful packet reception is acknowledged by transmitting a short acknowledgment packet. If an
acknowledgment is not received timely enough, then the data packet is resent at a later instant
determined, e.g., by binary exponential backoff.

CSMA/CA: Carrier Sense Multiple Access with Collision Avoidance is an improved random-access
scheme, according to which wireless nodes first sense the wireless medium before transmitting their
data packets. If the medium is sensed busy, then transmissions are deferred, e.g., according to a
binary exponential backoff. Collision avoidance is enabled by: (i) waiting for an interframe spacing
(IFS) duration after the channel has been sensed idle, (ii) transmitting only after a certain number of
(not necessarily contiguous) sensed idle time slots, chosen randomly from the contention window
(i.e., an adaptive range of possible backoff durations), (iii) exchanging Request-to-Send and Clear-to-
Send frames (RTS and CTS). Out of these three methods, this example models the first two (IFS and
contention window). CSMA/CA has been employed in Ethernet, IEEE® 802.11, and IEEE 802.15.4,
among other standards.

Overview

This example models a three-node PHY/MAC network. All nodes are within range; transmissions
between two nodes can be received by and interfere with the third one.
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The default configuration enables data frame transmissions from node 1 to node 3, from node 3 to
node 2, and from node 2 to node 1. Acknowledgment frames are transmitted from node 3 to node 1,
from node 2 to node 3, and from node 1 to node 2.

The MAC scheme can be either ALOHA or CSMA/CA, as determined by the top-level switch. MAC
frames are encoded to or decoded from a PHY waveform using a QPSK-based PHY layer.

The MAC layer operates at a very fine timescale (every 0.8 microseconds), as the backoff duration is
typically much shorter than the duration of a data frame. As a result, the Simulink model is scalar-
based (i.e., the length of most signals is equal to 1) and the MAC/PHY layers do not process frames,
i.e., batches of samples.

Radio Transceiver

Each radio transceiver is a joint PHY and MAC implementation enabling both receive and transmit
operations. The left side of the next diagram corresponds to the PHY layer, while the right side
corresponds to the Data Link Layer (MAC and Logical Link Control).

On the receive-side chain, the transceiver decodes the PHY layer of the received waveforms and
passes the corresponding MAC Protocol Data Unit (MPDU) to the MAC layer, which processes data
and acknowledgment frames.

On the transmit-side chain, the Data Link layer initiates MAC frame transmissions either when the
Logical Link Control sublayer determines that a new data frame is injected or when the MAC
sublayer needs to transmit an acknowledgment for a received data frame. The data MAC frames are
generated by prepending a MAC header and appending a CRC MAC footer to a payload that is the
input from the higher, third layer (network layer). The acknowledgment MAC frames do not contain a
payload; they only contain the MAC header and CRC footer.
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Logical Link Control

The Logical Link Control (LLC) sublayer is responsible for injecting data packets into the transceiver.
It is mainly implemented using a Stateflow chart. The packet interarrival time is exponentially
distributed, which corresponds to a Poisson process.

Then, the Stateflow chart counts down the packet inter-arrival time until the next packet arrives. This
chart also models the segmentation of large packets into smaller data frames by determining the
number of additional frame transmissions ("TxMore").

ALOHA MAC Layer

When the top-level MAC switch is set to ALOHA, the MAC subsystem of the Data link layer essentially
operates as the following Stateflow chart:
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The left side of the chart is responsible for acknowledging a received data frame. Before transmitting
the acknowledgment, the transmitter first waits for a short interframe spacing (SIFS). Then, it
outputs a positive 'TxAckOn' signal for the duration of the acknowledgment frame.

The right side of the chart is responsible for transmitting a data frame. Before transmitting the data
frame, the transmitter first waits for a short interframe spacing (SIFS). Then, it transmits the signal,
without sensing the wireless medium, by outputting a positive 'TxDataOn' signal for the duration of
the data frame. Subsequently, the node awaits to receive an acknowledgment within a certain time
interval. If the acknowledgment is received before timeout, the current data frame transmission is
concluded. If it is not, then the node enters a backoff state and it doubles its contention window (CW)
every time except for the first backoff instance. The backoff duration is randomly chosen from the [0,
CW] interval. If the maximum number of backoff attempts is reached, then the transceiver declares a
failure in transmitting this data frame.

CSMA/CA MAC Layer

When the top-level MAC switch is set to CSMA/CA, the MAC subsystem of the Data link layer
essentially operates as the following Stateflow chart:
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The CSMA/CA chart has some similarities with the ALOHA chart, but it also has some differences:

• The transceiver senses the wireless medium.
• Data frames are not transmitted before an interframe spacing (IFS) duration elapses since the

wireless medium has been sensed as idle.
• The backoff counter decrements only when the medium is sensed idle.

Physical Layer

Transmitter: The transmitter performs QPSK modulation on the MPDU bits. The bit rate is 20 MHz
and the symbol rate is 10 MHz. The QPSK symbols are subsequently filtered with the raised cosine
filter of the "Tx/Rx Switch" subsystem.
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Channel: The filtered PHY waveform passes through a network channel, which imposes multipath
fading and white gaussian noise. The network channel allows each node to receive superimposed
signals transmitted by multiple other nodes. Multipath fading is applied using the NetworkChannel
System block. White noise is added using the multichannel capability of the AWGN Channel block.

Receiver: Transceivers process the signal waveform only when its amplitude exceeds a certain
threshold (see Signal Detection subsystem). Subsequently, the received waveform is equalized using a
Decision Feedback Equalizer (DFE); this component reduces intersymbol interference (ISI) caused by
multipath fading, corrects small symbol timing offsets and carrier offsets, and its fast convergence
suits packetized networks. Next, the equalized QPSK symbols are demodulated. The corresponding
bits are passed to a CRC detector in order to identify the frame start, the PHY payload length and the
frame type (data or acknowledgment).
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Simulation Results

Model simulation shows one scope for each transceiver. Each scope depicts the transmitted signal
(top axes) and the backoff counter (bottom axes) for each transceiver.

 ALOHA and CSMA/CA Packetized Wireless Networks

8-553



8 Communications Toolbox Featured Examples

8-554



At the same time, the top-level model depicts per-node throughput in three display blocks.
Throughput is calculated by measuring the number of successfully acknowledged data packets.

Further Exploration

• The used MAC scheme can be toggled between ALOHA and CSMA/CA (default). Changing the
MAC scheme to ALOHA yields lower node throughput for the default packet arrival rates. This is
because ALOHA packets collide more frequently as nodes do not sense the wireless carrier.

• The packet arrival rates can be customized through the dialog mask of each node. The network
saturation point can be empirically and iteratively found, e.g., by gradually increasing the same
packet arrival rate for each node. Increasing low arrival rates can increase node throughput;
increasing high arrival rates (past the saturation point) can actually have a detrimental effect on
throughput as packets collide and nodes backoff more frequently.

• If the arrival rates are disproportional for each node, then unfairness scenarios can be
established. For example, one node may be capturing the medium very frequently and maintain a
low contention window, while other nodes may back off for a long time and only sporadically
access the medium.

• You can change the random seed of the nodes at their block mask to enable different random-
access scenarios. For example, for a given packet arrival rate, the random seed determines how
soon the first transmission occurs.

Selected Bibliography

1 N. Abramson, The ALOHA System Final Technical Report, NASA Advanced Research Projects
Agency, October 11, 1974

2 IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Nov. 1997. P802.11
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Multicore Simulation of Comparing Demodulation Types
This example compares an LLR and hard decision demodulation. It uses the dataflow domain in
Simulink® to automatically partition the data-driven portions of the communications system into
multiple threads and thereby improving the performance of the simulation by executing it on your
desktop's multiple cores.

Introduction

The dataflow execution domain allows you to make use of multiple cores in the simulation of
computationally intensive systems. This example shows how dataflow as the execution domain of a
subsystem improves simulation performance of the model. To learn more about dataflow and how to
run Simulink models using multiple threads, see “Multicore Execution using Dataflow Domain”.

LLR vs Hard Decision Demodulation

This example shows a communication system that compares BER performance when using LLR
instead of hard decision demodulation in the decoder. This example has one transmitter, an AWGN
channel and three receivers. The three receivers use different decoding techniques to compare the
BER of each approach. Bit error rate computation is shown in Display blocks for comparing the
performance of the three receivers.

Setting up Dataflow Subsystem

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to
improve simulation performance. The Domain parameter of the Dataflow Subsystem in this model is
set as Dataflow. You can view this by selecting the subsystem and then selecting View>Property
Inspector. Dataflow domains automatically partition your model and simulate the system using
multiple threads for better simulation performance. Once you set the Domain parameter to Dataflow,
you can use Dataflow Simulation Assistant to analyze your model to get better performance. You can
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open the Dataflow Simulation Assistant by clicking on the Dataflow assistant button below the
Automatic frame size calculation parameter in Property Inspector.

 Multicore Simulation of Comparing Demodulation Types

8-557



Analyzing Concurrency in Dataflow Subsystem

The Dataflow Simulation Assistant suggests changing model settings for optimal simulation
performance. To accept the proposed model settings, next to Suggested model settings for
simulation performance, click Accept all. Alternatively, you can expand the section to change the
settings individually. In this example the model settings are already optimal. In the Dataflow
Simulation Assistant, click the Analyze button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Dataflow Simulation Assistant shows how
many threads the dataflow subsystem will use during simulation.

After analyzing the model, the assistant shows three threads because the three different receiver
types can run independently in parallel. When Latency used is zero, dataflow can only use this
inherent parallelism in the model. The three receivers are data dependent on one transmitter. This
causes bottleneck since the transmitter needs to complete its processing before any receivers start
processing. Without pipeline delays only the inherent parallelism in the model can be utilized to run
Dataflow Subsystem using multiple threads. By pipelining the data dependent blocks, the Dataflow
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Subsystem can increase concurrency for higher data throughput. Dataflow Simulation Assistant
shows the recommended number of pipeline delays as Suggested Latency. The suggested latency
value is computed to give the best performance.

The following diagram shows the Dataflow Simulation Assistant where the Dataflow Subsystem
currently specifies a latency value of zero, and the suggested latency for the system is two. Using the
Suggested Latency value introduces pipeline delays in the model and enables more blocks to run in
parallel.

Click the Accept button next to Suggested Latency in the Dataflow Simulation Assistant to use the
recommended latency for the Dataflow Subsystem.

Dataflow Simulation Assistant now shows the number of threads as five implying that the blocks
inside the dataflow subsystem simulate in parallel using five threads. Use of two pipeline delays
increased the number of blocks that can be run in parallel inside Dataflow Subsystem. Latency value
can also be entered directly in the Property Inspector for "Latency" parameter. Simulink shows the
latency parameter value using  tags at the output ports of the dataflow subsystem.
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Multicore Simulation Performance

We measure the performance improvement of using multiple cores by comparing the execution time
taken for running model using multiple threads with the time taken when the model does not use
dataflow. Execution time is measured using the sim command, which returns the simulation execution
time of the model. These numbers and analysis were published on a Windows desktop computer with
Intel® Xeon® CPU W-2133 @ 3.6 GHz 6 Cores 12 Threads processor.

Simulation execution time for multithreaded model = 4.37s
Simulation execution time for single-threaded model = 10.64s
Actual speedup with dataflow: 2.4x

Summary

This example shows how dataflow execution domain can improve performance in a communication
system model using multiple cores on the desktop.
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Input, Output, and Display

Learn how to input, output and display data and signals with Communications Toolbox.

• “Signal Terminology” on page 9-2
• “Export Data to MATLAB” on page 9-3
• “Sources and Sinks” on page 9-7
• “Spreading Sequences” on page 9-21
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Signal Terminology
This section defines important Communications Toolbox terms related to matrices, vectors, and
scalars, as well as frame-based and sample-based processing.

Matrices, Vectors, and Scalars
This document uses the unqualified words scalar and vector in ways that emphasize the number of
elements in a signal, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a one-dimensional array with one
element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The signal could be a one-
dimensional array, a matrix that has exactly one column, or a matrix that has exactly one row. The
number of elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish among different types of
scalar signals or different types of vector signals, this document mentions the distinctions explicitly.
For example, the terms one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns the matrix has.
The orientation of a two-dimensional vector is its status as either a row vector or column vector. A
one-dimensional array has no orientation – this is sometimes called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full matrix signal.
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Export Data to MATLAB
In this section...
“Use a To Workspace Block” on page 9-3
“Configure the To Workspace Block” on page 9-3
“View Error Rate Data in Workspace” on page 9-4
“Send Signal and Error Data to Workspace” on page 9-4
“View Signal and Error Data in Workspace” on page 9-5
“Analyze Signal and Error Data” on page 9-6

Use a To Workspace Block
This section explains how to send data from a Simulink model to the MATLAB® workspace so you can
analyze the results of simulations in greater detail.

You can use a To Workspace block, from the DSP System Toolbox™/Sinks library to send data to the
MATLAB workspace as a vector. For example, you can send the error rate data from the Hamming
code model, described in the section Reducing the Error Rate Using a Hamming Code on page 16-
63. To insert a To Workspace block into the model, follow these steps:

1 To open the model, at the MATLAB prompt, enter doc_hamming.
2 To add a To Workspace block, begin typing the name 'to workspace' in the model window and

select the To Workspace block from the DSP System Toolbox/Sinks library. Connect it as shown.

Tip More than one To Workspace block exists. Select the To Workspace block from the DSP System
Toolbox / Sinks sublibrary.

Configure the To Workspace Block
To configure the To Workspace block, follow these steps:

1 Double-click the block to display its dialog box.
2 Type hammcode_BER in the Variable name field.
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3 Type 1 in the Limit data points to last field. This limits the output vector to the values at the
final time step of the simulation.

4 Click OK.

When you run a simulation, the model sends the output of the Error Rate Calculation block to the
workspace as a vector of size 3, called hamming_BER. The entries of this vector are the same as those
shown by the Error Rate Display block.

View Error Rate Data in Workspace
After running a simulation, you can view the output of the To Workspace block by typing the following
commands at the MATLAB prompt:

format short e
hammcode_BER

The vector output is the following:

hammcode_BER =
5.4066e-003  1.0000e+002  1.8496e+004

The command format short e displays the entries of the vector in exponential form. The entries
are as follows:

• The first entry is the error rate.
• The second entry is the total number of errors.
• The third entry is the total number of comparisons made.

Send Signal and Error Data to Workspace
To analyze the error-correction performance of the Hamming code, send the transmitted signal, the
received signal, and the error vectors, created by the Binary Symmetric Channel block, to the
workspace. An example of this is shown in the following figure.

1 Type doc_channel at the MATLAB command line to open the starter model.
2 Double-click the Binary Symmetric Channel block to open its dialog box, and select Output

error vector. This creates an output port for the error data.
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3 Move blocks to make room so that you can insert Hamming Encoder and Hamming Decoder
blocks. To find them, start typing Hamming in the model window. Select them from the options
presented. These Hamming Encoder and Hamming Decoder blocks are in the Communications
Toolbox/Error Detection and Correction /Block sublibrary.

4 Add three To Workspace blocks into the model window and connect them as shown in the
preceding figure.

Tip More than one To Workspace block exists. Select the To Workspace block from the DSP
System Toolbox / Sinks sublibrary.

5 Double-click the left To Workspace block.

• Type Tx in the Variable name field in the block's dialog box. The block sends the transmitted
signal to the workspace as an array called Tx.

• In the Save 2-D signals as field, select 3-D array (concatenate along third
dimension). This preserves each frame as a separate column of the array Tx.

• Click OK.
6 Double-click the middle To Workspace block:

• Type errors in the Variable name field.
• In the Save 2-D signals as field, select 3-D array (concatenate along third

dimension). This preserves each frame as a separate column of the array Tx.
• Click OK.

7 Double-click the right To Workspace block:

• Type Rx in the Variable name field.
• In the Save 2-D signals as field, select 3-D array (concatenate along third

dimension). This preserves each frame as a separate column of the array Tx.
• Click OK.

View Signal and Error Data in Workspace
After running a simulation, you can display individual frames of data. For example, to display the
tenth frame of Tx, at the MATLAB prompt type

Tx(:,:,10)

This returns a column vector of length 4, corresponding to the length of a message word. Usually, you
should not type Tx by itself, because this displays the entire transmitted signal, which is very large.

To display the corresponding frame of errors, type

errors(:,:,10)

This returns a column vector of length 7, corresponding to the length of a codeword.

To display frames 1 through 5 of the transmitted signal, type

Tx(:,:,1:5)
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Analyze Signal and Error Data
You can use MATLAB to analyze the data from a simulation. For example, to identify the differences
between the transmitted and received signals, type

diffs = Tx~=Rx;

The vector diffs is the XOR of the vectors Tx and Rx. A 1 in diffs indicates that Tx and Rx differ at
that position.

You can determine the indices of frames corresponding to message words that are incorrectly
decoded with the following MATLAB command:

error_indices = find(diffs);

A 1 in the vector not_equal indicates that there is at least one difference between the
corresponding frame of Tx and Rx. The vector error_indices records the indices where Tx and Rx
differ. To view the first incorrectly decoded word, type

Tx(:,:,error_indices(1))

To view the corresponding frame of errors, type

errors(:,:,error_indices(1))

Analyze this data to determine the error patterns that lead to incorrect decoding.
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Sources and Sinks
In this section...
“Data Sources” on page 9-7
“Noise Sources” on page 9-9
“Sequence Generators” on page 9-10
“Scopes” on page 9-13
“View a Sinusoid” on page 9-14
“View a Modulated Signal” on page 9-16

Communications Toolbox provides sources, sinks, and display devices that facilitate analysis of
communication system performance.

Data Sources
Use the functions and blocks listed in “Sources and Sinks” to generate random data to simulate a
signal source.

Random Symbols

The randsrc function generates random matrices whose entries are chosen independently from an
alphabet that you specify, with a distribution that you specify. A special case generates bipolar
matrices.

For example, the command below generates a 5-by-4 matrix whose entries are random, independently
chosen, and uniformly distributed in the set {1,3,5}.

a = randsrc(5,4,[1,3,5])

a = 5×4

     5     1     1     1
     5     1     5     3
     1     3     5     5
     5     5     3     5
     3     5     5     5

To skew the distribution so that 1 is twice as likely to occur as either 3 or 5, use the command below.
The third input argument has two rows, one of which indicates the possible values of b and the other
indicates the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

b = 5×4

     3     5     3     5
     1     3     1     3
     5     1     1     1
     5     3     1     5
     3     1     1     1
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Random Integers

In MATLAB®, the randi function generates random integer matrices whose entries are in a range
that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing random integers between 2
and 10.

c = randi([2,10],5,4)

c = 5×4

     5     6     4     6
     5     6     8    10
     8     7     7     5
     9     8     3     7
     3     8     3     4

If your desired range is [0,10] instead of [2,10], you can use either of the commands below. They
produce different numerical results, but use the same distribution.

d = randi([0,10],5,4);
e = randi([0 10],5,4);

In Simulink®, the Random Integer Generator and Poisson Integer Generator blocks both generate
vectors containing random nonnegative integers. The Random Integer Generator block uses a
uniform distribution on a bounded range that you specify in the block mask. The Poisson Integer
Generator block uses a Poisson distribution to determine its output. In particular, the output can
include any nonnegative integer.

Random Bit Error Patterns

In MATLAB, the randerr function generates matrices whose entries are either 0 or 1. However, its
options are different from those of randi, because randerr is meant for testing error-control
coding. For example, the command below generates a 5-by-4 binary matrix, where each row contains
exactly one 1.

f = randerr(5,4)

f = 5×4

     0     0     0     1
     1     0     0     0
     1     0     0     0
     0     0     1     0
     0     0     0     1

You might use such a command to perturb a binary code that consists of five four-bit codewords.
Adding the random matrix f to your code matrix (modulo 2) introduces exactly one error into each
codeword.

On the other hand, to perturb each codeword by introducing one error with probability 0.4 and two
errors with probability 0.6, use the command below instead. Each row has one '1' with probability
0.4, otherwise two '1's

g = randerr(5,4,[1,2; 0.4,0.6])
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g = 5×4

     1     0     1     0
     0     1     0     1
     0     0     0     1
     1     0     0     1
     0     0     1     0

Adding the random matrix g to your code matrix (modulo 2) introduces one or two errors into each
codeword with the specified probability of occurrence for each. The probability matrix that is the
third argument of randerr affects only the number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element column vector using
any of the commands below. The three commands produce different numerical outputs, but use the
same distribution. The third input arguments vary according to each function's particular way of
specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1
binarymatrix2 = randi([0 1],100,1); % Two possible values
binarymatrix3 = randerr(100,1,[0 1; 0.5 0.5]); % No 1s, or one 1

In Simulink, the Bernoulli Binary Generator block generates random bits and is suitable for
representing sources. The block considers each element of the signal to be an independent Bernoulli
random variable. Also, different elements need not be identically distributed.

Noise Sources
Construct noise generator blocks in Simulink to simulate communication links.

Random Noise Generators

You can construct random noise generators to simulate channel noise by using the MATLAB Function
block with random number generating functions. Construct different types of channel noise by using
the following combinations.

Distribution Block Function
Gaussian MATLAB Function wgn
Rayleigh MATLAB Function randn
Rician MATLAB Function randn
Uniform on a bounded interval MATLAB Function rand

See “Random Noise Generators in Simulink” on page 12-29 for an example of how Rayleigh and
Rician distributed noise is created.

Gaussian Noise Generator

In MATLAB®, the wgn function generates random matrices using a white Gaussian noise distribution.
You specify the power of the noise in either dBW (decibels relative to a watt), dBm, or linear units.
You can generate either real or complex noise.
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For example, the command below generates a column vector of length 50 containing real white
Gaussian noise whose power is 2 dBW. By default, the power type in dBW and load impedance is 1
ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a load of 60 ohms, use
either of the commands below.

y2 = wgn(50,1,2,60,'complex','linear');
y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the awgn function. See
“AWGN Channel” on page 22-2 for more information.

Sequence Generators
Use the functions, System objects, and blocks listed in “Sources and Sinks” to generate sequences for
spreading or synchronization in a communication system. You can generate pseudorandom
sequences, synchronization codes, and orthogonal codes. For examples comparing correlation
properties of these sequence generators, see “Spreading Sequences” on page 9-21.

• “Pseudorandom Sequences” on page 9-10
• “Model PN Sequence Generation With Linear Feedback Shift Register” on page 9-11
• “Synchronization Codes” on page 9-13
• “Orthogonal Codes” on page 9-13

Pseudorandom Sequences

You can generate pseudorandom or pseudonoise (PN) sequences using these System objects in
MATLAB and these blocks in Simulink. The applications of these sequences range from multiple-
access spread spectrum communication systems to ranging, synchronization, and data scrambling.

Sequence System object™ Block
Gold sequences comm.GoldSequence Gold Sequence Generator
Kasami sequences comm.KasamiSequence Kasami Sequence Generator
PN sequences comm.PNSequence PN Sequence Generator

To generate pseudorandom sequences, the underlying code implements shift registers, as illustrated
in this diagram.

9 Input, Output, and Display

9-10



All r registers in the generator update their values at each time step according to the value of the
incoming arrow to the shift register. The adders perform addition modulo 2. The shift register can be
described by a binary polynomial in z, grzr + gr-1zr-1 + ... + g0. The coefficient gi is 1 if there is a
connection, or 0 if there is no connection, from the ith shift register to the adder.

The coefficient mi is 1 if there is a delay, or a 0 if there is no delay, from the ith shift register to the
adder preceding the output. If the shift is zero, the m0 switch is closed while all other mk switches are
open.

The Kasami and PN sequence generators use this polynomial description for their generator
polynomial. The Gold sequence generator uses this polynomial description for the preferred first and
second generator polynomial PN sequences.

Model PN Sequence Generation With Linear Feedback Shift Register

This example shows that sequences output from the PN Sequence Generator can be modeled
using a linear feedback shift register (LFSR) built with primitive Simulink® blocks.
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For the chosen generator polynomial, p(z)=z^6+z+1, the model generates a PN sequence of period
63, by using the PN Sequence Generator block and by modeling a LFSR using primitive Simulink
blocks. The two parameters, Initial states and Output mask vector (or scalar shift
value), are interpreted in the LFSR model schematic. The PreLoadFcn callback function is used to
initialize runtime parameters. To view the callback functions, go to MODELING> SETUP> Model
Settings> Model Properties, and select the Callbacks tab.

The scope output shows the two implementations produce matching PN sequences.
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Using the PN Sequence Generator block allows you to easily generate PN sequences of large periods.
To experiment further, open the model. Modify settings to see how the performance varies for
different path delays or adjust the PN sequence generator parameters. You can experiment with
different initial states, by changing the value of Initial states prior to running the simulation. For all
values, the two generated sequences are the same.

Synchronization Codes

Use the comm.BarkerCode System object and Barker Code Generator block to generate Barker
codes to perform synchronization. Barker codes are subsets of PN sequences. They are short codes,
with a length at most 13, which are low-correlation sidelobes. A correlation sidelobe is the correlation
of a codeword with a time-shifted version of itself.

Orthogonal Codes

Orthogonal codes are used for spreading to benefit from their perfect correlation properties. When
used in multi-user spread spectrum systems, where the receiver is perfectly synchronized with the
transmitter, the despreading operation is ideal.

Code System object Block
Hadamard codes comm.HadamardCode Hadamard Code Generator
OVSF codes comm.OVSFCode OVSF Code Generator
Walsh codes comm.WalshCode Walsh Code Generator

Scopes
The Comm Sinks block library contains scopes for viewing three types of signal plots:

• “Eye Diagrams” on page 9-14
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• “Scatter Plots” on page 9-14
• “Signal Trajectories” on page 9-14

The following table lists the blocks and the plots they generate.

Block Name Plots
Eye Diagram Scope Eye diagram of a signal
Constellation Diagram Constellation diagram and signal trajectory of a

signal

Eye Diagrams

An eye diagram is a simple and convenient tool for studying the effects of intersymbol interference
and other channel impairments in digital transmission. When this software product constructs an eye
diagram, it plots the received signal against time on a fixed-interval axis. At the end of the fixed
interval, it wraps around to the beginning of the time axis. As a result, the diagram consists of many
overlapping curves. One way to use an eye diagram is to look for the place where the eye is most
widely opened, and use that point as the decision point when demapping a demodulated signal to
recover a digital message.

The Eye Diagram Scope block produces eye diagrams. This block processes discrete-time signals and
periodically draws a line to indicate a decision, according to a mask parameter.

Examples appear in “View a Sinusoid” on page 9-14 and “View a Modulated Signal” on page 9-16.

Scatter Plots

A constellation diagram of a signal plots the signal's value at its decision points. In the best case, the
decision points should be at times when the eye of the signal's eye diagram is the most widely open.

The Constellation Diagram block produces a constellation diagram from discrete-time signals. An
example appears in “View a Sinusoid” on page 9-14.

Signal Trajectories

A signal trajectory is a continuous plot of a signal over time. A signal trajectory differs from a scatter
plot in that the latter displays points on the signal trajectory at discrete intervals of time.

The Constellation Diagram block produces signal trajectories. The Constellation Diagram block
produces signal trajectories when the ShowTrajectory property is set to true. A signal trajectory
connects all points of the input signal, irrespective of the specified decimation factor (Samples per
symbol).

View a Sinusoid
The following model produces a constellation diagram and an eye diagram from a complex sinusoidal
signal. Because the decision time interval is almost, but not exactly, an integer multiple of the period
of the sinusoid, the eye diagram exhibits drift over time. More specifically, successive traces in the
eye diagram and successive points in the scatter diagram are near each other but do not overlap.
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To open the model, enter doc_eyediagram at the MATLAB command line. To build the model, gather
and configure these blocks:

• Sine Wave, in the Sources library of the DSP System Toolbox (not the Sine Wave block in the
Simulink Sources library)

• Set Frequency to .502.
• Set Output complexity to Complex.
• Set Sample time to 1/16.

• Constellation Diagram, in the Comm Sinks library

• On the Constellation Properties panel, set Samples per symbol to 16.
• Eye Diagram Scope, in the Comm Sinks library

• On the Plotting Properties panel, set Samples per symbol to 16.
• On the Figure Properties panel, set Scope position to figposition([42.5 55 35

35]);.

Connect the blocks as shown in the preceding figure. In the Simulate section, set Stop time to 250.
The Simulate section appears on multiple tabs. Running the model produces the following scatter
diagram plot.

The points of the scatter plot lie on a circle of radius 1. Note that the points fade as time passes. This
is because the box next to Color fading is checked under Rendering Properties, which causes the
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scope to render points more dimly the more time that passes after they are plotted. If you clear this
box, you see a full circle of points.

The Constellation Diagram block displays a circular trajectory.

In the eye diagram, the upper set of traces represents the real part of the signal and the lower set of
traces represents the imaginary part of the signal.

View a Modulated Signal
This multipart example creates an eye diagram, scatter plot, and signal trajectory plot for a
modulated signal. It examines the plots one by one in these sections:

• “Eye Diagram of a Modulated Signal” on page 9-16
• “Constellation Diagram of a Modulated Signal” on page 9-18
• “Signal Trajectory of a Modulated Signal” on page 9-19

Eye Diagram of a Modulated Signal

The following model modulates a random signal using QPSK, filters the signal with a raised cosine
filter, and creates an eye diagram from the filtered signal.

To open the model, enter doc_signaldisplays at the MATLAB command line. To build the model,
gather and configure the following blocks:
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• Random Integer Generator, in the Random Data Sources sublibrary of the Comm Sources library

• Set M-ary number to 4.
• Set Sample time to 0.01.

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of the Modulation library of
Communications Toolbox, with default parameters

• AWGN Channel, in the Channels library of Communications Toolbox, with the following changes to
the default parameter settings:

• Set Mode to Signal-to-noise ratio (SNR).
• Set SNR (dB) to 15.

• Raised Cosine Transmit Filter, in the Comm Filters library

• Set Filter shape to Normal.
• Set Rolloff factor to 0.5.
• Set Filter span in symbols to 6.
• Set Output samples per symbol to 8.
• Set Input processing to Elements as channels (sample based).

• Eye Diagram Scope, in the Comm Sinks library

• Set Samples per symbol to 8.
• Set Symbols per trace to 3. This specifies the number of symbols that are displayed in each

trace of the eye diagram. A trace is any one of the individual lines in the eye diagram.
• Set Traces displayed to 3.
• Set New traces per display to 1. This specifies the number of new traces that appear each

time the diagram is refreshed. The number of traces that remain in the diagram from one
refresh to the next is Traces displayed minus New traces per display.

• On the Rendering Properties panel, set Markers to + to indicate the points plotted at each
sample. The default value of Markers is empty, which indicates no marker.

• On the Figure Properties panel, set Eye diagram to display to In-phase only.

When you run the model, the Eye Diagram displays the following diagram. Your exact image varies
depending on when you pause or stop the simulation.

Three traces are displayed. Traces 2 and 3 are faded because Color fading under Rendering
Properties is selected. This causes traces to be displayed less brightly the older they are. In this

 Sources and Sinks

9-17



picture, Trace 1 is the most recent and Trace 3 is the oldest. Because New traces per display is set
to 1, only Trace 1 is appearing for the first time. Traces 2 and 3 also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and because Samples
per trace is set to 8, each symbol contains eight samples. Note that trace 1 contains 24 points, which
is the product of Symbols per trace and Samples per symbol. However, traces 2 and 3 contain 25
points each. The last point in trace 2, at the right border of the scope, represents the same sample as
the first point in trace 1, at the left border of the scope. Similarly, the last point in trace 3 represents
the same sample as the first point in trace 2. These duplicate points indicate where the traces would
meet if they were displayed side by side, as illustrated in the following picture.

You can view a more realistic eye diagram by changing the value of Traces displayed to 40 and
clearing the Markers field.

When the Offset parameter is set to 0, the plotting starts at the center of the first symbol, so that the
open part of the eye diagram is in the middle of the plot for most points.

Constellation Diagram of a Modulated Signal

The following model creates a scatter plot of the same signal considered in “Eye Diagram of a
Modulated Signal” on page 9-16.

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on page 9-16 but
replace the Eye Diagram block with the following block:
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• Constellation Diagram, in the Communications Toolbox/Comm Sinks library

• Set Samples per symbol to 2
• Set Offset to 0. This specifies the number of samples to skip before plotting the first point.
• Set Symbols to display to 40.

When you run the simulation, the Constellation Diagram block displays the following plot.

The plot displays 30 points. Because Color fading under Rendering Properties is selected, points
are displayed less brightly the older they are.

Signal Trajectory of a Modulated Signal

The following model creates a signal trajectory plot of the same signal considered in “Eye Diagram of
a Modulated Signal” on page 9-16.

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on page 9-16 but
replace the Eye Diagram block with the following block:

• Constellation Diagram , in the Communications Toolbox/Comm Sinks library

• Set Samples per symbol to 8.
• Set Symbols to display to 40. This specifies the number of symbols displayed in the signal

trajectory. The total number of points displayed is the product of Samples per symbol and
Symbols to display.

When you run the model, the Constellation Diagram displays a trajectory like the one below.
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The plot displays 40 symbols. Because Color fading under Rendering Properties is selected,
symbols are displayed less brightly the older they are.

See “Constellation Diagram of a Modulated Signal” on page 9-18 to compare the preceding signal
trajectory to the scatter plot of the same signal. The Constellation Diagram block connects the points
displayed by the Constellation Diagram block to display the signal trajectory.

If you increase Symbols to display to 100, the model produces a signal trajectory like the one below.
The total number of points displayed at any instant is 800, which is the product of the parameters
Samples per symbol and Symbols to display.

See Also
“Spreading Sequences” on page 9-21
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Spreading Sequences
Spreading consists of multiplying input data bits by a pseudorandom or pseudonoise (PN) sequence.
The ratio of the PN sequence bit rate to the data rate is called the spreading factor. When the PN
sequence has a bit rate higher than the data bit rate, the spreading factor is greater than 1. When the
spreading factor is greater than 1, spreading input data adds redundancy to the transmission signal.

Spreading input data by using spreading sequences with low cross-correlation properties enables the
receiver to resolve individual user data after despreading the received signal. Using spreading
sequences with low cross-correlation properties helps resolve individual user data in a multipath
environment in the presence of interference signals.

After signal synchronization on the receiver side, the received signal is multiplied by the same PN
that was used by the transmitter. This operation removes the spreading from the received signal.
Ideally, after this despreading, the signal for the user of interest is recovered with no further
contribution by the signals of interferers. In CDMA systems, each transmitter is assigned distinct
spreading codes that have low cross-correlation properties, such as the ideal orthogonal codes or any
one of the PN, Gold, or Kasami sequences.

Spread-spectrum communication systems spread the transmission signal over a wide frequency band,
typically much wider than the minimum bandwidth required to transmit the data. The spreading uses
a waveform that appears random to anyone except the intended receiver of the transmitted signal.
The waveform is actually pseudorandom in the sense that it can be generated by precise rules, yet
has the statistical properties of a truly random sequence.

The following sections highlight various spreading sequences, their properties, and characteristic
performance in single-user or multiuser and single-path or multipath transmission environments.

Orthogonal Spreading for Multiuser System in Single-Path Channel
This model compares data recovery for a single-user system versus a two-user system. Transmission
data passes through a single-path AWGN channel in two data streams that are independently spread
by different orthogonal codes.

The model uses random binary data, which is BPSK modulated (real), spread by orthogonal codes of
length 64, and then transmitted over an AWGN channel. The receiver consists of a despreader
followed by a BPSK demodulator.
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Using the same transmission data, the model calculates the BER performance for recovery of the
single-user and two-user transmissions through identically configured AWGN channels.

The bit error rate results are exactly the same for the individual users in both cases. The matching
error rates result from perfect despreading due to the ideal cross-correlation properties of the
orthogonal codes selected.

To experiment further, open the model. Modify the settings to see how the performance varies with
different Hadamard codes for the individual users.

Orthogonal Spreading for Single-User System in Multipath Channel
This model simulates orthogonal spreading for a single-user system in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently by using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by orthogonal codes of
length 64, and then transmitted over a multipath AWGN channel. The receiver consists of a
despreader, a diversity combiner, and a BPSK demodulator.
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The non-ideal, auto-correlation values of the chosen orthogonal spreading codes prevent perfect
resolution of the individual paths. As a consequence, BER performance is not improved by using
diversity combining in the receiver. For a multipath example that uses PN sequences when spreading
user data and uses diversity combining in the receiver, see “PN Spreading for Single-User System in
Multipath Channel” on page 9-23.

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different Hadamard codes.

PN Spreading for Single-User System in Multipath Channel
This model simulates pseudo-random spreading for a single-user system in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently by using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by PN sequences, and
then transmitted over a multipath AWGN channel. The receiver consists of a despreader, a diversity
combiner, and a BPSK demodulator. The receiver achieves gains from diversity combining due to the
ideal auto-correlation properties of the PN sequences used when spreading the data.
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To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or adjust the PN sequence generator parameters.

PN Spreading for Multiuser System in Multipath Channel
This model simulates pseudo-random spreading for two users in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by PN sequences, and
then transmitted over a multipath AWGN channel. The receiver consists of a despreader, a diversity
combiner, and a BPSK demodulator.

Using the same transmission data, the model calculates the performance for two-user transmissions
through identically configured, multipath AWGN channels.

Because the transmissions for the individual users were spread using different PN sequences, the
error rate computed for the users are different. Due to the higher cross-correlation properties of the
nonorthogonal PN sequences used to spread the data, BER performance is degraded in a multipath
environment. Sequences with high orthogonality, such as Hadamard and Kasami, are a better choice
for multipath environments. For a multipath example that uses Hadamard code sequences when
spreading user data, see “Orthogonal Spreading for Multiuser System in Single-Path Channel” on
page 9-21. For a multipath example that uses Kasami code sequences when spreading user data, see
“Kasami Spreading for Multiuser System in Multipath Channel” on page 9-25.
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To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different PN sequences for the individual users.

Benefits of Diversity Combining for Nonorthogonal Sequence
Spreading
For the “PN Spreading for Multiuser System in Multipath Channel” on page 9-24 example, the
individual user performance is degraded for the same channel conditions that were used in the “PN
Spreading for Single-User System in Multipath Channel” on page 9-23 example. This is primarily due
to the higher cross-correlation values between the two sequences, which prevent ideal separation.
However, there are still advantages to diversity combining when using nonorthogonal sequence
spreading, because the error rate for a multipath AWGN channel received using RAKE with diversity
combining is nearly as good as the AWGN-only case in the “Orthogonal Spreading for Multiuser
System in Single-Path Channel” on page 9-21 example.

Kasami Spreading for Multiuser System in Multipath Channel
This model simulates Kasami sequence spreading for two users in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by Kasami sequences,
and then transmitted over a multipath AWGN channel. The receiver consists of a despreader, a
diversity combiner, and a BPSK demodulator.
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Using the same transmission data, the model calculates the performance for two-user transmissions
through identically configured multipath AWGN channels.

The computed BER indicates transmission data spread using Kasami sequences exhibit low cross-
correlation. The Kasami sequences provide a balance between the ideal cross-correlation properties
of orthogonal codes and the ideal auto-correlation properties of PN sequences.

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different Kasami sequence generator settings for the individual users.

See Also
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Data and Signal Management

• “Matrices, Vectors, and Scalars” on page 10-2
• “Sample-Based and Frame-Based Processing” on page 10-4
• “Floating-Point and Fixed-Point Data Types” on page 10-5
• “Delays” on page 10-6
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Matrices, Vectors, and Scalars
Simulink supports matrix signals, one-dimensional arrays, sample-based processing, and frame-based
processing. This section describes how Communications Toolbox processes certain kinds of matrices
and signals.

This documentation uses the unqualified words scalar and vector in ways that emphasize a signal's
number of elements, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a one-dimensional array with one
element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The signal could be a one-
dimensional array, a matrix that has exactly one column, or a matrix that has exactly one row. The
number of elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish among different types of
scalar signals or different types of vector signals, this document mentions the distinctions explicitly.
For example, the terms one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns the matrix has.
The orientation of a two-dimensional vector is its status as either a row vector or column vector. A
one-dimensional array has no orientation – this is sometimes called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full matrix signal.

Processing Rules
The following rules indicate how the blocks in the Communications Toolbox process scalar, vector,
and matrix signals.

• In their numerical computations, blocks that process scalars do not distinguish between one-
dimensional scalars and one-by-one matrices. If the block produces a scalar output from a scalar
input, the block preserves dimension.

• For vector input signals:

• The numerical computations do not distinguish between one-dimensional arrays and M-by-1
matrices.

• Most blocks do not process row vectors and do not support multichannel functionality.
• The block output preserves dimension and orientation.
• The block treats elements of the input vector as a collection that arises naturally from the

block's operation (for example, a collection of symbols that jointly represent a codeword) or as
successive samples from a single time series.

• Most blocks do not process matrix signals that have more than one row and more than one
column. For blocks that do, a signal in the shape of an N-by-M matrix represents a series of N
successive samples from M channels. An Input processing parameter on the block determines
whether each element or column of the input signal is a channel.

• Some blocks, such as the digital baseband modulation blocks, can produce multiple output values
for each value of a scalar input signal. A Rate options parameter on the block determines if the
additional samples are output by increasing the rate of the output signal or by increasing the size
of the output signal.
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• Blocks that process continuous-time signals do not process frame-based inputs. Such blocks
include the analog phase-locked loop blocks.

To learn which blocks processes scalar signals, vector signals, or matrices, refer to each block's
individual Help page.
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Sample-Based and Frame-Based Processing
In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. For more information, see “Sample- and Frame-
Based Concepts”.

In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample of a distinct channel. For more information, see “What Is Sample-Based
Processing?”.
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Floating-Point and Fixed-Point Data Types
The inputs and outputs of the communications blocks support various data types. For some blocks,
changing to single outputs can lead to different results when compared with double outputs for the
same set of parameters. Some blocks may naturally output different data types than what they
receive (e.g. digital modulators) a signal. Refer to the individual block reference pages for details.

For more information, see “Floating-Point Numbers” (Fixed-Point Designer) and “Fixed-Point Signal
Processing”.

Access the Block Support Table
The Simulink Block Data Type Support for Communications Toolbox table provides details regarding
capabilities and limitations pertaining to code generation, variable-sizing, and supported data types
for all Communications Toolbox blocks. To access the table, type showcommblockdatatypetable at
the MATLAB command line.
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Delays
In this section...
“Section Overview” on page 10-6
“Sources of Delays” on page 10-6
“ADSL Example Model” on page 10-7
“Punctured Coding Model” on page 10-8
“Use the Find Delay Block” on page 10-10

Section Overview
Some models require you to know how long it takes for data in one portion of a model to influence a
signal in another portion of a model. For example, when configuring an error rate calculator, you
must indicate the delay between the transmitter and the receiver. If you miscalculate the delay, the
error rate calculator processes mismatched pairs of data and consequently returns a meaningless
result.

This section illustrates the computation of delays in multirate models and in models where the total
delay in a sequence of blocks comprises multiple delays from individual blocks. This section also
indicates how to use the Find Delay and Delay blocks to help deal with delays in a model.

Other References for Delays

Other parts of this documentation set also discuss delays. For information about dealing with delays
or about delays in specific types of blocks, see

• “Group Delay” on page 24-4
• Find Delay block reference page
• Delay block reference page
• Viterbi Decoder block reference page
• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see

• Example: A Rate 2/3 Feedforward Encoder. on page 16-44.
• Example: Soft-Decision Decoding on page 16-48. (See Delay in Received Data on page 16-51.)
• Example: Delays from Demodulation on page 16-147.

Sources of Delays
While some blocks can determine their current output value using only the current input value, other
blocks need input values from multiple time steps to compute the current output value. In the latter
situation, the block incurs a delay. An example of this case is when the Derepeat block must average
five samples from a scalar signal. The block must delay computing the average until it has received
all five samples.

In general, delays in your model might come from various sources:
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• Digital demodulators
• Convolutional interleavers or deinterleavers
• Equalizers
• Viterbi Decoder block
• Buffering, downsampling, derepeating, and similar signal operations
• Explicit delay blocks, such as Delay and Variable Integer Delay
• Filters

The following discussions include some of these sources of delay.

ADSL Example Model
This section examines the “256-Channel ADSL” on page 8-115 example and shows how to compute the
correct value for the Receive delay parameter in one of the Error Rate Calculation blocks in the
model. The model includes delays from convolutional interleaving and an explicit delay block.

In the ADSL example, data follows two parallel paths that lead to Error Rate Calculation blocks near
the end of each path. The first path has no interleaver and has a delay of zero. The second path has a
delay compared to the first path due to a convolutional interleaver and deinterleaver pair and a fixed
delay. The Receive delay parameter in the Error Rate Calculation block must reflect the delay of the
given path. The sections that follow make an observation about frame periods in the model, and then
consider delays for the interleaved data path.

Frame Periods in the Model

Before searching for individual delays, first observe that most signal lines throughout the model
share the same frame period. On the Debug tab, expand Information Overlays. In the Sample
Time section, select Colors to color blocks and signals according to their frame periods (or sample
periods, in the case of sample-based signals). All signal lines at the top level of the model are the
same color, which indicates they have the same frame period. Since there is a common frame period,
frames are a convenient unit for measuring delays in the blocks that process these signals. In the
computation of the cumulative delay along a path, the weighted average (of numbers of frames,
weighted by the period of each frame) reduces to a sum.

Path for Interleaved Data

In the transmitter portion of the model, the interleaved path is the lower branch, shown in yellow
below. Similarly, the interleaved path in the receiver portion of the model is the lower branch. The
Error Rate Calculation block, near the end of the interleaved path, computes the value labeled
Interleaved BER.
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This table summarizes the delays in the path for noninterleaved data. Subsequent sections explain
the delays in more detail and explain why the total delay relative to the Error Rate Calculation block
is one frame, or 776 samples.

Block Delay, in Output
Samples from
Individual Block

Delay, in Frames Delay, in Input
Samples to Error Rate
Calculation Block

Convolutional
Interleaver and
Convolutional
Deinterleaver pair

40 1 (combined) 776 (combined)

Delay 800
Total — 1 776

Interleaving

In the second path, the delay due to the Convolutional Interleaver block in the transmitter and the
Convolutional Deinterleaver block in the receiver is Rows of shift registers × Register length
step × (Rows of shift registers – 1). As configured, the delay due to the interleaver and
deinterleaver pair in the ADSL example is 5 × 2 × (5 – 1) = 40.

Delay Block

The receiver portion of the interleaved path also contains a Delay block. This block is set to insert a
delay of 800 samples. The Delay block has the same sample time as the interleaver and deinterleaver
blocks. Therefore, the total delay from interleaving, deinterleaving, and the explicit delay is 840
samples. These 840 samples make up one frame of data leaving the Delay block.

Summing the Delays

No other blocks in the interleaved path of the ADSL example cause any delays. Adding the delays
from the interleaver and deinterleaver pair and the Delay block indicates that the total delay in the
interleaved path is one frame.

Total Delay Relative to Error Rate Calculation Block

The Error Rate Calculation block that computes the value labeled Interleaved BER requires a
Receive delay parameter value that is equivalent to one frame. The Receive delay parameter is
measured in samples and each input frame to the Error Rate Calculation block contains 776 samples.
Also, the frame rate at the output ports of all delay-causing blocks in the interleaved path equals the
frame rate at the input of the Error Rate Calculation block. Therefore, the correct value for the
Receive delay parameter is 776 samples.

Punctured Coding Model
This section discusses a punctured coding model that includes delays from decoding, downsampling,
and filtering. Two Error Rate Calculation blocks in the model work correctly if and only if their
Receive delay parameters accurately reflect the delays in the model. To open the model, enter
doc_punct at the MATLAB command line.
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Frame Periods in the Model

Before searching for individual delays, if the Timing Legend pane is not already open, on the Debug
tab, expand Information Overlays. In the Sample Time section, select Legend. In the Timing
Legend pane >Highlight>All. Only the rightmost portion of the model differs in color from the rest
of the model. This means that all signals and blocks in the model except those in the rightmost edge
share the same frame period. Consequently, frames at this predominant frame rate are a convenient
unit for measuring delays in the blocks that process these signals. In the computation of the
cumulative delay along a path, the weighted average (of numbers of frames, weighted by each
frame's period) reduces to a sum.

The yellow blocks represent multirate systems, while the AWGN Channel block runs at a higher frame
rate than all the other blocks in the model.

Inner Error Rate Block

The block labeled Inner Error Rate, located near the center of the model, is a copy of the Error Rate
Calculation block from the Comm Sinks library. It computes the bit error rate for the portion of the
model that excludes the punctured convolutional code. In the portion of the model between this
block's two input signals, delays come from the Tx Filter and the Rx Filter. This section explains why
the Inner Error Rate block’s Receive delay parameter is the total delay on page 10-10 value of 16.

Tx Filter Block

The block labeled Tx Filter is a copy of the Raised Cosine Transmit Filter block. It interpolates the
input signal by a factor of 8 and applies a square-root raised cosine filter. For the filter, the value of
the Filter span in symbols parameter is 6, which means its group delay is 3 symbols. Since this
block’s sample rate increases from input port to output port, it must output an initial frame of zeros
at the beginning of the simulation. Since its input frame size is 2, the total delay of the block is 2 + 3
= 5 symbols. This corresponds to 5 samples at the block’s input port.
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Rx Filter Block

The block labeled Rx Filter is a copy of the Raised Cosine Receive Filter block. It decimates its input
signal by a factor of 8 and applies another square-root raised cosine filter. For the filter, the value of
the Filter span in symbols parameter is 6, which means its group delay is 3 symbols. At the output
of the filter block, the 3 symbols correspond to 3 samples.

QPSK Demodulator Block

The block labeled QPSK Demodulator Baseband receives complex QPSK signals and outputs 2 bits for
each complex input. This conversion to output bits doubles the cumulative delay at the input of the
block.

Summing the Delays

No other blocks in the portion of the model between the Inner Error Rate block's two input signals
cause any delays. The total delay is then (2 + 3 + 3) × 2 = 16 samples. This value can be used as the
Receive Delay parameter in the Inner Error Rate block.

Outer Error Rate Block

The block labeled Outer Error Rate, located at the left of the model, is a copy of the Error Rate
Calculation block from the Comm Sinks library. It computes the bit error rate for the entire model,
including the punctured convolutional code. Delays come from the Tx Filter, Rx Filter, and Viterbi
Decoder blocks. This section explains why the Receive delay parameter of the Outer Error Rate
block is the total delay on page 10-10 value of 108.

Filter and Downsample Blocks

The Tx Filter, Rx Filter, and Downsample blocks have a combined delay of 16 samples. For details, see
“Inner Error Rate Block” on page 10-9.

Viterbi Decoder Block

Because the Viterbi Decoder block decodes a rate 3/4 punctured code, it actually reduces the delay
seen at its input. This reduction is given as 16 × 3/4 = 12 samples.

The Viterbi Decoder block decodes the convolutional code, and the algorithm’s use of a traceback
path causes a delay. The block processes a frame-based signal and has Operation mode set to
Continuous. Therefore, the delay, measured in output samples, is equal to the Traceback depth
parameter value of 96. (The delay amount is stated on the reference page for the Viterbi Decoder
block.) Because the output of the Viterbi Decoder block is precisely one of the inputs to the Outer
Error Rate block, it is easier to consider the delay to be 96 samples rather than to convert it to an
equivalent number of frames.

Total Delay Relative to Outer Error Rate Block

The Outer Error Rate block requires a Receive delay parameter value that is the sum of all delays in
the system. This total delay is 12 + 96 = 108 samples.

Use the Find Delay Block
The preceding discussions explained why certain Error Rate Calculation blocks in the models had
specific Receive delay parameter values. You could have arrived at those numbers independently by
using the Find Delay block. This section explains how to find the signal delay using the ADSL example
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model, commadsl, as an example. Applying the technique to the punctured convolutional coding
example, discussed in “Punctured Coding Model” on page 10-8, would be similar.

Using the Find Delay Block to Determine the Correct Receive Delay

Recall from “Path for Interleaved Data” on page 10-7 that the delay in the path for interleaved data is
776 samples. To have the Find Delay block compute that value for you, use this procedure:

1 Insert a Find Delay block and a Display block in the model near the Error Rate Calculation block
that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

3 Set the Find Delay block's Correlation window length parameter to a value substantially larger
than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else the values produced by
the Find Delay block do not stabilize at a correct value.

4 Run the simulation.

The new Display block now shows the value 776, as expected.

Manipulate Delays

• “Delays and Alignment Problems” on page 10-11
• “Observing the Problem” on page 10-12
• “Aligning Words of a Block Code” on page 10-14
• “Aligning Words for Interleaving” on page 10-15
• “Aligning Words of a Concatenated Code” on page 10-17
• “Aligning Words for Nonlinear Digital Demodulation” on page 10-19

Delays and Alignment Problems

Some models require you not only to compute delays but to manipulate them. For example, if a model
incurs a delay between a block encoder and its corresponding decoder, the decoder might
misinterpret the boundaries between the codewords that it receives and, consequently, return
meaningless results. More generally, such a situation can arise when the path between paired
components of a block-oriented operation (such as interleaving, block coding, or bit-to-integer
conversions) includes a delay-causing operation (such as those listed in “Sources of Delays” on page
10-6).

To avoid this problem, you can insert an additional delay of an appropriate amount between the
encoder and decoder. If the model also computes an error rate, then the additional delay affects that
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process, as described in “Delays” on page 10-6. This section uses examples to illustrate the purpose,
methods, and implications of manipulating delays in a variety of circumstances.

This section illustrates the sensitivity of block-oriented operations to delays, using a small model that
aims to capture the essence of the problem in a simple form. Open the model by entering
doc_alignment at the MATLAB command line. Then run the simulation so that the Display blocks
show relevant values.

In this model, two coding blocks create and decode a block code. Two copies of the Delay block
create a delay between the encoder and decoder. The two Delay blocks have different purposes in this
illustrative model:

• The Inherent Delay block represents any delay-causing blocks that might occur in a model
between the encoder and decoder. See “Sources of Delays” on page 10-6 for a list of possibilities
that might occur in a more realistic model.

• The Added Delay block is an explicit delay that you insert to produce an appropriate amount of
total delay between the encoder and decoder. For example, the commadsl model contains a Delay
block that serves this purpose.

Observing the Problem

By default, the Delay parameters in the Inherent Delay and Added Delay blocks are set to 1 and 0,
respectively. This represents the situation in which some operation causes a one-bit delay between
the encoder and decoder, but you have not yet tried to compensate for it. The total delay between the
encoder and decoder is one bit. You can see from the blocks labeled Word and Delayed Word that the
codeword that leaves the encoder is shifted downward by one bit by the time it enters the decoder.
The decoder receives a signal in which the boundary of the codeword is at the second bit in the
frame, instead of coinciding with the beginning of the frame. That is, the codewords and the frames
that hold them are not aligned with each other.

This nonalignment is problematic because the Hamming Decoder block assumes that each frame
begins a new codeword. As a result, it tries to decode a word that consists of the last bit of one output
frame from the encoder followed by the first six bits of the next output frame from the encoder. You
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can see from the Error Rate Display block that the error rate from this decoding operation is close to
1/2. That is, the decoder rarely recovers the original message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving each period symbol
from the end of the sentence to the end of the first word of the next sentence. If you try to read such
a paragraph while assuming that a new sentence begins after a period, you misunderstand the start
and end of each sentence. As a result, you might fail to understand the meaning of the paragraph.

To see how delays of different amounts affect the decoder's performance, vary the values of the Delay
parameter in the Added Delay block and the Receive delay parameter in the Error Rate Calculation
block and then run the simulation again. Many combinations of parameter values produce error rates
that are close to 1/2. Furthermore, if you examine the transmitted and received data by entering

[tx rx]

at the MATLAB command line, you might not detect any correlation between the transmitted and
received data.

Correcting the Delays

Some combinations of parameter values produce error rates of zero because the delays are
appropriate for the system. For example:

• In the Added Delay block, set Delay to 6.
• In the Error Rate Calculation block, set Receive delay to 4.
• Run the simulation.
• Enter [tx rx] at the MATLAB command line.

The top number in the Error Rate Display block shows that the error rate is zero. The decoder
recovered each transmitted message correctly. However, the Word and Displayed Word blocks do not
show matching values. It is not immediately clear how the encoder's output and the decoder's input
are related to each other. To clarify the matter, examine the output in the MATLAB command window.
The sequence along the first column (tx) appears in the second column (rx) four rows later. To
confirm this, enter

isequal(tx(1:end-4),rx(5:end))

at the MATLAB command line and observe that the result is 1 (true). This last command tests
whether the first column matches a shifted version of the second column. Shifting the MATLAB vector
rx by four rows corresponds to the Error Rate Calculation block's behavior when its Receive delay
parameter is set to 4.

To summarize, these special values of the Delay and Receive delay parameters work for these
reasons:

• Combined, the Inherent Delay and Added Delay blocks delay the encoded signal by a full
codeword rather than by a partial codeword. Thus the decoder is correct in its assumption that a
codeword boundary falls at the beginning of an input frame and decodes the words correctly.
However, the delay in the encoded signal causes each recovered message to appear one word
later, that is, four bits later.

• The Error Rate Calculation block compensates for the one-word delay in the system by comparing
each word of the transmitted signal with the data four bits later in the received signal. In this way,
it correctly concludes that the decoder's error rate is zero.
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Note These are not the only parameter values that produce error rates of zero. Because the code
in this model is a (7, 4) block code and the inherent delay value is 1, you can set the Delay and
Receive delay parameters to 7k-1 and 4k, respectively, for any positive integer k. It is important
that the sum of the inherent delay (1) and the added delay (7k-1) is a multiple of the codeword
length (7).

Aligning Words of a Block Code

The ADSL example, discussed in “ADSL Example Model” on page 10-7, illustrates the need to
manipulate the delay in a model so that each frame of data that enters a block decoder has a
codeword boundary at the beginning of the frame. The need arises because the path between a block
encoder and block decoder includes a delay-causing convolutional interleaving operation. This section
explains why the model uses a Delay block to manipulate the delay between the convolutional
deinterleaver and the block decoder, and why the Delay block is configured as it is. To open the ADSL
example model, enter commadsl at the MATLAB command line.

Misalignment of Codewords

In the ADSL example, the Convolutional Interleaver and Convolutional Deinterleaver blocks appear
after the Scrambler & FEC subsystems but before the Descrambler & FEC subsystems. These two
subsystems contain blocks that perform Reed-Solomon coding, and the coding blocks expect each
frame of input data to start on a new word rather than in the middle of a word.

As discussed in “Path for Interleaved Data” on page 10-7, the delay of the interleaver and
deinterleaver pair is 40 samples. However, the input to the Descrambler & FEC subsystem is a frame
of size 840, and 40 is not a multiple of 840. Consequently, the signal that exits the Convolutional
Deinterleaver block is a frame whose first entry does not represent the beginning of a new codeword.
As described in “Observing the Problem” on page 10-12, this misalignment, between codewords and
the frames that contain them, prevents the decoder from decoding correctly.

Inserting a Delay to Correct the Alignment

The ADSL example solves the problem by moving the word boundary from the 41st sample of the 840-
sample frame to the first sample of a successive frame. Moving the word boundary is equivalent to
delaying the signal. To this end, the example contains a Delay block between the Convolutional
Deinterleaver block and the Descrambler & FEC subsystem.

The Delay parameter in the Delay block is 800 because that is the minimum number of samples
required to shift the 41st sample of one 840-sample frame to the first sample of the next 840-sample
frame. In other words, the sum of the inherent 40-sample delay (from the interleaving/deinterleaving
process) and the artificial 800-sample delay is a full frame of data, not a partial frame.

This 800-sample delay has implications for other parts of the model, specifically, the Receive delay
parameter in one of the Error Rate Calculation blocks. For details about how the delay influences the
value of that parameter, see “Path for Interleaved Data” on page 10-7.

Using the Find Delay Block

The preceding discussion explained why an 800-sample delay is necessary to correct the
misalignment between codewords and the frames that contain them. Knowing that the Descrambler
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& FEC subsystem requires frame boundaries to occur on word boundaries, you could have arrived at
the number 800 independently by using the Find Delay block. Use this procedure:

1 Insert a Find Delay block and a Display block in the model.
2 Create a branch line that connects the input of the Convolutional Interleaver block to the sRef

input of the Find Delay block.
3 Create another branch line that connects the output of the Convolutional Deinterleaver block to

the sDel input of the Find Delay block.
4 Connect the delay output of the Find Delay block to the new Display block. The modified part of

the model now looks like the following image (which also shows drop shadows on key blocks to
emphasize the modifications).

5 Show the dimensions of each signal in the model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

6 Run the simulation.

The new Display block now shows the value 40. Also, the display of signal dimensions shows that the
output from the Convolutional Deinterleaver block is a frame of length 840. These results indicate
that the sequence of blocks between the Convolutional Interleaver and Convolutional Deinterleaver,
inclusive, delays an 840-sample frame by 40 samples. An additional delay of 800 samples brings the
total delay to 840. Because the total delay is now a multiple of the frame length, the delayed
deinterleaved data can be decoded.

Aligning Words for Interleaving

This section describes an example that manipulates the delay before a deinterleaver, because the
path between the interleaver and deinterleaver includes a delay from demodulation. To open the
model, enter doc_gmskint at the MATLAB command line.
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The model includes block coding, helical interleaving, and GMSK modulation. The table below
summarizes the individual block delays in the model.

Block Delay, in Output Samples
from Individual Block

Reference

GMSK Demodulator Baseband 16 “Delays in Digital Modulation”
on page 16-146

Helical Deinterleaver 42 “Delays of Convolutional
Interleavers” on page 16-121

Delay 5 Delay reference page

Misalignment of Interleaved Words

The demodulation process in this model causes a delay between the interleaver and deinterleaver.
Because the deinterleaver expects each frame of input data to start on a new word, it is important to
ensure that the total delay between the interleaver and deinterleaver includes one or more full
frames but no partial frames.

The delay of the demodulator is 16 output samples. However, the input to the Helical Deinterleaver
block is a frame of size 21, and 16 is not a multiple of 21. Consequently, the signal that exits the
GMSK Demodulator Baseband block is a frame whose first entry does not represent the beginning of
a new word. As described in “Observing the Problem” on page 10-12, this misalignment between
words and the frames that contain them hinders the deinterleaver.

Inserting a Delay to Correct the Alignment

The model moves the word boundary from the 17th sample of the 21-sample frame to the first sample
of the next frame. Moving the word boundary is equivalent to delaying the signal by five samples. The
Delay block between the GMSK Demodulator Baseband block and the Helical Deinterleaver block
accomplishes such a delay. The Delay block has its Delay parameter set to 5.

Combining the effects of the demodulator and the Delay block, the total delay between the interleaver
and deinterleaver is a full 21-sample frame of data, not a partial frame.
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Checking Alignment of Block Codewords

The interleaver and deinterleaver cause a combined delay of 42 samples measured at the output from
the Helical Deinterleaver block. Because the delayed output from the deinterleaver goes next to a
Reed-Solomon decoder, and because the decoder expects each frame of input data to start on a new
word, it is important to ensure that the total delay between the encoder and decoder includes one or
more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not necessary to insert a Delay
block between the Helical Deinterleaver block and the Binary-Output RS Decoder block.

Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Channel Error Rate and System Error
Rate. Each of these blocks has a Receive delay parameter that must reflect the delay of the path
between the block's Tx and Rx signals. The following table explains the Receive delay values in the
two blocks.

Block Receive Delay Value Reason
Channel Error Rate 16 Delay of GMSK Demodulator Baseband block, in

samples
System Error Rate 15*3 Three fifteen-sample frames: one frame from the

GMSK Demodulator Baseband and Delay blocks,
and two frames from the interleaver and
deinterleaver pair

Aligning Words of a Concatenated Code

This section describes an example that manipulates the delay between the two portions of a
concatenated code decoder, because the first portion includes a delay from Viterbi decoding while the
second portion expects frame boundaries to coincide with word boundaries. To open the model, enter
doc_concat at the MATLAB command line. It uses the block and convolutional codes from the
commdvbt example, but simplifies the overall design a great deal.
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The model includes a shortened block code and a punctured convolutional code. All signals and
blocks in the model share the same frame period. The following table summarizes the individual block
delays in the model.

Block Delay, in Output Samples from Individual Block
Viterbi Decoder 136
Delay 1496 (that is, 1632 - 136)

Misalignment of Block Codewords

The Viterbi decoding process in this model causes a delay between the Integer to Bit Converter block
and the Bit to Integer Converter block. Because the latter block expects each frame of input data to
start on a new 8-bit word, it is important to ensure that the total delay between the two converter
blocks includes one or more full frames but no partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However, the input to the Bit to Integer
Converter block is a frame of size 1632. Consequently, the signal that exits the Viterbi Decoder block
is a frame whose first entry does not represent the beginning of a new word. As described in
“Observing the Problem” on page 10-12, this misalignment between words and the frames that
contain them hinders the converter block.

Note The outer decoder in this model (Integer-Output RS Decoder) also expects each frame of input
data to start on a new codeword. Therefore, the misalignment issue in this model affects many
concatenated code designs, not just those that convert between binary-valued and integer-valued
signals.

Inserting a Delay to Correct the Alignment
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The model moves the word boundary from the 137th sample of the 1632-sample frame to the first
sample of the next frame. Moving the word boundary is equivalent to delaying the signal by 1632-136
samples. The Delay block between the Viterbi Decoder block and the Bit to Integer Converter block
accomplishes such a delay. The Delay block has its Delay parameter set to 1496.

Combining the effects of the Viterbi Decoder block and the Delay block, the total delay between the
interleaver and deinterleaver is a full 1632-sample frame of data, not a partial frame.

Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Inner Error Rate and Outer Error
Rate. Each of these blocks has a Receive delay parameter that must reflect the delay of the path
between the block's Tx and Rx signals. The table below explains the Receive delay values in the two
blocks.

Block Receive Delay Value Reason
Inner Error Rate 136 Delay of Viterbi Decoder block, in samples
Outer Error Rate 1504 (188*8 bits) One 188-sample frame, from the combination of

the inherent delay of the Viterbi Decoder block
and the added delay of the Delay block

Aligning Words for Nonlinear Digital Demodulation

This example manipulates delay in order obtain the correct symbol synchronization of a signal so that
symbol boundaries correctly align before demodulation occurs.

To open this model, type doc_nonlinear_digital_demod at the MATLAB command line.

This model includes a CPFSK modulation scheme and pulse shaping filter. For the demodulation to
work properly, the input signal to the CPFSK demodulator block must have the correct alignment.
Various blocks in this model introduce processing delays. Because of these delays, the input signal to
the CPFSK demodulator block is not in the correct alignment.
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Both the Raised Cosine Transmit and Receive Filter blocks introduce a delay. The delay is defined as:
GroupDelay ⋅ Ts

where Ts represents the input sample time of the Raised Cosine Transmit Filter block.

The input sample time of the Raised Cosine Transmit Filter block equals the output sample time of
the Raised Cosine Receive Filter block. Therefore, the total delay at the output of the Raised Cosine
Receive Filter is:

2 ⋅ GroupDelay ⋅ Ts

or 8 ⋅ Ts

as GroupDelay = 4

The CPFSK demodulator block receives this delayed signal, and then it processes each collection of 8
samples per symbol to compute 1 output symbol. You must ensure that the CPFSK demodulator
receives input samples in the correct collection of samples. For binary CPFSK with a Modulation
index of 1/2, the demodulator input must align along even numbers of symbols. Note that this
requirement applies only to binary CPFSK with a modulation index of 1/2. Other CPM schemes with
different M-ary values and modulation indexes have different requirements.

To ensure that the CPFSK demodulator in this model receives the correct collection of input samples
with the correct alignment, introduce a delay of 8 samples (in this example, 8 ⋅ Ts). The total delay at
the input of the CPFSK demodulator is 16 ⋅ Ts, which equates to two symbol delays (2.T, where T is
the symbol period).

In sample-based mode, the CPFSK demodulator introduces a delay of Traceback length + 1 samples
at its output. In this example, Traceback length equals 16. Therefore, the total Receiver delay in
the Error rate calculation block equals 17+2 or 19. For more information, see “Delays in Digital
Modulation” on page 16-146.
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Phase Modulation
Phase modulation is a linear baseband modulation technique in which the message modulates the
phase of a constant amplitude signal. Communications Toolbox provides modulators and
demodulators for these phase modulation techniques:

• Phase shift keying (PSK) — Binary, quadrature, and general PSK
• Differential phase shift keying (DPSK) — Binary, quadrature, and general DPSK
• Offset QPSK (OQPSK)

To modulate input data with these techniques, you can use MATLAB functions, System objects, or
Simulink blocks.

Modulat
ion
Scheme

MATLAB functions System objects Simulink blocks

Binary
PSK
(BPSK)

 • comm.BPSKModulator
• comm.BPSKDemodulator

• BPSK Modulator
Baseband

• BPSK Demodulator
Baseband

Quadrat
ure PSK
(QPSK)

 • comm.QPSKModulator
• comm.QPSKDemodulator

• QPSK Modulator
Baseband

• QPSK Demodulator
Baseband

General
PSK

• pskmod
• pskdemod

• comm.PSKModulator
• comm.PSKDemodulator

• M-PSK Modulator
Baseband

• M-PSK Demodulator
Baseband
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Modulat
ion
Scheme

MATLAB functions System objects Simulink blocks

Different
ial BPSK
(DBPSK)

 • comm.DBPSKModulator
• comm.DBPSKDemodulato

r

• DBPSK Modulator
Baseband

• DBPSK Demodulator
Baseband

Different
ial QPSK
(DQPSK)

 • comm.DQPSKModulator
• comm.DQPSKDemodulato

r

• DQPSK Modulator
Baseband

• DQPSK Demodulator
Baseband

General
DPSK

• dpskmod
• dpskdemod

• comm.DPSKModulator
• comm.DPSKDemodulator

• M-DPSK Modulator
Baseband

• M-DPSK Demodulator
Baseband

OQPSK  • comm.OQPSKModulator
• comm.OQPSKDemodulato

r

• OQPSK Modulator
Baseband

• OQPSK Demodulator
Baseband

Baseband and Passband Simulation
Communications Toolbox supports baseband and passband simulation methods; however, the phase
shift keying techniques support baseband simulation only.

A general passband waveform can be represented as

Y1(t) 2cos(2πfct + θ)− Y2(t) 2sin(2πfct + θ) ,

where fc is the carrier frequency and θ is the initial phase of the carrier signal. This equation is equal
to the real part of

[(Y1(t) + jY2(t))e jθ]exp( j2πfct) .

In a baseband simulation, only the expression within the square brackets is modeled. The vector y is a
sampling of the complex signal

(Y1(t) + jY2(t))e jθ .

BPSK
In binary phase shift keying (BPSK), the phase of a constant amplitude signal switches between two
values corresponding to binary 1 and binary 0. The passband waveform of a BPSK signal is

sn(t) =
2Eb
Tb

cos 2πfct + ϕn ,

where:
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• Eb is the energy per bit.
• Tb is the bit duration.
• fc is the carrier frequency.

In MATLAB, the baseband representation of a BPSK signal is

sn(t) = e−iϕn = cos πn .

The BPSK signal has two phases: 0 and π.

The probability of a bit error in an AWGN channel is

Pb = Q
2Eb
N0

,

where N0 is the noise power spectral density.
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QPSK
In quadrature phase shift keying, the message bits are grouped into 2-bit symbols, which are
transmitted as one of four phases of a constant amplitude baseband signal. This grouping provides a
bandwidth efficiency that is twice as great as the efficiency of BPSK. The general QPSK signal is
expressed as

sn(t) =
2Es
Ts

cos 2πfct + (2n + 1)π
4 ; n ∈ 0, 1, 2, 3 ,

where Es is the energy per symbol and Ts is the symbol duration. The complex baseband
representation of a QPSK signal is

sn(t) = exp jπ 2n + 1
4 ; n ∈ 0, 1, 2, 3 .

In this QPSK constellation diagram, each 2-bit sequence is mapped to one of four possible states. The
states correspond to phases of π/4, 3π/4, 5π/4, and 7π/4.

To improve bit error rate performance, the incoming bits can be mapped to a Gray-coded ordering.
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Binary-to-Gray Mapping

Binary Sequence Gray-coded Sequence
00 00
01 01
10 11
11 10

The primary advantage of the Gray code is that only one of the two bits changes when moving
between adjacent constellation points. Gray codes can be applied to higher-order modulations, as
shown in this Gray-coded QPSK constellation.

The bit error probability for QPSK in AWGN with Gray coding is

Pb = Q
2Eb
N0

,
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which is the same as the expression for BPSK. As a result, QPSK provides the same performance with
twice the bandwidth efficiency.

Higher-Order PSK
In MATLAB, you can modulate and demodulate higher-order PSK constellations. The complex
baseband form for an M-ary PSK signal using natural binary-ordered symbol mapping is

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

This 8-PSK constellation uses Gray-coded symbol mapping.

For modulation orders beyond 4, the bit error rate performance of PSK in AWGN worsens. In the
following figure, the QPSK and BPSK curves overlap one another.
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DPSK
DPSK is a noncoherent form of phase shift keying that does not require a coherent reference signal at
the receiver. With DPSK, the difference between successive input symbols is mapped to a specific
phase. As an example, for binary DPSK (DBPSK), the modulation scheme operates such that the
difference between successive bits is mapped to a binary 0 or 1. When the input bit is 1, the
differentially encoded symbol remains the same as the previous symbol, while an incoming 0 toggles
the output symbol.

The disadvantage of DPSK is that it is approximately 3 dB less energy efficient than coherent PSK.
The bit error probability for DBPSK in AWGN is Pb = 1/2 exp(Eb/N0).

OQPSK
Offset QPSK is similar to QPSK except that the time alignment of the in-phase and quadrature bit
streams differs. In QPSK, the in-phase and quadrature bit streams transition at the same time. In
OQPSK, the transitions have an offset of a half-symbol period as shown.
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The in-phase and quadrature signals transition only on boundaries between symbols. These
transitions occur at 1-second intervals because the sample rate is 1 Hz. The following figure shows
the in-phase and quadrature signals for an OQPSK signal.

 Phase Modulation

11-9



For OQPSK, the quadrature signal has a 1/2 symbol period offset (0.5 s).

The BER for an OQPSK signal in AWGN is identical to that of a QPSK signal. The BER is

Pb = Q
2Eb
N0

,

where Eb is the energy per bit and N0 is the noise power spectral density.

Soft-Decision Demodulation
All Communications Toolbox demodulator functions, System objects and blocks can demodulate
binary data using either hard decisions or soft decisions. Two soft-decision algorithms are available:
exact log-likelihood ratio (LLR) and approximate LLR. Exact LLR provides the greatest accuracy but
is slower, while approximate LLR is less accurate but more efficient.

Exact LLR Algorithm

The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being transmitted
versus a 1 bit being transmitted for a received signal. The LLR for a bit, b, is defined as:
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L(b) = log Pr(b = 0 r = (x, y))
Pr(b = 1 r = (x, y))

Assuming equal probability for all symbols, the LLR for an AWGN channel can be expressed as:

L(b) = log
∑

s ∈ S0
e−

1
σ2 (x− sx)2 + (y − sy)2

∑
s ∈ S1

e−
1

σ2 (x− sx)2 + (y − sy)2

Variable Description
r Received signal with coordinates (x, y)
b Transmitted bit (one of the K bits in an M-ary symbol, assuming all M symbols

are equally probable)
S0 Ideal symbols or constellation points with bit 0, at the given bit position
S1 Ideal symbols or constellation points with bit 1, at the given bit position
sx In-phase coordinate of ideal symbol or constellation point
sy Quadrature coordinate of ideal symbol or constellation point

σ2 Noise variance of baseband signal

σx
2 Noise variance along in-phase axis

σy
2 Noise variance along quadrature axis

Note Noise components along the in-phase and quadrature axes are assumed to be independent and
of equal power, that is, σx

2 = σy
2 = σ2/2.

Approximate LLR Algorithm

Approximate LLR is computed by using only the nearest constellation point to the received signal
with a 0 (or 1) at that bit position, rather than all the constellation points as done in exact LLR. It is
defined in [2] as:

L(b) = − 1
σ2 min

s ∈ S0
(x− sx)2 +  (y − sy)2 − min

s ∈ S1
(x− sx)2 +  (y − sy)2
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See Also

Related Examples
• “Estimate BER of QPSK in AWGN with Reed-Solomon Coding” on page 19-13
• “Gray-Coded Binary Ordering” on page 17-11
• “Log-Likelihood Ratio (LLR) Demodulation” on page 8-69
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Various User Guide Topic Examples

• “Create a Standalone GSM Waveform Explorer Application with MATLAB Compiler”
on page 12-2

• “GSM TDMA Frame Parameterization for Waveform Generation” on page 12-5
• “Compensate for Frequency Offset Using Coarse and Fine Compensation” on page 12-21
• “Correct Symbol Timing and Doppler Offsets” on page 12-24
• “Random Noise Generators in Simulink” on page 12-29
• “Visualize Effects of Frequency-Selective Fading” on page 12-32
• “Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization”

on page 12-47
• “Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset” on page 12-51
• “Modulate and Demodulate 8-PSK Signal” on page 12-55
• “Binary to Gray Conversion in Simulink” on page 12-57
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Create a Standalone GSM Waveform Explorer Application with
MATLAB Compiler

This example shows how to use MATLAB Compiler™ to create a standalone application from the
custom MATLAB™ app, GSMWaveformExplorer, which was created by using App Designer. By
installing “MATLAB Runtime” (MATLAB Compiler) you can run standalone applications on systems
that do not have MATLAB installed. For more information, see “Create and Run a Simple App Using
App Designer”.

MATLAB Simulation

Open the GSMWaveformExplorer app in MATLAB by entering:

GSMWaveformExplorer

The GSMWaveformExplorer app allows you to explore GSM TDMA frame configurations by using
the gsmUplinkConfig and gsmDownlinkConfig objects and the gsmFrame function. You can select
the Link direction as Uplink or Downlink. In the Timeslot tab, you can adjust the burst type and
attenuation of individual timeslots. In the Waveform tab, you can adjust the samples per symbol and
burst shape. Select View to visualize the time domain and spectrogram plots of the waveform.
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Compile the MATLAB Function into a Standalone Application

Compile GSMWaveformExplorer into a standalone application by using the mcc (MATLAB Compiler)
function and specifying the '-m' option. This step takes a few minutes to complete. The first message
shown below appears only if your have a network installation and the second message appears only if
you are running MATLAB Compiler with a demo license.

mcc('-m','GSMWaveformExplorer');

Disregard cmd.exe warnings about UNC directory pathnames.
DEMO Compiler license.  
  The generated application will expire 30 days from today,  
  on Fri Jul 10 15:13:33 2020. 

You can also use the interactive applicationCompiler (MATLAB Compiler) app to generate the
standalone application.

Run the Standalone Application

Before deploying the standalone app, you can test it on a machine that has MATLAB installed by
running commands in the MATLAB Command Window. You can run the standalone
GSMWaveformExplorer app on a machine that has MATLAB installed by using the system
command.

• If you are running in the Windows or Linux operating system, type:

status = system(fullfile(pwd,'GSMWaveformExplorer'));
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• If you are running in the Mac operating system, type:

status =
system(fullfile('GSMWaveformExplorer.app','Contents','MacOS','GSMWaveformExpl
orer'));

Running the standalone application with the system command uses the MATLAB environment and
any library files needed from this installation of MATLAB. As with running the app in MATLAB,
running the standalone version of the GSMWaveformExplorer app opens an GSM Waveform
Explorer window that allows you to adjust the GSM TDMA frame configurations and view the
waveform.

To deploy this application on a machine that does not have MATLAB installed, see “MATLAB
Runtime” (MATLAB Compiler).
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GSM TDMA Frame Parameterization for Waveform Generation
This example shows how to parameterize and generate different GSM TDMA frames and multiframe
structures.

Introduction

The GSM standard [1 on page 12-0 ] specifies a TDMA frame as a combination of 8 time slots. Each
time slot has a duration of 3/5200 seconds (about 0.577 ms) and a time slot number (TN) from 0 to 7.
GSM frames use GMSK modulation, where one symbol is equivalent to one bit. Each time slot is
156.25 bits long. The content of a time slot is called a burst. The transmission timing of a burst within
a time slot is defined in terms of the bit number. The bit number (BN) refers to a particular bit period
within a time slot. The bit with the lowest bit number is transmitted first. BN0 is the first bit period
and BN156 is the last quarter-bit period. This figure shows time frames, time slots, and bursts for a
GSM system [1 on page 12-0 ].

A TDMA contains eight time slots with each timeslot separated by a guard period. Each time slot can
carry only one type of burst. Available burst type are: normal burst (NB), frequency correction burst
(FB), synchronization burst (SB), access burst (AB), or dummy burst [2 on page 12-0 ]. The different
burst types and the guard period are described in these next sections.
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Normal Burst (NB)

The normal burst consists of these bit fields and can appear in uplink or downlink frames. All tail bits
are zero. Based on the specified training sequence code (TSC), the training sequence field contains
one of eight possible training sequences.

normalBurstDescription()

ans=6×3 table
     BitNumber     LengthOfField        ContentsOfField     
    ___________    _____________    ________________________

    "0 - 2"         {[     3]}      "tail bits"             
    "3 - 60"        {[    58]}      "encrypted bits"        
    "61 - 86"       {[    26]}      "training sequence bits"
    "87 - 144"      {[    58]}      "encrypted bits"        
    "145 - 147"     {[     3]}      "tail bits"             
    "148 - 156"     {[8.2500]}      "guard period (bits)"   

Access Burst (AB)

The access burst consists of these bit fields and can appear in uplink frames only. All tail bits are zero.

accessBurstDescription()

ans=5×3 table
    BitNumber     LengthOfField       ContentsOfField    
    __________    _____________    ______________________

    "0 - 7"        {[      8]}     "extended tail bits"  
    "8 - 48"       {[     41]}     "synch. sequence bits"
    "49 - 84"      {[     36]}     "encrypted bits"      
    "85 - 87"      {[      3]}     "tail bits"           
    "88 - 156"     {[68.2500]}     "guard period (bits)" 

Frequency Correction Burst (FB)

The frequency correction burst consists of these bit fields and can appear in downlink frames only. All
tail bits and fixed bits are zero. Modulating all zeros with the GMSK modulator results in a constant
phase rotation of -90 degrees for each symbol duration. Therefore, this burst generates an
unmodulated carrier with a positive frequency offset of 1625/24 kHz.

frequencyCorrectionBurstDescription()

ans=4×3 table
     BitNumber     LengthOfField       ContentsOfField   
    ___________    _____________    _____________________

    "0 - 2"         {[     3]}      "tail bits"          
    "3 - 144"       {[   142]}      "fixed bits"         
    "145 - 147"     {[     3]}      "tail bits"          
    "148 - 156"     {[8.2500]}      "guard period (bits)"
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Synchronization Burst (SB)

The synchronization burst consists of these bit fields and can appear in downlink frames only. All tail
bits are zero.

synchronizationBurstDescription()

ans=6×3 table
     BitNumber     LengthOfField             ContentsOfField         
    ___________    _____________    _________________________________

    "0 - 2"         {[     3]}      "tail bits"                      
    "3 - 41"        {[    39]}      "encrypted bits"                 
    "42 - 105"      {[    64]}      "extended training sequence bits"
    "106 - 144"     {[    39]}      "encrypted bits"                 
    "145 - 147"     {[     3]}      "tail bits"                      
    "148 - 156"     {[8.2500]}      "guard period (bits)"            

Dummy Burst

The dummy burst burst consists of these bit fields and can appear in downlink frames only. All tail
bits are zero. Mixed bits contain a predetermined sequence of ones and zeros.

dummyBurstDescription()

ans=4×3 table
     BitNumber     LengthOfField       ContentsOfField   
    ___________    _____________    _____________________

    "0 - 2"         {[     3]}      "tail bits"          
    "3 - 144"       {[   142]}      "mixed bits"         
    "145 - 147"     {[     3]}      "tail bits"          
    "148 - 156"     {[8.2500]}      "guard period (bits)"

Guard Period

The GSM standard, [3 on page 12-0 ], requires mobile stations to attenuate their transmission
during the period between bursts. The ramp-up and ramp-down of the signal power level occurs
during the guard periods. The useful part of a burst starts half way through the bit number 0. The
useful part ends halfway through BN87 for ABs and BN147 for NBs, FBs, SBs,and dummy bursts.
This figure shows the useful and active parts of a burst.
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Generate Single Uplink Frame

Configure an uplink GSM TDMA frame using the gsmUplinkConfig object.

cfg = gsmUplinkConfig()

cfg = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

Set time slots 2 and 5 to carry access bursts. Since MATLAB array indices start from 1, but time slots
start from 0, set the third and sixth elements of the BurstType to "AB".

cfg.BurstType([2 5] +1) = "AB"

cfg = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    AB    NB    NB    AB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
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            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

Assign training sequence codes 3, 5, 1, 7, 0, and 2 to time slots 0, 1, 3, 4, 6, and 7, respectively.

cfg.TSC([0 1 3 4 6 7] +1) = [3 5 1 7 0 2]

cfg = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    AB    NB    NB    AB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [3 5 2 1 7 5 0 2]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

Generate the baseband samples of the frame using the gsmFrame function.

x = gsmFrame(cfg);

Plot the frame. Get the sample rate of the generated waveform by using the gsmInfo function, and
then calculate the time axis values in ms. The plot shows 8 bursts in the frame, with guard periods
between each burst. As described in the Access Burst (AB) on page 12-0  section, ABs are short
burst and have a wider guard period than other bursts.

wfInfo = gsmInfo(cfg); 
Rs = wfInfo.SampleRate;
t = (0:length(x) - 1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(x))
grid on
axis([0 5 0 1.2])
title('GSM Uplink TDMA Frame - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(x)))
grid on
title('GSM Uplink TDMA Frame - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Plot the spectrogram of the frame.

figure
spectrogram(x,500,[],[],Rs,'centered')
title('GSM Uplink TDMA Frame - Spectrogram')
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Generate Single Downlink Frame

Configure a downlink GSM TDMA frame using the gsmDownlinkConfig object.

cfg = gsmDownlinkConfig

cfg = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

Set time slots 0 to carry a frequency correction burst, set time slots 4 and 6 to carry dummy bursts,
and set time slot 2 to be empty.

cfg.BurstType(0 +1) = "FB";
cfg.BurstType([4 6] +1) = "Dummy";
cfg.BurstType(2 +1) = "Off"
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cfg = 
  gsmDownlinkConfig with properties:

           BurstType: [FB    NB    Off    NB    Dummy    NB    Dummy    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

Generate the baseband samples of the frame using the gsmFrame function. This function inserts
random bits instead of encrypted bits.

x = gsmFrame(cfg);

Plot the frame.

wfInfo = gsmInfo(cfg); 
Rs = wfInfo.SampleRate;
t = (0:length(x) - 1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(x))
grid on
axis([0 5 0 1.2])
title('GSM Uplink TDMA Frame - Amplitude')
xlabel('Time (ms)');ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(x)))
grid on
title('GSM Uplink TDMA Frame - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Plot the spectrogram of the frame. This plot shows the single tone during time slot 0 due to the FB.

figure
spectrogram(x,500,[],[],Rs,'centered')
title('GSM Uplink TDMA Frame - Spectrogram')
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Generate Multiframe Structure

Create a 51-frame multiframe structure, as shown in the figure in the Introduction on page 12-0
section. Create three gsmDownlinkConfig objects with specified burst configurations. To assembly
the 51-frame multiframe, use the first and second gsmDownlinkConfig objects once and repeat the
third gsmDownlinkConfig objects for the next 49 frames. Repeat the multiframe structure 3 times.

cfg1 = gsmDownlinkConfig('BurstType',["FB" "NB" "NB" "NB" "NB" "Dummy" "NB" "NB"]);
cfg2 = gsmDownlinkConfig('BurstType',["SB" "NB" "NB" "NB" "NB" "Dummy" "NB" "NB"]);
cfg3 = gsmDownlinkConfig('BurstType',["NB" "NB" "NB" "NB" "NB" "Dummy" "NB" "NB"]);
wfInfo = gsmInfo(cfg); 
frameLength = wfInfo.FrameLengthInSamples;
x = zeros(frameLength*51*3,1);
for p=1:3
    x1 = gsmFrame(cfg1);
    x2 = gsmFrame(cfg2);
    x3 = gsmFrame(cfg3,49);
    x((p-1)*frameLength*51+1:p*frameLength*51) = [x1;x2;x3];
end

Simulate Power Control and Propagation Loss Effects

Due to power control and unique propagation loss for each user, the power of each time slot within a
frame might be different. Set the power attenuation for time slots 0, 3, and 7 to 2, 6, and 10 dB,
respectively.

cfg = gsmUplinkConfig;
cfg.Attenuation([0 3 7] +1) = [2 6 10]
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cfg = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [2 0 0 6 0 0 0 10]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

   Read-only properties:
    No properties.

x = gsmFrame(cfg);
wfInfo = gsmInfo(cfg);
Rs = wfInfo.SampleRate;
t = (0:length(x) - 1)/Rs*1e3;
plot(t, 20*log10(abs(x)))
axis([0 5 -20 5])
grid on
title('GSM Uplink TDMA Frame Power')
xlabel('Time (ms)')
ylabel('Power (dB)')
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Adjust Ramp-Up and Ramp-Down Behavior

GSM bursts must ramp up and ramp down during guard periods [2] on page 12-0 . The gsmFrame
function implements the rise and fall characteristics of the bursts as a sinusoid. The burst ramps up
from zero to full amplitude in the number of symbol durations specified by the RiseTime property
value. The resolution of RiseTime is 1/Nsps, where Nsps represents the SamplesPerSymbol
property value of the gsmDownlinkConfig object.

Adjust the ramp-up characteristics of the bursts. Since SamplesPerFrame is 16, you can specify
RiseTime with a symbol duration resolution of 0.0625. Set RiseTime to a duration of 3.125 symbols.

cfg = gsmDownlinkConfig;
cfg.RiseTime = 3.125;

Visualize and check if the rise-time characteristics are within the GSM specifications by using the
gsmCheckTimeMask function.

gsmCheckTimeMask(cfg)

Move the start of the rise time duration to the left by 1.5 symbols by setting the RiseDelay to -1.5.
When RiseDelay is 0, the burst reaches full amplitude at the start of the useful part of the burst.

cfg.RiseDelay = -1.5;
gsmCheckTimeMask(cfg)
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The burst ramps down from full amplitude to zero in the number of symbol durations specified by the
FallTime property. The resolution of FallTime is 1/Nsps, where Nsps represents the
SamplesPerSymbol property value of the gsmDownlinkConfig object. Set FallTime to a duration
of 2.75 symbols.

Move the start of the fall time to the right by 0.25 symbols durations by setting the FallDelay to
0.25. When FallDelay is 0, the burst starts to ramp down from full amplitude at the end of the useful
part of the burst.

cfg = gsmDownlinkConfig;
cfg.FallTime = 2.75;
cfg.FallDelay = 0.25;
gsmCheckTimeMask(cfg)
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Helper Functions

normalBurstDescription

This function formats a table to show information about normal burst fields.

function d = normalBurstDescription()
BitNumber = ["0 - 2";"3 - 60";"61 - 86";...
    "87 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;58;26;58;3;8.25};
ContentsOfField = [...
    "tail bits";...
    "encrypted bits";...
    "training sequence bits";...
    "encrypted bits";...
    "tail bits";...
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    "guard period (bits)"...
    ];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

frequencyCorrectionBurstDescription

This function formats a table to show information about frequency correction burst fields.

function d = frequencyCorrectionBurstDescription()
BitNumber = ["0 - 2";"3 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;142;3;8.25};
ContentsOfField = [...
    "tail bits";...
    "fixed bits";...
    "tail bits";...
    "guard period (bits)"...
    ];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

synchronizationBurstDescription

This function formats a table to show information about synchronization burst fields.

function d = synchronizationBurstDescription()
BitNumber = ["0 - 2";"3 - 41";"42 - 105";...
    "106 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;39;64;39;3;8.25};
ContentsOfField = [...
    "tail bits";...
    "encrypted bits";...
    "extended training sequence bits";...
    "encrypted bits";...
    "tail bits";...
    "guard period (bits)"...
    ];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

dummyBurstDescription

This function formats a table to show information about dummy burst fields.

function d = dummyBurstDescription()
BitNumber = ["0 - 2";"3 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;142;3;8.25};
ContentsOfField = [...
    "tail bits";...
    "mixed bits";...
    "tail bits";...
    "guard period (bits)"...
    ];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

accessBurstDescription

This function formats a table to show information about access burst fields.
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function d = accessBurstDescription()
BitNumber = ["0 - 7";"8 - 48";"49 - 84";...
    "85 - 87";"88 - 156"];
LengthOfField = {8;41;36;3;68.25};
ContentsOfField = [...
    "extended tail bits";...
    "synch. sequence bits";...
    "encrypted bits";...
    "tail bits";...
    "guard period (bits)"...
    ];
d = table(BitNumber,LengthOfField,ContentsOfField);
end
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Compensate for Frequency Offset Using Coarse and Fine
Compensation

Correct for a phase and frequency offset in a noisy QAM signal using a carrier synchronizer. Then
correct for the offsets using both a carrier synchronizer and a coarse frequency compensator.

Set the example parameters.

fs = 10000;           % Symbol rate (Hz)
sps = 4;              % Samples per symbol
M = 16;               % Modulation order
k = log2(M);          % Bits per symbol

Create a QAM modulator and an AWGN channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',k,'SamplesPerSymbol',sps);

Create a constellation diagram object to visualize the effects of the offset compensation techniques.
Specify the constellation diagram to display only the last 4000 samples.

constdiagram = comm.ConstellationDiagram(...
    'ReferenceConstellation',qammod(0:M-1,M), ...
    'SamplesPerSymbol',sps, ...
    'SymbolsToDisplaySource','Property','SymbolsToDisplay',4000, ...
    'XLimits',[-5 5],'YLimits',[-5 5]);

Introduce a frequency offset of 400 Hz and a phase offset of 30 degrees.

phaseFreqOffset = comm.PhaseFrequencyOffset(...
    'FrequencyOffset',400,...
    'PhaseOffset',30,...
    'SampleRate',fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi([0 M-1],10000,1);
modSig = qammod(data,M);

Create a raised cosine filter object and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',sps, ...
    'Gain',sqrt(sps));
txSig = txfilter(modSig);

Apply the phase and frequency offset, and then pass the signal through the AWGN channel.

freqOffsetSig = phaseFreqOffset(txSig);
rxSig = channel(freqOffsetSig);

Apply fine frequency correction to the signal by using the carrier synchronizer.

fineSync = comm.CarrierSynchronizer('DampingFactor',0.7, ...
    'NormalizedLoopBandwidth',0.005, ...
    'SamplesPerSymbol',sps, ...
    'Modulation','QAM');
rxData = fineSync(rxSig);

Display the constellation diagram of the last 4000 symbols.

 Compensate for Frequency Offset Using Coarse and Fine Compensation

12-21



constdiagram(rxData)

Even with time to converge, the spiral nature of the plot shows that the carrier synchronizer has not
yet compensated for the large frequency offset. The 400 Hz offset is 1% of the sample rate.

Repeat the process with a coarse frequency compensator inserted before the carrier synchronizer.

Create a coarse frequency compensator to reduce the frequency offset to a manageable level.

coarseSync = comm.CoarseFrequencyCompensator('Modulation','QAM','FrequencyResolution',1,'SampleRate',fs*sps);

Pass the received signal to the coarse frequency compensator and then to the carrier synchronizer.

syncCoarse = coarseSync(rxSig);
rxData = fineSync(syncCoarse);
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Plot the constellation diagram of the signal after coarse and fine frequency compensation.

constdiagram(rxData)

The received data now aligns with the reference constellation.

See Also
comm.CoarseFrequencyCompensator | comm.CarrierSynchronizer
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Correct Symbol Timing and Doppler Offsets
Correct symbol timing and frequency offset errors by using the comm.SymbolSynchronizer and
comm.CarrierSynchronizer System objects.

Configuration

Initialize simulation parameters.

M = 16;           % Modulation order
nSym = 2000;      % Number of symbols in a packet
sps = 2;          % Samples per symbol
spsFilt = 8;      % Samples per symbol for filters and channel
spsSync = 2;      % Samples per symbol for synchronizers
lenFilt = 10;     % RRC filter length

Create a matched pair of root raised cosine (RRC) filter System objects for transmitter and receiver.

txfilter = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',lenFilt, ...
    'OutputSamplesPerSymbol',spsFilt,'Gain',sqrt(spsFilt));
rxfilter = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',lenFilt, ...
    'InputSamplesPerSymbol',spsFilt,'DecimationFactor',spsFilt/2,'Gain',sqrt(1/spsFilt));

Create a phase-frequency offset System object to introduce a 100 Hz Doppler shift.

doppler = comm.PhaseFrequencyOffset('FrequencyOffset',100, ...
    'PhaseOffset',45,'SampleRate',1e6);

Create a variable delay System object to introduce timing offsets.

varDelay = dsp.VariableFractionalDelay;

Create carrier and symbol synchronizer System objects to correct for Doppler shift and timing offset,
respectively.

carrierSync = comm.CarrierSynchronizer('SamplesPerSymbol',spsSync);
symbolSync = comm.SymbolSynchronizer( ...
    'TimingErrorDetector','Early-Late (non-data-aided)', ...
    'SamplesPerSymbol',spsSync);

Create constellation diagram System objects to view the results.

refConst = qammod(0:M-1,M,'UnitAveragePower',true);
cdReceive = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
    'SamplesPerSymbol',spsFilt,'Title','Received Signal');
cdDoppler = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
    'SamplesPerSymbol',spsSync,'Title','Frequency Corrected Signal');
cdTiming = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
    'SamplesPerSymbol',spsSync,'Title','Frequency and Timing Synchronized Signal');

Main Processing Loop

The main processing loop:

• Generates random symbols and apply QAM modulation.
• Filters the modulated signal.
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• Applies frequency and timing offsets.
• Passes the transmitted signal through an AWGN channel.
• Filters the received signal.
• Corrects the Doppler shift.
• Corrects the timing offset.

for k = 1:15
    data = randi([0 M-1],nSym,1);
    modSig = qammod(data,M,'UnitAveragePower',true);         
    txSig = txfilter(modSig);            
    
    txDoppler = doppler(txSig);          
    txDelay = varDelay(txDoppler,k/15);  
    
    rxSig = awgn(txDelay,25);            
    
    rxFiltSig = rxfilter(rxSig);         
    rxCorr = carrierSync(rxFiltSig); 
    rxData = symbolSync(rxCorr);  
end

Visualization

Plot the constellation diagrams of the received signal, frequency corrected signal, and frequency and
timing synchronized signal. Specific constellation points cannot be identified in the received signal
and can be only partially identified in the frequency corrected signal. However, the timing and
frequency synchronized signal aligns with the expected QAM constellation points.

cdReceive(rxSig)
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cdDoppler(rxCorr)
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cdTiming(rxData)
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See Also
comm.CarrierSynchronizer | comm.SymbolSynchronizer
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Random Noise Generators in Simulink
You can generate noise for communication system modeling using the MATLAB® Function block with
a random number generator. This example generates and displays histogram plots of Gaussian,
Rayleigh, Rician, and Uniform noise.

The noise generators output 1e5-by-1 vectors every second, which is equivalent to a 0.00001 second
sample time. In this model, each MATLAB Function block defines a specific noise generator using its
underlying function. To view the underlying code for a MATLAB Function block in the MATLAB Editor,
open the model, select the desired MATLAB Function block, and then press Ctrl+u. Each MATLAB
function block contains block mask parameters that map to the function arguments in the underlying
code.

For each MATLAB Function block the Samples per frame parameter maps to its underlying function
argument spf. Similarly, Seed maps to seed.

The Gaussian Noise MATLAB Function block maps the Power (dBW) parameter to p, and defines
the function

The Rayleigh Noise MATLAB Function block maps the Sigma parameter to alpha, and defines the
function

The Rician Noise MATLAB Function block maps the Rician K-factor parameter to K and the Sigma
parameter to s, and defines the function
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The Uniform Noise MATLAB Function block maps the Noise lower bound parameter to lb and the
Noise upper bound parameter to ub, and defines the function

The model generates these histogram plots to show the noise distribution across the spectrum for
each noise generator.
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For further exploration, open the model and adjust one of the noise generation settings. For example,
the Rician noise generator has a K-factor of 10, which causes the mean value of the noise to be larger
than that of the Rayleigh distributed noise. Double-click the Rician Noise MATLAB Function block to
open the block mask and change the K-factor from 10 to 2. Rerun the model to see the noise spectrum
shift.
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Visualize Effects of Frequency-Selective Fading
FSK Modulation in Fading Channel
Pass an FSK signal through a Rayleigh multipath fading channel. Change the signal bandwidth to
observe the impact of the fading channel on the FSK spectrum.

FSK Modulation in Flat Fading

Set modulation order to 4, the modulated symbol rate to 45 bps, and the frequency separation to 200
Hz.

M = 4;           % Modulation order
symbolRate = 45; % Symbol rate (bps)
freqSep = 200;   % Frequency separation (Hz)

Calculate the samples per symbol parameter, sampPerSym, as a function of the modulation order,
frequency separation, and symbol rate. To avoid output signal aliasing, the product of sampPerSym
and symbolRate must be greater than the product of M and freqSep. Calculate the sample rate of
the FSK output signal.

sampPerSym = ceil(M*freqSep/symbolRate);
fsamp = sampPerSym*symbolRate;

Create an FSK modulator.

fskMod = comm.FSKModulator(M, ...
    'FrequencySeparation',freqSep, ...
    'SamplesPerSymbol',sampPerSym, ...
    'SymbolRate',symbolRate);

Set the path delays and average path gains for the fading channel.

pathDelays = [0 3 10]*1e-6; % Discrete delays of three-path channel (s)
avgPathGains = [0 -3 -6];   % Average path gains (dB)

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. The path delays and path gains
specify the average delay profile of the channel.

Create a Rayleigh channel using the defined parameters. Set the Visualization property to display
the impulse and frequency responses.

channel = comm.RayleighChannel(...
    'SampleRate',fsamp, ...
    'PathDelays',pathDelays, ...
    'AveragePathGains',avgPathGains, ...
    'MaximumDopplerShift',0.01, ...
    'Visualization','Impulse and frequency responses', ...
    'SamplesToDisplay','10%');

Generate random data symbols and apply FSK modulation.

data = randi([0 3],2000,1);
modSig = fskMod(data);

Plot the spectrum of the FSK modulated signal.
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spectrum = dsp.SpectrumAnalyzer('SampleRate',fsamp);
spectrum(modSig)

The modulated signal is composed of four tones each having approximately 20 dBm peak power
separated by 200 Hz.

Pass the signal through the Rayleigh fading channel and apply AWGN having a 25 dB signal-to-noise
ratio.

snrdB = 25;
rxSig = awgn(channel(modSig),snrdB);
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The impulse and frequency responses show that the channel behaves as though it were flat. This is
because the signal bandwidth, 800 Hz, is much smaller than the coherence bandwidth, 50 kHz.

Plot the received signal spectrum.

spectrum(rxSig)
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The four tones comprising the FSK signal maintain the same frequency separation and peak power
levels relative to each other. The absolute peak power levels have decreased due to the fading
channel.

FSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 45 kbps and the frequency separation to 200 kHz. Calculate the new
samples per symbol and sample rate parameters.

symbolRate = 45e3;
freqSep = 200e3;
sampPerSym = ceil(M*freqSep/symbolRate);
fsamp = sampPerSym*symbolRate;

Update the FSK modulator properties.

release(fskMod)
fskMod.SymbolRate = symbolRate;
fskMod.FrequencySeparation = freqSep;

Update the spectrum analyzer sample rate property, sa.SampleRate. Apply FSK modulation and
plot the resulting spectrum.

release(spectrum)
spectrum.SampleRate = sampPerSym*symbolRate;
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modSig = fskMod(data);
spectrum(modSig)

The spectrum has the same shape as in the flat-fading case but the four tones are now separated by
200 kHz.

Update the channel sample rate property. Pass the signal through the Rayleigh fading channel and
apply AWGN.

release(channel)
channel.SampleRate = fsamp;

rxSig = awgn(channel(modSig),25);
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The impulse and frequency responses show that the multipath fading is frequency selective.

Plot the received signal spectrum.

spectrum(rxSig)
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There are still four identifiable tones but their relative peak power levels differ due to the frequency-
selective fading. The signal bandwidth, 800 kHz, is larger than the coherence bandwidth, 50 kHz.

QPSK Modulation in Fading Channel
Pass a QPSK signal through a Rayleigh multipath fading channel. Change the signal bandwidth to
observe the impact of the fading channel on the QPSK constellation.

QPSK Modulation in Flat Fading

Set the symbol rate parameter to 500 bps.

symbolRate = 500;

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],10000,1);
modSig = pskmod(data,4,pi/4,'gray');

Set the path delays and average path gains for the fading channel.

pathDelays = [0 3 10]*1e-6;     % Discrete delays of three-path channel (s)
avgPathGains = [0 -3 -6];       % Average path gains (dB)
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By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 meter difference in path length. The path delays and path
gains specify the average delay profile of the channel.

Create a Rayleigh channel using the defined parameters. Set the Visualization property to display
the impulse and frequency responses.

fsamp = symbolRate;
channel = comm.RayleighChannel(...
    'SampleRate',fsamp, ...
    'PathDelays',pathDelays, ...
    'AveragePathGains',avgPathGains, ...
    'MaximumDopplerShift',0.01, ...
    'Visualization','Impulse and frequency responses');

Pass the signal through the Rayleigh channel and apply AWGN.

rxSig = awgn(channel(modSig),25);
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The impulse and frequency responses show that the channel behaves as though it were flat. This is
because the signal bandwidth, 500 Hz, is much smaller than the coherence bandwidth, 50 kHz.
Alternatively, the delay span of the channel (10 microseconds) is much smaller than the QPSK symbol
period (2 milliseconds) so the resultant bandlimited impulse response is approximately flat.

Plot the constellation.

constDiagram = comm.ConstellationDiagram;
constDiagram(rxSig)
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The QPSK constellation shows the effects of the fading channel; however, the signal still has four
identifiable states.

QPSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 500 kbps and update the related channel property. Pass the signal
through the Rayleigh channel and apply AWGN.

symbolRate = 500e3;

release(channel)
channel.SampleRate = symbolRate;

rxSig = awgn(channel(modSig),25);
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The impulse and frequency responses show that the multipath fading is frequency selective.

Plot the constellation.

constDiagram(rxSig)
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As the signal bandwidth is increased from 500 Hz to 500 kHz, the signal becomes highly distorted.
This distortion is due to the intersymbol interference (ISI) that comes from time dispersion of the
wideband signal. The delay span of the channel (10 microseconds) is now larger than the QPSK
symbol period (2 microseconds) so the resultant bandlimited impulse response is no longer flat.
Alternatively, the signal bandwidth is much larger than the coherence bandwidth, 50 kHz.
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Correct Phase and Frequency Offset for 16-QAM Using Coarse
and Fine Synchronization

Compensation of significant phase and frequency offsets for a 16-QAM signal in an AWGN channel is
accomplished in two steps. First, correct the coarse frequency offset using the estimate provided by
the coarse frequency compensator, and then fine-tune the correction using carrier synchronization.
Because of the coarse frequency correction, the carrier synchronizer converges quickly even though
the normalized bandwidth is set to a low value. Lower normalized bandwidth values enable better
correction for small residual carrier offsets. After applying phase and frequency offset corrections to
the received signal, resolve phase ambiguity using the preambles.

Define the simulation parameters.

fs = 10000;      % Sample rate (Hz)
sps = 4;         % Samples per symbol
M = 16;          % Modulation order
k = log2(M);     % Bits per symbol
rng(1996)        % Set seed for repeatable results
barker = comm.BarkerCode(...
    'Length',13,'SamplesPerFrame',13);  % For preamble
msgLen = 1e4;
numFrames = 10;
frameLen = msgLen/numFrames;    

Generate data payloads and add the preamble to each frame. The preamble is later used for phase
ambiguity resolution.

preamble = (1+barker())/2;  % Length 13, unipolar
data = zeros(msgLen, 1);
for idx = 1 : numFrames
    payload = randi([0 M-1],frameLen-barker.Length,1);
    data((idx-1)*frameLen + (1:frameLen)) = [preamble; payload];
end

Create a System object for the transmit pulse shape filtering, the receive pulse shape filtering, the
QAM coarse frequency compensation, the carrier synchronization, and a constellation diagram.

txFilter = comm.RaisedCosineTransmitFilter( ...
    'OutputSamplesPerSymbol',sps);
rxFilter = comm.RaisedCosineReceiveFilter(...
    'InputSamplesPerSymbol',sps,'DecimationFactor',sps);
coarse = comm.CoarseFrequencyCompensator('SampleRate',fs, ...
    'FrequencyResolution',10);
fine = comm.CarrierSynchronizer( ...
    'DampingFactor',0.4,'NormalizedLoopBandwidth',0.001, ...
    'SamplesPerSymbol',1,'Modulation','QAM');
axislimits = [-6 6];
constDiagram = comm.ConstellationDiagram('ReferenceConstellation',qammod(0:M-1,M), ...
    'ChannelNames',{'Before convergence','After convergence'}, ...
    'ShowLegend',true,'XLimits',axislimits,'YLimits',axislimits);

Also create a System object for the AWGN channel, and the phase and frequency offset to add
impairments to the signal. A phase offset greater than 90 degrees is added to induce a phase
ambiguity that results in a constellation quadrant shift.

ebn0 = 8;
freqoffset = 110;
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phaseoffset = 110;
awgnChannel = comm.AWGNChannel('EbNo',ebn0, ...
    'BitsPerSymbol',k,'SamplesPerSymbol',sps);
pfo = comm.PhaseFrequencyOffset('FrequencyOffset',freqoffset, ...
    'PhaseOffset',phaseoffset,'SampleRate',fs);

Generate random data symbols, apply 16-QAM modulation, and pass the modulated signal through
the transmit pulse shaping filter.

txMod = qammod(data,M);
txSig = txFilter(txMod);

Apply phase and frequency offsets using the pfo System object, and then pass the signal through an
AWGN channel to add white Gaussian noise.

txSigOffset = pfo(txSig);
rxSig = awgnChannel(txSigOffset);

The coarse frequency compensator System object provides a rough correction for the frequency
offset. For the conditions in this example, correcting the frequency offset of the received signal
correction to within 10 Hz of the transmitted signal is sufficient.

syncCoarse = coarse(rxSig);

Pass the signal through the receive pulse shaping filter, and apply fine frequency correction.

rxFiltSig = fine(rxFilter(syncCoarse));

Display the constellation diagram of the first and last 1000 symbols in the signal. Before convergence
of the synchronization loop, the spiral nature of the diagram indicates that the frequency offset is not
corrected. After the carrier synchronizer has converged to a solution, the symbols are aligned with
the reference constellation.

constDiagram([rxFiltSig(1:1000) rxFiltSig(9001:end)])

12 Various User Guide Topic Examples

12-48



Demodulate the signal. Account for the signal delay caused by the transmit and receive filters to align
the received data with the transmitted data. Compute and display the total bit errors and BER. When
checking the bit errors, use the later portion of the received signal to be sure the synchronization
loop has converged.

rxData = qamdemod(rxFiltSig,M);
delay = (txFilter.FilterSpanInSymbols + rxFilter.FilterSpanInSymbols) / 2;
idxSync = 2000; % Check BER for the received signal after the synchronization loop has converged
[syncDataTtlErr,syncDataBER] = biterr(data(idxSync:end-delay),rxData(idxSync+delay:end))

syncDataTtlErr = 16116

syncDataBER = 0.5042
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Depending on the random data used, there may be bit errors resulting from phase ambiguity in the
received signal after the synchronization loop converges and locks. In this case, you can use the
preamble to determine and then remove the phase ambiguity from the synchronized signal to reduce
bit errors. If phase ambiguity is minimal, the number of bit errors may be unchanged.

idx = 9000 + (1:barker.Length);
phOffset = angle(txMod(idx) .* conj(rxFiltSig(idx+delay)));

phOffsetEst = mean(phOffset);
disp(['Phase offset = ',num2str(rad2deg(phOffsetEst)),' degrees'])

Phase offset = -90.1401 degrees

resPhzSig = exp(1i*phOffsetEst) * rxFiltSig;

Demodulate the signal after resolving the phase ambiguity. Recompute the total bit errors and BER.

resPhzData = qamdemod(resPhzSig,M);
[resPhzTtlErr,resPhzBER] = biterr(data(idxSync:end-delay),resPhzData(idxSync+delay:end))

resPhzTtlErr = 5

resPhzBER = 1.5643e-04
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Adjust Carrier Synchronizer Damping Factor to Correct
Frequency Offset

Attempt to correct for a frequency offset using the carrier synchronizer object. Increase the damping
factor of the synchronizer and determine if the offset was corrected.

Set the modulation order, sample rate, frequency offset, and signal-to-noise ratio parameters.

M = 8;
fs = 1e6;
foffset = 1000;
snrdb = 20;

Create a phase frequency offset object to introduce a frequency offset to a modulated signal. Create a
constellation diagram object.

pfo = comm.PhaseFrequencyOffset('SampleRate',fs, ...
    'FrequencyOffset',foffset);
constDiagram = comm.ConstellationDiagram( ...
    'ReferenceConstellation',pskmod(0:M-1,M,pi/M));

Create a carrier synchronizer object to correct for the frequency offset.

carriersync = comm.CarrierSynchronizer('Modulation','8PSK', ...
    'DampingFactor',0.05,'NormalizedLoopBandwidth',0.01);

The main processing loop includes these steps:

• Generate random data.
• Apply 8-PSK modulation.
• Introduce a frequency offset.
• Pass the signal through an AWGN channel.
• Correct for the frequency offset.
• Display the constellation diagram.

for k = 1:200
    data = randi([0 M-1],1000,1);
    modSig = pskmod(data,M);
    txSig = pfo(modSig);
    rxSig = awgn(txSig,snrdb);
    syncOut = carriersync(rxSig);
    constDiagram(syncOut)
end
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The constellation points cannot be clearly identified indicating that the carrier synchronizer is unable
to compensate for the frequency offset.

Determine the normalized pull-in range, the maximum frequency lock delay, and the maximum phase
lock delay by using the info function.

syncInfo = info(carriersync)

syncInfo = struct with fields:
    NormalizedPullInRange: 0.0044
    MaxFrequencyLockDelay: 78.9568
        MaxPhaseLockDelay: 130
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Convert the normalized pull-in range from radians to cycles. Compare the normalized frequency
offset to the pull-in range.

[foffset/fs syncInfo.NormalizedPullInRange/(2*pi)]

ans = 1×2
10-3 ×

    1.0000    0.7071

The offset is greater than the pull-in range. This is reason that the carrier synchronizer failed to
correct the frequency offset.

Change the damping factor of the synchronizer to 0.707.

carriersync.DampingFactor = 0.707;

Repeat the main processing loop.

for k = 1:200
    data = randi([0 M-1],1000,1);
    modSig = pskmod(data,M);
    txSig = pfo(modSig);
    rxSig = awgn(txSig,snrdb);
    syncOut = carriersync(rxSig);
    constDiagram(syncOut)
end
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There are now eight observable clusters, which shows that the frequency offset was corrected.

Determine the new pull-in range. The normalized offset is less than the pull-in range. This explains
why the carrier synchronizer was able to correct the offset.

syncInfo = info(carriersync);
[foffset/fs syncInfo.NormalizedPullInRange/(2*pi)]

ans = 1×2

    0.0010    0.0100
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Modulate and Demodulate 8-PSK Signal
Use the Open model button to open the doc_8psk_model model. The model generates an 8-PSK
signal, applies white noise, displays the resulting constellation diagram, and computes the error
statistics.

Run the model.

 Modulate and Demodulate 8-PSK Signal
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The error statistics are collected in vector ErrorVec. Because Eb/No is 15 dB, there are no
measured symbol errors.

Number of symbol errors = 0

Change the Eb/No of the AWGN Channel block from 15 dB to 5 dB. The increase in the noise is shown
in the constellation diagram.

Because of the increase in the noise level, the number of symbol errors is greater than zero.

Number of symbol errors = 13

12 Various User Guide Topic Examples

12-56



Binary to Gray Conversion in Simulink
Use the Open model button to open the Binary-to-Gray model. The model converts a binary
sequence to a Gray-coded sequence and vice versa by using Data Mapper blocks.

Run the model.

The Display blocks show the natural binary and Gray-coded sequence ordering.

 Binary to Gray Conversion in Simulink

12-57





Bluetooth Tutorials

• “What Is Bluetooth?” on page 13-2
• “Bluetooth Protocol Stack” on page 13-7
• “Bluetooth Parameterization” on page 13-16
• “Create Configuration Objects” on page 13-17
• “Bluetooth Packet Structure” on page 13-23
• “Bluetooth Location and Direction Finding” on page 13-37
• “Bluetooth Mesh Networking” on page 13-46
• “Bluetooth-WLAN Coexistence” on page 13-60
• “Parameterize BLE Direction Finding Features” on page 13-71
• “Bluetooth Low Energy Audio” on page 13-78
• “Comparison of Bluetooth BR/EDR and BLE Specifications” on page 13-90
• “Create, Configure, and Visualize BLE Mesh Network” on page 13-93
• “Configure Bluetooth BR/EDR Channel with WLAN Interference and Pass the Waveform”

on page 13-96
• “Configure BLE Channel and Pass Waveform” on page 13-99
• “Create Bluetooth Piconet by Enabling ACL Traffic, SCO Traffic, and AFH” on page 13-101
• “Generate BLE Waveform and Add RF Impairments” on page 13-103
• “Packet Distribution in Bluetooth Piconet” on page 13-106

13



What Is Bluetooth?
Bluetooth wireless technology is the air interface intended to replace the cables connecting portable
and fixed electronic equipment. Bluetooth device manufacturers have the flexibility to include
optional core specification features to optimize and differentiate product offers.

Bluetooth is equated with the implementation specified by the Bluetooth Core Specification group of
standards maintained by the Bluetooth Special Interest Group (SIG) industry consortium.
Communications Toolbox Library for the Bluetooth Protocol functionality enables you to model
Bluetooth low energy (BLE) and Bluetooth basic rate/enhanced data rate (BR/EDR) communications
system links, as specified in the Core System Package [Low Energy Controller volume], Specification
Volume 6. It also enables you to explore variations on implementations for future evolution of the
standard. Bluetooth BR/EDR and BLE devices operate in the same unlicensed 2.4 GHz Industrial,
Scientific, and Medical (ISM) frequency band as Wi-Fi®.

In Bluetooth BR/EDR, the radio hops in a pseudo-random way on 79 designated Bluetooth channels.
Each Bluetooth BR/EDR channel has a bandwidth of 1 MHz. Each frequency is located at (2402 + k)
MHz, where k = 0,1,...78.

In BLE, the operating radio frequency is in the range 2.4000 GHz to 2.4835 GHz, inclusive. The
channel bandwidth is 2 MHz and the operating band is divided into 40 channels, k = 0, …, 39. The
center frequency of the kth channel is located at 2402 + k × 2 MHz.

Network Architecture
• “Point-to-Point and Point-to-Multipoint Connection Topology” on page 13-2
• “Broadcast Connection Topology” on page 13-3
• “Mesh Connection Topology” on page 13-3

Network topologies supported in Bluetooth include point-to-point, broadcast, and mesh connectivity.
Point-to-point connectivity is available for devices that operate in Bluetooth BR/EDR or BLE. The
broadcast and mesh connection topologies are only supported for BLE devices.

Point-to-Point and Point-to-Multipoint Connection Topology

Devices using point-to-point communication operate in a piconet. Point-to-point piconets define one-
to-one device communication links. Examples of point-to-point links are links between PCs or mobile
phones and peripherals such as headsets, printers, and fitness trackers. Multiple piconets connect to
one another in a scatternet topology. Point-to-multipoint piconets define one to more than one device
communication links.

This image shows a scatternet of three piconets. Each piconet shows one device in the role of master
(M), with other devices in the slave (S) or idle (I) roles. The image also shows one device (M/S)
assigned the master role in one piconet and slave in another piconet.
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• A scatternet is an ad hoc network consisting of two or more piconets.
• A piconet is defined as a connection between two or more Bluetooth devices. Piconets nets are

limited to a maximum of eight devices, with one master taking the master role at any given time
and seven slaves.

• The individual Bluetooth devices assume the role of master, slave, or idle peer devices in a given
piconet. An individual Bluetooth device can take the role of a slave in one piconet while taking the
role of master in another piconet.

• The master device provides the synchronization reference.
• The slaves are other devices that synchronize to the clock and frequency hopping pattern of

the master.
• Other idle devices may be located in a piconet but are not active.

Broadcast Connection Topology

Broadcast piconets establish one-to-many communication links for BLE devices. Examples of
broadcast links are retail point-of-interest information, indoor navigation, and asset tracking.

Mesh Connection Topology

Mesh networks establish the option of many-to-many communication links for BLE devices. Mesh
topology enables the creation of large-scale device networks. Mesh is ideally suited for control,
monitoring, and automation systems that require reliable and secure communication between
thousands of devices.

The Bluetooth SIG specifies mesh networking requirements to enable an interoperable many-to-many
(m:m) mesh networking solution for Bluetooth Low Energy (LE) wireless technology. Mesh networks
are ideally suited for large-scale device networks supporting building automation, sensor networks,
asset tracking, and other solutions requiring reliable and secure communication between multiple
devices. Bluetooth SIG adopted these specifications.

• Mesh Profile Specification – Defines fundamental requirements to enable an interoperable mesh
networking solution for Bluetooth LE wireless technology.

• Mesh Model Specification – Introduces models, used to define basic functionality of nodes on a
mesh network.
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• Mesh Device Properties – Defines device properties required for the Mesh Model specification.

The Bluetooth Mesh Model Specification defines categories of BLE mesh models. Model categories
include

• Foundation models
• Generic models
• Sensors
• Time and scenes
• Lighting

All devices must implement the foundation models for configuration server and health server. All
other models in the model categories are optional and implemented based on the service the BLE
device performs.

As described in the Mesh Profile Bluetooth specification, mesh networks operate as managed-flood-
based networks. Devices use broadcast channels to transmit messages to other devices, and the
messages are relayed forward to other devices extending the range of the original message.

A device that is not a member of a mesh network is referred to as an unprovisioned device. A device
that is a member of a mesh network is known as a node. Devices are added to a mesh network by a
Provisioner. Nodes in a mesh network share network keys that enable them to receive and to relay
messages from other nodes in their network or subnet. Network keys are used to secure and
authenticate messages at the network layer. Unprovisioned devices cannot receive messages because
they do not have the network key to recover the message.

Bluetooth Products
The Bluetooth SIG defines a Bluetooth product as any product containing an implementation of
Bluetooth wireless technology. Bluetooth products are classified as:

• Bluetooth End Product
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• Bluetooth Host Subsystem Product
• Bluetooth Controller Subsystem Product
• Bluetooth Profile Subsystem Product
• Bluetooth Component Product
• Bluetooth Development Tool
• Bluetooth Test Equipment

The Communications Toolbox Library for the Bluetooth Protocol provides features enabling you to
model Bluetooth Host and Controller Subsystem Products fully compliant Bluetooth links with the low
energy (LE) core configuration.

Bluetooth Low Energy Core Configuration
The Bluetooth Core Specification, Volume 0, Part B, Section 4.4 specifies a set of required features
that must be implemented to model fully compliant Bluetooth links with the low energy (LE) core
configuration.

The LE core configuration defines three main layers - Application, Host, and Controller. The
Communications Toolbox Library for the Bluetooth Protocol provides features to model the host and
controller layers. Requirements defined in the Bluetooth Core Specification for the host and
controller include

Layer Sublayer Bluetooth
Specification Volume

Required Features

Host Logical link control and
adaptation protocol
(L2CAP)

Volume 3, part A If the GAP Peripheral or
Central role is
supported, L2CAP LE
Signaling Channel (CID
0x0005) and all
mandatory features
associated with it.

Generic access profile
(GAP)

Volume 3, part C All mandatory features
for at least one of the
LE GAP roles
(Broadcaster, Observer,
Peripheral, or Central)
in sections 9–12 and
section 15.

Attribute profile (ATT) Volume 3, part F If the GAP Peripheral or
Central role is
supported, all
mandatory features.

Generic attribute profile
(GATT)

Volume 3, part G GATT is mandatory
when ATT is supported.
When supported, all
mandatory features.
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Layer Sublayer Bluetooth
Specification Volume

Required Features

Security manager (SM) Volume 3, part H If the GAP Peripheral or
Central role is
supported, all
mandatory features.

Controller Physical (PHY) Volume 6, part A All mandatory features.
Link layer (LL) Volume 6, part B All mandatory features.

For a description of the mapping between Bluetooth protocol stack functionality and the OSI
reference model, see “Bluetooth Protocol Stack” on page 13-7.

References
[1] https://www.bluetooth.com/

[2] "Bluetooth Core Specification." Bluetooth Special Interest Group (SIG).
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• “Bluetooth Location and Direction Finding” on page 13-37
• “Bluetooth Mesh Networking” on page 13-46
• “Bluetooth-WLAN Coexistence” on page 13-60
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Bluetooth Protocol Stack
The Bluetooth Special Interest Group (SIG) [1] and [2] defines the protocol stack for Bluetooth low
energy (BLE) and Bluetooth basic rate/enhanced data rate (BR/EDR) technology. The fundamental
objectives of these specifications is to develop interactive services and applications over
interoperable radio components and data communication protocols.

This figure shows the architecture of the Bluetooth stack.

Bluetooth devices can be one of these two types:

• Single mode – Supports a BR/EDR or LE profile
• Dual mode – Supports BR/EDR and LE profiles

The subsequent sections provide details about the architecture of “BLE Protocol Stack” on page 13-
7 and “Bluetooth BR/EDR Protocol Stack” on page 13-12.

BLE Protocol Stack
This figure compares the BLE protocol stack to the Open System Interconnection (OSI) reference
model.

 Bluetooth Protocol Stack
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In the preceding figure, the BLE protocol stack is shown along with the OSI reference model.

• There is one-to-one mapping at the physical layer (PHY)
• The OSI data link layer (DLL) maps to the BLE logical link control and adaptation protocol

(L2CAP) and link layer (LL)
• In the BLE stack, the higher layers provide application layer services, device roles and modes,

connection management, and security protocol

The functionality of the BLE protocol stack is divided between three main layers: the Controller, the
Host, and Application Profiles and Services.
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Controller

The controller layer includes the BLE PHY, the LL, and the controller-side host controller interface
(HCI).
BLE PHY

The BLE PHY air interface operates in the same unlicensed 2.4 GHz Industrial, Scientific, and
Medical (ISM) frequency band as Wi-Fi. The BLE PHY air interface also includes these
characteristics:

• Operating radio frequency (RF) is in the range 2.4000 GHz to 2.4835 GHz, inclusive.
• The channel bandwidth is 2 MHz. The operating band is divided into 40 channels, k = 0, …, 39.

The center frequency of the kth channel is 2402 + k × 2 MHz.

• User data packets are transmitted using channels in the range [0, 36].
• Advertising data packets are transmitted in channels 37, 38, and 39.

• Gaussian frequency shift-keying (GFSK) modulation scheme is implemented.
• The BLE PHY uses frequency-hopping spread spectrum (FHSS) to reduce interference and to

counter the impact of fading channels. The time between frequency hops can vary from 7.5 ms to
4 s and is set at the connection time for each slave.

• Support for throughput at 1 Mbps is mandatory for specification version 4.x compliant devices. At
a data rate of 1 Mbps, the transmission is uncoded.

• Optionally, devices compliant with the Bluetooth Core Specification version 5.1 support these
additional data rates:
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• Coded transmission at bit rates of 500 kbps or 125 kbps
• Uncoded transmission at a bit rate of 2 Mbps

LL

The LL performs tasks similar to the medium access control (MAC) layer of the OSI model. In
Bluetooth, the LL interfaces directly with the BLE PHY and manages the link state of the radio to
define the role of a device as master, slave, advertiser, or, scanner.
Controller-Side HCI

The HCI on the controller side handles the interface between the host and the controller. The HCI
defines a set of commands and events for transmission and reception of packet data. When receiving
packets from the controller, the HCI extracts raw data at the controller to send to the host.

Host

The host includes the host-side HCI, L2CAP, attribute protocol (ATT), generic attribute profile (GATT),
security manager protocol (SMP), and generic access profile (GAP).
Host-Side HCI

The HCI on the host side handles the interface between the host and the controller. The HCI defines a
set of commands and events for transmission and reception of packet data. When transmitting data,
the HCI translates raw data into packets to send them from the host to the controller.
L2CAP

The L2CAP encapsulates data from the BLE higher layers into the standard BLE packet format for
transmission or extracts data from the standard BLE LL packet on reception according to the link
configuration specified at the ATT and SMP layers.
ATT

The ATT transfers attribute data between clients and servers in GATT-based profiles. The ATT defines
the roles of the client-server architecture. The roles typically correspond to the master and the slave
as defined in the link layer. In general, a device could be a client, a server, or both, irrespective of
whether it is a master or a slave. The ATT also performs data organization into attributes as shown in
this figure.

Device attributes are represented as:

• The attribute handle is a 16-bit identifier value assigned by the server to enable a client to
reference those attributes.

• The attribute type is a universally unique identifier (UUID) defined by Bluetooth SIG. For example,
UUID 0x2A37 represents a heart-rate measurement.

• The attribute value is a variable length field. The UUID associated with and the service class of
the service record containing the attribute value, determine the length of the attribute value field.
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• Attribute permissions are sets of permission values associated with each attribute. These
permissions specify read and write privileges for an attribute, and the security level required for
read and write permission.

GATT

The GATT provides a reference framework for all GATT-based profiles. The GATT encapsulates the
ATT and is responsible for coordinating the exchange of profiles in a BLE link. Profiles include
information and data such as handle assignment, a UUID, and a set of permissions.

For devices that implement the GATT profile,

• The client is the device that initiates commands and requests toward the server. The client can
receive responses, indications, and notifications.

• The server is the device that accepts incoming commands and requests from the client. The server
sends responses, indications, and notifications to the client.

The GATT uses client-server architecture. The roles are not fixed and are determined when a device
initiates a defined procedure. Roles are released when the procedure ends.

The terminology used in the GATT includes:

• Service — A collection of data and associated behaviors used to accomplish a particular function
or feature

• Characteristic — A value used in a service along with appropriate permissions
• Characteristic descriptor — A description of the associated characteristic behavior
• GATT-Client — A GATT-Client initiates commands and requests towards the server and can receive

responses, indications, and notifications sent by the server
• GATT-Server — A GATT-Server accepts incoming commands and requests from a client and sends

responses, indications, and notifications to the client

SMP

The SMP applies security algorithms to encrypt and decrypt data packets. This layer defines the
initiator and the responder, corresponding to the master and the slave, once the connection is
established.

GAP

The GAP specifies roles, modes, and procedures of a device. It also manages the connection
establishment and security. The GAP interfaces directly with the Application Profiles and Services
(App) layer.

APP Layer

The App layer is the direct user interface defining profiles that afford interoperability between
various applications. The Bluetooth core specification enables vendors to define proprietary profiles
for use cases not defined by SIG profiles.

Note For more information about the BLE protocol stack architecture, see volume 3, Part C, sections
2 and 2.1 of the Bluetooth Core Specification [1].
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Bluetooth BR/EDR Protocol Stack
This figure compares the block diagram of the Bluetooth BR/EDR protocol stack and with the OSI
reference model.

The mapping of BR/EDR stack to the OSI reference model is as shown below:

• The “BR/EDR Radio” on page 13-13 and “Baseband and Link Control” on page 13-13 layers of
the Bluetooth BR/EDR stack map to the OSI PHY layer.

• The “Link Manager Protocol (LMP)” on page 13-13, “L2CAP” on page 13-13, “Cable
Replacement Protocol” on page 13-13 (RFCOMM), and “PPP” on page 13-14 layers of the
Bluetooth BR/EDR stack map to the OSI data link layer.

• The user datagram protocol (UDP), transmission control protocol (TCP), and internet protocol (IP)
layers of Bluetooth BR/EDR stack map to a combined, network, transport and session layers of the
OSI reference model.

• There is one-to-one mapping at the application layer.

Core Protocols

The Bluetooth core protocols and the Bluetooth radio are required by most of the Bluetooth devices.
The core protocols include these layers.
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BR/EDR Radio

The BR/EDR radio is the lowest defined layer of the Bluetooth specification. The BR mode is
mandatory, whereas the EDR mode is optional. This layer defines the requirements of the Bluetooth
transceiver device operating in the 2.4 GHz ISM frequency band. It implements a 1600 hops/sec
FHSS technique. The radio hops in a pseudo-random way on 79 designated Bluetooth channels. Each
Bluetooth channel has a bandwidth of 1 MHz. Each frequency is located at (2402 + k) MHz, where k
= 0,1,...78. The modulation technique for BR and EDR mode is GFSK and differential phase shift
keying (DPSK), respectively. The baud rate is 1 Msymbols/s. The Bluetooth BR/EDR radio uses the
time division duplex (TDD) topology in which data transmission occurs in one direction at one time.
The transmission alternates in two directions, one after the other.

Baseband and Link Control

The baseband and link control layer enables the PHY RF link between different Bluetooth devices,
forming a piconet. The baseband handles the channel processing and timing, and the link control
handles the channel access control. This layer provides these two different types of PHY RF links with
their corresponding baseband packets:

• Synchronous connection-oriented (SCO) – Supports real-time audio traffic
• Asynchronous connection-oriented (ACL) – Supports data packet transmission

Link Manager Protocol (LMP)

The LMP layer is primarily responsible for link setup and link configuration between different
Bluetooth devices. These processes include establishing security functions such as authentication and
encryption by generating, exchanging, and checking link and encryption keys. Furthermore, this
layer controls the power modes and duty cycles of the Bluetooth radio device and the connection
states of a Bluetooth unit in a piconet.

L2CAP

The L2CAP adapts higher-layer protocols over the baseband. It shields the higher-layer protocols
from the details of the lower-layer protocols. The L2CAP provides connection-oriented and
connectionless services to the higher-layer protocols. This includes protocol multiplexing capability,
segmentation and reassembly operations, and group abstractions.

SDP

Discovery services are an important aspect of the Bluetooth framework. The service discovery
protocol (SDP) provides a means for applications to query services and the characteristics of services,
following which a connection can be established between two or more Bluetooth devices. The SDP is
quite different from service discovery in traditional network-based environments. The SDP is built on
top of the L2CAP.

Cable Replacement Protocol

The cable replacement protocol in the Bluetooth BR/EDR stack uses RFCOMM to provide emulation
of serial ports over L2CAP. RFCOMM emulates RS-232 control and data signals over the Bluetooth
baseband and provides transport capabilities for higher-layer services that use a serial interface as a
transport mechanism. RFCOMM also provides multiple simultaneous connections to one device and
enables connections to multiple devices.
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Telephony Control Protocols

The telephony control protocol specification, binary (TCS binary), defines the call control signaling to
establish data and voice calls between Bluetooth devices. It is built on top of the L2CAP. Moreover,
TCS binary defines mobility management procedures for handling Bluetooth devices.

Adopted Protocols

In addition to the core protocols, the Bluetooth BR/EDR stack includes protocols adopted from other
standard bodies. These adopted protocols are defined in specifications issued by other standard-
making organizations and are incorporated into the Bluetooth framework.

PPP

The point-to-point protocol (PPP) is an Internet Engineering Task Force (IETF) [3] standard protocol
for transporting IP datagrams over a point-to-point link. The PPP runs over the RFCOMM to realize
point-to-point connections.

TCP, UDP, and IP

These layers are the IETF-defined foundation protocols of the TCP/IP protocol suite.

• TCP – This protocol provides a reliable virtual connection between devices to realize data
communication. The TCP treats the data as a stream of bytes and transmits them without any
errors or duplication.

• UDP – This protocol is an alternative to the TCP and provides an unreliable datagram connection
between devices. As there is no end-to-end connection in UDP, data is transmitted link-by-link
without any guarantee of service.

• IP – This layer is a network layer protocol that enables a datagram service between devices,
supporting both the TCP and UDP.

The use of the TCP, UDP, and IP in the Bluetooth BR/EDR stack enables communication with any other
device connected to the Internet.

OBEX

The object exchange (OBEX) protocol is a session-level protocol developed by the Infrared Data
Association (IrDA) to exchange objects. The OBEX protocol provides functionality similar to that of
HTTP, but in a simpler manner. HTTP is an application layer protocol and layered above the TCP/IP.
The OBEX protocol provides the client with a reliable transport for connecting to a server. It also
provides a model for representing objects and operations.

WAE and WAP

Bluetooth BR/EDR stack incorporates the wireless application environment (WAE) and wireless
application protocol (WAP) into its architecture. The advantages of using WAE/WAP features in the
Bluetooth stack are:

• Build application gateways that act as an interface between WAP servers and some other
application on the PC

• Provide functions such as remote control and data fetching from the PC to the Bluetooth handset
• Reuse the upper software application developed for the WAP application environment
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Application Profiles and Services

For more information, refer “APP Layer” on page 13-11.

Alternate MAC/PHY

The alternate MAC/PHY (AMP) manager is a secondary controller in the Bluetooth core system. After
an L2CAP connection is established between two devices over the BR/EDR radio, the AMP manager
can discover the AMPs that are available on the other device. If an AMP is common between two
devices, the Bluetooth core system provides mechanisms for moving data traffic from the BR/EDR
controller to an AMP controller.

Each AMP manager consists of a protocol adaptation layer (PAL) on top of a MAC and PHY. The PAL
maps the Bluetooth protocols to the specific protocols of the underlying MAC and PHY.

L2CAP channels can be created on, or moved to, an AMP. If an AMP physical link has a link
supervision timeout, then L2CAP channels can be moved back to BR/EDR radio. To minimize power
consumption in the device, AMPs are enabled or disabled as required.

HCI

The HCI provides a command interface to the BR/EDR radio, baseband controller, and the link
manager. It is a single standard interface for accessing the Bluetooth baseband capabilities, the
hardware status, and the control registers.

Note For more information about the Bluetooth BR/EDR protocol stack architecture, see volume 1,
Part A, sections 2 and 2.1 of the Bluetooth Core Specification [1].
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Bluetooth Parameterization
Communications Toolbox Library for the Bluetooth Protocol configuration objects initialize, store, and
validate configuration properties.

Configuration Objects in Communications Toolbox Library for the
Bluetooth Protocol
The configuration objects are designed specifically as containers to store properties. They also
provide some level of data validation for the function inputs that they maintain. Functions perform
further data validation across input settings based on run-time conditions.

The configuration objects are optimized for iterative computations that process large streams of data,
such as communications systems.

Communications Toolbox Library for the Bluetooth Protocol configuration objects define and
configure format-specific and function-specific properties. The property page of each object contains
descriptions, valid settings, ranges, and other information about the object properties.

• bleLLDataChannelPDUConfig — The Link Layer Data Channel Protocol Data Unit configuration
object defines and configures LL data channel PDUs.

• bleLLAdvertisingChannelPDUConfig — The Link Layer Advertising Channel Protocol Data
Unit configuration object defines and configures LL advertising channel PDUs.

• bleL2CAPFrameConfig — The Layer 2 CAP Frame configuration object defines and configures
Layer 2 CAP frame.

• bleGAPDataBlockConfig — The GAP Data Block configuration object defines and configures
GAP data block.

• bleATTPDUConfig — The ATT Protocol Data Unit configuration object defines and configures
ATT PDUs.
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• “What Is Bluetooth?” on page 13-2
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• “Bluetooth-WLAN Coexistence” on page 13-60
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Create Configuration Objects
Communications Toolbox Library for the Bluetooth Protocol uses value objects to organize properties
required for generation of higher layer Bluetooth PDUs. After you create the various configuration
objects described here, you can use them to generate waveforms.

Create Link Layer Data Channel PDU Configuration Object
This example shows how to create a BLE link layer data channel PDU configuration object. It also
shows how to change the default property settings by using dot notation or by overriding the default
settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a BLE link layer data channel PDU configuration object with default settings.

lldatapdu = bleLLDataChannelPDUConfig

lldatapdu = 
  bleLLDataChannelPDUConfig with properties:

                 LLID: 'Data (continuation fragment/empty)'
                 NESN: 0
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: '012345'

   Read-only properties:
    No properties.

Modify the defaults to specify a 'Data (start fragment/complete)' PDU.

lldatapdu.LLID = 'Data (start fragment/complete)'

lldatapdu = 
  bleLLDataChannelPDUConfig with properties:

                 LLID: 'Data (start fragment/complete)'
                 NESN: 0
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: '012345'

   Read-only properties:
    No properties.

Override Default Property Values During Object Creation

Create a BLE link layer data channel PDU configuration object, using Name,Value pairs to specify a
'Control' PDU.

lldatapdu2 = bleLLDataChannelPDUConfig('LLID','Control')

lldatapdu2 = 
  bleLLDataChannelPDUConfig with properties:
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                 LLID: 'Control'
                 NESN: 0
       SequenceNumber: 0
             MoreData: 0
    CRCInitialization: '012345'
        ControlConfig: [1x1 bleLLControlPDUConfig]

   Read-only properties:
    No properties.

Create Link Layer Advertising Channel PDU Configuration Object
This example shows how to create a BLE link layer advertising channel PDU configuration object. It
also shows how to change the default property settings by using dot notation or by overriding the
default settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a BLE link layer advertising channel PDU configuration object with default settings.

lladvertpdu = bleLLAdvertisingChannelPDUConfig

lladvertpdu = 
  bleLLAdvertisingChannelPDUConfig with properties:

                  PDUType: 'Advertising indication'
         ChannelSelection: 'Algorithm1'
    AdvertiserAddressType: 'Random'
        AdvertiserAddress: '0123456789AB'
          AdvertisingData: [3x2 char]

   Read-only properties:
    No properties.

Modify the defaults to specify a 'Advertising direct indication' PDU.

lladvertpdu.PDUType = 'Advertising direct indication'

lladvertpdu = 
  bleLLAdvertisingChannelPDUConfig with properties:

                  PDUType: 'Advertising direct indication'
         ChannelSelection: 'Algorithm1'
    AdvertiserAddressType: 'Random'
        AdvertiserAddress: '0123456789AB'
        TargetAddressType: 'Random'
            TargetAddress: '0123456789CD'

   Read-only properties:
    No properties.

Override Default Property Values During Object Creation
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Create a BLE link layer advertising channel PDU configuration object, using Name,Value pairs to
specify a 'Scan response' PDU using channel section algorithm 2.

lldatapdu2 = bleLLAdvertisingChannelPDUConfig('PDUType','Scan response','ChannelSelection','Algorithm2')

lldatapdu2 = 
  bleLLAdvertisingChannelPDUConfig with properties:

                  PDUType: 'Scan response'
         ChannelSelection: 'Algorithm2'
    AdvertiserAddressType: 'Random'
        AdvertiserAddress: '0123456789AB'
         ScanResponseData: [3x2 char]

   Read-only properties:
    No properties.

Create L2CAP Frame Configuration Object
This example shows how to create a BLE logical link control and adaptation protocol (L2CAP) frame
configuration object. It also shows how to change the default property settings by using dot notation
or by overriding the default settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a BLE L2CAP frame configuration object with default settings.

l2capframe = bleL2CAPFrameConfig 

l2capframe = 
  bleL2CAPFrameConfig with properties:

          ChannelIdentifier: '0005'
                CommandType: 'Credit based connection request'
           SignalIdentifier: '01'
    SourceChannelIdentifier: '0040'
                      LEPSM: '001F'
        MaxTransmissionUnit: 23
          MaxPDUPayloadSize: 23
                    Credits: 1

   Read-only properties:
    No properties.

Modify the defaults setting the channel identifier to '0004' to specify an ATT channel.

l2capframe.ChannelIdentifier = '0004'

l2capframe = 
  bleL2CAPFrameConfig with properties:

    ChannelIdentifier: '0004'

   Read-only properties:

 Create Configuration Objects

13-19



    No properties.

Override Default Property Values During Object Creation

Create a BLE L2CAP frame configuration object, using Name,Value pairs to specify a 'Command
reject' signaling channel command with the reject reason 'Invalid CID in request'.

l2capframe = bleL2CAPFrameConfig ('CommandType','Command reject','CommandRejectReason','Invalid CID in request')

l2capframe = 
  bleL2CAPFrameConfig with properties:

               ChannelIdentifier: '0005'
                     CommandType: 'Command reject'
                SignalIdentifier: '01'
             CommandRejectReason: 'Invalid CID in request'
         SourceChannelIdentifier: '0040'
    DestinationChannelIdentifier: '0040'

   Read-only properties:
    No properties.

Create GAP Data Block Configuration Object
This example shows how to create a BLE GAP data block configuration object. It also shows how to
change the default property settings by using dot notation or by overriding the default settings by
using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a BLE GAP data block configuration object with default settings.

gapDataBlk = bleGAPDataBlockConfig  

gapDataBlk = 
  bleGAPDataBlockConfig with properties:

    AdvertisingDataTypes: {'Flags'}
       LEDiscoverability: 'General'
                   BREDR: 0

   Read-only properties:
    No properties.

Modify the defaults to specify for an advertising data block for 'Flags' and 'Tx power level'
advertising data types.

gapDataBlk.AdvertisingDataTypes = {'Flags'; 'Tx power level'}

gapDataBlk = 
  bleGAPDataBlockConfig with properties:

    AdvertisingDataTypes: {2x1 cell}
       LEDiscoverability: 'General'
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                   BREDR: 0
            TxPowerLevel: 0

   Read-only properties:
    No properties.

gapDataBlk.AdvertisingDataTypes

ans = 2x1 cell
    {'Flags'         }
    {'Tx power level'}

Override Default Property Values During Object Creation

Create a BLE GAP data block configuration object, using Name,Value pairs to specify
'Advertising interval' and 'Local name' advertising data types.

gapDataBlk = bleGAPDataBlockConfig  ('AdvertisingDataTypes', {'Advertising interval', 'Local name'})

gapDataBlk = 
  bleGAPDataBlockConfig with properties:

    AdvertisingDataTypes: {2x1 cell}
               LocalName: 'Bluetooth'
     LocalNameShortening: 0
     AdvertisingInterval: 32

   Read-only properties:
    No properties.

gapDataBlk.AdvertisingDataTypes

ans = 2x1 cell
    {'Advertising interval'}
    {'Local name'          }

Create Attribute PDU Configuration Object
This example shows how to create a BLE attribute (ATT) PDU configuration object. It also shows how
to change the default property settings by using dot notation or by overriding the default settings by
using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a BLE ATT PDU configuration object with default settings.

attpdu = bleATTPDUConfig

attpdu = 
  bleATTPDUConfig with properties:

             Opcode: 'Read request'
    AttributeHandle: '0001'
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   Read-only properties:
    No properties.

Modify the defaults to specify a 'Read blob request' operation code.

attpdu.Opcode = 'Read blob request'

attpdu = 
  bleATTPDUConfig with properties:

             Opcode: 'Read blob request'
    AttributeHandle: '0001'
             Offset: 0

   Read-only properties:
    No properties.

Override Default Property Values During Object Creation

Create a BLE ATT PDU configuration object, using Name,Value pairs to specify 'Information
request' for the operation code of a request PDU that caused an error.

lldatapdu2 = bleATTPDUConfig('RequestedOpcode','Information request')

lldatapdu2 = 
  bleATTPDUConfig with properties:

             Opcode: 'Read request'
    AttributeHandle: '0001'

   Read-only properties:
    No properties.

See Also
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• “Bluetooth Parameterization” on page 13-16
• “Bluetooth Protocol Stack” on page 13-7
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Bluetooth Packet Structure
The Bluetooth Special Interest Group (SIG) [1] and [2] defines different packet structures for
Bluetooth low energy (BLE) and Bluetooth basic rate/enhanced data rate (BR/EDR) devices.

BLE Packet Structure
Bit Ordering in BLE Packets

When defining packets and messages in the baseband specification, the bit ordering follows the little-
endian format. In this format, these rules apply:

• The least significant bit (LSB) corresponds to b0.
• LSB is the first bit sent over the air.
• When illustrating the packet structure, the LSB is shown on the left side.

Moreover, data fields generated internally at the baseband level (packet header and payload header
length), must be transmitted with the LSB first. For example, a 3-bit parameter is sent as: b0b1b2 =
110 over the air, where 1 is sent first and 0 is sent last.

The BLE devices use packet formats for: “BLE Uncoded Physical Layer (PHY)” on page 13-23, “BLE
Coded PHY” on page 13-24, “Advertising Physical Channel PDU” on page 13-26, “Data Physical
Channel PDU” on page 13-27, and “Constant Tone Extension and In-Phase Quadrature (IQ)
Sampling” on page 13-30.

Note For more information about BLE packet structure, see volume 6, Part B, Section 2 of the
Bluetooth Core Specification [2].

BLE Uncoded Physical Layer (PHY)

The Bluetooth Core Specification [2] defines two physical layer (PHY) transmission modes (LE 1M
and LE 2M) for uncoded PHY. This figure shows the packet structure for the BLE uncoded PHY
operating on LE 1M and LE 2M.

Each packet contains four mandatory fields (preamble, access-address, protocol data unit (PDU), and
cyclic redundancy check (CRC)) and one optional field (constant tone extension (CTE)). The preamble
is transmitted first, followed by the access address, PDU, CRC, and CTE (if present) in that order. The
entire packet is transmitted at the same symbol rate of 1 Msym/s or 2 Msym/s.
Preamble

All link layer (LL) packets contain a preamble, which is used in the receiver to perform frequency
synchronization, automatic gain control (AGC) training, and symbol timing estimation. The preamble
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is a fixed sequence of alternating 0 and 1 bits. For the BLE packets transmitted on the LE 1M PHY
and LE 2M PHY, the preamble size is 1 octet and 2 octets, respectively.

Access address

The access address is a 4-octet value. Each LL connection between any two devices and each periodic
advertising train has a distinct access address. Each time the BLE device needs a new access
address, the LL generates a new random value adhering to these requirements:

• The value must not be the access address for any existing LL connection on this device.
• The value must not be the access address for any enabled periodic advertising train.
• The value must have no more than six successive 1s or 0s.
• The value must not be the access address for any advertising channel packets.
• The value must not be a sequence that differs from the access address of advertising physical

channel packets by only 1 bit.
• All four octets for the value must not be equal.
• The value must have a minimum of two transitions in the most significant 6 bits.

If the random value does not satisfy the above requirements, a new random value is generated until it
meets all of the requirements.

PDU

When a BLE packet is transmitted on either the primary or secondary advertising physical channel or
the periodic physical channel, the PDU is defined as the “Advertising Physical Channel PDU” on page
13-26. When a packet is transmitted on the data physical channel, the PDU is defined as the “Data
Physical Channel PDU” on page 13-27.

CRC

The size of the CRC is 3 octets and is calculated on the PDU of all LL packets. If the PDU is
encrypted, then the CRC is calculated after encryption of the PDU is complete. The CRC polynomial
has the form x24+x10+x9+x6+x4+x3+x+1.

For more information about CRC generation, see volume 6, Part B, Section 3.1.1 of the Bluetooth
Core Specification [2].

CTE

The CTE consists of a constantly modulated series of unwhitened 1s. This field has a variable length
that ranges from 16 µs to 160 µs.

For more information about the CTE, see volume 6, Part B, Section 2.5.1 of the Bluetooth Core
Specification [2].

Note For more information about BLE uncoded PHY packet structure, refer to Vol 6, Part B, Section
2.1 of Bluetooth Core Specification [2].

BLE Coded PHY

This figure shows the packet structure for the BLE coded PHY and is implemented for BLE packets on
all the physical channels.
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Each BLE packet consists of a preamble and these two forward error correcting (FEC) blocks:

• FEC block 1— This block contains three fields: access address, coding indicator (CI), and TERM1.
This block implements an S=8 coding scheme, where each bit represents eight symbols. This gives
a data rate of 125 Kbps.

• FEC block 2— This block contains these three fields: PDU, CRC, and TERM2. This block
implements an S=8 or S=2 coding scheme. In the S=2 coding scheme, each bit represents two
symbols. Therefore, the data rate is 500 Kbps.

The BLE coded PHY does not contain the CTE.
Preamble

The BLE coded PHY preamble is 80 symbols in length and contains 10 repetitions of the symbol
pattern '00111100' (in the transmission order).
Access address

The length of BLE coded PHY access address is 256 symbols. For more information, see “Access
address” on page 13-24. In addition to the requirements listed in the access address subsection of the
“BLE Uncoded Physical Layer (PHY)” on page 13-23 section, the new value for the access address of
the BLE coded PHY must also meet these requirements:

• The value must have at least three 1s in the last significant bits.
• The value must have no more than 11 transitions in the least significant 16 bits.

CI

The CI field consists of two bits as shown in this table:

Bits in CI Description
00b FEC block 2 coded using S=8
01b FEC block 2 coded using S=2
All other values Reserved for future use

PDU

The PDU in the BLE coded PHY packet structure has the same formatting as the “PDU” on page 13-
24 in the BLE uncoded PHY packet.
CRC

The CRC in the BLE coded PHY packet structure has the same formatting as the “CRC” on page 13-
24 in the BLE uncoded PHY packet.
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TERM1 and TERM2

Each FEC block contains a terminator at the end of the block. That terminator is referred to as
TERM1 and TERM2. Each terminator is 3 bits long and forms the termination sequence during the
FEC encoding process.

Note For more information about BLE coded PHY packet structure, see volume 6, Part B, Section 2.2
of the Bluetooth Core Specification [2].

Advertising Physical Channel PDU

The packet structure format of the advertising physical channel PDU is shown in this figure.

The advertising physical channel PDU has a 16-bit header and a variable-size payload. The 16-bit
header field of the advertising physical channel PDU is shown in this figure.

The PDU type field in the advertising channel PDU header defines different types of PDUs that can be
transmitted on the BLE coded PHY. This table maps different types of PDUs with the physical
channels and the PHYs on which the BLE packet might appear. The table also indicates the PHY
transmission modes supported for each type of advertising physical channel PDU.

PDU Type PDU Name Physical Channel LE 1M
Suppor
t

LE 2M
Support

LE Coded
Support

0000b ADV_IND Primary Advertising Yes   
0001b ADV_DIRECT_IND Primary Advertising Yes   
0010b ADV_NONCONN_IND Primary Advertising Yes   
0011b SCAN_REQ Primary Advertising Yes   

AUX_SCAN_REQ Secondary Advertising Yes Yes Yes
0100b SCAN_RSP Primary Advertising Yes   
0101b CONNECT_IND Primary Advertising Yes   

AUX_CONNECT_REQ Secondary Advertising Yes Yes Yes
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PDU Type PDU Name Physical Channel LE 1M
Suppor
t

LE 2M
Support

LE Coded
Support

0110b ADV_SCAN_IND Primary Advertising Yes   
0111b ADV_EXT_IND Primary Advertising Yes  Yes

AUX_ADV_IND Secondary Advertising Yes Yes Yes
AUX_SCAN_RSP Secondary Advertising Yes Yes Yes
AUX_SYNC_IND Periodic Yes Yes Yes
AUX_CHAIN_IND Secondary Advertising

and Periodic
Yes Yes Yes

1000b AUX_CONNECT_RSP Secondary Advertising Yes Yes Yes
All other values Reserved for future use

The RFU field is reserved for future use. The ChSel, TxAdd, and RxAdd fields of the advertising
physical channel PDU header contain information specific to the type of PDU defined for each
advertising physical channel PDU separately. If the ChSel, TxAdd, or RxAdd fields are not defined as
used in a given PDU, then they are considered as reserved for future use.

The Length field of the advertising physical channel PDU header denotes the length of the payload in
octets. The valid range of the Length field is 1 to 255 octets.

The Payload field in the advertising physical channel PDU packet structure is specific to the type of
PDUs listed in the preceding table.

Note For more information about advertising physical channel PDUs, see volume 6, Part B, Section
2.3 of the Bluetooth Core Specification [2].

Data Physical Channel PDU

The packet structure format of the data physical channel PDU is shown in this figure.

The data physical channel PDU has a 16-bit or 24-bit header, a variable length payload in the range
[0, 251] octets, and can include a 32-bit message integrity check (MIC) field. The MIC is not included
in an unencrypted LL connection or in an encrypted LL connection with a data channel PDU
containing an empty payload. The MIC is included in an encrypted LL connection with a data channel
PDU containing a nonzero length payload. In this case, the MIC is calculated as specified in volume 6,
Part E, Section 1 of the Bluetooth Core Specification [2].

The header field of the data physical channel PDU is shown in this figure.
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The data physical channel PDU header includes these fields:

• Link layer identifier (LLID) — This field indicates whether the packet is an LL data PDU or LL
control PDU.

• 00b — Reserved for future use
• 01b — LL Data PDU, which can be a continuation fragment of an logical link control and

adaptation (L2CAP) message or an empty PDU
• 10b — LL Data PDU, which can be a start of an L2CAP message or a complete L2CAP message

with no fragmentation
• 11b — LL control PDU

• Next expected sequence number (NESN): The LL uses this field to either acknowledge the last
data physical channel PDU sent by the peer or to request the peer to resend the last data physical
channel PDU. For more information about NESN, see volume 6, Part B, Section 4.5.9 of the
Bluetooth Core Specification [2].

• Sequence number (SN): The LL uses this field to identify the BLE packets sent by it. For more
information about the SN, see volume 6, Part B, Section 4.5.9 of the Bluetooth Core Specification
[2].

• More data (MD): This field indicates that the BLE device has more data to send. If neither of
master and slave BLE device has set the MD bit in their packets, the packet from the slave closes
the connection event. If the master and slave devices have set the MD bit, the master can continue
the connection event by sending another packet, and the slave must listen after sending its
packet. For more information about MD, see volume 6, Part B, Section 4.5.6 of the Bluetooth Core
Specification [2].

• CTEInfo present (CP): This field indicates whether the data physical channel PDU header has a
CTEInfo field and, subsequently whether the data physical channel packet has a CTE. For more
information about the packet structure of the CTEInfo field, see volume 6, Part B, Section 2.5.2 of
the Bluetooth Core Specification [2].

• Length: This field indicates the size, in octets, of the payload and MIC, if present. The size of this
field is in the range [0, 255] octets.

• CTEInfo: This field indicates the type and length of the CTE.

The two types of data physical channel PDUs are: “LL Data PDU” on page 13-28 and “LL Control
PDU” on page 13-29.

LL Data PDU

The LL uses the LL data PDU to send L2CAP data. The LLID field in the LL data channel PDU header
is set to either 01b or 10b. An LL data PDU is referred to as an empty PDU if

• The LLID field of the LL data channel PDU header is set to 01b.
• The Length field of the LL data channel PDU header is set to 00000000b.
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An LL data PDU with the LLID field in the header set to 10b does not have the Length field set to
00000000b.

LL Control PDU

The LL uses the LL data PDU to control the LL connection. If the LLID field of data physical channel
PDU header is set to 11b, the data physical channel PDU contains an LL control PDU. This figure
shows the LL control PDU payload.

The Opcode field defines different types of LL control PDUs as shown in this table.

Opcode LL Control PDU
0x00 LL_CONNECTION_UPDATE_IND
0x01 LL_CHANNEL_MAP_IND
0x02 LL_TERMINATE_IND
0x03 LL_ENC_REQ
0x04 LL_ENC_RSP
0x05 LL_START_ENC_REQ
0x06 LL_START_ENC_RSP
0x07 LL_UNKNOWN_RSP
0x08 LL_FEATURE_REQ
0x09 LL_FEATURE_RSP
0x0A LL_PAUSE_ENC_REQ
0x0B LL_PAUSE_ENC_RSP
0x0C LL_VERSION_IND
0x0D LL_REJECT_IND
0x0E LL_SLAVE_FEATURE_REQ
0x0F LL_CONNECTION_PARAM_REQ
0x10 LL_CONNECTION_PARAM_RSP
0x11 LL_REJECT_EXT_IND
0x12 LL_PING_REQ
0x13 LL_PING_RSP
0x14 LL_LENGTH_REQ
0x15 LL_LENGTH_RSP
0x16 LL_PHY_REQ
0x17 LL_PHY_RSP
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Opcode LL Control PDU
0x18 LL_PHY_UPDATE_IND
0x19 LL_MIN_USED_CHANNELS_IND
0x1A LL_CTE_REQ
0x1B LL_CTE_RSP
0x1C LL_PERIODIC_SYNC_IND
0x1D LL_CLOCK_ACCURACY_REQ
0x1E LL_CLOCK_ACCURACY_RSP
All other values Reserved for future use

The CtrData field in the LL control PDU is specific to the value of the Opcode field. For more
information about different LL control PDUs and their corresponding CtrData field structure, see
volume 6, Part B, Sections 2.4.2.1 to 2.4.2.28 of the Bluetooth Core Specification [2].

Constant Tone Extension and In-Phase Quadrature (IQ) Sampling

The length of the CTE is variable and in the range [16, 160] µs. This field contains a constantly
modulated series of 1s with no whitening applied. The CTE is of two types: antenna switching during
CTE transmission (AoD) and antenna switching during CTE reception (AoA). When receiving a packet
containing an AoD CTE, the receiver does not need to switch antennae. When receiving a packet
containing an AoA CTE, the receiver performs antenna switching according to the switching pattern
configured by the host. In both cases, the receiver takes an IQ sample at each microsecond during
the reference period and an IQ sample each sample slot. The controller reports the IQ samples to the
host. The receiver samples the entire CTE regardless of its length, unless this conflicts with other
activities. For more information about CTE, see volume 6, Part B, Sections 2.5.1 to 2.5.3 of the
Bluetooth Core Specification [2].

When requested by the host, the receiver performs IQ sampling when receiving a valid BLE packet
with a CTE. However, when receiving a BLE packet with a CTE and an incorrect CRC, the receiver
might perform IQ sampling. For more information about IQ sampling, see volume 6, Part B, Section
2.5.4 of the Bluetooth Core Specification [2].

Note For more information about data physical channel PDUs, see volume 6, Part B, Section 2.4 of
the Bluetooth Core Specification [2].

Bluetooth BR/EDR Packet Structure
Bit Ordering in Bluetooth BR/EDR Packets

The bit ordering in Bluetooth BR/EDR packets follows the same format as the “Bit Ordering in BLE
Packets” on page 13-23.

Bluetooth BR/EDR devices use packet formats for: “BR Mode” on page 13-31, “EDR Mode” on page
13-31, “Access Code” on page 13-31, “Packet Header” on page 13-33, “Packet Types” on page 13-
34, and “Payload Format” on page 13-35.

Note For more information about Bluetooth BR/EDR packet structure, see volume 2, Part B, Section
6 of the Bluetooth Core Specification [2].
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General Format
BR Mode

The general format of Bluetooth BR packets is shown in this figure. Each packet consists of these
fields: the access code (68 or 72 bits), header (54 bits), and payload in the range [0, 2790] bits.

The Bluetooth Core Specification [2] defines different types of packets. A packet can consist of:

• The shortened access code only
• The access code and the packet header
• The access code, the packet header, and the payload

EDR Mode

The general format of Bluetooth EDR packets is shown in this figure.

The format and modulation of the access code and the packet header fields are similar to that of BR
packets. Following the header field, the EDR packets have a guard time in the range [4.75, 5.25] µs, a
sync sequence (11 µs), payload in the range [0, 2790] bits, and trailer (two symbols) fields.

Access Code

Each packet starts with an access code. If a packet header follows, the access code is 72 bits long.
Otherwise, the length of the access code is 68 bits. In this case, the access code is referred to as a
shortened access code. The shortened access code does not contain a trailer. The access code is used
for synchronization, DC offset compensation, and identification of all packets exchanged on the
physical channel. The shortened access code is used in paging and inquiry. In this case, the access
code itself is used as a signaling message, and neither a header nor a payload is present. This figure
shows the packet structure of the access code.
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Different access code types use different lower address parts (LAPs) to construct the sync word. A
summary of different access code types is shown in this table.

Access Code
Type

LAP Access Code
Length (Bits)

Description

Channel access
code (CAC)

Master 72 This access code is used in the connection
state, synchronization train substate, and
synchronization scan substate. It is
derived from the LAP of the Master's
BD_ADDR .

Device access
code (DAC)

Paged device 68 or 72 This access code is used during page,
page scan, and page response substates. It
is derived from the paged devices's
BD_ADDR.

Dedicated inquiry
access code
(DIAC)

Dedicated 68 or 72 This access code is used in the inquiry
substate for dedicated inquiry operations.

General inquiry
access code
(GIAC)

Reserved 68 or 72 This access code is used in the inquiry
substate for general inquiry operations.

For DAC, DIAC, and GIAC access code types, the access code length of 72 bits is used only in
combination with frequency hopping sequence (FHS) packets. When used as self-contained messages
without a header, the DAC, DIAC and GIAC do not include trailer bits and are of length 68 bits.

The CAC consists of a preamble, sync word, and trailer.

• Preamble: It is a fixed 4-symbol pattern of 1s and 0s that facilitates DC compensation. If the LSB
of the following sync word is 1 or 0, the preamble sequence is 1010 or 0101 (in transmission
order), respectively.

• Sync word: It is a 64-bit code word derived from a 24-bit LAP address. The construction
guarantees a large Hamming distance between sync words based on different LAPs. The
autocorrelation properties of the sync word improve timing acquisition.

• Trailer: It is appended to the sync word as soon as the packet header follows the access code. The
trailer is a fixed 4-symbol pattern of 1s and 0s. The trailer together with the three MSBs of the
sync word form a 7-bit pattern of alternating 1s and 0s which is used for extended DC
compensation. The trailer sequence is either 1010 or 0101 (in transmission order) depending on
whether the MSB of the sync word is 0 or 1, respectively.

Note For more information about access code in Bluetooth BR/EDR, see volume 2, Part B, Section
6.3 of the Bluetooth Core Specification [2].
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Packet Header

The structure of the Bluetooth BR/EDR packet header is shown in this figure.

This table provides a brief description about the packet header fields.

Packet Header Field Size of the Field
(Bits)

Description

Logical transport
address (LT_ADDR)

3 This field indicates the destination slave(s) for a
packet in a master-to-slave transmission slot and
indicates the source slave for a slave-to-master
transmission slot.

Type 4 This field specifies the type of packet used. The
Bluetooth Core Specification [2] defines 16 different
types of BR/EDR packets. The value in this field
depends on the value of LT_ADDR field in the packet.
This field determines the number of slots occupied
by the current packet.

Flow control (FLOW) 1 This field implements the flow control of BR/EDR
packets over the asynchronous connection-oriented
logical (ACL) transport. When the receive buffer for
the ACL logical transport is full, a 'STOP' indication
(FLOW = 0) is returned to stop the other device
from transmitting data temporarily. When the
receive buffer can accept data, a 'GO' indication
(FLOW = 1) is returned.

Automatic repeat
request number
(ARQN)

1 This field informs the source of a successful transfer
of payload data with the CRC. This field is reserved
for future use on the connectionless slave broadcast
(CSB) logical transport.

Sequence number
(SEQN)

1 This field provides a sequential numbering scheme
to order the data packet stream. This field is
reserved for future use on the CSB logical transport.
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Packet Header Field Size of the Field
(Bits)

Description

Header error check
(HEC)

8 This field checks the packet header integrity. Before
generating the HEC, the HEC generator is initialized
with an 8-bit value. These 8 bits correspond to the
upper address part (UAP). After the initialization,
the HEC generator calculates the HEC value for the
10 header bits. Before checking the HEC, the
receiver initializes the HEC check circuitry with the
appropriate 8-bit UAP. If the HEC does not check the
packet header integrity, the entire packet is
discarded.

Note For more information about packet header used in Bluetooth BR/EDR, see volume 2, Part B,
Section 6.4 of the Bluetooth Core Specification [2].

Packet Types

The packets used in the piconet are related to these logical transports on which they are used.

• Synchronous connection-oriented (SCO): It is a circuit-switched connection that reserved slots
between the master and a specific slave.

• Extended SCO (eSCO): Similar to SCO, it reserves slots between the master and a specific slave.
eSCO supports a retransmission window following the reserved slots. Together, the reserved slots
and the retransmission window form the complete eSCO window.

• ACL: It provides a packet-switched connection between the master and all active slaves
participating in the piconet. ACL supports asynchronous and isochronous services. Between a
master and a slave, only a single ACL logical transport must exist.

• CSB: It is used to transport profile broadcast data from a master to multiple slaves. A CSB logical
transport is unreliable.

This table summarizes the packets defined for the SCO, eSCO, ACL, and CSB logical transport types.

Note The column entries followed by "D" means data field only. "C.1" implies that the MIC value is
mandatory when encryption with AES-CCM is enabled. Otherwise, MIC is excluded. For more
information about different packet types used in Bluetooth BR/EDR, see volume 2, Part B, Sections
6.5 and 6.7 of the Bluetooth Core Specification [2].

Packet
Type

TYPE
Code

Slot
Occupancy

Payload
Header
(Bytes)

User
Payload
(Bytes)

FEC MIC CRC Logical
Transport
Types
Supported

ID N/A 1 N/A N/A N/A N/A N/A N/A
NULL 0000 1 N/A N/A N/A N/A N/A SCO, eSCO,

ACL, CSB
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Packet
Type

TYPE
Code

Slot
Occupancy

Payload
Header
(Bytes)

User
Payload
(Bytes)

FEC MIC CRC Logical
Transport
Types
Supported

POLL 0001 1 N/A N/A N/A N/A N/A SCO, eSCO,
ACL

FHS 0010 1 N/A 18 2/3 N/A Yes SCO, ACL
DM1 0011 1 1 0-17 2/3 C.1 Yes SCO, ACL,

CSB
DH1 0100 1 1 0-27 No C.1 Yes ACL, CSB
DM3 1010 3 2 0-121 2/3 C.1 Yes ACL, CSB
DH3 1011 3 2 0-183 No C.1 Yes ACL, CSB
DM5 1110 5 2 0-224 2/3 C.1 Yes ACL, CSB
DH5 1111 5 2 0-339 No C.1 Yes ACL, CSB
2-DH1 0100 1 2 0-54 No C.1 Yes ACL, CSB
2-DH3 1010 3 2 0-367 No C.1 Yes ACL, CSB
2-DH5 1110 5 2 0-679 No C.1 Yes ACL, CSB
3-DH1 1000 1 2 0-83 No C.1 Yes ACL, CSB
3-DH3 1011 3 2 0-552 No C.1 Yes ACL, CSB
3-DH5 1111 5 2 0-1021 No C.1 Yes ACL, CSB
HV1 0101 1 N/A 10 1/3 No No SCO
HV2 0110 1 N/A 20 2/3 No No SCO
HV3 0111 1 N/A 30 No No No SCO
DV 1000 1 1 D 10+(0-9) D 2/3 D No Yes D SCO
EV3 0111 1 N/A 1-30 No No Yes eSCO
EV4 1100 3 N/A 1-120 2/3 No Yes eSCO
EV5 1101 3 N/A 1-180 No No Yes eSCO
2-EV3 0110 1 N/A 1-60 No No Yes eSCO
2-EV5 1100 3 N/A 1-360 No No Yes eSCO
3-EV3 0111 1 N/A 1-90 No No Yes eSCO
3-EV5 1101 3 N/A 1-540 No No Yes eSCO

Payload Format

The Buetooth Core Specification [2] defines two types of payload field formats: synchronous data field
(for ACL packets) and asynchronous data field (for SCO and eSCO packets). However, the DV packets
contain both the synchronous and asynchronous data fields.

• Synchronous data field: In SCO, which supports only the BR mode, the length of the synchronous
data field is fixed. The synchronous data field contains only the synchronous data body portion and
does not have a payload header. In BR eSCO, the synchronous data field consists of these two
segments: a synchronous data body and a CRC code. In this case, no payload header is present. In
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EDR eSCO, the synchronous data field consists of a guard time, synchronization sequence,
synchronous data body, CRC code, and trailer. In this case, no payload header is present.

• Asynchronous data field: The BR ACL packets have an asynchronous data field consisting of
payload header, payload body, MIC (if applicable), and CRC (if applicable). This figure shows the 8-
bit payload header format for BR single-slot ACL packets.

EDR ACL packets have an asynchronous data field consisting of guard time, synchronization
sequence, payload header, payload body, MIC (if applicable), CRC (if applicable), and trailer. This
figure shows the 16-bit payload header format for EDR multislot ACL packets.

Note For more information about the payload format, see volume 2, Part B, Sections 6.6.1 and
6.6.2 of the Bluetooth Core Specification [2].

References
[1] Bluetooth Technology Website. “Bluetooth Technology Website | The Official Website of Bluetooth

Technology.” Accessed November 22, 2019. https://www.bluetooth.com/.

[2] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.1. https://
www.bluetooth.com/.

See Also

More About
• “What Is Bluetooth?” on page 13-2
• “Bluetooth Protocol Stack” on page 13-7
• “Bluetooth Location and Direction Finding” on page 13-37
• “Bluetooth Mesh Networking” on page 13-46
• “Bluetooth-WLAN Coexistence” on page 13-60

13 Bluetooth Tutorials

13-36

https://www.bluetooth.com/
https://www.bluetooth.com/
https://www.bluetooth.com/


Bluetooth Location and Direction Finding
Bluetooth technology [1] uses low-power radio frequency to enable short-range communication at a
low cost. The Bluetooth Core Specification [2] provided by the Bluetooth Special Interest Group (SIG)
added a location and direction finding feature in the Bluetooth low energy (BLE). The communication
in BLE is realized using these two distinct physical layers (PHYs).

• LE Uncoded: This PHY is further segregated into LE 1M PHY and LE 2M PHY. LE 1M is the
default PHY and provides a symbol rate of 1 Msym/s. Support for LE 1M is mandatory in all
devices that support BLE. LE 2M provides a symbol rate of 2 Msym/s. The support for LE 2M is
optional for the devices supporting the BLE controller.

• LE Coded: This PHY is equipped for longer range communication. It has the potential to quadruple
the range that can be achieved whilst reducing the data rate. Support for LE Coded PHY is
optional for devices supporting the BLE controller.

Bluetooth direction finding can use either LE 1M or LE 2M PHY, but not the LE Coded PHY.

Location and Direction Finding Services in Bluetooth
For several years, Bluetooth has been used to provide different types of location and direction finding
services. On a high-level, these services can be split into two categories.

• Proximity solutions: This category consists of point of interest (PoI) information applications (for
example, museums that provide the user information about the artefacts in the room). This
category also includes item-finding solutions such as Bluetooth tags that help to find lost or
misplaced items. In these solutions, the Bluetooth tags periodically transmit BLE broadcast
frames. The access point (AP) scans these frames to obtain the Bluetooth tag information and
sends it to the location server through the access controller (AC). In PoI proximity applications,
determining what point or PoIs are in close proximity of the calculated location is necessary.

• Positioning systems: This category includes location-based services to leverage Bluetooth to find
the physical position of the device. The prominent use case examples in this category are real-time
locating systems used for asset tracking, people tracking, and indoor positioning systems used to
enable pathfinding solutions that help people navigate through intricate indoor scenarios. Indoor
positioning use cases need applications that estimate the accurate location of the beacons they
encounter so that the location of the tracked device corresponding to the known location of the
beacon can be calculated. In some cases, the position of a beacon might need to be determined in
three dimensions, considering its x- and y-coordinates in horizontal plane and its elevation above
or below some reference altitude. The application can determine the position of its host device
only if it knows the direction from which the received signal is coming, the approximate distance
to that beacon, and the location of the beacon.

In applications involving smartphones, when calculating the direction of the signal, the application
must consider the orientation in three dimensional space of the phone.

Beyond the previously mentioned location-finding services, the applications themselves must
undertake these common considerations.

• Determining antenna array details: To accurately receive and process IQ sample data, applications
must have details of the antenna array in the local device (for angle of arrival (AoA)) or remote
device (angle of departure (AoD)). Application profiles describe how applications can obtain the
antenna array description from remote devices. Expect the APIs to emerge for retrieving details of
antenna arrays in local and remote devices.
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• Configuring constant tone extension (CTE) parameters: Parameters such as the length of the CTE,
the length of antenna switching pattern, and the number of packets that include the CTE to
transmit per periodic advertising event govern the CTE production. These parameters can be set
through new host controller interface (HCI) commands.

• Configuring and enabling IQ sampling: The Bluetooth Core Specification [2] defines a series of
parameters to configure and initiate IQ sampling. These parameters include sample slot duration
(either 1 μs or 2 μs), the length of the switching pattern, and the IDs of the antennas to be
included in the sampling pattern.

• Developing algorithms and calculating angles from IQ sample data: The Bluetooth SIG does not
designate any one particular algorithm as the standard direction-finding algorithm. The choice of
algorithm is left to the application layer to address. Generally, this is the area in which
manufacturers and developers compete.

Location Estimation Techniques in Bluetooth
Bluetooth beacon technology is an application of the BLE standard. A beacon broadcasts a distinct ID.
An application on a BLE device receiving that ID looks into a database to recognize the transmitting
beacon and then provides the user with information related to the location of that beacon. This figure
shows the techniques used to estimate the distance between the BLE device and the beacon.

• Trilateration-based location estimation: Trilateration is one of the most commonly used technique
to estimate the device location. In this technique, the locations of at least two reference Bluetooth
beacons and the distance between them must be known. However, to accurately determine the
relative location of a node, three beacons are needed. The trilateration technique uses the
received signal strength indicator (RSSI) value to compute the distance between the Bluetooth
beacons and the BLE device. The RSSI value helps to determine the proximity of two BLE devices
by providing meter-level accuracy. The RSSI value indicates the strength of the beacon's signal as
seen from the receiving BLE device. As the RSSI value increases, the beacon signal strengthens.
This relationship helps indicate when the BLE device is in close proximity of the beacon. Because
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the direction of the beacon signal cannot be determined by trilateration, the location of BLE
device can be at any point on the circumference of the circle. However, the ideal location of the
BLE device is at the common intersection point of the three circles. Due to lack of information
related to the direction of the beacon signal, the three circles might not always have a common
intersection point.

In trilateration, the advantage of using the RSSI value is that it does not need any additional
hardware or incur any additional communication overhead. On the contrary, the accuracy of the
RSSI-based approach is impeded by the accuracy of the path-loss model you select. Also, this
approach is not accurate enough for several use cases. Even if the reference RSSI value is
efficiently calibrated when first installing the Bluetooth beacon, the calculated RSSI value is
influenced by the environmental conditions such as the presence of people and humidity levels.
The RSSI-based approach gives poor accuracy, particularly in indoor scenarios that are filled with
obstacles such as walls and furniture. These obstacles are the source of multipath fading and
make the relation between distance and RSSI inaccurate.

• Triangulation-based location estimation: Triangulation is a technique of calculating the position of
a point that relies on a known distance between two or three reference points and the angles
measured using the Bluetooth direction finding feature between those reference points to that
point. These angles can be AoA or AoD. For more information, see “Angle of Arrival (AoA)” on page
13-40 and “Angle of Departure (AoD)” on page 13-40. Unlike trilateration, which implements
only the distance measurements, the triangulation technique uses angle measurements. With this
technique, you can calculate the location of any point in 2-D given the three angles between the
point and other three reference points. However, in 2-D space, a minimum of two angles is
required to estimate the location of any point. With reference to the preceding figure, d12, d23, and
d13 denote the distances between the Bluetooth beacons 1–2, 2–3, and 1–3 respectively. Angles x,
y, and z are the known angle measurements between the BLE device and Bluetooth beacons 1, 2,
and 3, respectively. Using these known measurements, the triangulation technique enables you to
compute angles α, β, and θ. Consequently, the location of the BLE device is obtained.
Triangulation is a complex technique that requires information about the location and spatial
rotation of the Bluetooth beacons. However, due to AoA and AoD capabilities, triangulation gives a
more accurate location of the BLE device as compared to the trilateration technique.

To accurately determine the BLE device location, more advanced solutions must implement multiple
Bluetooth beacons and complex algorithms based on trilateration and triangulation techniques.

Bluetooth Direction-Finding Capabilities
The Bluetooth Core Specification [2] introduced new features that support high-accuracy direction
finding. The controller specification is enhanced so that the specialized hardware that incorporates
an antenna array can be used to determine the direction of a received BLE signal. The HCI is
modified so that data acquired by the controller can be made available to higher layers of the stack
where direction calculations can take place. Bluetooth direction finding offers two distinct methods,
each of which exploits the same underlying basis. These direction finding methods are – AoA and
AoD.

Note Bluetooth direction-finding capabilities, AoA and AoD, are introduced in the Bluetooth Core
Specification 5.1 [2].
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Angle of Arrival (AoA)

A BLE device can send its direction-related information to another peer BLE device by transmitting
direction-finding enabled packets using a single antenna. The peer BLE device consisting of an RF
switch and an antenna array switches antennas and captures the received in-phase (I) and
quadrature (Q) samples. The BLE device uses these I and Q samples to compute the phase difference
in the radio signal received by various elements of the antenna array. Consequently, the calculated
phase difference is used to estimate the AoA. This figure illustrates the concept of the AoA method.

The transmitter device uses a single antenna, whereas the receiver device uses an antenna array
handled by the RF switch. At the receiver, d denotes the distance between two antennas. The phase
difference, ψ, between the signals arriving at the two antennas is calculated as:

ψ = 2πdcosθ
λ

λ is the signal wavelength and θ is the AoA. To avoid the aliasing effect, the maximum value of d must
be λ/2. Rearranging the above equation, the AoA is calculated as:

θ = cos−1( ψλ
2πd )

Angle of Departure (AoD)

Unlike in AoA, the AoD method consists of a single antenna at the receiver and multiple antennas at
the transmitter. A BLE transmitter consisting of an RF switch and antenna array can make its AoD
detectable by sending direction-finding packets and then switching antennas in the antenna array
during the transmission. The BLE receiver receives the packets using a single antenna and captures
the I and Q samples. The direction of the signal is determined from different propagation delays of
the BLE signal between multiple antennas of the antenna array and the single receiving antenna. This
figure illustrates the concept of the AoD method.
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The receiver device uses a single antenna, whereas the transmitter device has an antenna array
handled by the RF switch. At the transmitter, d denotes the distance between two antennas. The
phase difference, ψ, between the signals arriving at the two antennas is calculated as:

ψ = 2πdsinβ
λ

λ is the signal wavelength and β is the AoD. By rearranging the above equation, AoD is calculated as:

β = sin−1( ψλ
2πd )

Antenna Arrays
The fundamental use of antenna arrays is to direct a radiated signal toward a desired angular sector.
The number, geometrical design, relative amplitudes, and relative phases of the elements of the
antenna array depend on the desired angular pattern. Once the antenna array is designed to focus in
a specific direction, the array can also be steered in another direction by changing the relative phases
of the array elements. This figure shows some commonly used antenna array designs.
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In the uniform linear array (ULA) case, antenna elements are located in a single line. In the uniform
rectangular array (URA) case, antenna elements are positioned along a rectangular grid. The uniform
circular array (UCA) enables antenna elements to be placed along the circumference of the circle.
The geometrical designs of ULAs are simple and enable only a single angle to be calculated from a
signal. More complex antenna array designs can enable two or three angles to be determined.
Calculating the elevation and azimuth angles of the signal relative to a reference plane is common in
these antenna arrays. This figure shows the concept of elevation and azimuth angles.

d is the relative distance vector between points A and B. dx, dy, and dz denote the components of d
along x-, y-, and z-axis, respectively. Using this information, the azimuth angle (α) and elevation angle
(ϵ) between points A and B is calculated as:

α = tan−1(
dy
dx

)

ε = tan−1(
dz

dx2 + dy2
)

Bluetooth Direction-Finding Signals
Bluetooth direction-finding signals are an important part of the Bluetooth direction-finding technique.
Direction-finding signals provide a source of constant signal material to which the IQ sampling can be
applied. New link layer (LL) protocol data units (PDUs) are identified for direction finding between
two connected BLE devices. Moreover, the Bluetooth Core Specification [2] enables you to use
existing advertising PDUs for connectionless direction-finding purposes. In these cases, additional
information known as CTE is appended to the PDUs. To calculate AoA and AoD, the Bluetooth
direction-finding signals use these BLE packet structure fields.
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Constant Tone Extension (CTE)

This figure shows the packet structure for the BLE uncoded PHY operating on LE 1M and LE 2M. The
CTE field is appended at the end of the packet structure.

CTE contains a series of symbols, each representing a binary 1. The number of symbols in the CTE
field are configured by the higher layers so that a suitable amount of data and time is available for IQ
sampling.

Note For more information about the CTE, see volume 6, Part B, Section 2.5.1 of the Bluetooth Core
Specification [2].

Frequency Deviation

In a given radio channel, Bluetooth uses two frequencies, one to denote digital 0s and the other to
denote digital 1s. These two frequencies are computed by adding or subtracting the frequency
deviation to or from the center frequency of the channel. Any change in the frequency also changes
the wavelength. The wavelength is an important factor in calculating direction from IQ samples.
Therefore, CTE consists solely of digital 1s. This implies that the entire CTE is transmitted at a single
frequency and has a constant wavelength.

Cyclic Redundancy Check (CRC)

Each BLE packet contains a CRC field that is used in error detection. The BLE transmitter calculates
a CRC value from the remainder of the packet to be transmitted, appends the CRC to the end of the
packet, and transmits the packet. The BLE receiver performs the same calculation and compares the
computed CRC value with the appended CRC value. If the CRC values are unequal, a communication
error has occurred. This causes a change in one or more of the transmitted bits. In this case, the
packet is ignored by the BLE receiver and can be retransmitted by the BLE transmitter.

Note The CTE value in the direction-finding packets is not included in the CRC calculation.

Message Integrity Check (MIC)

If a connection between the BLE transmitter and receiver is encrypted and authenticated, the LL
PDU includes a MIC field. The MIC value is used to authenticate the sender of the PDU.

Note The CTE value in the direction-finding packets is not included in the MIC calculation.
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Whitening

Whitening refers to the process of scrambling the bits to avoid lengthy sequences of 1s and 0s in the
transmitted bit stream. The lengthy sequences of 1s and 0s might cause the receiver to lose its
frequency lock and act as though the center frequency has moved up or down. BLE uses whitening to
scramble the PDU and CRC fields of all LL packets.

Note The CTE value in the direction-finding packets is not subject to the whitening process.

Connectionless and Connection-Oriented Direction Finding
The Bluetooth Core Specification [2] enables the AoA and AoD to be used in either connectionless or
connection-oriented communication. However, in typical use cases, the AoD is used with
connectionless communication and the AoA is used with connection-oriented communication. This
table shows four possible permutations of using the AoA and AoD with connectionless and
connection-oriented communication.

Type of Connection AoA AoD
Connectionless BLE controller support

is optional.
BLE controller support is optional. Using the AoD
with connectionless communication is typical.

Connection-oriented BLE controller support
is optional. Using the
AoA with connection-
oriented
communication is
typical.

BLE controller support is optional.

Connectionless direction finding implements Bluetooth periodic advertising. The CTE is appended to
otherwise standard AUX_SYNC_IND PDUs. Connection-oriented direction finding conveys the CTE
using new LL_CTE_RSP packets that are transmitted over the connection as an acknowledgment to
LL_CTE_REQ PDUs. In both of these cases, a variety of setup and configuration steps must be
completed before IQ sampling is initiated and the CTE-bearing packets are generated.

With the Bluetooth-direction finding capability, the proximity and positioning systems operating at
submeter accuracy can be developed for use cases such as indoor positioning, path finding, asset
tracking, and directional discovery. The Bluetooth direction-finding capability elevates proven
engineering techniques for signal direction. This capability also standardizes the interfaces,
interactions, and prominent intrinsic operations of the BLE stack. Precise direction finding is now
interoperable across different manufacturers and can be widely adopted to create a new generation
of advanced Bluetooth location and direction finding services.
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Bluetooth Mesh Networking
Bluetooth technology [1] uses low-power radio frequency to enable short-range communication at a
low cost. In 2010, Bluetooth 4.0 introduced a new variant known as Bluetooth low energy (BLE), or
Bluetooth Smart. BLE supports a point-to-multipoint or broadcast communication that is useful for a
short-range navigation beacon mode such as real-time locating systems used for asset-tracking and
people tracking. Auxiliary improvements to Bluetooth technology were released with the introduction
of Bluetooth 5.0 [2]. In addition to Bluetooth 5.0, the Bluetooth Special Interest Group (SIG) defined a
new connectivity model for BLE, known as the Mesh Profile [4]. The BLE Mesh Profile establishes the
option of many-to-many communication links for BLE devices and is optimized for creating large scale
Internet of Things (IoT) networks. The mesh stack defined by the BLE Mesh Profile is located on top
of the BLE core specification. For more information about the mesh stack, see “Bluetooth Mesh
Stack” on page 13-46. This new mesh networking capability of Bluetooth is ideally suited for
building automation, large scale sensor networks, and other IoT solutions that require tens and
hundreds of devices to be reliably and securely set up.

Motivation for Bluetooth Mesh Networking
As mesh networking topologies offer the best way to satisfy different increasingly common and
popular communications requirements, Bluetooth mesh networking was introduced. Some of the
fundamental requirements include:

• Low energy consumption
• Extension of the coverage area through multihop communication
• Increased network scalability through efficient use of radio resources
• Interoperability with different standards
• Increased communications security through authentication and encryption
• Improved system reliability through multipath message-oriented communication
• Ability to deliver optimal network responsiveness

Other low-power wireless communication technologies, such as ZigBee® and Thread, also support
mesh networking topologies. However, these technologies often face issues such as low data rates,
restricted number of hops when relaying data across the mesh, limitations in scalability often caused
by the way radio channels are used, and delays when following procedures to change the device
composition of the mesh topology. Additionally, these wireless communication technologies are not
supported by standard smartphones, tablets, and PCs. The Bluetooth mesh meets the previously
mentioned requirements and creates an industry-standard mesh communications technology based
on BLE.

Bluetooth mesh networking integrates the trusted, global interoperability with an evolved, trusted
ecosystem to create industrial-grade device networks.

Bluetooth Mesh Stack
This figure illustrates how the Bluetooth mesh stack fits into the standard BLE protocol stack. The
figure shows the Bluetooth mesh stack over the BLE advertising bearer and generic attribute (GATT)
bearer.
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The Bluetooth mesh stack consists of these layers:

• Model layer: This layer defines the models, messages, and states required for use-case scenarios.
For example, to change the state of a light to On or Off, the Bluetooth nodes use the Generic OnOff
Set message from the Generic OnOff model.

• Foundation model layer: This layer defines the models, messages, and states required to configure
and manage the mesh network. This layer also configures element, publish, and subscription
addresses.

• Access layer: This layer defines the interface to the upper transport layer and the format of the
application data. It also controls the encryption and decryption of the application data in the
upper transport layer.

• Upper transport layer: This layer defines functionalities such as encryption, decryption, and
authentication of the application data and is designed to provide confidentiality of access
messages. This layer is also responsible for generating transport control messages (Friendship
and heartbeat) internally and transmits those messages to a peer upper transport layer. The
network layer encrypts and authenticates these messages.

• Lower transport layer: This layer defines functionalities such as segmentation and reassembly of
upper transport layer messages into multiple lower transport layer messages to deliver large
upper transport layer messages to other nodes. This layer also defines the friend queue used by
the Friend node to store the lower transport layer messages for a Low Power node.

• Network layer: This layer defines functionalities such as encryption, decryption, and
authentication of the lower transport layer messages. This layer transmits the lower transport
layer messages over the bearer layer and relays the mesh messages when the Relay feature is
enabled. The network layer also defines the message cache containing all recently seen network
messages. If the received message is found to be in the cache, then it is discarded.

• Bearer layer: This layer defines the interface between the Bluetooth mesh stack and the BLE
protocol stack. This layer is also responsible for creating a mesh network by provisioning the mesh
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nodes. The two types of bearers supported by the Bluetooth mesh are advertising bearer and
GATT bearer.

BLE is the wireless communications protocol stack of which the Bluetooth mesh makes use. For more
information about BLE protocol stack, see “BLE Protocol Stack” on page 13-7.

Bluetooth Connection Topologies
Most BLE devices communicate with each other using a simple point-to-point (one-to-one
communication) or point-to-multipoint (one-to-many communication) topology as shown in this figure.

Devices using one-to-one communication operate in a Bluetooth piconet. As shown in this figure, each
piconet consists of a device in the role of Master (M), with other devices in the Slave (S) or Advertiser
roles. Before joining the piconet, each S node is in an advertiser role. Multiple piconets connect to
each other, forming a Bluetooth scatternet.

For example, a smartphone with an established one-to-one connection to a heart rate monitor over
which it can transfer data is an example of point-to-point connection.

13 Bluetooth Tutorials

13-48



On the contrary, the Bluetooth mesh enables you to set up many-to-many communication links
between Bluetooth devices. In a Bluetooth mesh, devices can relay data to remote devices that are
not in the direct communication range of the source device. This enables a Bluetooth mesh network
to extend its radio range and encompass a large geographical area containing a large number of
devices. Another advantage of the Bluetooth mesh over point-to-point and point-to-multipoint
topologies is the capability of self healing. The self-healing capability of the Bluetooth mesh implies
that the network does not have any single point of failure. If a Bluetooth device disconnects from the
mesh network, other devices can still send and receive messages from each other, which keeps the
network functioning.

Fundamentals of Bluetooth Mesh Networking
These concepts of Bluetooth mesh networking serve as the foundation to study the functionality of a
Bluetooth mesh network.

Devices and Nodes

Devices that belong to a Bluetooth mesh network are known as nodes. Devices that are not a part of a
Bluetooth mesh network are known as unprovisioned devices. The process of transforming an
unprovisioned Bluetooth device into a node is called “Provisioning” on page 13-53. Each node can
send and receive messages either directly or through relaying from node to node. This figure shows a
web of Bluetooth nodes spread across the MathWorks, Natick office.

Each Bluetooth mesh node might possess some optional features enabling them to acquire additional,
special capabilities. These features include the Relay, Proxy, Friend, and the Low Power features. The
Bluetooth mesh nodes possessing these features are known as Relay nodes, Proxy nodes, Friend
nodes, and Low Power nodes (LPNs), respectively.
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• Relay nodes: Bluetooth mesh nodes that possess the Relay feature are known as Relay nodes.
These nodes use the relaying mechanism to retransmit the received messages through multiple
hops. Depending on the power source and computational capacity, a mesh node might become a
Relay node.

• Proxy nodes: To enable communication between a BLE device that do not possess a Bluetooth
mesh stack and the nodes in the mesh network, proxy nodes can be used. A Proxy node acts as an
intermediary and utilizes the proxy protocol with generic attribute profile (GATT) operations. For
example, as shown in the preceding figure, a smartphone that does not support the Bluetooth
mesh stack interacts with mesh nodes by a Proxy node through GATT operations.

• Friend node: Bluetooth mesh nodes that do not have any power constraints are good exemplars
for being Friend nodes. LPNs work in collaboration with Friend nodes. A Friend node stores
messages destined to an LPN and delivers the messages to the LPN whenever the LPN polls the
Friend node for the waiting messages. The relationship between an LPN and a Friend node is
called “Friendship” on page 13-54.

• Low Power node: Bluetooth mesh nodes that are power constrained can use the Low Power
feature to minimize the On time of the radio and conserve energy. Such nodes are known as LPNs.
LPNs are predominantly concerned with sending messages but have a need to occasionally
receive messages. For example, a temperature monitoring sensor that is powered by a small coin
cell battery sends a temperature reading once per minute whenever the temperature is above or
below the configured threshold values. If the temperature stays within the thresholds, the LPN
sends no message.

Note For more information about Bluetooth mesh features, see sections 3.4.6, 3.6.6.3, 3.6.6.4, and
7.2 of the Bluetooth Mesh Profile [4].

Elements, Models, and States

Some Bluetooth mesh nodes possess one or more independent constituent parts known as elements.
This figure shows that a mesh node must have at least one element (primary element) but can have
multiple elements.
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Elements consists of entities that define the functionality of a node and the condition of the element.
Each element in a mesh node has a unique unicast address that enables each element to be
addressed.

This figure shows the mesh node and its constituents. The basic functionality of a mesh node is
defined and implemented by models. Models reside inside elements, and each element must have at
least one model.

Bluetooth Core Specifications [2] defines these three categories of models.

• Server model: This model defines a collection of states, state transitions, state bindings, and
messages that the element containing the model can send or receive. It also defines behaviors
pertaining to messages, states, and state transitions.

• Client model: This model defines the messages that it can send or receive in order to acquire
values of multiple states defined in the corresponding server model.

• Control model: This model comprises of a server model and client model. The server model
enables communication with other client models, and the client model enables communication
with server models.

A state is a value of a certain type that defines the condition of elements. Additionally, states also
have associated behaviors. For example, consider a simple light bulb that can be either On or Off. The
Bluetooth mesh defines a state called generic OnOff. When the light bulb acquires this state and a
value of On, the bulb is illuminated. Similarly, when the light bulb acquires the generic OnOff state
and a value of Off, the bulb is switched off.

Note For more information about Bluetooth mesh models and states, see section 4 of the Bluetooth
Mesh Profile [4].
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Addresses and Messages

Bluetooth Core Specifications [2] defines these four types of addresses.

• Unassigned address: Nonconfigured elements or elements without any designated addresses have
an unassigned address. Mesh nodes with unassigned addresses are not involved in messaging.

• Unicast address: During provisioning, a provisioner assigns a unicast address to each element in a
node. Unicast addresses can appear in the source address field of a message, the destination
address field of a message, or both. Messages sent to unicast addresses are processed by only one
element. For more information about provisioning, see “Provisioning” on page 13-53.

• Virtual address: A virtual address represents a set of destination addresses. Each virtual address
logically represents a 128-bit label universally unique identifier (UUID). The Bluetooth nodes can
publish or subscribe to these addresses.

• Group address: Group addresses are types of multicast addresses that represent multiple
elements from one or more nodes. Group addresses can be fixed (allocated by Bluetooth SIG) or
dynamically assigned.

Communication in Bluetooth mesh networks is realized through messages. A message can be a
control message or an access message.

• Control message: These messages are involved in the actual functioning of the Bluetooth mesh
network. For example, heartbeat and friend request messages are types of control messages.

• Access message: These messages enable client models to retrieve or set the values of states in
server models. Access messages can be acknowledged or unacknowledged. Acknowledged
messages are transmitted to each receiving element. The receiving element acknowledges the
messages by sending a status message. No response is sent to an unacknowledged message.
Bluetooth mesh network status messages are an example of unacknowledged messages.

For every state, the server model supports a set of messages. For example, these message can
include a client model requesting the value of a state or requesting to change a state and a server
model sending messages about the states or a change in the state.

Messages are identified by opcodes and have associated parameters. A unique opcode defines these
three types of mesh messages:

• GET message: This mesh message requests the state value from one or more nodes.
• SET message: This mesh message changes the value of a given state.
• STATUS message: This mesh message is used is these scenarios.

• In response to a GET message containing the state value
• In response to an unacknowledged SET message
• Sent independently to report the status of an element

Note For more information about Bluetooth mesh addresses, see section 3.4.2 of the Bluetooth Mesh
Profile [4].

Publish/Subscribe Message-Oriented Communication System

Bluetooth mesh networking implements a publish/subscribe message-oriented communication
system. Such an approach ensures that different types of products can coexist in a mesh network
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without being affected by messages from devices they do not need to listen to. The act of sending a
message is known as publishing. Based on the configuration, the mesh nodes select messages sent to
specific addresses for processing. This technique is known as subscribing. A publisher node sends
messages to those nodes that have subscribed to the publisher. Typically, mesh messages are
addressed to group or virtual addresses.

Consider the example shown in this figure. Each room can subscribe to messages from the specific
light bulbs for that room. Additionally, these messages can be unicast, multicast, broadcast, or any
combination of these three options.

Switch #1 publishes to the group address Dinning Room. Light bulbs 1, 2, and 3 each subscribe to
the Dinning Room address and therefore process messages published to this address. Switch #2
publishes to the group address Kitchen. Light bulb 3 subscribes to the Kitchen address and is the
only bulb controlled by Switch #2. Similarly, Switch #3 publishes to the group address Bedroom and
hence controls light bulbs 4 and 5. This example also shows that the mesh nodes can subscribe to
messages addressed to more than one unique address.

The group and virtual addresses used in the publish/subscribe communication system enables
removing, replacing, or adding new nodes to the mesh network without any reconfiguration. For
example, an additional light bulb can be added in Kitchen using the “Provisioning” on page 13-53
process and then configured to subscribe to the Kitchen group address. In this process, no other light
bulbs are impacted.

Note For more information about the Bluetooth mesh publish/subscribe communication, see section
2.3.8 of the Bluetooth Mesh Model Specification [5].

Provisioning
Provisioning is the process by which a Bluetooth device (unprovisioned device) joins the mesh
network and becomes a Bluetooth node. This process is controlled by a provisioner. A provisioner and
the unprovisioned device follow a fixed procedure as defined in the Bluetooth Mesh Profile [4]. A
provisioner is typically a smartphone running a provisioning application. The process of provisioning
can be accomplished by one or more provisioners. This figure shows the five steps of provisioning.
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1 Beaconing: In this step, the unprovisioned Bluetooth device advertises its availability to be
provisioned by sending the mesh beacon advertisements in the advertisement packets. A typical
way to trigger beaconing is through a specified sequence of button clicks on the unprovisioned
Bluetooth device.

2 Invitation: In this step, the provisioner invites the unprovisioned Bluetooth device for
provisioning by sending a provisioning invite protocol data unit (PDU). The unprovisioned
Bluetooth device responds with information about its capabilities by sending a provisioning
capabilities PDU.

3 Public key exchange: In this step, the provisioner and the unprovisioned device exchange their
public keys. These public keys can be static or ephemeral, either directly or using an out-of-band
(OOB) method.

4 Authentication: In this step, the unprovisioned device outputs a random, single or multidigit
number to the user in some form, using an action appropriate to its capabilities. The
authentication method depends on the capabilities of both devices used. Irrespective of the
authentication method that the Bluetooth node uses, the authentication also includes a
confirmation value generation step and a confirmation check step.

5 Provisioning data distribution: After successfully completing the authentication step, the
provisioner and the unprovisioned device generate a sesion key by using their private keys and
the exchanged peer public keys. The provisioner and the unprovisioned device use the session
key to secure the subsequent exchange of data needed to complete the provisioning process. This
process includes the distribution of a security key called the network key (NetKey). After
provisioning is completed, the provisioned device acquires the NetKey, a mesh security
parameter called IV Index, and a unicast address assigned by the provisioner. At this point, the
Bluetooth device can be termed as a Bluetooth node.

Note For more information about the Bluetooth mesh provisioning, see section 5 of the Bluetooth
Mesh Profile [4].

Friendship
To reduce the duty cycles of the LPN and conserve energy, the LPN must establish a Friendship with
a mesh node supporting the Friend feature. This figure from [4] shows the relationship between LPNs
and Friend nodes.
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LPNs 5, 6, and 7 have a Friendship relationship with Friend node 20. Friend node 18 has Friendship
with LPNs 11 and 12. Subsequently, Friend node 20 stores and forwards messages addressed to LPNs
5, 6, and 7. Similarly, Friend node 18 stores and forwards messages addressed to LPNs 11 and 12.
Forwarding by the Friend node occurs only when the LPN wakes up and polls the Friend node for
messages awaiting delivery. This mechanism enables all of the LPNs to conserve energy and operate
for longer durations.

This figure shows the Bluetooth mesh messages exchanged between an LPN and a Friend node to
establish Friendship.
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The Bluetooth nodes use these timing parameters to establish Friendship:

• Receive delay: This parameter specifies the time between when an LPN sends a request and
listens for a response from the Friend node. The LPN is in sleep state for the complete duration of
the receive delay.

• Receive window: This parameter specifies the time for which an LPN listens for a response from a
Friend node. The LPN is in the scanning state for the complete duration of the receive window.

• Poll timeout: This parameter specifies the maximum time between two successive requests from
an LPN. Within the poll timeout, if the Friend node or the LPN fails to a receive request or
response from the other node, the Friendship is terminated.

Periodically, LPNs poll Friend nodes for any data messages stored in the friend queue. After
polling the Friend node, the LPN enters a sleep state for the duration of receive delay. The Friend
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node uses the receive delay to prepare the response for the LPN. After the receive delay, the
Friend node responds to the LPN before the sum of the receive delay and the receive window. For
more information about Friendship, see “Energy Profiling of Bluetooth Mesh Nodes in Wireless
Sensor Networks” on page 3-136 example.

Note For more information about Friendship, see section 3.6.6 of the Bluetooth Mesh Profile [4].

Managed Flooding
Many mesh networks implement routing mechanisms to relay messages in the network. Another
mechanism to relay messages is to flood the network with messages being relayed without any
consideration of the optimal routes to reach their respective destinations. Bluetooth mesh networking
uses an approach known as managed flooding that comprises of both of these mechanisms. Bluetooth
mesh networking leverages the strengths of the flooding approach and optimizes its operations such
that it is both reliable and efficient. This figure demonstrates the process of managed flooding in the
Bluetooth mesh.

The figure illustrates communication between a switch and a connected light bulb in a Bluetooth
mesh. Initially, the switch and bulb are in the Off state. Changing the switch to the On state
broadcasts a message to turn on the bulb. All of the mesh nodes in range of the switch hear the
message, but only the relay nodes retransmit the message. The message is relayed in this manner
across the network until it reaches the bulb and turns on the bulb. This process is termed as managed
flooding. To optimize this process, Bluetooth mesh implements these measures.

• Heartbeat messages: These messages are transmitted by mesh nodes periodically to indicate to
other mesh nodes that the node sending the heartbeat is still active. Heartbeat messages contain
information that enables the receiving nodes to determine the number of hops between it and the
sending node.

• Time to live (TTL): This field is present in all Bluetooth mesh PDUs. It manages the maximum
number of hops over which a message is relayed. Setting the TTL value enables mesh nodes to
have control over relaying and to conserve energy. Heartbeat messages enable nodes to determine
the optimal TTL value required for each published message.

• Message cache: Every mesh node contains a message cache to determine whether it has seen a
message before. If the node has seen the message before, the node discards the message and
avoids unnecessary processing higher up the stack.
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• Friendship: For more information about the Friendship mechanism, see “Friendship” on page 13-
54.

For more information about managed flooding in Bluetooth mesh networks, refer “Bluetooth Mesh
Flooding in Wireless Sensor Networks” on page 3-159 example.

Applications of Bluetooth Mesh Networking
The addition of mesh capabilities to Bluetooth creates opportunities for applying Bluetooth mesh
networking in automation and IoT domains. These are some of the prominent applications of
Bluetooth mesh networking.

• Smart home automation — Bluetooth mesh networking can be used to simplify the smart home
automation processes by enabling a mesh network of devices (such as smart bulbs, thermostats,
and vents) readily established and provisioned with the user's smartphone. A Bluetooth mesh
network of such connected devices can be used to relay messages through multiple paths, thus
increasing the communication reliability and network scalability. Bluetooth mesh does not have
any single point of failure. This prevents service outages if a mesh node fails. For example,
consider a home scenario with a Bluetooth mesh network of all lighting devices. If some of the
lighting devices in the mesh network fail, the messages from the rest of the mesh can still reach
the user’s control device.

• Beaconing — One of the prominent use case of Bluetooth mesh networking is the beaconing. In
beaconing, an external event triggers a mesh node to transmit data. This data can include sensor
information, location information, or point-of-interest information. Any mesh node can integrate
one or more beacon standards (such as iBeacon of Apple or EddyStone from Google) and can be
transformed into a virtual Bluetooth beacon while operating as a Bluetooth mesh node. This
approach can enable new use-case scenarios, such as indoor positioning, asset tracking, and
point-of-interest information delivery. Use cases involving Bluetooth direction finding (introduced
in Bluetooth Core Specifications 5.1 [3]) implement beaconing to support high-accuracy direction
finding. Bluetooth mesh combined with direction-finding features such as angle of arrival and
angle of departure can pave way for many commercial IoT-based use case scenarios. For more
information about beaconing and Bluetooth direction-finding capabilities, refer “Bluetooth
Location and Direction Finding” on page 13-37 topic.

• Automated irrigation systems and plant lighting — Bluetooth mesh networks can be used to
develop intelligent solutions in automated irrigation systems and plant lighting. For example, as
land resources decline, many plants are grown in greenhouses for higher harvesting yields.
Automated indoor planting needs a combination of appropriate light source with a smart control
system and a Bluetooth mesh network. In this scenario, Bluetooth mesh modules are placed into
the light sources. This mechanism enables the mesh modules to automate the control of the light
source, soil moisture, air temperature, moisture, humidity, and automatic irrigation.

• Low latency — Bluetooth mesh networks can be useful in low-latency use-case scenarios. In
networks where round-trip time is of a high significance, specific functional nodes and relay nodes
can be used to minimize the communication delay while maintaining coverage and reliability.

Mesh networking with the Bluetooth standard can be used in intelligent IoT solutions to facilitate
home, commercial, and industrial automation. In summary, Bluetooth mesh networking is comparable
to all other Bluetooth connectivity and establishes hub-less networks that expand the coverage and
reliability of Bluetooth systems.
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Bluetooth-WLAN Coexistence
Due to the ubiquitous deployment of wireless networks and devices on the unlicensed 2.4 GHz
Industrial, Scientific, and Medical (ISM) frequency band, multiple homogenous and heterogeneous
networks (Bluetooth, Wi-Fi, and ZigBee) operating in this band are likely to coexist in a physical
scenario. The wireless personal area network (WPAN) represented by the Bluetooth [1] and wireless
local area network (WLAN) represented by IEEE® 802.11 standard both operate in the 2.4 GHz ISM
frequency band. Bluetooth and WLAN radios often operate in the same physical scenario and some
times in the same device. In these cases, Bluetooth and WLAN transmissions can interfere with each
other, impacting the performance and reliability of both networks.

IEEE 802.15.2 Task Group [3] considers proposals for mechanisms to improve the level of coexistence
between Bluetooth and WLAN devices and publishes the recommended practices derived from these.

Bluetooth and IEEE 802.11 WLAN Specifications
Bluetooth technology uses low-power radio frequency to enable short-range communication.
Bluetooth is equated with the implementation specified by the Bluetooth Core Specification [2] group
of standards maintained by the Bluetooth Special Interest Group (SIG) industry consortium. The
Communications Toolbox Library for the Bluetooth Protocol enables you to model Bluetooth low
energy (BLE), BLE mesh, and Bluetooth basic rate/enhanced data rate (BR/EDR) communications
system links, as specified in the Bluetooth Core Specification. Bluetooth BR/EDR and BLE devices
operate in the unlicensed 2.4 GHz ISM frequency band.

The Bluetooth BR mode is mandatory, whereas EDR mode is optional. The Bluetooth BR/EDR radio
implements a 1600 hops/sec frequency-hopping spread spectrum (“FHSS” on page 13-61)
technique. The radio hops in a pseudo-random way on 79 designated Bluetooth channels. Each
Bluetooth channel has a bandwidth of 1 MHz. Each frequency is located at (2402 + k) MHz, where k
= 0,1,…, 78. The modulation technique for BR and EDR mode is Gaussian frequency shift-keying
(GFSK) and differential phase shift-keying (DPSK), respectively. The baud rate is 1 Msymbols/s. The
Bluetooth BR/EDR radio uses the time division duplex (TDD) topology in which data transmission
occurs in one direction at one time. The transmission alternates in two directions, one after the other.

In BLE, the operating band is divided into 40 channels, k = 0, 1, …, 39, with a channel bandwidth of 2
MHz. The range of RF center frequencies is [2402, 2480] MHz. The user data packets are transmitted
using channels in the range [0, 36]. The advertising data packets are transmitted on channels 37, 38,
and 39. BLE also implements GFSK modulation. The BLE physical layer (PHY) uses FHSS to reduce
interference and to counter the impact of fading channels. The time between frequency hops can vary
from 7.5 ms to 4 s and is set at the connection establishment for each Slave with the Master. The
Master device provides the synchronization reference. The Slave device synchronizes to the clock and
frequency-hopping pattern of the Master device. The support for the data rate at 1 Mbps is
mandatory for specification version 4.x compliant devices. At a data rate of 1 Mbps, the data
transmission is uncoded. Optionally, devices compliant with the Bluetooth Core Specification 5.x
support these additional data rates:

• Coded transmission at bit rates of 500 kbps or 125 kbps
• Uncoded transmission at a bit rate of 2 Mbps

To explore the Bluetooth BR/EDR and BLE protocol stack, see “Bluetooth Protocol Stack” on page 13-
7. For information about different packet structures implemented in Bluetooth BR/EDR and BLE
transmissions, see “Bluetooth Packet Structure” on page 13-23. To study the fundamentals of
Bluetooth mesh networking and its applications, see “Bluetooth Mesh Networking” on page 13-46.
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The IEEE 802.11 (Wi-Fi) standard is a wireless technology that connects devices and an
infrastructure in a WLAN. WLAN is compliant with various IEEE 802.11 standards. Some of the
prominent and widely implemented standards are 802.11 a/b/g/n/ac/ax. The 802.11a standard uses
the 5 GHz unlicensed national information infrastructure (U-NII) band and provides at least 23
nonoverlapping 20 MHz wide channels instead of three nonoverlapping 20 MHz-wide channels
offered by the 2.4 GHz band. The 802.11ac standard also operates in only the 5 GHz frequency band.
As per Part 15 of the U.S. Federal Communications Commission (FCC) Rules and Regulations,
802.11b, 802.11g, and 802.11n standards use the 2.4 GHz. Devices that use these standards suffer
interference in the 2.4 GHz band from Bluetooth devices. To mitigate this interference, devices that
use 802.11b, 802.11g, or 802.11n standards implement direct-sequence spread spectrum (“DSSS” on
page 13-62), “Orthogonal Frequency-Division Multiplexing” on page 13-63 (OFDM), and multiple-
input, multiple-output (MIMO) OFDM signaling techniques, respectively. Devices that use the
802.11n or 802.11ax (Wi-Fi-6) standard operate in dual-band at 2.4 GHz and 5 GHz. The 802.11ax
standard enhances the existing 802.11 a/b/g/n/ac standards even if they are not fully upgraded to
802.11ax. The OFDM-based channel access technique of 802.11ax standard is completely backward-
compatible with traditional enhanced distributed channel access/carrier-sense multiple access
(EDCA/CSMA). IEEE 802.11ax provides maximum compatibility, coexisting efficiently with
802.11a/n/ac devices.

For more information about WLAN radio frequency channels, see “WLAN Radio Frequency Channels”
(WLAN Toolbox). For more information about WLAN packet structures, see “WLAN PPDU Structure”
(WLAN Toolbox) and “Packet Size and Duration Dependencies” (WLAN Toolbox).

Spread Spectrum Techniques
Bluetooth and WLAN technologies operate using the spread spectrum signal structuring. This signal
structuring technique enables a narrowband signal such as a stream of 1s and 0s, to spread across a
given frequency spectrum and transform into a wideband signal. Bluetooth devices implement the
basic FHSS technique defined in the Bluetooth Core Specification [2]. This basic frequency-hopping
technique is modified into an adaptive frequency hopping (AFH) technique to mitigate interference.
WLAN devices use the DSSS technique.

FHSS

The basic Bluetooth frequency-hopping technique or the FHSS spreads the narrowband signal by
hopping across different channels on the 2.4 GHz frequency spectrum. This figure shows how the
FHSS transmits a Bluetooth signal on different frequencies at specific intervals to spread the signal
across a relatively wide operating band.
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The transmitting and receiving Bluetooth devices adhere to a specific hopping sequence during a
particular session so that the receiving device can anticipate the frequency of the next transmission.
In this case, Bluetooth makes full use of the 2.4 GHz frequency spectrum.

DSSS

With the DSSS, the narrowband data signal is divided and simultaneously transmitted on multiple
frequencies within a specific frequency band. This figure shows how the DSSS continually transmits
the data signal across different channels.

The DSSS adds redundant data bits known as chips, to the data signal to denote 1s and 0s. The ratio
of chips to data is called the spreading ratio. Increasing the ratio increases the immunity of the
WLAN signal to interference. This is because if part of the transmission is corrupted, the data can
still be recovered from the remaining part of the chipping code. The DSSS technique provides greater
transmission rates than the FHSS. The DSSS also protects against data loss through redundant
simultaneous data transmission. However, because DSSS floods the channel with redundant
transmissions, it is more vulnerable to interference from Bluetooth devices operating on the same
frequency band.
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Orthogonal Frequency-Division Multiplexing
OFDM is a flexible, multicarrier modulation technique implemented by IEEE standards
802.11g/n/ac/ax. OFDM partitions the channel bandwidth into multiple narrow-band orthogonal
subcarriers to carry the information. This partitioning enables the removal of guard bands. However,
because the orthogonal subcarriers are unrelated, they can overlap each other. Therefore, OFDM is
bandwidth efficient. This figure shows the frequency domain representation of the orthogonal
subcarriers in an OFDM waveform.

The use of narrow-band subchannels (compared to a single wideband channel) helps mitigate channel
fading. As each subchannel operates at a low data rate, OFDM is very resilient to intersymbol
interference and interframe interference. As data is transmitted simultaneously on multiple
orthogonal subcarriers, OFDM can provide very high throughput. To further maximize the
throughput, you can use OFDM with MIMO, extended rate physical (ERP), and multiuser (MU)
technologies.
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Bluetooth-WLAN Coexistence Problem
As Bluetooth and WLAN devices operate in the same 2.4 GHz frequency band, a mutual interference
exist between the two wireless networks. This interference results in performance degradation. For
example, consider the scenario shown in this figure. The scenario consists of two Bluetooth piconets
collocated with a WLAN.

If the transmission in piconet 1 is overlapped in time and frequency by transmissions from piconet 2
and/or the WLAN, a Bluetooth packet can be lost. This figure shows how the Bluetooth and WLAN
devices share the 2.4 GHz frequency spectrum.
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If the Bluetooth packets transmitted through the FHSS hops to the portion of the frequency spectrum
occupied by the DSSS WLAN transmitter, then mutual interference occurs. This interference results
in packet collisions. Factors such as the distance between WLAN and Bluetooth devices, the data
traffic present in these two networks, power levels of the devices, and data rate of the WLAN network
impact the level of interference. Additionally, different types of data traffic have different levels of
sensitivity to the interference. For example, voice traffic can be more sensitive to interference than
data traffic.

Bluetooth in Presence of 802.11b WLAN Interferer

A transmission that uses one spread spectrum technique interferes with a receiver that uses different
spread spectrum technique. 802.11b WLAN devices operate in 22 MHz bandwidth. In Bluetooth, 22
of the 79 hopping channels are subject to interference. A frequency-hopping system like Bluetooth is
vulnerable to interference from the adjacent channels as well. This vulnerability increases the total
number of interference channels from 22 to 24. Based on these assumptions, the results shown in [3]
quantify the packet error rate (PER) in Bluetooth transmissions with a 802.11b WLAN interferer. The
results show that the network throughput decreases and network delay increases for Bluetooth in the
presence of 802.11b interference.

To study the impact of WLAN interference on BLE transmission, see “BLE Coexistence Model with
WLAN Signal Interference” on page 3-175 and “Statistical Modeling of WLAN Interference on BLE
Network” on page 3-198 examples.

802.11b WLAN in Presence of Bluetooth Interferer

When a Bluetooth device hops into the 802.11b passband, a packet collision can occur with the WLAN
device. This collision occurs because 22 of the 79 Bluetooth channels fall within the WLAN passband.
As 802.11b devices support four data rates (1, 2, 5, and 11 Mbps), the transmission time of the WLAN
packets may vary significantly for packets carrying the exact same data. Increasing the duration of
the WLAN packet increases the likelihood that the packet collides with an interfering Bluetooth
packet. If automatic data rate scaling is implemented and enabled in the WLAN device, the Bluetooth
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interference can cause the WLAN device to scale to a lower data rate. Lower data rate increase the
temporal duration of the WLAN packets. This increase in packet duration can lead to frequent packet
collisions with the interfering Bluetooth packets. In some implementations, the frequent packet
collisions can result in WLAN scaling down its data rate to 1 Mbps. In this case, to ensure reliable
packet delivery, the IEEE 802.11 medium access (MAC) layer incorporates an acknowledgement
(ACK) and retransmission mechanism.

Coexistence Mechanisms
Interference between Bluetooth and WLAN can be addressed by two coexistence mechanisms –
noncollaborative and collaborative.

Noncollaborative Coexistence

Noncollaborative mechanisms do not exchange information between two wireless networks. These
coexistence mechanisms are applicable only after a WLAN or Bluetooth piconet is established and the
data is to be transmitted. These coexistence mechanisms do not help in the process of establishing a
WLAN or Bluetooth piconet. As per the recommended practices mentioned in [3], these
noncollaborative coexistence mechanisms are used to mitigate interference between Bluetooth and
WLAN.

• Adaptive frequency hopping (AFH) — Prior to the emergence of AFH, Bluetooth devices
implemented the basic FHSS signal structuring scheme. The FHSS scheme often resulted in
Bluetooth and WLAN packet transmissions interfering with each other, as shown in this figure.

On the contrary, AFH enables Bluetooth to adapt to its environment by identifying fixed sources of
WLAN interference and excluding them from the list of available channels. This figure shows the
previous scenario with AFH enabled.
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AFH dynamically alters the frequency hopping sequence to avoid the interference observed by the
Bluetooth devices. AFH operates through these four processes.

• AFH capability discovery: This process informs the Master about the Slave(s) that support AFH
and the associated parameters.

• Channel classification: This process classifies the channels as good or bad. Channel
classification takes place in the Master and optionally in the Slave(s).

• Channel classification information exchange: This process uses AFH link manager protocol
(LMP) commands to exchange information between the Master and the supporting Slave(s) in
the piconet.

• Adaptive hopping: This process adaptively selects good channels for frequency hopping.

For more information about how AFH mitigates interference and enables coexistence between
Bluetooth and WLAN, see “End-to-End Bluetooth BR/EDR PHY Simulation with WLAN Interference
and Adaptive Frequency Hopping” on page 3-76.

Note For more information about AFH, see Annex B of IEEE 802.15.2 Task Group [3].
• Adaptive interference suppression — This mechanism is exclusively related to signal processing in

the WLAN physical layer (PHY). The adaptive interference suppression mechanism requires a
Bluetooth receiver collocated with a WLAN receiver. The WLAN receiver has no prior knowledge
of the timing or frequency used by the Bluetooth network. The WLAN receiver uses an adaptive
filter to estimate and cancel the interfering signal.

Note For more information about adaptive interference suppression, see Clause 8 of IEEE
802.15.2 Task Group [3].

• Adaptive packet selection and scheduling — Bluetooth transmissions involve various packet types
with different configurations such as packet length and degree of error protection used. By
selecting the best packet type according to the channel condition of the upcoming frequency hop,
better throughput and network performance can be achieved. Additionally, packet transmissions
can be scheduled efficiently so that the Bluetooth devices transmit during hops that are outside of
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the WLAN frequencies and refrain from transmitting while in-band. This type of packet
transmission scheduling minimizes mutual interference and also increases the throughput of
Bluetooth networks.

Note For more information about adaptive packet selection and scheduling, see Clause 9 of IEEE
802.15.2 Task Group [3].

• Packet scheduling for synchronous connection-oriented (SCO) links — Voice applications are
among the most sought-after applications for Bluetooth devices but are vulnerable to interference.
Interference from an in-band WLAN network degrades the voice quality of the Bluetooth SCO link,
making it inaudible to the users. This noncollaborative coexistence mechanism recommends
improvements that can significantly improve the quality-of-service (QoS) for SCO links. The
fundamental idea is to enable the SCO link the flexibility of selecting hops that are out-of-band
with the collocating WLAN spectrum for transmission. The duty cycle of the SCO link does not
change.

Note For more information about packet scheduling for SCO links, see Annex A of IEEE 802.15.2
Task Group [3].

• Packet scheduling for asynchronous connection-oriented logical (ACL) links — This mechanism
defines a procedure to minimize the impact of WLAN interference on Bluetooth devices by using
these two components.

• Channel classification: It is performed on every Bluetooth receiver and is based on the
measurements conducted per frequency or channel to locate the presence of interference. A
channel is considered as good if it can correctly decode a received packet. Otherwise, the
channel is considered as bad. Good and bad channels are classified based on different criteria
such as the received signal strength indicator (RSSI), PER, or negative ACKs.

• Master delay policy: It uses the information available in the channel classification table to
avoid packet transmission in a bad channel. Because the Master device controls and manages
all transmissions in a piconet, the delay rule must be implemented in the Master device only.
Also, a Slave transmission must follow each Master transmission. Therefore, the Master checks
the receiving frequency of the Slave and its own receiving frequency before choosing to
transmit a packet in a given frequency hop.

Note For more information about packet scheduling for ACL links, see Clause 10 of IEEE
802.15.2 Task Group [3].

Collaborative Coexistence

In collaborative coexistence mechanisms, two wireless networks collaborate and exchange network-
related information. As per the recommended practices stated in [3], the three collaborative
coexistence mechanisms are:

• Alternating wireless medium access (AWMA) — In the AWMA mechanism, a WLAN radio and a
Bluetooth radio are collocated in the same physical unit, enabling a wired connection between the
two radios. The collaborative coexistence mechanism uses this wired connection to coordinate
access to the wireless medium between WLAN and Bluetooth. The AWMA mechanism uses part of
the wireless IEEE 802.11 beacon interval for the Bluetooth operations. From a timing perspective,
the medium assignment alternates between usage following the IEEE 802.11 procedures and
usage following the Bluetooth procedures. Each wireless network limits its transmissions to the
appropriate time segment, thus preventing mutual interference between the two networks.
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Note For more information about AWMA, see Clause 5 and Annex I of IEEE 802.15.2 Task Group
[3].

• Packet traffic arbitration (PTA) — In the PTA mechanism, the WLAN station and the Bluetooth
device are collocated. The PTA control entity provides per-packet authorization of all
transmissions. This mechanism can deny permission for transmission if it has chances of
collisions. The PTA mechanism dynamically coordinates sharing of the wireless medium based on
the traffic load of WLAN and Bluetooth. If a collision occurs, the PTA mechanism prioritizes
transmission based on the priorities of different packets. Using the PTA mechanism in case of high
variability in the WLAN and Bluetooth traffic load or whenever a Bluetooth SCO link needs to be
supported.

Note For more information about PTA, see Clause 6 and Annex J of IEEE 802.15.2 Task Group [3].
• Deterministic interference suppression — In this mechanism, a null is inserted in the WLAN

receiver at the frequency of the Bluetooth signal. Because Bluetooth devices hop to a new
frequency for each packet transmission, the WLAN receiver must know the hopping pattern and
timing of the Bluetooth device. The hopping pattern and timing is obtained by using a Bluetooth
receiver as part of the WLAN receiver. Deterministic interference suppression is a collocated,
collaborative coexistence mechanism.

Note For more information about deterministic interference suppression, see Clause 7 and Annex
K of IEEE 802.15.2 Task Group [3].
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Parameterize BLE Direction Finding Features
Bluetooth technology [1] uses low-power radio frequency to enable short-range communication at a
low cost. The Bluetooth Core Specification 5.1 [2] provided by the Bluetooth Special Interest Group
(SIG) added direction finding features in Bluetooth low energy (BLE) technology. The Bluetooth
direction-finding capabilities, angle of arrival (AoA) and angle of departure (AoD), are introduced in
the Bluetooth Core Specification 5.1 [2]. For more information about BLE direction finding, see the
“Bluetooth Location and Direction Finding” on page 13-37 topic and “Bluetooth Low Energy Based
Positioning Using Direction Finding” on page 3-38 example.

The Communications Toolbox Library for the Bluetooth Protocol enables you to configure these
simulation and configuration parameters of BLE direction finding features.

Set Simulation Parameters for BLE Location and Direction Finding
Specify the dimension in which to determine the BLE node position and the number of BLE locators.
To estimate the 2-D or 3-D position of a BLE node, specify at least two or three locators, respectively.

numDimensions = ;

numLocators = ;

Specify the bit energy to noise density ratio (Eb/No) range (in dB) and the number of iterations to
simulate each Eb/No point.

EbNo = ;

numIterations = ;

Specify the direction finding method, the direction finding packet type, and the physical layer (PHY)
transmission mode. The PHY transmission mode must be LE1M or LE2M for a connection-oriented
constant tone extension (CTE) and LE1M for a connectionless CTE.

dfMethod = ;

dfPacketType = ;

phyMode = ;

Specify the antenna array parameters. The antenna array size must be a scalar or vector for 2-D or 3-
D positioning, respectively. The scalar or vector array size represents a uniform linear array (ULA) or
uniform rectangular array (URA), respectively. Specify the normalized element spacing between the
antenna elements with respect to the wavelength. Specify the antenna switching pattern as a 1-by-M
row vector, where M is in the range [2, 74

slotDuration + 1].

arraySize = ;

elementSpacing = ;

switchingPattern = ;
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Specify the BLE waveform generation parameters. The length of the CTE must be in microseconds, in
the range [16, 160], and have a step size of 8 microseconds.

slotDuration = ;          % Slot duration in microseconds

cteLength = ;

sps = ;

chanIndex = ;

crcInit = ;

accAddress = ;

payloadLength = ;         % Payload length in bytes

Create BLE Angle Estimation Configuration Object
Create a default BLE angle estimation configuration object by using the bleAngleEstimateConfig
object. This object enables you to configure different parameters for BLE angle estimation.

cfg = bleAngleEstimateConfig

cfg = 
  bleAngleEstimateConfig with properties:

           ArraySize: 4
      ElementSpacing: 0.5000
        SlotDuration: 2
    SwitchingPattern: [1 2 3 4]

   Read-only properties:
    No properties.

Specify a URA antenna design by setting the antenna array size of the configuration object to [4 4].
Set the row element spacing and column element spacing to 0.4 and 0.3, respectively. Specify the
value of the antenna switching pattern.

cfg.ArraySize = [4 4];
cfg.ElementSpacing = [0.4 0.3];
cfg.SwitchingPattern = 1:16

cfg = 
  bleAngleEstimateConfig with properties:

           ArraySize: [4 4]
      ElementSpacing: [0.4000 0.3000]
        SlotDuration: 2
    SwitchingPattern: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

   Read-only properties:
    No properties.
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Generate Random Positions for BLE Locators
A BLE locator represents a receiving device and a transmitting device in AoA and AoD calculation,
respectively. To place a BLE node at the origin and the locators randomly in the 2-D or 3-D space, use
helperBLEGeneratePositions function. Specify the number of locators as 3 and the number of
dimensions as 2. The function returns the 2-D position of the BLE node at the origin, a matrix
representing the position of the three locators, and the AoA or AoD (in degrees) between the BLE
node and the locators.

[nodePos,locatorPos,angle] = helperBLEGeneratePositions(3,2)

nodePos = 2×1

     0
     0

locatorPos = 2×3

  -23.7249  -57.5071  -12.5811
  -77.9415   69.9823   -1.7241

angle = 3×1

   73.0701
  -50.5887
    7.8032

Generate BLE Direction Finding Packet
Set the simulation parameters to generate a BLE direction finding packet.

dfPacketType = ;

cteLength = ;

dfMethod = ;

payloadLength = ;                          % Payload length in bytes

crcInit = ;

slotDuration = ;                           % Slot duration in microseconds

Derive the type of CTE based on the slot duration and the direction finding method.

if strcmp(dfMethod,'AoA')
    cteType = [0;0];
else
    cteType = [0;1];
    if slotDuration == 1
        cteType = [1;0];
    end
end
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To generate a direction finding packet corresponding to the type of CTE, use
helperBLEGenerateDFPDU function.

dfPacket = helperBLEGenerateDFPDU(dfPacketType,cteLength,cteType,payloadLength,crcInit);

Perform Antenna Steering and Switching on BLE Waveform
Set BLE direction finding simulation parameters to perform antenna steering and switching on a BLE
waveform.

dfPacketType = ;

cteLength = ;

dfMethod = ;

payloadLength = ;          % Payload length in bytes

crcInit = ;

slotDuration = ;           % Slot duration in microseconds

phyMode = ;

sps = ;

chanIndex = ;

Derive the type of CTE based on the slot duration and the direction finding method.

if strcmp(dfMethod,'AoA')
    cteType = [0;0];
else
    cteType = [0;1];
    if slotDuration == 1
        cteType = [1;0];
    end
end

Create a default BLE angle estimation configuration object. Specify the antenna slot duration.

obj = bleAngleEstimateConfig;
obj.SlotDuration = slotDuration;

Generate a direction finding packet corresponding to the type of CTE by using the
helperBLEGenerateDFPDU function.

dfPacket = helperBLEGenerateDFPDU(dfPacketType,cteLength,cteType,payloadLength,crcInit);

Using the direction finding packet, generate the BLE waveform.

bleWaveform = bleWaveformGenerator(dfPacket,'Mode',phyMode,'SamplesPerSymbol',sps, ...
    'ChannelIndex',chanIndex,'DFPacketType',dfPacketType);

Use the helperBLESwitchAntenna function to steer the BLE waveform by 45 degrees in azimuth and
0 degrees in elevation and switch between the antennas according to the switching pattern.
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dfWaveform = helperBLESwitchAntenna(bleWaveform,45,...
    phyMode,sps,dfPacketType,payloadLength,cteLength,obj);

Decode BLE Waveform with Connection-Oriented CTE
Set the simulation parameters to decode the BLE waveform.

dfPacketType = ;

cteLength = ;

dfMethod = ;

payloadLength = ;          % Payload length in bytes

crcInit = ;

slotDuration = ;           % Slot duration in microseconds

phyMode = ;

sps = ;

chanIndex = ;

Derive the type of CTE based on the slot duration and the direction finding method.

if strcmp(dfMethod,'AoA')
    cteType = [0;0];
else
    cteType = [0;1];
    if slotDuration == 1
        cteType = [1;0];
    end
end

Create a default BLE angle estimation configuration object. Specify the antenna slot duration.

obj = bleAngleEstimateConfig;
obj.SlotDuration = slotDuration;

To generate a direction finding packet corresponding to the type of CTE, use the
helperBLEGenerateDFPDU function.

dfPacket = helperBLEGenerateDFPDU(dfPacketType,cteLength,cteType,payloadLength,crcInit);

Using the direction finding packet, generate the BLE waveform.

bleWaveform = bleWaveformGenerator(dfPacket,'Mode',phyMode,'SamplesPerSymbol',sps,...
    'ChannelIndex',chanIndex,'DFPacketType',dfPacketType);

Get the in-phase and quadrature (IQ) samples by decoding the BLE waveform.

[bits,accAddr,iqSamples] = bleIdealReceiver(bleWaveform,'Mode',phyMode,...
    'SamplesPerSymbol',sps,'ChannelIndex',chanIndex,'DFPacketType',dfPacketType,'SlotDuration',slotDuration);
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Estimate AoA of BLE Waveform
Create a BLE angle estimation configuration object, specifying the values of the antenna array size,
slot duration, and antenna switching pattern.

obj = bleAngleEstimateConfig('ArraySize',2,'SlotDuration',2, ...
    'SwitchingPattern',[1 2]);

Estimate the AoA of the BLE waveform by using the bleAngleEstimate function. The function
accepts IQ samples and the BLE angle estimation configuration object as inputs. You can either use
the IQ samples obtained by decoding the BLE waveform or use the IQ samples corresponding to the
connection data channel protocol data unit (PDU).

Specify the IQ samples of a connection data PDU with an AoA CTE of 2 μs slots, CTE time of 16 μs,
and azimuth rotation of 70 degrees.

IQsamples = [0.8507 + 0.5257i; -0.5257 + 0.8507i; -0.8507 - 0.5257i; ...
    0.5257 - 0.8507i; 0.8507 + 0.5257i; -0.5257 + 0.8507i; ...
    -0.8507 - 0.5257i; 0.5257 - 0.8507i; -0.3561 + 0.9345i];

Estimate the AoA of the BLE waveform.

angle = bleAngleEstimate(IQsamples,obj)

angle = 70

Estimate Unknown Position of BLE Node Using Triangulation
Specify the number of locators as 3 and the number of dimensions as 2. The
helperBLEGeneratePositions function returns the 2-D position of the BLE node at the origin, a matrix
representing the position of the three locators, and the AoA or AoD (in degrees) between the BLE
node and the locators.

[nodePos,locatorPos,angle] = helperBLEGeneratePositions(3,2);

Get the the unknown position of the BLE node by using the helperBLETriangulation function.

nodePosEstimate = helperBLETriangulation(locatorPos,angle)

nodePosEstimate = 2×1
10-13 ×

   -0.0822
    0.2334
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Bluetooth Low Energy Audio
The Bluetooth Core Specification 5.2 [2] defined by the Bluetooth Special Interest Group (SIG)
introduced the next generation of Bluetooth audio called the low energy (LE) audio. LE audio
operates on the Bluetooth low energy (BLE) standard. For more information about the BLE stack, see
“Bluetooth Protocol Stack” on page 13-7.

What Is LE Audio?
This figure shows the taxonomy of Bluetooth audio.

Bluetooth audio can be classified as – classic audio (operates on the basic rate/enhanced data rate
(BR/EDR) physical layer (PHY)) and LE audio (operates on the BLE PHY). LE audio is the next
generation of Bluetooth audio, which supports development of the same audio products and use cases
as the classic audio. It also enables creation of new products and use cases and presents additional
features and capabilities to help improve the performance of classic audio products. Some of the key
features and use cases of LE audio include enabling audio sharing, providing multistream audio, and
supporting hearing aids. For more information about LE audio features and use cases, see “Features
of LE Audio” on page 13-78 and “Use Cases of LE Audio” on page 13-88, respectively.

Features of LE Audio
This figure illustrates the salient features of LE audio.

Low Complexity Communication Codec (LC3)

LE audio includes a new high quality, low power codec, known as LC3. It supports a wide range of
sample rates, bit rates, and frame rates giving the product developers maximum flexibility to optimize
their products to deliver the best possible audio experience to end users. As compared to the subband

13 Bluetooth Tutorials

13-78



codec (SBC) implemented by classic audio, LC3 is much more efficient in processing and delivering
audio. A comparison between LC3 and SBC related to the standard stereo listening test [1] verifies
that LC3 delivers high quality audio at low data rates. The results shown in [1] show that even at half
of the bit rate, LC3 provides far superior audio experience than SBC.

The intrinsic shortcomings of SBC resulted in the manufacturers of audio equipment such as
Bluetooth headphones turning to proprietary solutions such as audio codec 3 (AC3) and AptX. Such
proprietary solutions need specific hardware support and add costs over standards-based
implementations. The introduction of LC3 removes the dependency on the proprietary solutions,
resulting in lower device costs. LC3 enables the product developers to have an efficient tradeoff
between sound quality and power consumption. The high quality, low power characteristic of LC3
enables the product developers to optimize the longevity of the device battery.

Multistream Audio

Multistream audio enables you to transmit multiple, independent, and synchronized audio streams
between an audio source device, such as a smartphone, and one or more audio sink devices like
earbuds or earphones. To support multistream audio, the Bluetooth Core Specification 5.2 [2]
introduced the connected isochronous stream (CIS) and connected isochronous group (CIG). For
more information about the CIS and CIG, see “CIS and CIG” on page 13-81. This figure shows how
LE audio enables you to send multiple audio streams between a source and sink.

Classic Bluetooth audio supports only a single point-to-point audio stream over the advanced audio
distribution profile (A2DP). However, LE audio enables you to handle multiple isochronous audio
streams with synchronization between them. The multistream support of LE audio can improve the
performance of truly wireless earphones by providing a better stereo imaging experience, making the
use of voice assistant services more seamless, and making switching between multiple audio source
devices smoother [1].

Hearing Aids Support

LE audio provides exclusive support for hearing aids. Typically, hearing aid devices require low and
efficient power consumption. LE audio supports high quality, low power capability of LC3 and the
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efficient power consumption characteristic of the BLE standard. LE audio-supported hearing aids are
interoperable, enabling you to connect to most smartphones, TVs, and laptops and making these
devices much more accessible to people with hearing loss.

Broadcast Audio Sharing

LE audio now supports the ability to broadcast one or more audio streams to an unlimited number of
audio sink devices. Broadcast audio opens significant new opportunities for innovation, such as a new
Bluetooth use case, audio sharing. Broadcast audio sharing can be personal (share audio with people
around you) or location-based (share audio in public places like airports).

Support For LE Audio In Bluetooth Core Specification
The Bluetooth Core Specification 5.2 [2] introduced these updates pertaining to LE audio.

Changes to Link Layer (LL) State Machine

The functioning of the LL is described in terms of a state machine. This figure shows the state
diagram of the LL state machine.

The Bluetooth Core Specification 5.2 [2] added a new state, Isochronous Broadcasting, to the LL state
machine. In the Isochronous Broadcasting state, the LL transmits the isochronous data packets on an
isochronous physical channel. The Isochronous Broadcasting state can be entered from the Standby
state. If a device is in the Isochronous Broadcasting state, then it is referred to as an isochronous
broadcaster.

13 Bluetooth Tutorials

13-80



Note For more information about different states of the LL state machine, see Volume 6, Part B,
Section 1.1 of the Bluetooth Core Specification 5.2 [2].

LE Isochronous Channels and the Bluetooth Data Transport Architecture

The LE isochronous channels feature enables you to transfer latency-sensitive data between the
devices. This feature provides a mechanism to ensure synchronization between multiple sink devices
receiving data from the same source. The expired data (data that violates the time-bound validity
period) that is not transmitted, is discarded. Consequently, the receiving devices receive data that is
valid with respect to its age and acceptable latency.

The Bluetooth data transport architecture now supports LE isochronous channels. The LE
isochronous channels can be connection-oriented or connectionless. In both cases, the isochronous
communication is realized using the new LE isochronous physical channel. This physical channel uses
frequency hopping and specifies the timing of the first packet. This timing acts as a reference point
for the timing of the subsequent packets. The LE isochronous physical channel can operate on an LE
Uncoded (LE1M and LE2M) or LE Coded BLE PHY. The LE isochronous physical channel uses LE-
Stream (LE-S) and LE-Frame (LE-F) logical links to transmit audio data and framed data packets,
respectively. The connection-oriented isochronous channels use LE-CIS logical transport and support
bidirectional communication. This figure shows the procedure of connection-oriented isochronous
channel data transport.

A single LE-CIS stream provides point-to-point isochronous communication between two connected
devices. A flushing period is specified for the LE-CIS logical transport. Any packet that has not been
transmitted within the flushing period is discarded. This figure shows the procedure of connectionless
isochronous channel data transport.

Connectionless isochronous communication uses broadcast isochronous streams (BIS) and supports
only unidirectional communication. The BIS uses LE-S or LE-F logical links over the LE isochronous
physical channel for user data, with the new LE-broadcast control (LEB-C) logical link used for
control requirements. A single BIS can stream identical copies of data to multiple receiver devices.

CIS and CIG

A CIS is a logical transport that enables connected devices to transfer isochronous data
unidirectionally and bidirectionally. The isochronous data can be transferred either in an LE-S or LE-
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F logical link by using the CIS logical transport. Each CIS is associated with an LE asynchronous
connection (ACL). A CIS supports variable-size packets and the transmission of one or more packets
in each isochronous event. This capability enables LE audio to support a range of data rates. A CIG
consists of two or more CISs that have the same ISO interval (time between the anchor points of
adjacent CISs) and that are expected to have a time relationship at the application layer, or of a single
CIS. This figure shows the CIS and CIG servicing left and right stereo ear buds.

The maximum number of CISs in a CIG is 31. A CIG comes into existence when its first CIS is created,
and it ceases to exist when all of its constituent CISs are destroyed.

This figure illustrates the concept of CIS events and subevents.
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Each CIS event occurs at a regular ISO Interval, which is in the range from 5 ms to 4 s in multiples of
1.25 ms. Each CIS event is partitioned into one or more subevents. In a CIS, during a subevent, the
Master (M) transmits once and the Slave (S) responds as shown in the preceding figure. A CIS event
is an opportunity for the M and S to exchange CIS protocol data units (PDUs). A subevent ends at the
end of the S's packet, if any, and at the end of the M's packet. The isochronous channel is changed at
the end of each subevent. The LL closes a CIS event at the end of its last subevent.

All CISes in a CIG has the same M but may have different S's. A CIG event consists of the
corresponding CIS events of the CISes currently making up that CIG. Each CIG event starts at the
anchor point of the earliest (in transmission order) CIS of the CIG and ends at the end of the last
subevent of the latest CIS of the same CIG event. Any two CIG events on the same CIG do not overlap
because the last CIS event of a given CIG event ends before the first CIS anchor point of the next CIG
event.

Consider a use case where an audio stream from a smartphone (the source) is to be played in the left
and right buds (the two sinks) of LE earphones. The left and right buds each establish a CIS stream
with the source device. Both the CIS streams are part of the same CIG. A fragment of audio produced
by the source is encoded into a packet and a copy is transmitted to each sink device over its stream,
one at a time during a series of consecutive CIS events. The audio playback must not start until all
devices in the CIG have received the packet.

Note

• For more information about CIS, see Volume 6, Part B, Section 4.5.13 of the Bluetooth Core
Specification 5.2 [2].

• For more information about CIG, see Volume 6, Part B, Section 4.5.14 of the Bluetooth Core
Specification 5.2 [2].

BIS and Broadcast Isochronous Group (BIG)

A BIS is a logical transport that enables a device to transfer isochronous data (framed or unframed).
A BIS supports variable-size packets and the transmission of one or more packets in each isochronous
event, enabling LE audio to support a range of data rates. The data traffic is unidirectional from the
broadcasting device. Therefore, no acknowledgment protocol exists, making broadcast isochronous
traffic unreliable. To improve the reliability of packet delivery, the BIS supports multiple
retransmissions.

A BIG contains two or more BISs that have the same ISO interval and that are expected to have a
time relationship at the application layer, or of a single BIS. The maximum number of BISs in a BIG is
31. This figure shows the BIS and BIG servicing a pair of left and right stereo ear buds.
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For each BIS within a BIG, a schedule of transmission time slots (known as events and subevents)
exist. This figure shows the concept of BIS and BIG events and subevents.

Each BIS event starts at the BIS anchor point and ends after its last subevent. Each BIG event starts
at the BIG anchor point and ends after the control subevent, if one exists. If a control subevent does
not exist, the BIG event ends at the end of the last BIS event. A BIS subevent enables an isochronous
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broadcaster to transmit a BIS PDU and enables a synchronized receiver to receive it. The LL must
transmit one BIS data PDU at the start of each subevent of the isochronous broadcasting event. For
each BIS event, the source of the data must send a burst of data consisting of burst number (BN)
payloads. The subevents of each BIS event are each partitioned into groups of BN subevents. Each
BIG event contains an optional control subevent. If a control subevent is present, the LL transmits a
single BIG control PDU at the start of the control subevent to send control information about the BIG.
The LL does not transmit a BIG Control PDU at any other time.

Note For more information about BIG and BIS, see Volume 6, Part B, Section 4.4.6 of the Bluetooth
Core Specification 5.2 [2].

Isochronous Physical Channel Protocol Data Unit (PDU)

The isochronous physical channel PDU contains a 16-bit header, a variable size payload, and an
optional message integrity check (MIC) field. This figure shows the packet structure of isochronous
physical channel PDU.

The format of the Header and Payload fields depend on the type of isochronous physical channel PDU
that is being used. The isochronous physical channel PDU is a CIS PDU or a BIS PDU when used on a
CIS or BIS, respectively. The MIC field is included in all PDUs that contain a nonzero Payload
transmitted on an encrypted CIS or BIS. If a PDU is sent on an nonencrypted CIS or BIS or has a
zero-length Payload, then the MIC field is not present.

This figure shows the packet structure of an isochronous physical channel PDU Header for a CIS
PDU.

A CIS PDU can be a CIS data PDU or a CIS null PDU. A CIS Data PDU carries isochronous data,
whereas a CIS null PDU is used when no data exists to be sent. This table explains the contents of the
Header field.
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Header Field Name Description
LL identifier (LLID) The LLID field indicates the type of content of the Payload field of the

CIS Data PDU. These are the valid values of this field.

• 0b00 – Unframed CIS data PDU (end fragment of an service data
unit (SDU) or a complete SDU)

• 0b01 – Unframed CIS data PDU (start or continuation fragment of
an SDU)

• 0b10 – Framed CIS data PDU (one or more segments of an SDU)
• 0b11 – Reserved for future use

For a CIS null PDU, the LLID is reserved for future use (RFU).
Next expected sequence
number (NESN)

The LL uses this field to either acknowledge the last PDU sent by the
peer device, or to request the peer device to resend the last PDU
sent.

Sequence number (SN) This field sets the identification number for LL packets. For a CIS
null PDU, the SN is RFU.

Close isochronous event (CIE) The device uses this field to close a CIS event early.
Null PDU indicator (NPI) This field indicates whether the CIS PDU is a CIS data PDU or a CIS

null PDU. If the CIS PDU is a CIS null PDU, then LL sets this field.
Length This field indicates the size (in octets) of the Payload and MIC, if

included.

This figure shows the packet structure of an isochronous physical channel PDU Header for a BIS
PDU.

A BIS PDU can be a BIS data PDU or a BIG control PDU. A BIS data PDU carries isochronous data. A
BIG control PDU sends control information for a BIG. This table explains the contents of the Header
field.
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Header Field Name Description
LLID The LLID field indicates the type of content of the Payload field of the

BIS data PDU. These are the valid values of this field.

• 0b00 – Unframed BIS data PDU (end fragment of an SDU or a
complete SDU)

• 0b01 – Unframed BIS data PDU (start or continuation fragment of
an SDU)

• 0b10 – Framed BIS data PDU (one or more segments of an SDU)
• 0b11 – BIG control PDU

Control subevent sequence
number (CSSN)

The LL uses this field to indicate the start of a BIG event that
contains the first transmission of a new BIG control PDU.

Control subevent transmission
flag (CSTF)

The LL uses this field to indicate whether it has scheduled a BIG
control PDU to be transmitted in a BIG event.

Length This field indicates the size (in octets) of the Payload and MIC, if
included.

This figure shows the packet structure of the Payload field in a BIG control PDU.

The Opcode field specifies different types of BIG control PDUs. The Opcode field specifies the CtrData
field in the Payload of BIG control PDU. For a given Opcode, the length of the CtrData field is fixed.

Note

• For more information about CIS PDU, see Volume 6, Part B, Section 2.6.1 of the Bluetooth Core
Specification 5.2 [2]

• For more information about BIS PDU, see Section 2.6.2 of the Bluetooth Core Specification 5.2 [2]
• For more information about BIG control PDU, see Volume 6, Part B, Section 2.6.3 of the Bluetooth

Core Specification 5.2 [2].

Isochronous Adaptation Layer (ISOAL)

To support LE audio, the Bluetooth Core Specification 5.2 [2] introduced the ISOAL in the Bluetooth
stack that is present in the controller above the LL. The ISOAL enables the lower and upper layers of
the stack to work together. This flexibility enables the size of isochronous data packets created and
used by the upper layers to be distinct from the size used by the CIS or BIS logical transport in the
LL. The ISOAL provides segmentation, fragmentation, reassembly, and recombination services for the
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conversion of the SDUs from the upper layer to the PDUs of the baseband resource manager and vice
versa. The ISOAL enables the upper layer to use timing intervals that differ from those used by the LL
so that the rate of SDUs exchanged with the upper layers is not the same as the rate with which they
are exchanged with the LL. The isochronous communication mechanism uses the host controller
interface (HCI) as the interface from the upper layer to the ISOAL. The SDUs are transferred to and
from the upper layer by either using HCI ISO data packets or over an implementation-specific
transport.

Note For more information about ISOAL, see Volume 6, Part G of the Bluetooth Core Specification
5.2 [2].

Use Cases of LE Audio
This table shows some prominent use cases of LE audio.

Use Case Description
Personal audio sharing With personal audio sharing, people can share their Bluetooth audio

experience with others around them. For example, group of friends
can simultaneously enjoy music playing on one smartphone through
their LE supported headphones. This is an example of a private
group of audio sink devices sharing a single audio source.

Public assisted hearing The dialogue of a theater play can be broadcast such that all LE
hearing aid users in the audience can hear the dialogue.

Public television At the gymnasium, all attendees with LE headphones or ear buds can
listen to the television audio stream.

Multi-language flight
announcements

Passengers at the airport or in an aircraft can connect their LE
headphones to the flight information system, specify their preferred
language, and listen to the flight information in that language.
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• “Bluetooth Mesh Networking” on page 13-46
• “Bluetooth-WLAN Coexistence” on page 13-60
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Comparison of Bluetooth BR/EDR and BLE Specifications
Bluetooth technology [1], operating on the 2.4 GHz unlicensed industrial, scientific, and medical
(ISM) frequency band, uses low-power radio frequency to enable short-range communication at a low
cost. The two variants of the Bluetooth technology are –

• Bluetooth basic rate/enhanced data rate (BR/EDR) or classic Bluetooth
• Bluetooth low energy (BLE) or Bluetooth Smart

The Bluetooth Core Specification [2], specified by the Special Interest Group (SIG) consortium,
defines the technologies required to create interoperable Bluetooth BR/EDR and BLE devices.

Bluetooth BR/EDR radio is primarily designed for low power, high data throughput operations. In
Bluetooth BR/EDR, the radio hops in a pseudo-random way on 79 designated Bluetooth channels.
Each Bluetooth BR/EDR channel has a bandwidth of 1 MHz. Each frequency is located at (2402 + k)
MHz, where k = 0,1, …, 78.

In 2010, the SIG introduced BLE with the Bluetooth 4.0 version. The BLE radio is designed and
optimized to support applications and use cases that have a relatively low duty cycle. For example,
suppose a person wears a heart rate monitoring device for several hours. Because this device
transmits only a few bytes of data every second, its radio is in the 'on' state for a very short period of
time. In BLE, the operating radio frequency is in the range from 2.4000 GHz to 2.4835 GHz. The
channel bandwidth is 2 MHz, and the operating band is divided into 40 channels, (k = 0, 1, …, 39).
The center frequency of the kth channel is located at (2402 + k × 2) MHz.

This table summarizes and compares different features of Bluetooth BR/EDR and BLE.

Feature Bluetooth BR/EDR BLE
Frequency band Operates on a 2.4 GHz

Industrial, Scientific, and
Medical (ISM) band, with the
values in the range from
2.4000 GHz to 2.4835 GHz

Operates on 2.4 GHz ISM band, with the
values in the range from 2.4000 GHz to
2.4835 GHz

Channels 79 channels 40 channels (37 data channels and 3
advertising channels)

Channel bandwidth 1 MHz 2 MHz
Spread spectrum
technique

1600 hops/sec frequency-
hopping spread spectrum
(FHSS)

FHSS

Modulation scheme • Gaussian frequency shift
keying (GFSK)

• π/4 differential quadrature
phase shift keying (DQPSK)

• 8 differential phase shift
keying (DPSK)

GFSK

Power usage 1 W (reference value) ~0.01x W to 0.5x W of reference
(depending on the use case scenario)
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Feature Bluetooth BR/EDR BLE
Maximum transmission
power

• Class 1: 100 mW (20 dBm)
• Class 2: 2.5 mW (4 dBm)
• Class 3: 1 mW (0 dBm)

• Class 1: 100 mW (20 dBm)
• Class 1.5: 10 mW (10 dBm)
• Class 2: 2.5 mW (4 dBm)
• Class 3: 1 mW (0 dBm)

Data rate • BR PHY (GFSK): 1 Mb/s
• EDR PHY (π/4 DQPSK): 2

Mb/s
• EDR PHY (8 DPSK): 3 Mb/s

• LE Coded PHY (S = 8): 125 Kb/s
• LE Coded PHY (S = 2): 500 Kb/s
• LE 1M PHY: 1 Mb/s
• LE 2M PHY: 2 Mb/s

Device discovery Inquiry or paging Advertising
Device address privacy None Private device addressing supported
Encryption algorithm E0/SAFER+ AES-CCM
Audio capable Yes Yes (BLE audio is introduced in Bluetooth

Core Specification 5.2)
Network topology Point-to-point (including

piconet)
• Point-to-point (including piconet)
• Broadcast
• Mesh

This table summarizes prominent applications of Bluetooth BR/EDR and BLE.

Application Bluetooth BR/EDR BLE
Audio streaming applications
such as:

• Bluetooth headphones or
earbuds

• Bluetooth speakers
• Bluetooth watches

Supported Supported

Location and direction finding
applications such as:

• Asset tracking
• Indoor navigation services
• Beacon-based services

Not supported Supported

Data transmission applications
such as:

• Medical and health
equipments

• Sports and fitness
equipments

• Peripherals and accessories

Not supported Supported
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Application Bluetooth BR/EDR BLE
Device network applications
such as:

• Monitoring systems and
services

• Automation systems
• Control systems

Not supported Supported
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Create, Configure, and Visualize BLE Mesh Network
Communications Toolbox Library for the Bluetooth Protocol features enable you to create, configure,
and visualize a Bluetooth low energy (BLE) mesh network. For information about BLE mesh
networking, see “Bluetooth Mesh Networking” on page 13-46.

Create, Configure, and Visualize BLE Mesh Network
Specify the total number of BLE mesh nodes.

totalNodes = 6;

Create a BLE mesh node by using the helperBLEMeshNode object. This helper function creates a
BLE mesh node object and models the complete protocol stack in a mesh node.

meshNodes(1,totalNodes) = helperBLEMeshNode();                % Create a list of mesh nodes
for nodeIdx = 1:totalNodes
    meshNode = helperBLEMeshNode();                           % Object for a mesh node
    meshNode.Identifier = nodeIdx;                            % Unique identifier for a mesh node
    meshNodes(nodeIdx) = meshNode;                            % Assign node to the list
end

Configure the mesh nodes as source, destination, and relay. Node 6 is termed as the end node.

sourceDestinationPairs = [1 4; 2 5];
relayNodeIDs = 3;

Assign positions to the mesh nodes by using one of these options.

• Specify an n-by-2 matrix, where n is the total number of mesh nodes. Each row in the matrix
represents the x- and y-coordinate of the mesh node. To use this option, the NodePositionType
property of the helperBLEMeshVisualizeNetwork object must be set to 'UserInput'.

• Load a .mat file containing node positions into the workspace. To use this option, you must set the
NodePositionType property of the helperBLEMeshVisualizeNetwork to 'UserInput'.

For this example, assign positions to the mesh nodes by specifying six (x, y) coordinates as a matrix.

bleMeshNodesPositions = [15 25; 15 5; 30 15; 45 5; 45 25; 60 25];

Visualize the BLE mesh network by using the helperBLEMeshVisualizeNetwork function. This helper
function creates a BLE mesh network visualization object with configurable properties.

meshNetworkGraph = helperBLEMeshVisualizeNetwork();          % Object for BLE mesh network visualization                
meshNetworkGraph.NumberOfNodes = totalNodes;                 % Total number of mesh nodes
meshNetworkGraph.NodePositionType = 'UserInput';             % Option to assign node position             
meshNetworkGraph.Positions = bleMeshNodesPositions;          % List of all node positions
meshNetworkGraph.VicinityRange = 25;                         % Transmission and reception range of mesh node
meshNetworkGraph.Title = 'BLE Mesh Network';                 % Title of plot
meshNetworkGraph.SrcDstPairs = sourceDestinationPairs;       % Source-destination pair
meshNetworkGraph.NodeState = [1 1 2 1 1 1];                  % State of mesh node
meshNetworkGraph.DisplayProgressBar = false;                 % Display progress bar
meshNetworkGraph.createNetwork();                            % Display mesh network
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Configure Bluetooth BR/EDR Channel with WLAN Interference
and Pass the Waveform

Communications Toolbox Library for the Bluetooth Protocol features enable you to model a wireless
channel that is shared between Bluetooth basic rate/enhanced data rate (BR/EDR) and WLAN. The
library also provides functionalities to add WLAN interference to the Bluetooth BR/EDR waveform.
For information about how Bluetooth and WLAN coexists in the unlicensed 2.4 GHz Industrial,
Scientific, and Medical (ISM) frequency band, see “Bluetooth-WLAN Coexistence” on page 13-60.

Configure Bluetooth BR/EDR Channel with WLAN Interference and
Pass the Waveform
This example shows you how to create a Bluetooth BR/EDR channel and configure its applicable
properties. Then, specify the source of WLAN interference and add the WLAN signal to the Bluetooth
BR/EDR channel. Finally, generate a Bluetooth BR/EDR waveform and pass the waveform through the
channel.

Create and Configure Bluetooth BR/EDR Channel with WLAN Interference

Configure a Bluetooth BR/EDR channel by using the helperBluetoothChannel object, which creates a
Bluetooth BR/EDR channel model object with configurable properties.

bluetoothBREDRChannel = helperBluetoothChannel

bluetoothBREDRChannel = 
  helperBluetoothChannel with properties:

    ChannelIndex: 0
            FSPL: 1
    NodePosition: [0 0 0]
            EbNo: 10
             SIR: 0

Set the ratio of energy per bit to noise power spectral density (Eb/No) for the additive white Gaussian
noise (AWGN) channel to 22 dB. Specify signal to interference ratio (SIR) as -15 dB.

bluetoothBREDRChannel.EbNo = 22;
bluetoothBREDRChannel.SIR = -15;

Specify the source of WLAN interference by using the wlanInterference property. Use one of
these options to specify the source of the WLAN interference.

• 'Generated': To add a WLAN (802.11b) signal (requires the WLAN Toolbox™ software), select
this option.

• 'BasebandFile': To add a WLAN signal from a baseband file (.bb), select this option. You can
specify the file name using the wlanBBFilename input argument. If you do not specify the .bb
file, the example uses the default .bb file, 'WLANNonHTDSSS.bb', to add the WLAN signal.

• 'None': To disable WLAN interference, select this option.

Specify the source of WLAN interference as 'BasebandFile'and specify a baseband file.
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wlanInterference = ;
wlanBBFilename =  'WLANNonHTDSSS.bb';

Generate the WLAN signal interference, by using the helperBluetoothGenerateWLANWaveform
function. Add the generated WLAN signal interference to the Bluetooth BR/EDR channel.

if ~strcmpi(wlanInterference,'None')
    wlanWaveform = helperBluetoothGenerateWLANWaveform(wlanInterference,wlanBBFilename);
    addWLANWaveform(bluetoothBREDRChannel,wlanWaveform);
end

Generate and Pass Bluetooth BR/EDR Waveform Through the Channel

Create a Bluetooth BR/EDR signal structure, specifying different configurable properties of the
waveform.

bluetoothSignal = struct(...
    'PacketType','DM1',...                      % Packet type
    'Waveform',[],...                           % Waveform
    'NumSamples',[],...                         % Number of samples
    'SampleRate',1e6,...                        % Sample rate
    'SamplesPerSymbol',8,...                    % Samples per symbol
    'Payload',zeros(1,3200), ...                % Payload
    'PayloadLength',0, ...                      % Payload length
    'SourceID',0,...                            % Source identifier
    'Bandwidth',1,...                           % Bandwidth
    'NodePosition',[0 0 0],...                  % Node position
    'CenterFrequency',2402,...                  % Center frequency
    'StartTime',0,...                           % Waveform start time
    'EndTime',0,...                             % Waveform end time
    'Duration',0);...                           % Waveform duration

Create a Bluetooth BR/EDR waveform configuration object. Specify the packet type as HV1.

cfg = bluetoothWaveformConfig;
cfg.PacketType = 'HV1';

Create a bit vector containing concatenated payloads.

numBits = getPayloadLength(cfg)*8;              % Byte to bit conversion
message = randi([0 1],numBits,1);

Generate a Bluetooth BR/EDR waveform.

txWaveform = bluetoothWaveformGenerator(message,cfg);

Pass the generated waveform through the Bluetooth BR/EDR channel.

bluetoothSignal.Waveform = txWaveform;
bluetoothSignal.NumSamples = numel(txWaveform);
bluetoothSignal = run(bluetoothBREDRChannel,bluetoothSignal,cfg.Mode);
wirelessWaveform = bluetoothSignal.Waveform;
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Configure BLE Channel and Pass Waveform
Communications Toolbox Library for the Bluetooth Protocol features enable you to create and
configure a Bluetooth low energy (BLE) channel.

Configure BLE Channel and Pass Waveform
Configure a BLE channel by using the helperBLEChannel object. This helper object enables you to
configure the applicable properties of the BLE channel.

Create a BLE channel model object with default properties.

bleChannel = helperBLEChannel

bleChannel = 
  helperBLEChannel with properties:

            ChannelIndex: 37
                 RxRange: 10
    RangePropagationLoss: 1
               FSPLModel: 1
            NodePosition: [0 0 0]

Set the (x, y, z) position coordinates of the nodes. Specify the receiving range (in meters) of the
nodes.

bleChannel.RxRange = 15;
bleChannel.NodePosition = [5 0 0];

Create an input message column vector of length 2056 containing random binary values.

message = randi([0 1],2056,1);
symbolRate = 1e6;

Set the BLE waveform frequency (in MHz). Specify the position coordinates of the transmitter.

waveformFrequency = 2402;
transmitterPos = [18 0 0];

Generate the BLE waveform.

txWaveform = bleWaveformGenerator(message);

Pass the generated BLE waveform through the BLE channel.

wirelessWaveform = run(bleChannel,txWaveform,waveformFrequency,transmitterPos);
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Create Bluetooth Piconet by Enabling ACL Traffic, SCO Traffic,
and AFH

Communications Toolbox Library for the Bluetooth Protocol features enable you to create and
configure a Bluetooth piconet. The library provides functionalities to configure asynchronous
connection-oriented (ACL) link, synchronous connection-oriented (SCO) link, or both between the
Master and the Slave. You can also configure the frequency hopping techniques as basic frequency
hopping or adaptive frequency hopping (AFH).

Create Bluetooth Piconet by Enabling ACL Traffic, SCO Traffic, and AFH
Configure the simulation parameters of the Bluetooth piconet by creating a structure. Specify the
number of Slaves in the piconet. A piconet can contain a maximum of seven Slaves.

simulationParameters = struct;

simulationParameters.NumSlaves = ;

Calculate the total number of nodes in the piconet (one Master and multiple Slaves).

numNodes = simulationParameters.NumSlaves + 1;

Specify the type of logical link between the Master and Slaves. Valid logical link values depend on
how many Slaves are connected to the Master.

• If the Master is connected to one Slave, you must specify the logical link value as a one-element
vector of 1 (ACL link), 2 (SCO link), or 3 (ACL and SCO links).

• If the Master is connected to multiple Slaves, you must specify the logical link value as an n-
element row vector, where n is the number of Slaves. Each element must be 1 (ACL link), 2 (SCO
link), or 3 (ACL and SCO links).

To enable an ACL logical transport, set the logical link traffic to 1 or 3. You can specify the ACL
packet type as 'DM1', 'DH1', 'DM3', 'DH3', 'DM5', or 'DH5'. To enable an SCO logical transport,
set the logical link traffic to 2 or 3. You can specify the SCO packet type as 'HV1', 'HV2', or 'HV3'
for the respective Slave that has SCO link traffic.

Enable ACL and SCO traffic, specifying the type of ACL and SCO packet as 'DM1' and 'HV3',
respectively.

simulationParameters.LinkTraffic = [1 2];

simulationParameters.ACLPacketType = ;
simulationParameters.SCOPacketType = {2,'HV3'};

To enable AFH, set the sequence type to Connection adaptive.

simulationParameters.SequenceType = ;

Initialize a cell array to store the Bluetooth nodes.

btNodes = cell(1,numNodes);

Specify the distance (in meters) between two Bluetooth nodes.
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interNodeDistance = 10;

Set the positions of the Bluetooth nodes.

simulationParameters.NodePositions = zeros(numNodes,3);
for nodeIdx = 1:numNodes
    simulationParameters.NodePositions(nodeIdx,:) = [nodeIdx*interNodeDistance 0 0];      % Set node position
end

Set the node configuration parameters related to the wireless channel and channel classification.

simulationParameters.EbNo = 22;                            % Ratio of energy per bit (Eb) to spectral noise density (No) in dB
simulationParameters.WLANInterference = 'None';
simulationParameters.SIR = [-15 -16 -14 -13 -12 -11 -10];  % Signal to interference ratio in dB
simulationParameters.PERThreshold = 40;                    % Packet error rate
simulationParameters.ClassificationInterval = 3000;        % Classification interval in slots
simulationParameters.RxStatusCount = 10;                   % Status of maximum number of received packets
simulationParameters.MinRxCountToClassify = 4;             % Status of minimum number of received packets for each channel to classify a channel as good or bad
simulationParameters.PreferredMinimumGoodChannels = 20;    % Preferred number of good channels required to communicate between the Master and Slaves
simulationParameters.TxPower = 20;                         % Transmit power in dBm
simulationParameters.ReceiverRange = 40;                   % Bluetooth node receiver range in meters

Create a Bluetooth piconet by using the helperBluetoothCreatePiconet function.

helperBluetoothCreatePiconet(simulationParameters);
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Generate BLE Waveform and Add RF Impairments
Communications Toolbox Library for the Bluetooth Protocol features enable you to add radio
frequency (RF) impairments to a Bluetooth low energy (BLE) or Bluetooth basic rate/enhanced data
rate (BR/EDR) waveform.

Generate BLE Waveform and Add RF Impairments
Specify the data length. Create a message column vector of the specified data length containing
random binary values.

dataLength = 2056;                                                                                                 % In bits
message = randi([0 1],dataLength,1);
symbolRate = 1e6;

Specify the values of the physical layer (PHY) mode, channel index, samples per symbol, and access
address.

phyMode = ;

chanIdx = ;
sps = 4;
accAdd = [1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 ...
    0 1 0 1 1 0 0].';

Generate the BLE waveform.

txWaveform = bleWaveformGenerator(message,'Mode',phyMode,'SamplesPerSymbol',sps,'ChannelIndex',chanIdx,'AccessAddress',accAdd);

Initialize the RF impairments for the specified PHY mode and samples per symbol by using the
helperBLEImpairmentsInit function. The helper function returns a structure with phase frequency
offset and variable fractional delay fields.

initRFImp = helperBLEImpairmentsInit(phyMode,sps)

initRFImp = struct with fields:
         pfo: [1x1 comm.PhaseFrequencyOffset]
    varDelay: [1x1 dsp.VariableFractionalDelay]

Specify the values of the frequency offset and phase offset.

initRFImp.pfo.FrequencyOffset = ;                                                       % In Hz

initRFImp.pfo.PhaseOffset = ;                                                             % In degrees

Specify the values of static timing offset, timing drift, variable timimg offset, and DC offset.

staticTimingOff = 0.15*sps;                                                                                         

timingDrift = ;                                                                           % In ppm
initRFImp.vdelay = (staticTimingOff:timingDrift:staticTimingOff + timingDrift * (length(txWaveform) - 1))';         

initRFImp.dc = 20;                                                                        
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Add RF impairments to the generated BLE waveform by using the helperBLEImpairmentsAddition
function.

txImpairedWaveform = helperBLEImpairmentsAddition(txWaveform,initRFImp);

Create a default dsp.SpectrumAnalyzer System object. Then, set the sample rate of the frequency
spectrum. Visualize the generated and impaired BLE waveform in the spectrum analyzer.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = sps*symbolRate;
scope.NumInputPorts = 2;
scope.Title = 'Spectrum of Generated and Impaired BLE Waveform';
scope.ShowLegend = true;
scope.ChannelNames = {'Generated BLE Waveform','Impaired BLE Waveform'};
scope(txWaveform,txImpairedWaveform);

Visualize the generated and impaired BLE waveform in time-domain by using the timescope object.

timeScope = timescope('SampleRate',symbolRate*sps,'TimeSpanSource','Auto','ShowLegend',true);
timeScope.Title = 'Generated and Impaired BLE Waveform in Time-Domain';
timeScope.ChannelNames = {'Generated BLE Waveform','Impaired BLE Waveform'};
timeScope(real(txWaveform),real(txImpairedWaveform));
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Packet Distribution in Bluetooth Piconet
Communications Toolbox Library for the Bluetooth Protocol features enable you to distribute packets
in a Bluetooth piconet using discrete time simulation (DTS). In DTS, you can call the node only if it
has an operation to perform. To increase the speed of the simulation, the DTS implements these two
core time values.

• Next invoke time — At this time, the simulator runs all of the node instances. This value is given
by each node through discrete time operations such as sending data, receiving data,
retransmissions, or transferring data from the higher layer to lower layer. The simulator is called
at the time that is the minimum of the next invoke time values given by each node.

• Elapsed time — This value is the time elapsed between the last and current call of the simulator.

Packet Distribution
To distribute packets in a Bluetooth piconet using DTS, follow these steps.
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Create Bluetooth Piconet

Create a Bluetooth piconet and configure the nodes as Master and Slaves. For information about how
to create a Bluetooth piconet, see “Create Bluetooth Piconet by Enabling ACL Traffic, SCO Traffic,
and AFH” on page 13-101. In that example, a cell array, btNodes, is created representing the
Bluetooth piconet. btNodes contains all of the nodes in the piconet with the complete stack enabled.

Run Node Instance

Set the simulation time, current time, elapsed time, and next invoke time.

simulationTime = 2*1e6;                                                      % In microseconds                                 
currentTime = 0;
nextInvokeTime = zeros(1,numel(btNodes));

Simulate the Bluetooth nodes by running node instance for each Bluetooth node.

while(curTime < simulationTimeInUs)
  for nodeIdx = 1:numel(btNodes)                                            % Simulate all the Bluetooth nodes
    nextInvokeTimes(nodeIdx) = runNode(btNodes{nodeIdx},elapsedTime);      % Run the Bluetooth node instance
  end

Distribute Packets

To distribute packets from each node to the receiving buffer of other nodes, use
helperBluetoothDistributePackets function. This helper function accepts btNodes as an input
and returns the transmission flag, isPacketDistributed, indicating whether the channel is free or
not.

isPacketDistributed = helperBluetoothDistributePackets(btNodes);

Update Elapsed Time and Invoke Simulator

Based on the transmission flag, update the elapsed time. If no packets are to be distributed, update
the elapsed time to the next event at a node.

  if isPacketDistributed
    elapsedTime = 0;
  else
    elapsedTime = min(nextInvokeTimes(nextInvokeTimes ~= -1));
  end
end
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Equalization

• “Equalization” on page 14-2
• “Adaptive Equalizers” on page 14-5
• “MLSE Equalizers” on page 14-36
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Equalization
In this section...
“Equalizer Structure Options” on page 14-2
“Selected References for Equalizers” on page 14-3

In a multipath fading scattering environment, the receiver typically detects several constantly
changing, delayed versions of the transmitted signal. These time-dispersive channels cause
intersymbol interference (ISI) that occurs when symbols received from multiple paths are delayed
and overlap in time. ISI causes high error rates because the symbols from multiple received paths
interfere with each other and become indistinguishable by the receiver.

Equalizers attempt to mitigate ISI and improve the receiver performance. Equalizer structures are
filters that attempt to match the propagation channel response. For time-varying propagation
channels, adapting the equalization filter tap weights so that they maintain a match to the channel
over time improves the error rate performance.

Equalizer Structure Options
The Communications Toolbox includes System objects and blocks to recover transmitted data using
by linear, decision-feedback, or maximum-likelihood sequence estimation (MLSE) equalization
structures. For more information, see “Selected References for Equalizers” on page 14-3.

This figure shows the high-level configuration options for each equalization structure.

For each equalizer structure, you can configure structural settings (such as the number of taps and
initial set of tap weights), algorithmic settings (such as the step size), and the signal constellation
used by the modulator in your design. You also specify adaptability of the equalizer tap weights
throughout the simulation.
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• Linear and decision-feedback filter equalizer structures adapt tap weights by using the LMS, RLS,
or CMA adaptive algorithm. When using these equalizer structures, the number of samples per
symbol determines whether symbols are processed using whole or fractional symbol spacing.

• When using LMS and RLS adaptive algorithms, the equalizer begins operating in tap weights
training mode. Configure the equalizer to operate adaptively in decision-directed mode or
without further adjustment of taps after training is completed.

• When using the CMA adaptive algorithm, the equalizer has no training mode. You can
configure the equalizer to operate adaptively in decision-directed mode or in nonadaptive
mode.

To explore the linear and decision-feedback filter equalizer capabilities, see “Adaptive Equalizers”
on page 14-5.

• Maximum-Likelihood Sequence Estimation (MLSE) equalizers use the Viterbi algorithm. The
MLSE equalization structure provides the optimal match to the received symbols but it requires
an accurate channel estimate and is the most computationally complex structure. To explore
MLSE equalizer capabilities, see “MLSE Equalizers” on page 14-36.

The computational complexity of each equalization structure grows with the length of the channel
time dispersion. Considering the Doppler and frequency selectivity characteristics of the channel, use
the information in this table when selecting which equalization structure to use in your simulation.

Equalizer Structure Doppler Speed Is Channel Frequency
Selective?

Computational
Complexity

Linear RLS High No Medium
Linear LMS Low No Lowest
Linear CMA Low No Lowest
DFE RLS High Yes Medium
DFE LMS Low Yes Lowest
DFE CMA Low Yes Lowest
MLSE Low Yes Highest

Selected References for Equalizers

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley
& Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, John Wiley & Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

[5] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, John Wiley & Sons,
1996.
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Linear Equalizer | Decision Feedback Equalizer | MLSE Equalizer
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Adaptive Equalizers

In this section...
“Number of Taps” on page 14-5
“Symbol Tap Spacing” on page 14-5
“Linear Equalizers” on page 14-6
“Decision-Feedback Equalizers” on page 14-7
“Reference Signal and Operating Modes” on page 14-8
“Error Calculation” on page 14-8
“Updating Tap Weights” on page 14-9
“Configuring Adaptive Equalizers” on page 14-10
“Using Adaptive Equalizers in Simulink” on page 14-30
“Adaptive Equalization with Filtering and Fading Channel” on page 14-30

Adaptive equalizer structures provide suboptimal equalization of time variations in the propagation
channel characteristics. However, these equalizers are appealing because their computational
complexity is lower than “MLSE Equalizers” on page 14-36.

In Communications Toolbox, the comm.LinearEqualizer and
comm.DecisionFeedbackEqualizer System objects and the Linear Equalizer and Decision
Feedback Equalizer blocks use tap delay line filters to equalize a linearly modulated signal through a
dispersive channel. These features output the estimate of the signal by using an estimate of the
channel modeled as a finite input response (FIR) filter.

To decode a received signal, the adaptive equalizer:

1 Applies the FIR filter to the symbols in the input signal. The FIR filter tap weights correspond to
the channel estimate.

2 Outputs the signal estimate and uses the signal estimate to update the tap weights for the next
symbol. The signal estimate and updating of weights depends on the adaptive equalizer structure
and algorithm.

Adaptive equalizer structure options are linear or decision-feedback. Adaptive algorithm options are
least mean square (LMS), recursive mean square (RMS), or constant modulus algorithm (CMA). For
background material on adaptive equalizers, see “Selected References for Equalizers” on page 14-3.

Number of Taps
For the linear equalizer, the number of taps must be greater than or equal to the number of input
samples per symbol. For the decision feedback equalizer, the number of forward taps must be greater
than or equal to the number of input samples per symbol.

Symbol Tap Spacing
You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional symbol-
spaced equalizer.

 Adaptive Equalizers

14-5



• To operate the equalizer at a symbol-spaced rate, specify the number of samples per symbol as 1.
Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-rate equalizers are
sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of input samples
per symbol as an integer greater than 1 and provide an input signal oversampled at that sampling
rate. Fractional symbol-spaced equalizers have taps spaced at an integer fraction of the input
symbol duration. Fractional symbol-spaced equalizers are not sensitive to timing phase.

Note The MLSE equalizer supports fractional symbol spacing but using it is not recommended. The
MLSE computational complexity and burden grows exponentially with the length of the channel time
dispersion. Oversampling the input means multiplying the exponential term by the number of samples
per symbol.

Linear Equalizers
Linear equalizers can remove intersymbol interference (ISI) when the frequency response of a
channel has no null. If a null exists in the frequency response of a channel, linear equalizers tend to
enhance the noise. In this case, use decision feedback equalizers to avoid enhancing the noise.

A linear equalizer consists of a tapped delay line that stores samples from the input signal. Once per
symbol period, the equalizer outputs a weighted sum of the values in the delay line and updates the
weights to prepare for the next symbol period.

Linear equalizers can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractionally spaced equalizers. The output sample rate is 1/T
and the input sample rate is K/T, where T is the symbol period. Tap-weight updating occurs at the
output rate.

This schematic shows a linear equalizer with L weights, a symbol period of T, and K samples per
symbol. If K is 1, the result is a symbol-spaced linear equalizer instead of a fractional symbol-spaced
linear equalizer.
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In each symbol period, the equalizer receives K input samples at the tapped delay line. The equalizer
then outputs a weighted sum of the values in the tapped delay line and updates the weights to
prepare for the next symbol period.

Decision-Feedback Equalizers
A decision feedback equalizer (DFE) is a nonlinear equalizer that reduces intersymbol interference
(ISI) in frequency-selective channels. If a null exists in the frequency response of a channel, DFEs do
not enhance the noise. A DFE consists of a tapped delay line that stores samples from the input signal
and contains a forward filter and a feedback filter. The forward filter is similar to a linear equalizer.
The feedback filter contains a tapped delay line whose inputs are the decisions made on the equalized
signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the delay line
and updates the weights to prepare for the next symbol period.

DFEs can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractional symbol-spaced equalizers. The output sample rate is
1/T and the input sample rate is K/T. Tap weight updating occurs at the output rate.

This schematic shows a fractional symbol-spaced DFE with a total of N weights, a symbol period of T,
and K samples per symbol. The filter has L forward weights and N-L feedback weights. The forward
filter is at the top, and the feedback filter is at the bottom. If K is 1, the result is a symbol-spaced DFE
instead of a fractional symbol-spaced DFE.
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In each symbol period, the equalizer receives K input samples at the forward filter and one decision
or training sample at the feedback filter. The equalizer then outputs a weighted sum of the values in
the forward and feedback delay lines and updates the weights to prepare for the next symbol period.

Note The algorithm for the Adaptive Algorithm block in the schematic jointly optimizes the forward
and feedback weights. Joint optimization is especially important for convergence in the recursive
least square (RLS) algorithm.

Reference Signal and Operating Modes
In default applications, the equalizer first operates in training mode to gather information about the
channel. The equalizer later switches to decision-directed mode.

• When the equalizer is operating in training mode, the reference signal is a preset, known
transmitted sequence.

• When the equalizer is operating in decision-directed mode, the reference signal is a detected
version of the output signal, denoted by yd in the schematic.

The CMA algorithm has no training mode. Training mode applies only when the equalizer is
configured to use the LMS or RLS algorithm.

Error Calculation
The error calculation operation produces a signal given by this expression, where R is a constant
related to the signal constellation.
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e =
d− y   LMS or RLS

y(R− y 2) CMA

Updating Tap Weights
• “Least Mean Square Algorithm” on page 14-9
• “Recursive Least Square Algorithm” on page 14-9
• “Constant Modulus Algorithm” on page 14-10

For linear and decision-feedback equalizer structures, the choice of LMS, RLS, or CMA determines
the algorithms that are used to set the tap weights and perform the error calculation. The new set of
tap weights depends on:

• The current set of tap weights
• The input signal
• The output signal
• The reference signal, d, for LMS and RLS adaptive algorithms only. The reference signal

characteristics depend on the operating mode of the equalizer.

Least Mean Square Algorithm

For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is a vector of
all inputs ui. Based on the current set of weights, the LMS algorithm creates the new set of weights
as

wnew = wcurrent + (StepSize) ue*.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed when using the LMS adaptive algorithm, use the maxstep
object function. The * operator denotes the complex conjugate and the error calculation e = d - y.

Recursive Least Square Algorithm

For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u is the vector
of all inputs ui. Based on the current set of inputs, u, and the inverse correlation matrix, P, the RLS
algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the equalized
output signal to be less stable. H denotes the Hermitian transpose. Based on the current inverse
correlation matrix, the new inverse correlation matrix is

Pnew =
(1− KuH)Pcurrent
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.
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Constant Modulus Algorithm

For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights wi, and u is
the vector of all inputs ui. Based on the current set of weights, the CMA adaptive algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed by the CMA adaptive algorithm, use the maxstep object
function. The * operator denotes the complex conjugate and the error calculation e = y(R - |y|2),
where R is a constant related to the signal constellation.

Configuring Adaptive Equalizers
Choose the linear or decision-feedback equalizer structure. Decide which adaptive algorithm to use —
LMS, RLS, or CMA. Specify settings for structure and algorithm-specific operation modes.

Configuring an equalizer involves selecting a linear or decision-feedback structure, selecting an
adaptive algorithm, and specifying the structure and algorithm specific operation modes.

• “Specify an Adaptive Equalizer” on page 14-10
• “Equalizer Training” on page 14-13
• “Managing Delays When Using Equalizers” on page 14-24

When deciding which adaptive algorithm best fits your needs, consider:

• The LMS algorithm executes quickly but converges slowly. Its complexity grows linearly with the
number of weights.

• The RLS algorithm converges quickly. Its complexity grows approximately with the square of the
number of weights. This algorithm can also be unstable when the number of weights is large.

• The constant modulus algorithm (CMA) is useful when no training signal is available. It works best
for constant modulus modulations such as PSK.

• If CMA has no additional side information, it can introduce phase ambiguity. For example, the
weights found by the CMA might produce a perfect QPSK constellation but introduce a phase
rotation of 90, 180, or 270 degrees. In this case, employ a phase ambiguity correction
algorithm or choose a differential modulation scheme. Differential modulation schemes are
insensitive to phase ambiguity.

To view or change any properties of an adaptive equalizer, use the syntax described for channel
objects in “Displaying and Changing Object Properties” on page 22-14.

For more information about adaptive algorithms, see the references listed in “Selected References for
Equalizers” on page 14-3.

Specify an Adaptive Equalizer

• “Defining an Equalizer Object” on page 14-11
• “Adaptive Algorithm Assignment” on page 14-12

To create an adaptive equalizer object for use in MATLAB, select the comm.LinearEqualizer or
comm.DecisionFeedbackEqualizer System object. For Simulink, use the Linear Equalizer or
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Decision Feedback Equalizer block. Based on the propagation channel characteristics in your
simulation, use the criteria in “Equalization” on page 14-2 to select the equalizer structure.

The equalizer object has many properties that record information about the equalizer. Properties can
be related to:

• The structure of the equalizer, such as the number of taps.
• The adaptive algorithm that the equalizer uses, such as the step size in the LMS or CMA

algorithm.
• Information about the current state of the equalizer. The equalizer object can output the values of

the weights.

To view or change any properties of an equalizer object, use the syntax described for channel objects
in “Displaying and Changing Object Properties” on page 22-14.

Defining an Equalizer Object

The code creates equalizer objects for these configurations:

• A symbol-spaced linear RLS equalizer with 10 weights.
• A fractionally spaced linear RLS equalizer with 10 weights, a BPSK constellation, and two samples

per symbol.
• A decision-feedback RLS equalizer with three weights in the feedforward filter and two weights in

the feedback filter.

All three equalizer objects specify the RLS adaptive algorithm with a forgetting factor of 0.3.

Create equalizer objects of different types. The default settings are used for properties not set using
'Name,Value' pairs.

eqlin = comm.LinearEqualizer('Algorithm','RLS','NumTaps',10,'ForgettingFactor',0.3)

eqlin = 
  comm.LinearEqualizer with properties:

                          Algorithm: 'RLS'
                            NumTaps: 10
                   ForgettingFactor: 0.3000
    InitialInverseCorrelationMatrix: 0.1000
                      Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
                       ReferenceTap: 3
                         InputDelay: 0
              InputSamplesPerSymbol: 1
              TrainingFlagInputPort: false
                 AdaptAfterTraining: true
               InitialWeightsSource: 'Auto'
                 WeightUpdatePeriod: 1

eqfrac = comm.LinearEqualizer('Algorithm','RLS','NumTaps',10,'ForgettingFactor',0.3, ...
    'Constellation',[-1 1],'InputSamplesPerSymbol',2)

eqfrac = 
  comm.LinearEqualizer with properties:

                          Algorithm: 'RLS'
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                            NumTaps: 10
                   ForgettingFactor: 0.3000
    InitialInverseCorrelationMatrix: 0.1000
                      Constellation: [-1 1]
                       ReferenceTap: 3
                         InputDelay: 0
              InputSamplesPerSymbol: 2
              TrainingFlagInputPort: false
                 AdaptAfterTraining: true
               InitialWeightsSource: 'Auto'
                 WeightUpdatePeriod: 1

eqdfe = comm.DecisionFeedbackEqualizer('Algorithm','RLS','NumForwardTaps',3, ...
    'NumFeedbackTaps',2,'ForgettingFactor',0.3)

eqdfe = 
  comm.DecisionFeedbackEqualizer with properties:

                          Algorithm: 'RLS'
                     NumForwardTaps: 3
                    NumFeedbackTaps: 2
                   ForgettingFactor: 0.3000
    InitialInverseCorrelationMatrix: 0.1000
                      Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
                       ReferenceTap: 3
                         InputDelay: 0
              InputSamplesPerSymbol: 1
              TrainingFlagInputPort: false
                 AdaptAfterTraining: true
               InitialWeightsSource: 'Auto'
                 WeightUpdatePeriod: 1

Adaptive Algorithm Assignment

Use the Algorithm property to assign the adaptive algorithm used by the equalizer.

Algorithm Assignment

When creating the equalizer object, assign the adaptive algorithm.

eqlms = comm.LinearEqualizer('Algorithm','LMS');

Create the equalizer object with default property settings. LMS is the default adaptive algorithm.

eqrls = comm.LinearEqualizer;
eqrls.Algorithm

ans = 
'LMS'

Update eqrls to use the RLS adaptive algorithm.

eqrls.Algorithm = 'RLS';
eqrls.Algorithm

ans = 
'RLS'
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Cloning and Duplicating Objects

Configure a new equalizer object by cloning an existing equalizer object, and then changing its
properties. Clone eqlms to create an independent equalizer, eqcma, then update the algorithm to
'CMA'.

eqcma = clone(eqlms);
eqcma.Algorithm

ans = 
'LMS'

eqcma.Algorithm = 'CMA';
eqcma.Algorithm

ans = 
'CMA'

If you want an independent duplicate, use the clone command.

eqlms.NumTaps

ans = 5

eq2 = eqlms;
eq2.NumTaps = 6;
eq2.NumTaps

ans = 6

eqlms.NumTaps

ans = 6

The clone command creates a copy of eqlms that is independent of eqlms. By contrast, the
command eqB = eqA creates eqB as a reference to eqA, so that eqB and eqA always have identical
property settings.

Equalizer Training

• “Linearly Equalize System By Using Different Training Schemes” on page 14-13
• “Linearly Equalize Symbols By Using EVM-Based Training” on page 14-21

Linearly Equalize System By Using Different Training Schemes

Demonstrate linear equalization by using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel. Apply different equalizer training schemes and show the
symbol error magnitude.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200 training
symbols and 1800 random data symbols. Configure a linear LMS equalizer to recover the packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
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numPkts = 10;
lineq = comm.LinearEqualizer('Algorithm','LMS', ...
    'NumTaps',5,'ReferenceTap',3,'StepSize',0.01);

Train the Equalizer at the Beginning of Each Packet With Reset

Use prepended training symbols when processing each packet. After processing each packet, reset
the equalizer. This reset forces the equalizer to train the taps with no previous knowledge. Equalizer
error signal plots for the first, second, and last packet show higher symbol errors at the start of each
packet.

jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    rx = awgn(packet,SNR);
    [~,err] = lineq(rx,trainingSymbols);
    reset(lineq)
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols')
        ylabel('Error Magnitude')
        axis([0,length(packet),0,1])
        grid on;
        jj = jj+1;
    end
end
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Train the Equalizer at the Beginning of Each Packet Without Reset

Process each packet using prepended training symbols. Do not reset the equalizer after each packet
is processed. By not resetting after each packet, the equalizer retains tap weights from training prior
packets. Equalizer error signal plots for the first, second, and last packet show that after the initial
training on the first packet, subsequent packets have fewer symbol errors at the start of each packet.

release(lineq)
jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    channel = 1;
    rx = awgn(packet*channel,SNR);
    [~,err] = lineq(rx,trainingSymbols);
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols')
        ylabel('Error Magnitude')
        axis([0,length(packet),0,1])
        grid on;
        jj = jj+1;
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    end
end

Train the Equalizer Periodically

Systems with signals subject to time-varying channels require periodic equalizer training to maintain
lock on the channel variations. Specify a system that has 200 symbols of training for every 1800 data
symbols. Between training, the equalizer does not update tap weights. The equalizer processes 200
symbols per packet.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);
tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Set the AdaptAfterTraining property to false to stop the equalizer tap weight updates after the
training phase.

release(lineq)
lineq.AdaptAfterTraining = false
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lineq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'LMS'
                  NumTaps: 5
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: false
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

Equalize the impaired data. Plot the angular error from the channel, the equalizer error signal, and
signal constellation. As the channel varies, the equalizer output does not remove the channel effects.
The output constellation rotates out of sync, resulting in bit errors.

[y,err] = lineq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel Without Retraining')
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scatterplot(y)
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Set the TrainingInputPort property to true to configure the equalizer to retrain the taps when
signaled by the trainFlag input. The equalizer trains only when trainFlag is true. After every
2000 symbols, the equalizer retrains the taps and keeps lock on variations of the channel. Plot the
angular error from the channel, equalizer error signal, and signal constellation. As the channel
varies, the equalizer output removes the channel effects. The output constellation does not rotate out
of sync and bit errors are reduced.

release(lineq)
lineq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;
trainingPeriod = 2000;
eVec = zeros(size(rx));
yVec = zeros(size(rx));
for p=1:numPackets
    [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
        lineq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag);
    symbolCnt = symbolCnt + spp;
    if symbolCnt >= trainingPeriod
        trainFlag = true;
        symbolCnt = 0;
    else
        trainFlag = false;
    end
end
figure
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subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

scatterplot(yVec)
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Linearly Equalize Symbols By Using EVM-Based Training

Recover QPSK symbols with a linear equalizer by using the constant modulus algorithm (CMA) and
EVM-based taps training. When using blind equalizer algorithms, such as CMA, train the equalizer
taps by using the AdaptWeights property to start and stop training. Helper functions are used to
generate plots and apply phase correction.

Initialize system variables.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
raylChan = comm.RayleighChannel( ...
    'PathDelays',[0 1], ...
    'AveragePathGains',[0 -12], ...
    'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Create the equalizer and EVM System objects. The equalizer System object specifies a linear
equalizer by using the CMA adaptive algorithm. Call the helper function to initialize figure plots.

lineq = comm.LinearEqualizer( ...
    'Algorithm','CMA', ...
    'NumTaps',5, ...
    'ReferenceTap',3, ...
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    'StepSize',0.03, ...
    'AdaptWeightsSource','Input port')

lineq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'CMA'
                  NumTaps: 5
                 StepSize: 0.0300
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
    InputSamplesPerSymbol: 1
       AdaptWeightsSource: 'Input port'
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

info(lineq)

ans = struct with fields:
    Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = ...
    initFigures(numPackets,lineq);

Equalization Loop

To implement the equalization loop:

1 Generate PSK data packets.
2 Apply Rayleigh fading and AWGN to the transmission data.
3 Apply equalization to the received data and phase correction to the equalizer output.
4 Estimate the EVM and toggle the adaptWeights flag to true or false based on the EVM level.
5 Update the figure plots.

for p=1:numPackets
    data = randi([0 M-1],numSymbols,1);
    tx = pskmod(data,M,pi/4);
    rx = awgn(raylChan(tx),SNR);
    rxDelay = finddelay(rx,tx);
    [y,err,wts] = lineq(rx,adaptWeights);
    y = phaseCorrection(y);
    evmEst = evm(y);
    adaptWeights = (evmEst > 20);
    
    updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
        wts,y(end),evmEst,adaptWeights,p,numPackets)
end
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rxDelay

rxDelay = 0

The figure plots show that, as the EVM varies, the equalizer toggles in and out of decision-directed
weight adaptation mode.

Helper Functions

This helper function initializes figures that show a quad plot of simulation results.

function [errPlot,evmPlot,scatter,adaptState] = ...
    initFigures(numPkts,lineq)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(lineq.NumTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 lineq.NumTaps 0 1.8])
xlabel('Taps');
ylabel('|Weights|');
title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');
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axis square;
axis([-1.2 1.2 -1.2 1.2]);
grid on
xlabel('In-phase');
ylabel('Quadrature');
title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on;
axis([0 numPkts -0.2 1.2])
ylabel('Training');
xlabel('Symbols');
title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on;
axis([1 numPkts 0 100])
xlabel('Symbols');
ylabel('EVM (%)');
title('EVM')
end

This helper function updates figures.

function updateFigures(errPlot,evmPlot,scatSym, ...
    adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
    yVec = nan(numFrames,1);
    evmVec = nan(numFrames,1);
    adaptVec = nan(numFrames,1);
end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;

errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);
scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

This helper function applies phase correction.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Managing Delays When Using Equalizers

For proper equalization, you must determine and account for system delays. As shown in the
following example, you can use the finddelay function to determine the system delay. This example
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uses LMS linear equalization but the same approach is valid for the RLS and CMA adaptive
algorithms and for decision feedback equalizers.
Linearly Equalize Delayed Signal

Simulate a system with delay between the transmitted symbols and received samples. Typical
systems have transmitter and receiver filters that result in a delay. This delay must be accounted for
to synchronize the system. In this example, the system delay is introduced without transmit and
receive filters. Linear equalization, using the least mean squares (LMS) algorithm, recovers QPSK
symbols.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Generate QPSK-modulated symbols. Apply multipath channel filtering, a system delay, and AWGN to
the transmitted symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');

Create equalizer and EVM System objects. The equalizer System object specifies a linear equalizer
that uses the LMS algorithm.

lineq = comm.LinearEqualizer('Algorithm','LMS', ...
    'NumTaps',9,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');

Equalize Without Adjusting Input Delay

Equalize the received symbols.

[y1,err1,wts1] = lineq(rx,tx(1:numTrainingSymbols,1));

Find the delay between the received symbols and the transmitted symbols by using the finddelay
function.

rxDelay = finddelay(tx,rx)

rxDelay = 20

Display the equalizer information. The latency value indicates the delay introduced by the equalizer.
Calculate the total delay as the sum of rxDelay and the equalizer latency.

eqInfo = info(lineq)

eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
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Until the equalizer output converges, the symbol error rate is high. Plot the error output, err1, to
determine when the equalized output converges.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')

The plot shows excessive errors beyond the 1000 symbols training period. When demodulating
symbols and computing symbol errors, to account for the unconverged output and the system delay
between the equalizer output and transmitted symbols, skip the first 2000 symbols.

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)

symErrWithDelay = 5999

evmWithDelay = evm(y1)

evmWithDelay = 29.5795

The error rate and EVM are high because the receive delay was not accounted for in the equalizer
System object.
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Adjust Input Delay in Equalizer

Equalize the received data by using the delay value to set the InputDelay property. Because
InputDelay is a nontunable property, you must release the lineq System object to reconfigure the
InputDelay property. Equalize the received symbols.

release(lineq)
lineq.InputDelay = rxDelay

lineq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'LMS'
                  NumTaps: 9
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 5
               InputDelay: 20
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

[y2,err2,wts2] = lineq(rx,tx(1:numTrainingSymbols,1));

Plot the tap weights and equalized error magnitude. A stem plot shows the equalizer tap weights
before and after the system delay is removed. A 2-D line plot shows the slower equalizer convergence
for the delayed signal as compared to the signal with the delay removed.

subplot(2,1,1)
stem([real(wts1),real(wts2)])
xlabel('Taps')
ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on
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figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')
ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on
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Plot error output of the equalized signals, rxDelayed and rxDelayRemoved. For the signal that has
the delay removed, the equalizer converges during the 1000 symbol training period. When
demodulating symbols and computing symbol errors, to account for the unconverged output and the
system delay between the equalizer output and transmitted symbols, skip the first 500 symbols.
Reconfiguring the equalizer to account for the system delay enables better equalization of the signal,
and reduces symbol errors and the EVM.

eqInfo = info(lineq)

eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)

symErrDelayRemoved = 0

evmDelayRemoved = evm(y2(500+totalDelay:end))
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evmDelayRemoved = 9.4435

Using Adaptive Equalizers in Simulink

Adaptive Equalization with Filtering and Fading Channel
This model shows the behavior of the selected adaptive equalizer in a communication link that has a
fading channel. The transmitter and receiver have root raised cosine pulse shaped filtering. A
subsystem block enables you to select between linear or decision feedback equalizers that usie the
least mean square (LMS) or recursive least square (RLS) adaptive algorithm.

Model Structure

• The transmitter generates 16QAM random signal data that includes a training sequence and
applies root raised cosine pulse shaped filtering.

• Channel impairments include multipath fading, Doppler shift, carrier frequency offset, variable
integer delay, free space path loss, and AWGN.

• The receiver applies root raised cosine pulse shaped filtering, adjusts the gain, includes equalizer
mode control to enable training and enables you to select the equalizer algorithm from these
choices.

• Scopes help you understand how the different equalizers and adaptive algorithms behave.
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Explore Example Model

Experimenting with the model

This model provides several ways for you to change settings and observe the results. The InitFcn
found in File>Model Properties>Callbacks calls cm_ex_adaptive_eq_with_fading_init
to initialize the model. This file enables you to vary settings in the model, including:

• System parameters, such as SNR.
• Pulse shaping filter parameters, such as rolloff and filter length
• Path loss value.
• Channel conditions: Rayleigh or Rician fading, channel path gains, channel path delays, and

Doppler shift.
• Equalizer choice and configuration.

Model Considerations

This non-standards-based communication link is representative of a modern communications system.

• The optimal equalizer configuration depends on the channel conditions. The initialization file sets
the Doppler shift and multipath fading channel parameters that highlight the capabilities of
different equalizers.
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• The decision feedback equalizer structure performs better than the linear equalizer structure for
higher intersymbol interference.

• The RLS algorithm performs better than the LMS algorithm for higher Doppler frequencies.
• The LMS algorithm executes quickly, converges slowly, and its complexity grows linearly with the

number of weights.
• The RLS algorithm converges quickly, its complexity grows approximately as the square of the

number of weights. It can be unstable when the number of weights is large.
• The channels exercised for different equalizers have the following characteristics.

• Initial settings for other channel impairments are the same for all equalizers. Carrier frequency
offset value is set to 50 Hz. Free space path loss is set to 60 dB. Variable integer delay is set to 2
samples, which requires the equalizers to perform some timing recovery.

Deep channel fades and path loss can cause the equalizer input signal level to be much less than the
desired output signal level and result in unacceptably long equalizer convergence time. The AGC
block adjusts the magnitude of received signal to reduce the equalizer convergence time. You must
adjust the optimal gain output power level based on the modulation scheme selected. For 16QAM, a
desired output power of 10 W is used.

Training of the equalizer is performed at the beginning of the simulation.

Running the Simulation

Running the simulation computes symbol error statistics and produces these figures:
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• A constellation diagram of the signal after the receive filter.
• A constellation diagram of the signal after adjusting gain.
• A constellation diagram of the signal after equalization with signal quality measurements shown.
• An equalizer error plot.

For the plots shown here, the equalizer algorithm selected is RLS Linear. Monitoring these figures,
you can see that the received signal quality fluctuates as simulation time progresses.

The After Rx Filter and After AGC constellation plots show the signal before equalization. After AGC
shows the impact of the channel conditions on the transmitted signal. The After Eq plot shows the
signal after equalization. The signal plotted in the constellation diagram after equalization shows the
variation in signal quality based on the effectiveness of the equalization process. Throughout the
simulation, the signal constellations plotted before equalization deviate noticeably from a 16QAM
signal constellation. The After Eq constellation improves or degrades as the equalizer error signal
varies. The Eq error plotted in the Eq Error plot, indicates poor equalization at the start of the
simulation. The error degrades at first then improves as the equalizer converges.
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Further Exploration

Double-click the Equalizer Selector block and select a different equalizer. Run the simulation to
see the performance of the various equalizer options. You can use the signal logger to compare the
results from this experimentation. In the block diagram, right-click on signal wires and select Log
Selected Signals. If you have enabled signal logging, after the simulation run finishes, open the
Simulation Data Inspector to view the logged signals.

At the MATLAB™ command prompt, enter edit cm_ex_adaptive_eq_with_fading_init.m to
open the initialization file, then modify a parameter and rerun the simulation. For example, adjust the
channel characteristics (params.maxDoppler|, params.pathDelays, and params.pathGains). The
RLS adaptive algorithm performs better than the LMS adaptive algorithm as the maximum Doppler is
increased.

See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer | comm.MLSEEqualizer

Blocks
Linear Equalizer | Decision Feedback Equalizer | MLSE Equalizer

More About
• “Equalization” on page 14-2
• “MLSE Equalizers” on page 14-36
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MLSE Equalizers
In this section...
“Equalize a Vector Signal in MATLAB” on page 14-36
“Equalizing Signals in Continuous Operation Mode” on page 14-37
“Use a Preamble or a Postamble” on page 14-40
“Using MLSE Equalizers in Simulink” on page 14-41
“MLSE Equalization with Dynamically Changing Channel” on page 14-41

Maximum-Likelihood Sequence Estimation (MLSE) equalizers provide optimal equalization of time
variations in the propagation channel characteristics. However, MLSE equalizers are sometimes less
appealing because their computational complexity is higher than “Adaptive Equalizers” on page 14-5.

In Communications Toolbox, the mlseeq function, comm.MLSEEqualizer System object, and MLSE
Equalizer block use the Viterbi algorithm to equalize a linearly modulated signal through a dispersive
channel. These features output the maximum likelihood sequence estimate of the signal by using an
estimate of the channel modeled as a finite input response (FIR) filter.

To decode a received signal, the MLSE equalizer:

1 Applies the FIR filter to the symbols in the input signal. The FIR filter tap weights correspond to
the channel estimate.

2 Uses the Viterbi algorithm to compute the traceback paths and the state metric. These values are
assigned to the symbols at each step of the Viterbi algorithm. The metrics are based on Euclidean
distance.

3 Outputs the maximum likelihood sequence estimate of the signal as a sequence of complex
numbers corresponding to the constellation points of the modulated signal.

An MLSE equalizer yields the best theoretically possible performance, but is computationally
intensive.

For background material on MLSE equalizers, see “Selected References for Equalizers” on page 14-3.

Equalize a Vector Signal in MATLAB
You can use the mlseeq function or comm.MLSEEqualizer System object for MLSE equalization in
MATLAB. The examples in this section call the mlseeq function. A similar workflow applies when
using the comm.MLSEEqualizer System object. For examples that use the System object, see the
comm.MLSEEqualizer System object reference page.

The mlseeq function has two operation modes:

• Continuous operation mode enables you to process a series of vectors by using repeated calls to
mlseeq. The function saves its internal state information from one call to the next. To learn more,
see Equalizing in Continuous Operation Mode on page 14-37.

• Reset operation mode enables you to specify a preamble and postamble that accompany your data.
To learn more, see Using a Preamble or Postamble on page 14-40.

If you are not processing a series of vectors and do not need to specify a preamble or postamble, the
operational modes are nearly identical. They differ in that continuous operation mode incurs a delay,
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while reset operation mode does not. The following example uses reset operation mode. If you modify
the example to run using continuous operation mode, there will be delay in the equalized output. To
learn more about this delay, see Delays in Continuous Operation Mode on page 14-38.

Use mlseeq to Equalize a Vector Signal

In its simplest form, the mlseeq function equalizes a vector of modulated data when you specify:

• The estimated coefficients of the channel (modeled as an FIR filter).
• The signal constellation for the modulation type.
• The Viterbi algorithm traceback depth. Larger values for the traceback depth can improve the

results from the equalizer but increase the computation time.

Generate a PSK modulated signal with modulation order set to four.

M = 4; 
msg = pskmod([1 2 2 0 3 1 3 3 2 1 0 2 3 0 1]',M);

Filter the modulated signal through a distortion channel.

chcoeffs = [.986; .845; .237; .12345+.31i];
filtmsg = filter(chcoeffs,1,msg);

Define the reference constellation, traceback length, and channel estimate for the MLSE equalizer. In
this example, the exact channel is provided as the channel estimate.

const = pskmod([0:M-1],M);
tblen = 10;
chanest = chcoeffs;

Equalize the received signal.

msgEq = mlseeq(filtmsg,chanest,const,tblen,'rst');
isequal(msg,msgEq)

ans = logical
   1

Equalizing Signals in Continuous Operation Mode
If your data is partitioned into a series of vectors (that you process within a loop, for example),
continuous operation mode is an appropriate way to use the mlseeq function. In continuous
operation mode, mlseeq can save its internal state information for use in a subsequent invocation
and can initialize by using previously stored state information. To choose continuous operation mode
when invoking mlseeq, specify 'cont' as an input argument.

Note Continuous operation mode incurs a delay, as described in Delays in Continuous Operation
Mode on page 14-38. This mode cannot accommodate a preamble or postamble.
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Procedure for Continuous Operation Mode

When using continuous operation mode within a loop, preallocate three empty matrix variables to
store the state metrics, traceback states, and traceback inputs for the equalizer before the
equalization loop starts. Inside the loop, invoke mlseeq using a syntax such as:
sm = [];
ts = [];
ti = [];
for ...
    [y,sm,ts,ti] = mlseeq(x,chcoeffs,const,tblen,'cont',nsamp,sm,ts,ti);
...
end

Using sm, ts, and ti as input arguments causes mlseeq to continue operating from where it finished
in the previous iteration. Using sm, ts, and ti as output arguments causes mlseeq to update the
state information at the end of the current iteration. In the first iteration, sm, ts, and ti start as
empty matrices, so the first invocation of the mlseeq function initializes the metrics of all states to 0.

Delays in Continuous Operation Mode

Continuous operation mode with a traceback depth of tblen incurs an output delay of tblen
symbols. The first tblen output symbols are unrelated to the input signal and the last tblen input
symbols are unrelated to the output signal. For example, this command uses a traceback depth of 3.
The first three output symbols are unrelated to the input signal of ones(1,10).
y = mlseeq(ones(1,10),1,[-7:2:7],3,'cont')

y =
    -7   -7   -7    1    1    1    1    1    1    1

It is important to keep track of delays introduced by different portions of the communications system.
The “Use mlseeq to Equalize a Vector in Continuous Operation Mode” on page 14-38 example
illustrates how to account for the delay when computing an error rate.

Use mlseeq to Equalize a Vector in Continuous Operation Mode

This example shows the procedure for using the continuous operation mode of the mlseeq function
within a loop.

Initialize Variables

Specify run-time variables.

numsym = 200; % Number of symbols in each iteration
numiter = 25; % Number of iterations

M = 4; % Use 4-PSK modulation
qpskMod = comm.QPSKModulator('PhaseOffset',0);

chcoeffs = [1 ; 0.25]; % Channel coefficients
chanest = chcoeffs; % Channel estimate

To initialize the equalizer, define parameters for the reference constellation, traceback length,
number of samples per symbol, and the state variables sm, ts, and ti.

const = qpskMod((0:M-1)');
tblen = 10;
nsamp = 1;
sm = [];
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ts = [];
ti = [];

Define variables to accumulate results from each iteration of the loop.

fullmodmsg = [];
fullfiltmsg = [];
fullrx = [];

Simulate the System by Using a Loop

Run the simulation in a loop that generates random data, modulates the data by using baseband PSK
modulation, and filters the data. The mlseeq function equalizes the filtered data. The loop also
updates the variables that accumulate results from each iteration of the loop.

for jj = 1:numiter
    msg = randi([0 M-1],numsym,1); % Random signal vector
    modmsg = qpskMod(msg); % PSK-modulated signal
    filtmsg = filter(chcoeffs,1,modmsg); % Filtered signal
    % Equalize the signal.
    [rx,sm,ts,ti] = mlseeq(filtmsg,chanest,const, ...
        tblen,'cont',nsamp,sm,ts,ti);
    % Update vectors with cumulative results.
    fullmodmsg = [fullmodmsg; modmsg];
    fullfiltmsg = [fullfiltmsg; filtmsg];
    fullrx = [fullrx; rx];
end

Computing an Error Rate and Plotting Results

Compute the symbol error rate from all iterations of the loop. The symerr function compares
selected portions of the received and transmitted signals, not the entire signals. Because continuous
operation mode incurs a delay whose length in samples is the traceback depth (tblen) of the
equalizer, exclude the first tblen samples from the received signal and the last tblen samples from
the transmitted signal. Excluding samples that represent the delay of the equalizer ensures that the
symbol error rate calculation compares samples from the received and transmitted signals that are
meaningful and that truly correspond to each other.

Taking the delay into account, compute the total number of symbol errors.

hErrorCalc = comm.ErrorRate('ReceiveDelay',10);
err = step(hErrorCalc, fullmodmsg, fullrx);
numsymerrs = err(1)

numsymerrs = 0

Plot the signal constellation before and after equalization. The points in the equalized signal coincide
with the points of the ideal signal constellation for 4-PSK.

h = scatterplot(fullfiltmsg); 
hold on;
scatterplot(fullrx,1,0,'r*',h);
legend('Filtered signal before equalization','Equalized signal',...
   'Location','NorthOutside');
hold off; 
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Use a Preamble or a Postamble
Some systems include a sequence of known symbols at the beginning or end of a set of data. The
known sequence at the beginning or end is called a preamble or postamble, respectively. The mlseeq
function can accommodate a preamble and postamble that are already incorporated into its input
signal. When you invoke the function, you specify the preamble and postamble as integer vectors that
represent the sequence of known symbols by indexing into the signal constellation vector. For
example, a preamble vector of [1 4 4] and a 4-PSK signal constellation of [1 j -1 -j] indicates
that the modulated signal begins with [1 -j -j].

If your system uses a preamble without a postamble, use a postamble vector of [] when invoking
mlseeq. If your system uses a postamble without a preamble, use a preamble vector of [].

Recover Message Containing Preamble

Recover a message that includes a preamble, equalize the signal, and check the symbol error rate.

Specify the modulation order, equalizer traceback depth, number of samples per symbol, preamble,
and message length.

M = 4; 
tblen = 16;
nsamp = 1;
preamble = [3;1];
msgLen = 500;
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Generate the reference constellation.

const = pskmod(0:3,4);

Generate a message by using random data and prepend the preamble to the message. Modulate the
random data.

msgData = randi([0 M-1],msgLen,1);
msgData = [preamble; msgData];
msgSym = pskmod(msgData,M);

Filter the data through a distortion channel and add Gaussian noise to the signal.

chcoeffs = [0.623; 0.489+0.234i; 0.398i; 0.21];
chanest = chcoeffs;
msgFilt = filter(chcoeffs,1,msgSym);
msgRx = awgn(msgFilt,9,'measured');

Equalize the received signal. To configure the equalizer, provide the channel estimate, reference
constellation, equalizer traceback depth, operating mode, number of samples per symbol, and
preamble. The same preamble symbols appear at the beginning of the message vector and in the
syntax for mlseeq. Because the system does not use a postamble, an empty vector is specified as the
last input argument in this mlseeq syntax.

Check the symbol error rate of the equalized signal. Run-to-run results vary due to use of random
numbers.

eqSym = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp,preamble,[]);
[nsymerrs,ser] = symerr(msgSym,eqSym)

nsymerrs = 8

ser = 0.0159

Using MLSE Equalizers in Simulink
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly modulated signal through
a dispersive channel. The block outputs the maximum likelihood sequence estimate (MLSE) of the
signal by using your estimate of the channel modeled as a finite input response (FIR) filter. When
using the MLSE Equalizer block, you specify the channel estimate and the signal constellation of the
input signal. You can also specify an expected input signal preamble and postamble as input
parameters to the MLSE Equalizer block.

MLSE Equalization with Dynamically Changing Channel
Use a Maximum Likelihood Sequence Estimation (MLSE) equalizer to equalize the effects of a
multipath Rayleigh fading channel. The MLSE equalizer inputs data that has passed through a time
varying dispersive channel and an estimate of the channel. The channel estimate contains
dynamically evolving channel coefficients of a two-path Rayleigh fading channel.

Model Structure

• The transmitter generates QPSK random signal data.
• Channel impairments include multipath fading and AWGN.
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• The receiver applies MLSE equalization and QPSK demodulation.
• The model uses scopes and a BER calculation to show the system behavior.

Explore Example Model

Experimenting with the model

The Bernoulli Binary Generator block sample time of 5e-6 seconds corresponds to a bit rate of
200 kbps and a QPSK symbol rate of 100 ksym/sec.

The Multipath Rayleigh Fading Channel block settings are:

• Maximum Doppler shift is 30 Hz.
• Discrete path delay is [0 1e-5], which corresponds to two consecutive sample times of the input

QPSK symbol data. This delay reflects the simplest delay vector for a two-path channel.
• Average path gain is [0 -10].
• Average path gains are normalized to 0 dB so that the average power input to the AWGN block is 1

W.

The MLSE Equalizer block has the Traceback depth set to 10. Vary this depth to study its effect on
Bit Error rate (BER).

The QPSK demodulator accepts an N-by-1 input frame and generates a 2N-by-1 output frame. This
output frame and a traceback depth of 10 results in a delay of 20 bits. The model performs frame-
based processing on frames that have 100 samples per frame. Due to the frame-based processing,
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there is a inherent delay of 100 bits in the model. The combined receive delay of 120 is set in the
Receive delay parameter of the Error Rate Calculation block, aligning the samples.

The computed BER is displayed. Constellation plots show the constellation before and after
equalization.

BER = 0.033645
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See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer | comm.MLSEEqualizer

Blocks
Linear Equalizer | Decision Feedback Equalizer | MLSE Equalizer

More About
• “Equalization” on page 14-2
• “Adaptive Equalizers” on page 14-5

14 Equalization

14-44



Equalizer Examples (new & old)

• “DF Equalize QPSK-Modulated Signal in Simulink” on page 15-2
• “Linearly Equalize QPSK-Modulated Signal in Simulink” on page 15-5
• “Adaptive Equalization with Filtering and Fading Channel” on page 15-8
• “MLSE Equalization with Dynamically Changing Channel” on page 15-14
• “Adaptive Equalization” on page 15-17
• “Equalize BSPK Signal” on page 15-25
• “Compare RLS and LMS Algorithms” on page 15-28
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DF Equalize QPSK-Modulated Signal in Simulink
Apply decision feedback equalization using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel.

The slex_dfeq_qpsk_signal model generates an M=4 sequence using the Random Integer
Generator block. The sequence is modulated with the M-PSK Modulator Baseband block, filtered
with the Discrete FIR Filter block, and then impaired with the AWGN block. The Decision
Feedback Equalizer block equalizes the data sequence, the data is demodulated with the M-PSK
Demodulator Baseband block, and the bit error rate is computed. The signal path out of the
modulator is split to a Selector block, which provides the first 1000 symbols of the modulated
signal to the equalizer as an initial training sequence.

No delay is introduced between the transmitted and received signal because the maximum tap value
is the first tap of the discrete FIR filter and the equalizer reference tap is 1. The equalizer converges
after around 1000 symbols so this value is used for the computation delay of the Error Rate
Calculation block.

The computed error rate is displayed and plots show the equalized constellation, equalized tap
weights, and signal error magnitude.

Computed error rate = 0.0011111
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Linearly Equalize QPSK-Modulated Signal in Simulink
Apply linear equalization using the least mean squares (LMS) algorithm to recover QPSK symbols
passed through an AWGN channel.

The slex_lineq_qpsk_signal model generates an M=4 sequence using the Random Integer
Generator block. The sequence is modulated with the M-PSK Modulator Baseband block, filtered
with the Discrete FIR Filter block, and then impaired with the AWGN block. The Linear
Equalizer block equalizes the data sequence, the data is demodulated with the M-PSK
Demodulator Baseband block, and the bit error rate is computed. The signal path out of the
modulator is split to a Selector block, which provides the first 1000 symbols of the modulated
signal to the equalizer as an initial training sequence.

No delay is introduced between the transmitted and received signal because the maximum tap value
is the first tap of the discrete FIR filter and the equalizer reference tap is 1. The equalizer converges
after around 1000 symbols so this value is used for the computation delay of the Error Rate
Calculation block.

The computed error rate is displayed and plots show the equalized constellation, equalized tap
weights, and signal error magnitude.

Computed error rate = 0.0024444
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Adaptive Equalization with Filtering and Fading Channel
This model shows the behavior of the selected adaptive equalizer in a communication link that has a
fading channel. The transmitter and receiver have root raised cosine pulse shaped filtering. A
subsystem block enables you to select between linear or decision feedback equalizers that usie the
least mean square (LMS) or recursive least square (RLS) adaptive algorithm.

Model Structure

• The transmitter generates 16QAM random signal data that includes a training sequence and
applies root raised cosine pulse shaped filtering.

• Channel impairments include multipath fading, Doppler shift, carrier frequency offset, variable
integer delay, free space path loss, and AWGN.

• The receiver applies root raised cosine pulse shaped filtering, adjusts the gain, includes equalizer
mode control to enable training and enables you to select the equalizer algorithm from these
choices.

• Scopes help you understand how the different equalizers and adaptive algorithms behave.

Explore Example Model
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Experimenting with the model

This model provides several ways for you to change settings and observe the results. The InitFcn
found in File>Model Properties>Callbacks calls cm_ex_adaptive_eq_with_fading_init
to initialize the model. This file enables you to vary settings in the model, including:

• System parameters, such as SNR.
• Pulse shaping filter parameters, such as rolloff and filter length
• Path loss value.
• Channel conditions: Rayleigh or Rician fading, channel path gains, channel path delays, and

Doppler shift.
• Equalizer choice and configuration.

Model Considerations

This non-standards-based communication link is representative of a modern communications system.

• The optimal equalizer configuration depends on the channel conditions. The initialization file sets
the Doppler shift and multipath fading channel parameters that highlight the capabilities of
different equalizers.

• The decision feedback equalizer structure performs better than the linear equalizer structure for
higher intersymbol interference.

• The RLS algorithm performs better than the LMS algorithm for higher Doppler frequencies.
• The LMS algorithm executes quickly, converges slowly, and its complexity grows linearly with the

number of weights.
• The RLS algorithm converges quickly, its complexity grows approximately as the square of the

number of weights. It can be unstable when the number of weights is large.
• The channels exercised for different equalizers have the following characteristics.
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• Initial settings for other channel impairments are the same for all equalizers. Carrier frequency
offset value is set to 50 Hz. Free space path loss is set to 60 dB. Variable integer delay is set to 2
samples, which requires the equalizers to perform some timing recovery.

Deep channel fades and path loss can cause the equalizer input signal level to be much less than the
desired output signal level and result in unacceptably long equalizer convergence time. The AGC
block adjusts the magnitude of received signal to reduce the equalizer convergence time. You must
adjust the optimal gain output power level based on the modulation scheme selected. For 16QAM, a
desired output power of 10 W is used.

Training of the equalizer is performed at the beginning of the simulation.

Running the Simulation

Running the simulation computes symbol error statistics and produces these figures:

• A constellation diagram of the signal after the receive filter.
• A constellation diagram of the signal after adjusting gain.
• A constellation diagram of the signal after equalization with signal quality measurements shown.
• An equalizer error plot.

For the plots shown here, the equalizer algorithm selected is RLS Linear. Monitoring these figures,
you can see that the received signal quality fluctuates as simulation time progresses.

The After Rx Filter and After AGC constellation plots show the signal before equalization. After AGC
shows the impact of the channel conditions on the transmitted signal. The After Eq plot shows the
signal after equalization. The signal plotted in the constellation diagram after equalization shows the
variation in signal quality based on the effectiveness of the equalization process. Throughout the
simulation, the signal constellations plotted before equalization deviate noticeably from a 16QAM
signal constellation. The After Eq constellation improves or degrades as the equalizer error signal
varies. The Eq error plotted in the Eq Error plot, indicates poor equalization at the start of the
simulation. The error degrades at first then improves as the equalizer converges.
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Further Exploration

Double-click the Equalizer Selector block and select a different equalizer. Run the simulation to
see the performance of the various equalizer options. You can use the signal logger to compare the
results from this experimentation. In the block diagram, right-click on signal wires and select Log
Selected Signals. If you have enabled signal logging, after the simulation run finishes, open the
Simulation Data Inspector to view the logged signals.
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At the MATLAB™ command prompt, enter edit cm_ex_adaptive_eq_with_fading_init.m to
open the initialization file, then modify a parameter and rerun the simulation. For example, adjust the
channel characteristics (params.maxDoppler|, params.pathDelays, and params.pathGains). The
RLS adaptive algorithm performs better than the LMS adaptive algorithm as the maximum Doppler is
increased.

 Adaptive Equalization with Filtering and Fading Channel

15-13



MLSE Equalization with Dynamically Changing Channel
Use a Maximum Likelihood Sequence Estimation (MLSE) equalizer to equalize the effects of a
multipath Rayleigh fading channel. The MLSE equalizer inputs data that has passed through a time
varying dispersive channel and an estimate of the channel. The channel estimate contains
dynamically evolving channel coefficients of a two-path Rayleigh fading channel.

Model Structure

• The transmitter generates QPSK random signal data.
• Channel impairments include multipath fading and AWGN.
• The receiver applies MLSE equalization and QPSK demodulation.
• The model uses scopes and a BER calculation to show the system behavior.

Explore Example Model

Experimenting with the model

The Bernoulli Binary Generator block sample time of 5e-6 seconds corresponds to a bit rate of
200 kbps and a QPSK symbol rate of 100 ksym/sec.

The Multipath Rayleigh Fading Channel block settings are:

• Maximum Doppler shift is 30 Hz.
• Discrete path delay is [0 1e-5], which corresponds to two consecutive sample times of the input

QPSK symbol data. This delay reflects the simplest delay vector for a two-path channel.
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• Average path gain is [0 -10].
• Average path gains are normalized to 0 dB so that the average power input to the AWGN block is 1

W.

The MLSE Equalizer block has the Traceback depth set to 10. Vary this depth to study its effect on
Bit Error rate (BER).

The QPSK demodulator accepts an N-by-1 input frame and generates a 2N-by-1 output frame. This
output frame and a traceback depth of 10 results in a delay of 20 bits. The model performs frame-
based processing on frames that have 100 samples per frame. Due to the frame-based processing,
there is a inherent delay of 100 bits in the model. The combined receive delay of 120 is set in the
Receive delay parameter of the Error Rate Calculation block, aligning the samples.

The computed BER is displayed. Constellation plots show the constellation before and after
equalization.

BER = 0.033645

 MLSE Equalization with Dynamically Changing Channel
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Adaptive Equalization
This example shows how to a model a communication link with PSK modulation, raised cosine pulse
shaping, multipath fading, and adaptive equalization.

The example sets up three equalization scenarios, and calls a separate script to execute the
processing loop multiple times for each scenario. Each call corresponds to a transmission block. The
pulse shaping and multipath fading channel retain state information from one block to the next. For
visualizing the impact of channel fading on adaptive equalizer convergence, the simulation resets the
equalizer state every block.

To experiment with different simulation settings, you can edit the example. For instance, you can set
the ResetBeforeFiltering property of the equalizer object to 0, which will cause the equalizer to
retain state from one block to the next.

Transmission Block

Set parameters related to the transmission block which is composed of three parts: training
sequence, payload, and tail sequence. All three use the same PSK scheme; the training and tail
sequences are used for equalization. We use the default random number generator to ensure the
repeatability of the results.

Rsym      = 1e6;  % Symbol rate (Hz)
nTrain    = 100;  % Number of training symbols
nPayload  = 400;  % Number of payload symbols
nTail     = 20;   % Number of tail symbols
% Set random number generator for repeatability
hStream   = RandStream.create('mt19937ar', 'seed', 12345);

PSK Modulation

Configure the PSK modulation and demodulation System objects.

bitsPerSym = 2;                              % Number of bits per PSK symbol
M = 2^bitsPerSym;                            % Modulation order
hPSKMod   = comm.PSKModulator(M, ...
    'PhaseOffset',0, ...
    'SymbolMapping','Binary');
hPSKDemod = comm.PSKDemodulator(M, ...
    'PhaseOffset',0, ...
    'SymbolMapping','Binary');

PSKConstellation = constellation(hPSKMod).'; % PSK constellation

Training and Tail Sequences

Generate the training and tail sequences.

xTrainData = randi(hStream, [0 M-1], nTrain, 1);
xTailData  = randi(hStream, [0 M-1], nTail, 1);
xTrain     = step(hPSKMod,xTrainData);
xTail      = step(hPSKMod,xTailData);

Transmit and Receive Filters

Configure raised cosine transmit and receive filter System objects. The filters incorporate upsampling
and downsampling, respectively.
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chanFilterSpan = 8;  % Filter span in symbols
sampPerSymChan = 4;  % Samples per symbol through channels
hTxFilt = comm.RaisedCosineTransmitFilter( ...
    'RolloffFactor',0.25, ...
    'FilterSpanInSymbols',chanFilterSpan, ...
    'OutputSamplesPerSymbol',sampPerSymChan);

hRxFilt = comm.RaisedCosineReceiveFilter( ...
    'RolloffFactor',0.25, ...
    'FilterSpanInSymbols',chanFilterSpan, ...
    'InputSamplesPerSymbol',sampPerSymChan, ...
    'DecimationFactor',sampPerSymChan);

% Calculate the samples per symbol after the receive filter
sampPerSymPostRx = sampPerSymChan/hRxFilt.DecimationFactor;
% Calculate the delay in samples from both channel filters
chanFilterDelay = chanFilterSpan*sampPerSymPostRx;

AWGN Channel

Configure an AWGN channel System object with the NoiseMethod property set to Signal to
noise ratio (Es/No) and Es/No set to 20 dB.

hAWGNChan = comm.AWGNChannel( ...
    'NoiseMethod','Signal to noise ratio (Es/No)', ...
    'EsNo',20, ...
    'SamplesPerSymbol',sampPerSymChan);

Simulation 1: Linear Equalization for Frequency-Flat Fading

Begin with single-path, frequency-flat fading channel. For this channel, the receiver uses a simple 1-
tap LMS (least mean square) equalizer, which implements automatic gain and phase control.

The script commadapteqloop.m runs multiple times. Each run corresponds to a transmission block.
The equalizer resets its state and weight every transmission block. To retain state from one block to
the next, you can set the ResetBeforeFiltering property of the equalizer object to false.

Before the first run, commadapteqloop.m displays the Rayleigh channel System object and the
properties of the equalizer object. For each run, a MATLAB figure shows signal processing
visualizations. The red circles in the signal constellation plots correspond to symbol errors. In the
"Weights" plot, blue and magenta lines correspond to real and imaginary parts, respectively.

simName = 'Linear equalization for frequency-flat fading';  % Used to label figure window

% Configure a frequency-flat Rayleigh channel System object with the
% RandomStream property set to 'mt19937ar with seed' for repeatability.
hRayleighChan = comm.RayleighChannel( ...
    'SampleRate',Rsym*sampPerSymChan, ...
    'MaximumDopplerShift',30);

% Configure an adaptive equalizer object
nWeights = 1;  % Single weight
stepSize = 0.1; % Step size for LMS algorithm
alg = lms(stepSize);  % Adaptive algorithm object
eqObj = lineareq(nWeights,alg,PSKConstellation);  % Equalizer object
% Delay in symbols from the equalizer
eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;
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% Link simulation
nBlocks = 50;  % Number of transmission blocks in simulation
for block = 1:nBlocks
    commadapteqloop;
end

System: comm.RayleighChannel

  Properties:
             SampleRate: 4000000              
             PathDelays: 0                    
       AveragePathGains: 0                    
     NormalizePathGains: true                 
    MaximumDopplerShift: 30                   
        DopplerSpectrum: [1x1 struct]         
           RandomStream: 'mt19937ar with seed'
                   Seed: 73                   
    PathGainsOutputPort: false                
                                              
                  EqType: 'Linear Equalizer'
                 AlgType: 'LMS'
                nWeights: 1
             nSampPerSym: 1
                  RefTap: 1
                SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i]
                StepSize: 0.1000
           LeakageFactor: 1
                 Weights: 0
            WeightInputs: 0
    ResetBeforeFiltering: 1
     NumSamplesProcessed: 0
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Simulation 2: Linear Equalization for Frequency-Selective Fading

Simulate a three-path, frequency-selective Rayleigh fading channel. The receiver uses an 8-tap linear
RLS (recursive least squares) equalizer with symbol-spaced taps.

simName = 'Linear equalization for frequency-selective fading';

% Reset transmit and receive filters
reset(hTxFilt);
reset(hRxFilt);

% Set the Rayleigh channel System object to be frequency-selective
release(hRayleighChan);
hRayleighChan.PathDelays = [0 0.9 1.5]/Rsym;
hRayleighChan.AveragePathGains = [0 -3 -6];

% Configure an adaptive equalizer
nWeights = 8;
forgetFactor = 0.99;  % RLS algorithm forgetting factor
alg = rls(forgetFactor);  % RLS algorithm object
eqObj = lineareq(nWeights,alg,PSKConstellation);
eqObj.RefTap = 3;  % Reference tap
eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;
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% Link simulation and store BER values
BERvect = zeros(1,nBlocks);
for block = 1:nBlocks
    commadapteqloop;
    BERvect(block) = BEREq;
end
avgBER2 = mean(BERvect)

System: comm.RayleighChannel

  Properties:
             SampleRate: 4000000              
             PathDelays: [0 9e-07 1.5e-06]    
       AveragePathGains: [0 -3 -6]            
     NormalizePathGains: true                 
    MaximumDopplerShift: 30                   
        DopplerSpectrum: [1x1 struct]         
           RandomStream: 'mt19937ar with seed'
                   Seed: 73                   
    PathGainsOutputPort: false                
                                              
                  EqType: 'Linear Equalizer'
                 AlgType: 'RLS'
                nWeights: 8
             nSampPerSym: 1
                  RefTap: 3
                SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i]
            ForgetFactor: 0.9900
             InvCorrInit: 0.1000
           InvCorrMatrix: [8x8 double]
                 Weights: [0 0 0 0 0 0 0 0]
            WeightInputs: [0 0 0 0 0 0 0 0]
    ResetBeforeFiltering: 1
     NumSamplesProcessed: 0

avgBER2 =

   3.0000e-04
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Simulation 3: Decision feedback Equalization (DFE) for Frequency-Selective Fading

The receiver uses a DFE with a six-tap fractionally spaced forward filter (two samples per symbol)
and two feedback weights. The DFE uses the same RLS algorithm as in Simulation 2. The receive
filter structure is reconstructed to account for the increased number of samples per symbol.

simName = 'Decision feedback equalization (DFE) for frequency-selective fading';

% Reset transmit filter and adjust receive filter decimation factor
reset(hTxFilt);
release(hRxFilt);
hRxFilt.DecimationFactor = 2;
sampPerSymPostRx = sampPerSymChan/hRxFilt.DecimationFactor;
chanFilterDelay = chanFilterSpan*sampPerSymPostRx;

% Reset fading channel
reset(hRayleighChan);

% Configure an adaptive equalizer object
nFwdWeights = 6;  % Number of feedforward equalizer weights
nFbkWeights = 2;  % Number of feedback filter weights
eqObj = dfe(nFwdWeights, nFbkWeights,alg,PSKConstellation,sampPerSymPostRx);
eqObj.RefTap = 3;
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eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

for block = 1:nBlocks
    commadapteqloop;
    BERvect(block) = BEREq;
end
avgBER3 = mean(BERvect)

System: comm.RayleighChannel

  Properties:
             SampleRate: 4000000              
             PathDelays: [0 9e-07 1.5e-06]    
       AveragePathGains: [0 -3 -6]            
     NormalizePathGains: true                 
    MaximumDopplerShift: 30                   
        DopplerSpectrum: [1x1 struct]         
           RandomStream: 'mt19937ar with seed'
                   Seed: 73                   
    PathGainsOutputPort: false                
                                              
                  EqType: 'Decision Feedback Equalizer'
                 AlgType: 'RLS'
                nWeights: [6 2]
             nSampPerSym: 2
                  RefTap: 3
                SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i]
            ForgetFactor: 0.9900
             InvCorrInit: 0.1000
           InvCorrMatrix: [8x8 double]
                 Weights: [0 0 0 0 0 0 0 0]
            WeightInputs: [0 0 0 0 0 0 0 0]
    ResetBeforeFiltering: 1
     NumSamplesProcessed: 0

avgBER3 =

     0
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Summary

This example showed the relative performance of linear and decision feedback equalizers in both
frequency-flat and frequency-selective fading channels. It showed how a one-tap equalizer is
sufficient to compensate for a frequency-flat channel, but that a frequency-selective channel requires
an equalizer with multiple taps. Finally, it showed that a decision feedback equalizer is superior to a
linear equalizer in a frequency-selective channel.

Appendix

This example uses the following script and helper functions:

• commadapteqloop.m
• commadapteq_checkvars.m
• commadapteq_graphics.m
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Equalize BSPK Signal
Equalize a BPSK signal using a linear equalizer with a least mean square (LMS) algorithm.

Generate random binary data and apply BPSK modulation.

M = 2;
data = randi([0 1],1000,1);
modData = pskmod(data,M);

Apply two-tap static fading to the modulated signal and add AWGN noise.

rxSig = conv(modData,[0.02+0.5i 0.05]);
rxSig = awgn(rxSig,30);

Create a linear equalizer System object™ configured to use the LMS adaptive algorithm, 8 taps, 0.1
step size, and the 4th tap as the reference tap. Set the constellation to match the modulation of the
transmitted signal.

lineq = comm.LinearEqualizer( ...
    NumTaps=8, ...
    StepSize=0.1, ...
    Constellation=complex([-1 1]), ...
    ReferenceTap=4)

lineq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'LMS'
                  NumTaps: 8
                 StepSize: 0.1000
            Constellation: [-1.0000 + 0.0000i 1.0000 + 0.0000i]
             ReferenceTap: 4
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

Equalize the received signal, rxSig. Use the first 200 data bits as a training sequence. Display a
constellation diagram showing the received signal before and after equalization.

trSeq = modData(1:200);
[eqSig,err] = lineq(rxSig,trSeq);

constdiag = comm.ConstellationDiagram( ...
    NumInputPorts=2, ...
    ChannelNames={'Before equalization','After equalization'}, ...
    ReferenceConstellation=pskmod([0 M-1],M));
constdiag(rxSig(400:end),eqSig(400:end))

 Equalize BSPK Signal

15-25



Plot the magnitude of the error estimate. As shown by the decrease and stabilizing of the error signal,
the equalization converges in less than 200 bits.

plot(abs(err))
title('Error Estimate')
xlabel('Bits')
ylabel('Amplitude (V)')
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Compare RLS and LMS Algorithms
Equalize a QAM signal passed through a frequency-selective fading channel using RLS and LMS
algorithms. Compare the performance of the two algorithms.

Specify the modulation order. Generate the corresponding QAM reference constellation.

M = 16; 
sigConst = qammod(0:M-1,M,'UnitAveragePower',true);

Create a frequency-selective static channel having three taps.

rchan = comm.RayleighChannel('SampleRate',1000, ...
    'PathDelays',[0 1e-3 2e-3],'AveragePathGains',[0 -3 -6], ...
    'MaximumDopplerShift',0, ...
    'RandomStream','mt19937ar with seed','Seed',73);

RLS Equalizer

Create an RLS equalizer object.

eqrls = lineareq(6,rls(0.99,0.1)); 
eqrls.SigConst = sigConst; 
eqrls.ResetBeforeFiltering = 0;

Generate and QAM modulate a random training sequence. Pass the sequence through the Rayleigh
fading channel. Pass the received signal and the training signal through the equalizer to set the
equalizer tap weights.

trainData = randi([0 M-1],200,1);
trainSig = qammod(trainData,M,'UnitAveragePower',true);
rxSig = rchan(trainSig);
[~,~,errorSig] = equalize(eqrls,rxSig,trainSig);

Plot the magnitude of the error estimate.

plot(abs(errorSig))
title('Error Estimate, RLS Equalizer')
xlabel('Symbols')
ylabel('Amplitude')

The error is nearly eliminated within 200 symbols.

Transmit a QAM signal through a frequency-selective channel. Equalize the received signal using the
previously 'trained' RLS equalizer. Measure the time required to execute the processing loop.

tic
for k = 1:20
   data = randi([0 M-1],1000,1); % Random message
   txSig = qammod(data,M,'UnitAveragePower',true);

   % Introduce channel distortion.
   rxSig = rchan(txSig);

   % Equalize the received signal.
   eqSig = equalize(eqrls,rxSig);
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end
rlstime = toc;

Plot the constellation diagram of the received and equalized signals.

h = scatterplot(rxSig,1,0,'c.');
hold on
scatterplot(eqSig,1,0,'b.',h)
legend('Received Signal','Equalized Signal')
title('RLS Equalizer')
hold off

The equalizer removed the effects of the fading channel.

LMS Equalizer

Repeat the equalization process with an LMS equalizer. Create an LMS equalizer object.

eqlms = lineareq(6,lms(0.03)); 
eqlms.SigConst = sigConst; 
eqlms.ResetBeforeFiltering = 0;

Train the LMS equalizer.

trainData = randi([0 M-1],1000,1);
trainSig = qammod(trainData,M,'UnitAveragePower',true);
rxSig = rchan(trainSig);
[~,~,errorSig] = equalize(eqlms,rxSig,trainSig);

Plot the magnitude of the error estimate.

plot(abs(errorSig))
title('Error Estimate, LMS Equalizer')
xlabel('Symbols')
ylabel('Amplitude')

Training the LMS equalizer requires 1000 symbols.

Transmit a QAM signal through the same frequency-selective channel. Equalize the received signal
using the previously 'trained' LMS equalizer. Measure the time required to execute the processing
loop.

tic
for k = 1:20
   data = randi([0 M-1],1000,1); % Random message
   txSig = qammod(data,M,'UnitAveragePower',true);

   % Introduce channel distortion.
   rxSig = rchan(txSig);

   % Equalize the received signal.
   eqSig = equalize(eqlms,rxSig);

end
lmstime = toc;

Plot the constellation diagram of the received and equalized signals.

h = scatterplot(rxSig,1,0,'c.');
hold on
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scatterplot(eqSig,1,0,'b.',h)
legend('Received Signal','Equalized Signal')
title('LMS Equalizer')

The equalizer removes the effects of the fading channel.

Compare the loop execution time for the two equalizer algorithms.

[rlstime lmstime]

The LMS algorithm is more computationally efficient as it took 50% of the time to execute the
processing loop. However, the training sequence required by the LMS algorithm is 5 times longer.
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System Design

• “Source Coding” on page 16-2
• “Error Detection and Correction” on page 16-14
• “Interleaving” on page 16-116
• “Digital Modulation” on page 16-129
• “Analog Passband Modulation” on page 16-149
• “Phase-Locked Loops” on page 16-154
• “Multiple-Input Multiple-Output (MIMO)” on page 16-157
• “Differential Pulse Code Modulation” on page 16-159
• “Quantize and Compand an Exponential Signal” on page 16-163
• “Quantization” on page 16-165
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Source Coding
In this section...
“Represent Partitions” on page 16-2
“Represent Codebooks” on page 16-2
“Determine Which Interval Each Input Is In” on page 16-3
“Optimize Quantization Parameters” on page 16-3
“Differential Pulse Code Modulation” on page 16-4
“Optimize DPCM Parameters” on page 16-6
“Compand a Signal” on page 16-7
“Huffman Coding” on page 16-9
“Arithmetic Coding” on page 16-10
“Quantize a Signal” on page 16-11

Represent Partitions
Scalar quantization is a process that maps all inputs within a specified range to a common value. This
process maps inputs in a different range of values to a different common value. In effect, scalar
quantization digitizes an analog signal. Two parameters determine a quantization: a partition on page
16-2 and a codebook on page 16-2.

A quantization partition defines several contiguous, nonoverlapping ranges of values within the set of
real numbers. To specify a partition in the MATLAB environment, list the distinct endpoints of the
different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}
• {x: 0< x ≤ 1}
• {x: 1 < x ≤ 3}
• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall into each range of the
partition. Represent a codebook as a vector whose length is the same as the number of partition
intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].
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Determine Which Interval Each Input Is In
The quantiz function also returns a vector that tells which interval each input is in. For example, the
output below says that the input entries lie within the intervals labeled 0, 6, and 5, respectively. Here,
the 0th interval consists of real numbers less than or equal to 3; the 6th interval consists of real
numbers greater than 8 but less than or equal to 9; and the 5th interval consists of real numbers
greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

     0
     6
     5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase the example
more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters
• “Section Overview” on page 16-3
• “Example: Optimizing Quantization Parameters” on page 16-3

Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate partition and
codebook parameters. However, testing and selecting parameters for large signal sets with a fine
quantization scheme can be tedious. One way to produce partition and codebook parameters easily is
to optimize them according to a set of so-called training data.

Note The training data you use should be typical of the kinds of signals you will actually be
quantizing.

Example: Optimizing Quantization Parameters

The lloyds function optimizes the partition and codebook according to the Lloyd algorithm. The
code below optimizes the partition and codebook for one period of a sinusoidal signal, starting from a
rough initial guess. Then it uses these parameters to quantize the original signal using the initial
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guess parameters as well as the optimized parameters. The output shows that the mean square
distortion after quantizing is much less for the optimized parameters. The quantiz function
automatically computes the mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is

ans =

    0.0148    0.0024

Differential Pulse Code Modulation
• “Section Overview” on page 16-4
• “DPCM Terminology” on page 16-4
• “Represent Predictors” on page 16-5
• “Example: DPCM Encoding and Decoding” on page 16-5

Section Overview

The quantization in the section “Quantize a Signal” on page 16-11 requires no a priori knowledge
about the transmitted signal. In practice, you can often make educated guesses about the present
signal based on past signal transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization method is differential
pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM predictive
quantizer with a linear predictor.

DPCM Terminology

To determine an encoder for such a quantizer, you must supply not only a partition and codebook as
described in “Represent Partitions” on page 16-2 and “Represent Codebooks” on page 16-2, but also
a predictor. The predictor is a function that the DPCM encoder uses to produce the educated guess at
each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p is an m-tuple of real
numbers. Instead of quantizing x itself, the DPCM encoder quantizes the predictive error, x-y. The
integer m above is called the predictive order. The special case when m = 1 is called delta
modulation.
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Represent Predictors

If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the vector as the polynomial
transfer function of a finite impulse response (FIR) filter.

Example: DPCM Encoding and Decoding

A simple special case of DPCM quantizes the difference between the signal's current value and its
value at the previous step. Thus the predictor is just y(k) = x (k - 1). The code below
implements this scheme. It encodes a sawtooth signal, decodes it, and plots both the original and
decoded signals. The solid line is the original signal, while the dashed line is the recovered signals.
The example also computes the mean square error between the original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

    0.0327

 Source Coding

16-5



Optimize DPCM Parameters
• “Section Overview” on page 16-6
• “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page 16-7

Section Overview

The section “Optimize Quantization Parameters” on page 16-3 describes how to use training data
with the lloyds function to help find quantization parameters that will minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction with the two
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note The training data you use with dpcmopt should be typical of the kinds of signals you will
actually be quantizing with dpcmenco.
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Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example created
predictor, partition, and codebook in a straightforward but haphazard way, this example uses
the same codebook (now called initcodebook) as an initial guess for a new optimized codebook
parameter. This example also uses the predictive order, 1, as the desired order of the new optimized
predictor. The dpcmopt function creates these optimized parameters, using the sawtooth signal x as
training data. The example goes on to quantize the training data itself; in theory, the optimized
parameters are suitable for quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

    0.0063

Compand a Signal
• “Section Overview” on page 16-7
• “Compress and Expand Data Sequence Using Mu-Law” on page 16-7
• “Compress and Expand Data Sequence Using A-Law” on page 16-8

Section Overview

In certain applications, such as speech processing, it is common to use a logarithm computation,
called a compressor, before quantizing. The inverse operation of a compressor is called an expander.
The combination of a compressor and expander is called a compander.

For more information, see quantiz and compand.

Compress and Expand Data Sequence Using Mu-Law

Generate a data sequence.

data = 2:2:12

data = 1×6

     2     4     6     8    10    12

Compress the data sequence by using a mu-law compressor. Set the value for mu to 255. The
compressed data sequence now ranges between 8.1 and 12.
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compressed = compand(data,255,max(data),'mu/compressor')

compressed = 1×6

    8.1644    9.6394   10.5084   11.1268   11.6071   12.0000

Expand the compressed data sequence by using a mu-law expander. The expanded data sequence is
nearly identical to the original data sequence.

expanded = compand(compressed,255,max(data),'mu/expander')

expanded = 1×6

    2.0000    4.0000    6.0000    8.0000   10.0000   12.0000

Calculate the difference between the original data sequence and the expanded sequence.

diffvalue = expanded - data

diffvalue = 1×6
10-14 ×

   -0.0444    0.1776    0.0888    0.1776    0.1776   -0.3553

Compress and Expand Data Sequence Using A-Law

Generate a data sequence.

data = 1:5;

Compress the data sequence by using an A-law compressor. Set the value for A to 87.6. The
compressed data sequence now ranges between 3.5 and 5.

compressed = compand(data,87.6,max(data),'A/compressor')

compressed = 1×5

    3.5296    4.1629    4.5333    4.7961    5.0000

Expand the compressed data sequence by using an A-law expander. The expanded data sequence is
nearly identical to the original data sequence.

expanded = compand(compressed,87.6,max(data),'A/expander')

expanded = 1×5

    1.0000    2.0000    3.0000    4.0000    5.0000

Calculate the difference between the original data sequence and the expanded sequence.

diffvalue = expanded - data

diffvalue = 1×5
10-14 ×
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         0         0    0.1332    0.0888    0.0888

Huffman Coding
• “Section Overview” on page 16-9
• “Create a Huffman Code Dictionary Using MATLAB” on page 16-9
• “Create and Decode a Huffman Code Using MATLAB” on page 16-10

Section Overview

Huffman coding offers a way to compress data. The average length of a Huffman code depends on the
statistical frequency with which the source produces each symbol from its alphabet. A Huffman code
dictionary, which associates each data symbol with a codeword, has the property that no codeword in
the dictionary is a prefix of any other codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support Huffman coding and
decoding.

Note For long sequences from sources having skewed distributions and small alphabets, arithmetic
coding compresses better than Huffman coding. To learn how to use arithmetic coding, see
“Arithmetic Coding” on page 16-10.

Huffman coding requires statistical information about the source of the data being encoded. In
particular, the p input argument in the huffmandict function lists the probability with which the
source produces each symbol in its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s with probability 0.1,
and 3s with probability 0.8. The main computational step in encoding data from this source using a
Huffman code is to create a dictionary that associates each data symbol with a codeword. The
example here creates such a dictionary and then shows the codeword vector associated with a
particular value from the data source.

Create a Huffman Code Dictionary Using MATLAB

This example shows how to create a Huffman code dictionary using the huffmandict function.

Create a vector of data symbols and assign a probability to each.

symbols = [1 2 3];
prob = [0.1 0.1 0.8];

Create a Huffman code dictionary. The most probable data symbol, 3, is associated with a one-digit
codeword, while less probable data symbols are associated with two-digit codewords.

dict = huffmandict(symbols,prob)

dict=3×2 cell array
    {[1]}    {[1 1]}
    {[2]}    {[1 0]}
    {[3]}    {[  0]}
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Display the second row of the dictionary. The output also shows that a Huffman encoder receiving the
data symbol 2 substitutes the sequence 1 0.

dict{2,:}

ans = 2

ans = 1×2

     1     0

Create and Decode a Huffman Code Using MATLAB

The example performs Huffman encoding and decoding using a source whose alphabet has three
symbols. Notice that the huffmanenco and huffmandeco functions use the dictionary created by
huffmandict.

Generate a data sequence to encode.

sig = repmat([3 3 1 3 3 3 3 3 2 3],1,50);

Define the set of data symbols and the probability associated with each element.

symbols = [1 2 3];
p = [0.1 0.1 0.8];

Create the Huffman code dictionary.

dict = huffmandict(symbols,p);

Encode and decode the data. Verify that the original data, sig, and the decoded data, dhsig, are
identical.

hcode = huffmanenco(sig,dict);
dhsig = huffmandeco(hcode,dict);
isequal(sig,dhsig)

ans = logical
   1

Arithmetic Coding
• “Section Overview” on page 16-10
• “Represent Arithmetic Coding Parameters” on page 16-11
• “Create and Decode an Arithmetic Code Using MATLAB” on page 16-11

Section Overview

Arithmetic coding offers a way to compress data and can be useful for data sources having a small
alphabet. The length of an arithmetic code, instead of being fixed relative to the number of symbols
being encoded, depends on the statistical frequency with which the source produces each symbol
from its alphabet. For long sequences from sources having skewed distributions and small alphabets,
arithmetic coding compresses better than Huffman coding.
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The arithenco and arithdeco functions support arithmetic coding and decoding.

Represent Arithmetic Coding Parameters

Arithmetic coding requires statistical information about the source of the data being encoded. In
particular, the counts input argument in the arithenco and arithdeco functions lists the
frequency with which the source produces each symbol in its alphabet. You can determine the
frequencies by studying a set of test data from the source. The set of test data can have any size you
choose, as long as each symbol in the alphabet has a nonzero frequency.

For example, before encoding data from a source that produces 10 x's, 10 y's, and 80 z's in a typical
100-symbol set of test data, define

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x's, 23 y's, and 185 z's, then
define

counts = [22 23 185];

Create and Decode an Arithmetic Code Using MATLAB

Encode and decode a sequence from a source having three symbols.

Create a sequence vector containing symbols from the set of {1,2,3}.

seq = [3 3 1 3 3 3 3 3 2 3];

Set the counts vector to define an encoder that produces 10 ones, 20 twos, and 70 threes from a
typical 100-symbol set of test data.

counts = [10 20 70];

Apply the arithmetic encoder and decoder functions.

code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq));

Verify that the decoder output matches the original input sequence.

isequal(seq,dseq)

ans = logical
   1

Quantize a Signal
• “Scalar Quantization Example 1” on page 16-11
• “Scalar Quantization Example 2” on page 16-12

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map a real
vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.
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partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

The output is below.

quantized =

  Columns 1 through 6

   -1.0000   -1.0000   -1.0000   -1.0000    0.5000    0.5000

  Columns 7 through 12

    2.0000    2.0000    2.0000    2.0000    2.0000    3.0000

  Column 13

    3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing a sampled
sine wave, it plots the original and quantized signals. The plot contrasts the x's that make up the sine
curve with the dots that make up the quantized signal. The vertical coordinate of each dot is a value
in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
legend('Original signal','Quantized signal');
axis([-.2 7 -1.2 1.2])
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See Also
Functions
lloyds | quantiz | dpcmenco | dpcmdeco | dpcmopt

 Source Coding

16-13



Error Detection and Correction
In this section...
“Cyclic Redundancy Check Codes” on page 16-14
“Block Codes” on page 16-17
“Convolutional Codes” on page 16-30
“Linear Block Codes” on page 16-54
“Hamming Codes” on page 16-62
“BCH Codes” on page 16-68
“Reed-Solomon Codes” on page 16-72
“LDPC Codes” on page 16-81
“Galois Field Computations” on page 16-81
“Galois Fields of Odd Characteristic” on page 16-104

Cyclic Redundancy Check Codes
• “CRC-Code Features” on page 16-14
• “CRC Non-Direct Algorithm” on page 16-14
• “Example Using CRC Non-Direct Algorithm” on page 16-15
• “CRC Direct Algorithm” on page 16-16
• “Selected Bibliography for CRC Coding” on page 16-16

CRC-Code Features

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting errors that
occur when a message is transmitted. Unlike block or convolutional codes, CRC codes do not have a
built-in error-correction capability. Instead, when a communications system detects an error in a
received message word, the receiver requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create extra bits, called the
checksum, or syndrome, and then appends the checksum to the message word. After receiving a
transmitted word, the receiver applies the same rule to the received word. If the resulting checksum
is nonzero, an error has occurred, and the transmitter should resend the message word.

Open the Error Detection and Correction library by double-clicking its icon in the main
Communications Toolbox block library. Open the CRC sublibrary by double-clicking on its icon in the
Error Detection and Correction library.

Communications Toolbox supports CRC Coding using Simulink blocks, System objects, or MATLAB
objects. These CRC coding features are listed in “Error Detection and Correction”.

CRC Non-Direct Algorithm

The CRC non-direct algorithm accepts a binary data vector, corresponding to a polynomial M, and
appends a checksum of r bits, corresponding to a polynomial C. The concatenation of the input vector
and the checksum then corresponds to the polynomial T = M*xr + C, since multiplying by xr

corresponds to shifting the input vector r bits to the left. The algorithm chooses the checksum C so
that T is divisible by a predefined polynomial P of degree r, called the generator polynomial.
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The algorithm divides T by P, and sets the checksum equal to the binary vector corresponding to the
remainder. That is, if T = Q*P + R, where R is a polynomial of degree less than r, the checksum is the
binary vector corresponding to R. If necessary, the algorithm prepends zeros to the checksum so that
it has length r.

The CRC generation feature, which implements the transmission phase of the CRC algorithm, does
the following:

1 Left shifts the input data vector by r bits and divides the corresponding polynomial by P.
2 Sets the checksum equal to the binary vector of length r, corresponding to the remainder from

step 1.
3 Appends the checksum to the input data vector. The result is the output vector.

The CRC detection feature computes the checksum for its entire input vector, as described above.

The CRC algorithm uses binary vectors to represent binary polynomials, in descending order of
powers. For example, the vector [1 1 0 1] represents the polynomial x3 + x2 + 1.

Note The implementation described in this section is one of many valid implementations of the CRC
algorithm. Different implementations can yield different numerical results.

Bits enter the linear feedback shift register (LFSR) from the lowest index bit to the highest index bit.
The sequence of input message bits represents the coefficients of a message polynomial in order of
decreasing powers. The message vector is augmented with r zeros to flush out the LFSR, where r is
the degree of the generator polynomial. If the output from the leftmost register stage d(1) is a 1, then
the bits in the shift register are XORed with the coefficients of the generator polynomial. When the
augmented message sequence is completely sent through the LFSR, the register contains the
checksum [d(1) d(2) . . . d(r)]. This is an implementation of binary long division, in which the message
sequence is the divisor (numerator) and the polynomial is the dividend (denominator). The CRC
checksum is the remainder of the division operation.

Example Using CRC Non-Direct Algorithm

Suppose the input frame is [1 1 0 0 1 1 0]', corresponding to the polynomial M = x6 +x 5 + x2 +
x, and the generator polynomial is P = x3 + x2 + 1, of degree r = 3. By polynomial division, M*x3 = (x6

+ x3 + x)*P + x. The remainder is R = x, so that the checksum is then [0 1 0]'. An extra 0 is added
on the left to make the checksum have length 3.

 Error Detection and Correction

16-15



CRC Direct Algorithm

where

Message Block Input is

m0, m1, ... , mk− 1
Code Word Output is

c0, c1, ... , cn− 1 = m0, m1, ... , mk− 1,︸
X

d0, d1, ... , dn− k− 1︸
Y

The initial step of the direct CRC encoding occurs with the three switches in position X. The
algorithm feeds k message bits to the encoder. These bits are the first k bits of the code word output.
Simultaneously, the algorithm sends k bits to the linear feedback shift register (LFSR). When the
system completely feeds the kth message bit to the LFSR, the switches move to position Y. Here, the
LFSR contains the mathematical remainder from the polynomial division. These bits are shifted out of
the LFSR and they are the remaining bits (checksum) of the code word output.

Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and Applications, Englewood Cliffs, NJ,
Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage, Upper Saddle
River, NJ, Prentice Hall, 1995.
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Block Codes
• “Block-Coding Features” on page 16-17
• “Terminology” on page 16-18
• “Data Formats for Block Coding” on page 16-18
• “Using Block Encoders and Decoders Within a Model” on page 16-20
• “Examples of Block Coding” on page 16-20
• “Notes on Specific Block-Coding Techniques” on page 16-23
• “Shortening, Puncturing, and Erasures” on page 16-25
• “Reed-Solomon Code in Integer Format” on page 16-27
• “Find a Generator Polynomial” on page 16-28
• “Performing Other Block Code Tasks” on page 16-28
• “Selected Bibliography for Block Coding” on page 16-29

Block-Coding Features

Error-control coding techniques detect, and possibly correct, errors that occur when messages are
transmitted in a digital communication system. To accomplish this, the encoder transmits not only the
information symbols but also extra redundant symbols. The decoder interprets what it receives, using
the redundant symbols to detect and possibly correct whatever errors occurred during transmission.
You might use error-control coding if your transmission channel is very noisy or if your data is very
sensitive to noise. Depending on the nature of the data or noise, you might choose a specific type of
error-control coding.

Block coding is a special case of error-control coding. Block-coding techniques map a fixed number of
message symbols to a fixed number of code symbols. A block coder treats each block of data
independently and is a memoryless device. Communications Toolbox contains block-coding
capabilities by providing Simulink blocks, System objects, and MATLAB functions.

The class of block-coding techniques includes categories shown in the diagram below.

Communications Toolbox supports general linear block codes. It also process cyclic, BCH, Hamming,
and Reed-Solomon codes (which are all special kinds of linear block codes). Blocks in the product can
encode or decode a message using one of the previously mentioned techniques. The Reed-Solomon
and BCH decoders indicate how many errors they detected while decoding. The Reed-Solomon coding
blocks also let you decide whether to use symbols or bits as your data.
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Note The blocks and functions in Communications Toolbox are designed for error-control codes that
use an alphabet having 2 or 2m symbols.

Communications Toolbox Support Functions

Functions in Communications Toolbox can support simulation blocks by

• Determining characteristics of a technique, such as error-correction capability or possible
message lengths

• Performing lower-level computations associated with a technique, such as

• Computing a truth table
• Computing a generator or parity-check matrix
• Converting between generator and parity-check matrices
• Computing a generator polynomial

For more information about error-control coding capabilities, see Block Codes on page 16-17.

Terminology

Throughout this section, the information to be encoded consists of message symbols and the code
that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of N message symbols. K
is called the message length, N is called the codeword length, and the code is called an [N,K] code.

Data Formats for Block Coding

Each message or codeword is an ordered grouping of symbols. Each block in the Block Coding
sublibrary processes one word in each time step, as described in the following section, “Binary
Format (All Coding Methods)” on page 16-18. Reed-Solomon coding blocks also let you choose
between binary and integer data, as described in “Integer Format (Reed-Solomon Only)” on page 16-
19.

Binary Format (All Coding Methods)

You can structure messages and codewords as binary vector signals, where each vector represents a
message word or a codeword. At a given time, the encoder receives an entire message word, encodes
it, and outputs the entire codeword. The message and code signals operate over the same sample
time.

This example illustrates the encoder receiving a four-bit message and producing a five-bit codeword
at time 0. It repeats this process with a new message at time 1.
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For all coding techniques except Reed-Solomon using binary input, the message vector must have
length K and the corresponding code vector has length N. For Reed-Solomon codes with binary input,
the symbols for the code are binary sequences of length M, corresponding to elements of the Galois
field GF(2M). In this case, the message vector must have length M*K and the corresponding code
vector has length M*N. The Binary-Input RS Encoder block and the Binary-Output RS Decoder block
use this format for messages and codewords.

If the input to a block-coding block is a frame-based vector, it must be a column vector instead of a
row vector.

To produce sample-based messages in the binary format, you can configure the Bernoulli Binary
Generator block so that its Probability of a zero parameter is a vector whose length is that of the
signal you want to create. To produce frame-based messages in the binary format, you can configure
the same block so that its Probability of a zero parameter is a scalar and its Samples per frame
parameter is the length of the signal you want to create.

Using Serial Signals

If you prefer to structure messages and codewords as scalar signals, where several samples jointly
form a message word or codeword, you can use the Buffer and Unbuffer blocks. Buffering involves
latency and multirate processing. If your model computes error rates, the initial delay in the coding-
buffering combination influences the Receive delay parameter in the Error Rate Calculation block.

You can display the sample times of signals in your model. On the Debug tab, expand Information
Overlays. In the Sample Time section, select Colors. Alternatively, you can attach Probe blocks to
connector lines to help evaluate sample timing, buffering, and delays.

Integer Format (Reed-Solomon Only)

A message word for an [N,K] Reed-Solomon code consists of M*K bits, which you can interpret as K
symbols from 0 to 2M. The symbols are binary sequences of length M, corresponding to elements of
the Galois field GF(2M), in descending order of powers. The integer format for Reed-Solomon codes
lets you structure messages and codewords as integer signals instead of binary signals. (The input
must be a frame-based column vector.)

Note In this context, Simulink expects the first bit to be the most significant bit in the symbol. “First”
means the smallest index in a vector or the smallest time for a series of scalars.

The following figure illustrates the equivalence between binary and integer signals for a Reed-
Solomon encoder. The case for the decoder is similar.
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To produce sample-based messages in the integer format, you can configure the Random Integer
Generator block so that M-ary number and Initial seed parameters are vectors of the desired
length and all entries of the M-ary number vector are 2M. To produce frame-based messages in the
integer format, you can configure the same block so that its M-ary number and Initial seed
parameters are scalars and its Samples per frame parameter is the length of the signal you want to
create.

Using Block Encoders and Decoders Within a Model

Once you have configured the coding blocks, a few tips can help you place them correctly within your
model:

• If a block has multiple outputs, the first one is always the stream of coding data.

The Reed-Solomon and BCH blocks have an error counter as a second output.
• Be sure that the signal sizes are appropriate for the mask parameters. For example, if you use the

Binary Cyclic Encoder block and set Message length K to 4, the input signal must be a vector of
length 4.

You can display the size of signals in your model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

Examples of Block Coding

Example: Reed-Solomon Code in Integer Format

This example uses a Reed-Solomon code in integer format. It illustrates the appropriate vector
lengths of the code and message signals for the coding blocks. It also exhibits error correction, using
a simple way of introducing errors into each codeword.
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Open the model by typing doc_rscoding at the MATLAB command line. To build the model, gather
and configure these blocks:

• Random Integer Generator, in the Comm Sources library

• Set M-ary number to 15.
• Set Initial seed to a positive number, randn is chosen here.
• Check the Frame-based outputs check box.
• Set Samples per frame to 5.

• Integer-Input RS Encoder

• Set Codeword length N to 15.
• Set Message length K to 5.

• Gain, in the Simulink Math Operations library

• Set Gain to [0; 0; 0; 0; 0; ones(10,1)].
• Integer-Output RS Decoder

• Set Codeword length N to 15.
• Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.
• Add, in the Simulink Math Operations library

• Set List of signs to |-+

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to 500. The Simulate section appears on multiple tabs.

You can display the vector length of signals in your model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

The encoder accepts a vector of length 5 (which is K in this case) and produces a vector of length 15
(which is N in this case). The decoder does the opposite.

Running the model produces the following scope images. The plotted error count will vary based on
the Initial Seed value used in the Random Integer Generator block. You can adjust the axis range
exactly match that of the first scope. Right-click the plot area in the second scope and select
Configuration Properties. On the Display tab, adjust the axes limits.
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Number of Errors Before Correction

The second plot is the number of errors that the decoder detected while trying to recover the
message. Often the number is five because the Gain block replaces the first five symbols in each
codeword with zeros. However, the number of errors is less than five whenever a correct codeword
contains one or more zeros in the first five places.

The first plot is the difference between the original message and the recovered message; since the
decoder was able to correct all errors that occurred, each of the five data streams in the plot is zero.
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Notes on Specific Block-Coding Techniques

Although the Block Coding sublibrary is somewhat uniform in its look and feel, the various coding
techniques are not identical. This section describes special options and restrictions that apply to
parameters and signals for the coding technique categories in this sublibrary. Coding techniques
discussed below include - Generic Linear Block code, Cyclic code, Hamming code, BCH code, and
Reed-Solomon code.

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix. Decoding the
code requires the generator matrix and possibly a truth table. To use the Binary Linear Encoder and
Binary Linear Decoder blocks, you must understand the Generator matrix and Error-correction
truth table parameters.

Generator Matrix - The process of encoding a message into an [N,K] linear block code is determined
by a K-by-N generator matrix G. Specifically, a 1-by-K message vector v is encoded into the 1-by-N
codeword vector vG. If G has the form [Ik, P] or [P, Ik], where P is some K-by-(N-K) matrix and Ik is the
K-by-K identity matrix, G is said to be in standard form. (Some authors, such as Clark and Cain [2],
use the first standard form, while others, such as Lin and Costello [3], use the second.) The linear
block-coding blocks in this product require the Generator matrix mask parameter to be in standard
form.

Decoding Table - A decoding table tells a decoder how to correct errors that may have corrupted the
code during transmission. Hamming codes can correct any single-symbol error in any codeword.
Other codes can correct, or partially correct, errors that corrupt more than one symbol in a given
codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the Error-correction
truth table parameter. Represent a decoding table as a matrix with N columns and 2N-K rows. Each
row gives a correction vector for one received codeword vector.

You can avoid specifying a decoding table explicitly, by setting the Error-correction truth table
parameter to 0. When Error-correction truth table is 0, the block computes a decoding table using
the syndtable function.

Cyclic Codes

For cyclic codes, the codeword length N must have the form 2M-1, where M is an integer greater than
or equal to 3.

Generator Polynomials - Cyclic codes have special algebraic properties that allow a polynomial to
determine the coding process completely. This so-called generator polynomial is a degree-(N-K)
divisor of the polynomial xN-1. Van Lint [5] explains how a generator polynomial determines a cyclic
code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to specify a generator
polynomial as the second mask parameter, instead of specifying K there. The blocks represent a
generator polynomial using a vector that lists the coefficients of the polynomial in order of ascending
powers of the variable. You can find generator polynomials for cyclic codes using the cyclpoly
function.

If you do not want to specify a generator polynomial, set the second mask parameter to the value of
K.
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Hamming Codes

For Hamming codes, the codeword length N must have the form 2M-1, where M is an integer greater
than or equal to 3. The message length K must equal N-M.

Primitive Polynomials - Hamming codes rely on algebraic fields that have 2M elements (or, more
generally, pM elements for a prime number p). Elements of such fields are named relative to a
distinguished element of the field that is called a primitive element. The minimal polynomial of a
primitive element is called a primitive polynomial. The Hamming Encoder and Hamming Decoder
blocks allow you to specify a primitive polynomial for the finite field that they use for computations. If
you want to specify this polynomial, do so in the second mask parameter field. The blocks represent a
primitive polynomial using a vector that lists the coefficients of the polynomial in order of ascending
powers of the variable. You can find generator polynomials for Galois fields using the gfprimfd
function.

If you do not want to specify a primitive polynomial, set the second mask parameter to the value of K.

BCH Codes

BCH codes are cyclic error-correcting codes that are constructed using finite fields. For these codes,
the codeword length N must have the form 2M-1, where M is an integer from 3 to 9. The message
length K is restricted to particular values that depend on N. To see which values of K are valid for a
given N, see the comm.BCHEncoder System object reference page. No known analytic formula
describes the relationship among the codeword length, message length, and error-correction
capability for BCH codes.

Narrow-Sense BCH Codes

The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ..., m_2t(x)], where:

• LCM represents the least common multiple,
• m_i(x) represents the minimum polynomial corresponding to αi, α is a root of the default primitive

polynomial for the field GF(n+1),
• and t represents the error-correcting capability of the code.

Reed-Solomon Codes

Reed-Solomon codes are useful for correcting errors that occur in bursts. In the simplest case, the
length of codewords in a Reed-Solomon code is of the form N= 2M-1, where the 2M is the number of
symbols for the code. The error-correction capability of a Reed-Solomon code is floor((N-K)/2),
where K is the length of message words. The difference N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N is less than 2M-1. In this
case, the encoder appends 2M-1-N zero symbols to each message word and codeword. The error-
correction capability of a shortened Reed-Solomon code is also floor((N-K)/2). The
Communications Toolbox Reed-Solomon blocks can implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols - One difference between Reed-Solomon codes and the other codes
supported in this product is that Reed-Solomon codes process symbols in GF(2M) instead of GF(2). M
bits specify each symbol. The nonbinary nature of the Reed-Solomon code symbols causes the Reed-
Solomon blocks to differ from other coding blocks in these ways:

• You can use the integer format, via the Integer-Input RS Encoder and Integer-Output RS Decoder
blocks.
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• The binary format expects the vector lengths to be an integer multiple of M*K (not K) for
messages and the same integer M*N (not N) for codewords.

Error Information - The Reed-Solomon decoding blocks (Binary-Output RS Decoder and Integer-
Output RS Decoder) return error-related information during the simulation. The second output signal
indicates the number of errors that the block detected in the input codeword. A -1 in the second
output indicates that the block detected more errors than it could correct using the coding scheme.

Shortening, Puncturing, and Erasures

Many standards utilize punctured codes, and digital receivers can easily output erasures. BCH and
RS performance improves significantly in fading channels where the receiver generates erasures.

A punctured codeword has only parity symbols removed, and a shortened codeword has only
information symbols removed. A codeword with erasures can have those erasures in either
information symbols or parity symbols.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening, puncturing, and
erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing

The following figure shows a representative example of a (7,3) Reed Solomon encoder with
shortening and puncturing.

In this figure, the message source outputs two information symbols, designated by I1I2. (For a BCH
example, the symbols are binary bits.) Because the code is a shortened (7,3) code, a zero must be
added ahead of the information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is RS encoded, and the added information zero is then removed, which yields a
result of I1I2P1P2P3P4. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011. Within the
puncture vector, a 1 means that the symbol is kept, and a 0 means that the symbol is thrown away. In
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this example, the puncturing operation removes the second parity symbol, yielding a final vector of
I1I2P1P3P4.

Decoder Example with Shortening and Puncturing

The following figure shows how the RS decoder operates on a shortened and punctured codeword.

This case corresponds to the encoder operations shown in the figure of the RS encoder with
shortening and puncturing. As shown in the preceding figure, the encoder receives a (5,2) codeword,
because it has been shortened from a (7,3) codeword by one symbol, and one symbol has also been
punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity position of the
codeword. This corresponds to the puncture vector 1011. Adding a zero accounts for shortening, in
the same way as shown in the preceding figure. The single erasure does not exceed the erasure-
correcting capability of the code, which can correct four erasures. The decoding operation results in
the three-symbol message DI1I2. The first symbol is truncated, as in the preceding figure, yielding a
final output of I1I2.

Decoder Example with Shortening, Puncturing, and Erasures

The following figure shows the decoder operating on the punctured, shortened codeword, while also
correcting erasures generated by the receiver.
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In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder sent. The demodulator
declares that two of the five received symbols are unreliable enough to be erased, such that symbols
2 and 5 are deemed to be erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be replaced with an erasure
symbol, and a 0 means that the symbol is passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the erasures indicated
by the vector 01001. Within the erasures vector, a 1 means that the symbol is to be replaced with an
erasure symbol, and a 0 means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding operation
(i.e., 1011). Thus, an erasure symbol is inserted between P1 and P3, yielding a codeword vector of
I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information vector accounts for
the shortening. The resulting vector is 0I1EP1EP3E, such that a (7,3) codeword is sent to the
Berlekamp algorithm.

This codeword is decoded, yielding a three-symbol message of DI1I2 (where D refers to a dummy
symbol). Finally, the removal of the D symbol from the message vector accounts for the shortening
and yields the original I1I2 vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and Shortening”
MATLAB example or the “Reed-Solomon Coding with Erasures, Punctures, and Shortening in
Simulink” on page 19-3 example.

Reed-Solomon Code in Integer Format

To open an example model that uses a Reed-Solomon code in integer format, type doc_rscoding at
the MATLAB command line. For more information about the model, see “Example: Reed-Solomon
Code in Integer Format” on page 16-20
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Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the cyclpoly,
bchgenpoly, or rsgenpoly function, respectively. The commands

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5)  % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.
genpolyCyclic =

     1     0     0     0     0     1     0     0     0     0     1

genpolyBCH = GF(2) array.

Array elements =

     1     0     1     0     0     1     1     0     1     1     1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     1     4     8    10    12     9     4     2    12     2     7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector that lists the
polynomial's coefficients in order of ascending powers of the variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row vector that
lists the polynomial's coefficients in order of descending powers of the variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For more
information on the meaning of these coefficients, see “How Integers Correspond to Galois Field
Elements” on page 16-84 and “Polynomials over Galois Fields” on page 16-98.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the generator
polynomial. The syntaxes for functions in the example above also include options for retrieving
generator polynomials that satisfy certain constraints that you specify. See the functions' reference
pages for details about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form (X - Ab)(X - Ab
+1)...(X - Ab+2t-1), where A is a primitive element for an appropriate Galois field, and b and t are
integers. See the functions' reference pages for more information about this expression.

Performing Other Block Code Tasks

This section describes functions that compute typical parameters associated with linear block codes,
as well as functions that convert information from one format to another.

• Error Correction Versus Error Detection for Linear Block Codes
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You can use a linear block code to detect dmin -1 errors or to correct t = 1
2(dmin− 1)  errors.

If you compromise the error correction capability of a code, you can detect more than t errors. For
example, a code with dmin = 7 can correct t = 3 errors or it can detect up to 4 errors and correct
up to 2 errors.

• Finding the Error-Correction Capability

The bchgenpoly and rsgenpoly functions can return an optional second output argument that
indicates the error-correction capability of a BCH or Reed-Solomon code. For example, the
commands

[g,t] = bchgenpoly(31,16);
t
t =

     3

find that a [31, 16] BCH code can correct up to three errors in each codeword.
• Finding Generator and Parity-Check Matrices

To find a parity-check and generator matrix for a Hamming code with codeword length 2^m-1, use
the hammgen function as below. m must be at least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen function. You must
provide the codeword length and a valid generator polynomial. You can use the cyclpoly
function to produce one possible generator polynomial after you provide the codeword length and
message length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

• Converting Between Parity-Check and Generator Matrices

The gen2par function converts a generator matrix into a parity-check matrix, and vice versa. The
reference page for gen2par contains examples to illustrate this.
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Convolutional Codes
• “Convolutional Code Features” on page 16-30
• “Polynomial Description of a Convolutional Code” on page 16-31
• “Trellis Description of a Convolutional Code” on page 16-33
• “Create and Decode Convolutional Codes” on page 16-36
• “Design a Rate-2/3 Feedforward Encoder Using MATLAB” on page 16-43
• “Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 16-44
• “Puncture a Convolutional Code Using MATLAB” on page 16-47
• “Implement a Systematic Encoder with Feedback Using Simulink” on page 16-47
• “Soft-Decision Decoding” on page 16-48
• “Tailbiting Encoding Using Feedback Encoders” on page 16-53
• “Selected Bibliography for Convolutional Coding” on page 16-54

Convolutional Code Features

Convolutional coding is a special case of error-control coding. Unlike a block coder, a convolutional
coder is not a memoryless device. Even though a convolutional coder accepts a fixed number of
message symbols and produces a fixed number of code symbols, its computations depend not only on
the current set of input symbols but on some of the previous input symbols.

Communications Toolbox provides convolutional coding capabilities as Simulink blocks, System
objects, and MATLAB functions. This product supports feedforward and feedback convolutional codes
that can be described by a trellis structure or a set of generator polynomials. It uses the Viterbi
algorithm to implement hard-decision and soft-decision decoding.

The product also includes an a posteriori probability decoder, which can be used for soft output
decoding of convolutional codes.

For background information about convolutional coding, see the works listed in Selected Bibliography
for Convolutional Coding on page 16-54.

Block Parameters for Convolutional Coding

To process convolutional codes, use the Convolutional Encoder, Viterbi Decoder, and/or APP Decoder
blocks in the Convolutional sublibrary. If a mask parameter is required in both the encoder and the
decoder, use the same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two different representations
of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and modulo-2 adders, you can
compute the code generator polynomial matrix and subsequently use the poly2trellis function
(in Communications Toolbox) to generate the corresponding trellis structure mask parameter
automatically. For an example, see “Design a Rate 2/3 Feedforward Encoder Using Simulink” on
page 16-44.
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• If you design your encoder using a trellis diagram, you can construct the trellis structure in
MATLAB and use it as the mask parameter.

For more information about these representations, see Polynomial Description of a Convolutional
Code on page 16-31 and Trellis Description of a Convolutional Code on page 16-33.

Using the Polynomial Description in Blocks

To use the polynomial description with the Convolutional Encoder, Viterbi Decoder, or APP Decoder
blocks, use the utility function poly2trellis from Communications Toolbox. This function accepts a
polynomial description and converts it into a trellis description. For example, the following command
computes the trellis description of an encoder whose constraint length is 5 and whose generator
polynomials are 35 and 31:

trellis = poly2trellis(5,[35 31]);

To use this encoder with one of the convolutional-coding blocks, simply place a poly2trellis
command such as

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

Polynomial Description of a Convolutional Code

A polynomial description of a convolutional encoder describes the connections among shift registers
and modulo 2 adders. For example, the figure below depicts a feedforward convolutional encoder that
has one input, two outputs, and two shift registers.

A polynomial description of a convolutional encoder has either two or three components, depending
on whether the encoder is a feedforward or feedback type:

• Constraint lengths on page 16-31
• Generator polynomials on page 16-32
• Feedback connection polynomials on page 16-32 (for feedback encoders only)

Constraint Lengths

The constraint lengths of the encoder form a vector whose length is the number of inputs in the
encoder diagram. The elements of this vector indicate the number of bits stored in each shift register,
including the current input bits.

In the figure above, the constraint length is three. It is a scalar because the encoder has one input
stream, and its value is one plus the number of shift registers for that input.

 Error Detection and Correction

16-31



Generator Polynomials

If the encoder diagram has k inputs and n outputs, the code generator matrix is a k-by-n matrix. The
element in the ith row and jth column indicates how the ith input contributes to the jth output.

For systematic bits of a systematic feedback encoder, match the entry in the code generator matrix
with the corresponding element of the feedback connection vector. See “Feedback Connection
Polynomials” on page 16-32 below for details.

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where a connection line from
the shift register feeds into the adder, and a 0 elsewhere. The leftmost spot in the binary number
represents the current input, while the rightmost spot represents the oldest input that still
remains in the shift register.

2 Convert this binary representation into an octal representation by considering consecutive
triplets of bits, starting from the rightmost bit. The rightmost bit in each triplet is the least
significant. If the number of bits is not a multiple of three, place zero bits at the left end as
necessary. (For example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower adders in the figure above
are 110 and 111, respectively. These binary numbers are equivalent to the octal numbers 6 and 7,
respectively, so the generator polynomial matrix is [6 7].

Note You can perform the binary-to-octal conversion in MATLAB by using code like
str2num(dec2base(bin2dec('110'),8)).

For a table of some good convolutional code generators, refer to [2] in the section “Selected
Bibliography for Block Coding” on page 16-29, especially that book's appendices.
Feedback Connection Polynomials

If you are representing a feedback encoder, you need a vector of feedback connection polynomials.
The length of this vector is the number of inputs in the encoder diagram. The elements of this vector
indicate the feedback connection for each input, using an octal format. First build a binary number
representation as in step 1 above. Then convert the binary representation into an octal
representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, the code generator and feedback
connection parameters corresponding to the systematic bits must have the same values.
Use Trellis Structure for Rate 1/2 Feedback Convolutional Encoder

Create a trellis structure to represent the rate 1/2 systematic convolutional encoder with feedback
shown in this diagram.
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This encoder has 5 for its constraint length, [37 33] as its generator polynomial matrix, and 37 for its
feedback connection polynomial.

The first generator polynomial is octal 37. The second generator polynomial is octal 33. The feedback
polynomial is octal 37. The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits.

The binary vector [1 1 1 1 1] represents octal 37 and corresponds to the upper row of binary digits in
the diagram. The binary vector [1 1 0 1 1] represents octal 33 and corresponds to the lower row of
binary digits in the diagram. These binary digits indicate connections from the outputs of the
registers to the two adders in the diagram. The initial 1 corresponds to the input bit.

Convert the polynomial to a trellis structure by using the poly2trellis function. When used with a
feedback polynomial, poly2trellis makes a feedback connection to the input of the trellis.

trellis = poly2trellis(5,[37 33],37)

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 16
          nextStates: [16x2 double]
             outputs: [16x2 double]

Generate random binary data. Convolutionally encode the data by using the specified trellis
structure. Decode the coded data by using the Viterbi algorithm with the specified trellis structure,
34 for its traceback depth, truncated operation mode, and hard decisions.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
tbdepth = 34; % Traceback depth for Viterbi decoder
decodedData = vitdec(codedData,trellis,tbdepth,'trunc','hard');

Verify the decoded data has zero bit errors.

biterr(data,decodedData)

ans = 0

Using the Polynomial Description in MATLAB

To use the polynomial description with the functions convenc and vitdec, first convert it into a
trellis description using the poly2trellis function. For example, the command below computes the
trellis description of the encoder pictured in the section Polynomial Description of a Convolutional
Code on page 16-31.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc and vitdec.

Trellis Description of a Convolutional Code

A trellis description of a convolutional encoder shows how each possible input to the encoder
influences both the output and the state transitions of the encoder. This section describes trellises,
and how to represent on page 16-34 trellises in MATLAB, and gives an example of a MATLAB trellis
on page 16-35.
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The figure below depicts a trellis for the convolutional encoder from the previous section. The
encoder has four states (numbered in binary from 00 to 11), a one-bit input, and a two-bit output.
(The ratio of input bits to output bits makes this encoder a rate-1/2 encoder.) Each solid arrow shows
how the encoder changes its state if the current input is zero, and each dashed arrow shows how the
encoder changes its state if the current input is one. The octal numbers above each arrow indicate
the current output of the encoder.

As an example of interpreting this trellis diagram, if the encoder is in the 10 state and receives an
input of zero, it outputs the code symbol 3 and changes to the 01 state. If it is in the 10 state and
receives an input of one, it outputs the code symbol 0 and changes to the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent to some trellis
description, although some trellises have no corresponding polynomial descriptions.
Specifying a Trellis in MATLAB

To specify a trellis in MATLAB, use a specific form of a MATLAB structure called a trellis structure. A
trellis structure must have five fields, as in the table below.

Fields of a Trellis Structure for a Rate k/n Code
Field in Trellis Structure Dimensions Meaning
numInputSymbols Scalar Number of input symbols to the

encoder: 2k

numOutputsymbols Scalar Number of output symbols from
the encoder: 2n

numStates Scalar Number of states in the encoder
nextStates numStates-by-2k matrix Next states for all combinations

of current state and current
input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current state
and current input

Note While your trellis structure can have any name, its fields must have the exact names as in the
table. Field names are case sensitive.
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In the nextStates matrix, each entry is an integer between 0 and numStates-1. The element in the
ith row and jth column denotes the next state when the starting state is i-1 and the input bits have
decimal representation j-1. To convert the input bits to a decimal value, use the first input bit as the
most significant bit (MSB). For example, the second column of the nextStates matrix stores the
next states when the current set of input values is {0,...,0,1}. To learn how to assign numbers to
states, see the reference page for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes the encoder's output when
the starting state is i-1 and the input bits have decimal representation j-1. To convert to decimal
value, use the first output bit as the MSB.

How to Create a MATLAB Trellis Structure

Once you know what information you want to put into each field, you can create a trellis structure in
any of these ways:

• Define each of the five fields individually, using structurename.fieldname notation. For
example, set the first field of a structure called s using the command below. Use additional
commands to define the other fields.

s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.
• Collect all field names and their values in a single struct command. For example:

s = struct('numInputSymbols',2,'numOutputSymbols',2,...
   'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the poly2trellis function to convert
it to a valid trellis structure. For more information , see Polynomial Description of a Convolutional
Code on page 16-31.

To check whether your structure is a valid trellis structure, use the istrellis function.

Example: A MATLAB Trellis Structure

Consider the trellis shown below.

To build a trellis structure that describes it, use the command below.
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trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types of input path: the solid
arrow and the dashed arrow. The number of output symbols is 4 because the numbers above the
arrows can be either 0, 1, 2, or 3. The number of states is 4 because there are four bullets on the left
side of the trellis diagram (equivalently, four on the right side). To compute the matrix of next states,
create a matrix whose rows correspond to the four current states on the left side of the trellis, whose
columns correspond to the inputs of 0 and 1, and whose elements give the next states at the end of
the arrows on the right side of the trellis. To compute the matrix of outputs, create a matrix whose
rows and columns are as in the next states matrix, but whose elements give the octal outputs shown
above the arrows in the trellis.

Create and Decode Convolutional Codes

The functions for encoding and decoding convolutional codes are convenc and vitdec. This section
discusses using these functions to create and decode convolutional codes.

Encoding

A simple way to use convenc to create a convolutional code is shown in the commands below.

% Define a trellis.
t = poly2trellis([4 3],[4 5 17;7 4 2]);
% Encode a vector of ones.
x = ones(100,1);
code = convenc(x,t);

The first command converts a polynomial description of a feedforward convolutional encoder to the
corresponding trellis description. The second command encodes 100 bits, or 50 two-bit symbols.
Because the code rate in this example is 2/3, the output vector code contains 150 bits (that is, 100
input bits times 3/2).

To check whether your trellis corresponds to a catastrophic convolutional code, use the
iscatastrophic function.

Hard-Decision Decoding

To decode using hard decisions, use the vitdec function with the flag 'hard' and with binary input
data. Because the output of convenc is binary, hard-decision decoding can use the output of
convenc directly, without additional processing. This example extends the previous example and
implements hard-decision decoding.

Define a trellis.

t = poly2trellis([4 3],[4 5 17;7 4 2]);
Encode a vector of ones.

code = convenc(ones(100,1),t);
Set the traceback length for decoding and decode using vitdec.

tb = 2;
decoded = vitdec(code,t,tb,'trunc','hard');
Verify that the decoded data is a vector of 100 ones.

isequal(decoded,ones(100,1))
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ans = logical
   1

Soft-Decision Decoding

To decode using soft decisions, use the vitdec function with the flag 'soft'. Specify the number,
nsdec, of soft-decision bits and use input data consisting of integers between 0 and 2^nsdec-1.

An input of 0 represents the most confident 0, while an input of 2^nsdec-1 represents the most
confident 1. Other values represent less confident decisions. For example, the table below lists
interpretations of values for 3-bit soft decisions.

Input Values for 3-bit Soft Decisions
Input Value Interpretation
0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Implement Soft-Decision Decoding Using MATLAB

The script below illustrates decoding with 3-bit soft decisions. First it creates a convolutional code
with convenc and adds white Gaussian noise to the code with awgn. Then, to prepare for soft-
decision decoding, the example uses quantiz to map the noisy data values to appropriate decision-
value integers between 0 and 7. The second argument in quantiz is a partition vector that
determines which data values map to 0, 1, 2, etc. The partition is chosen so that values near 0 map to
0, and values near 1 map to 7. (You can refine the partition to obtain better decoding performance if
your application requires it.) Finally, the example decodes the code and computes the bit error rate.
When comparing the decoded data with the original message, the example must take the decoding
delay into account. The continuous operation mode of vitdec causes a delay equal to the traceback
length, so msg(1) corresponds to decoded(tblen+1) rather than to decoded(1).

s = RandStream.create('mt19937ar', 'seed',94384);
prevStream = RandStream.setGlobalStream(s);
msg = randi([0 1],4000,1); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
% Create a ConvolutionalEncoder System object
hConvEnc = comm.ConvolutionalEncoder(t);
% Create an AWGNChannel System object.
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
  'SNR', 6);
% Create a ViterbiDecoder System object
hVitDec = comm.ViterbiDecoder(t, 'InputFormat', 'Soft', ...
    'SoftInputWordLength', 3, 'TracebackDepth', 48, ...
    'TerminationMethod', 'Continuous');
% Create a ErrorRate Calculator System object. Account for the receive
% delay caused by the traceback length of the viterbi decoder.
hErrorCalc = comm.ErrorRate('ReceiveDelay', 48);
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ber = zeros(3,1); % Store BER values
code = step(hConvEnc,msg); % Encode the data.
hChan.SignalPower = (code'*code)/length(code);
ncode = step(hChan,code); % Add noise.

% Quantize to prepare for soft-decision decoding.
qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length
decoded = step(hVitDec,qcode); % Decode.

% Compute bit error rate.
ber = step(hErrorCalc, msg, decoded);
ratio = ber(1)
number = ber(2)
RandStream.setGlobalStream(prevStream);

The output is below.

number =

     5

ratio =

    0.0013

Implement Soft-Decision Decoding Using Simulink

This example creates a rate 1/2 convolutional code. It uses a quantizer and the Viterbi Decoder block
to perform soft-decision decoding. To open the model, enter doc_softdecision at the MATLAB
command line. For a description of the model, see Overview of the Simulation on page 16-48.

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

The encoder's constraint length is a scalar since the encoder has one input. The value of the
constraint length is the number of bits stored in the shift register, including the current input. There
are six memory registers, and the current input is one bit. Thus the constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input and two
outputs. The first element in the matrix indicates which input values contribute to the first output,
and the second element in the matrix indicates which input values contribute to the second output.
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For example, the first output in the encoder diagram is the modulo-2 sum of the rightmost and the
four leftmost elements in the diagram's array of input values. The seven-digit binary number 1111001
captures this information, and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of bits uses the leftmost bit as
the most significant bit. The second output corresponds to the binary number 1011011, which is
equivalent to the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block which code to
use when processing data. In this case, the poly2trellis function, in Communications Toolbox,
converts the constraint length and the pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream, the encoded
data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex numbers that
are close to -1 and 1. In order to reconstruct the original binary message, the receiver part of the
model must decode the convolutional code. The Viterbi Decoder block in this model expects its input
data to be integers between 0 and 7. The demodulator, a custom subsystem in this model, transforms
the received data into a format that the Viterbi Decoder block can interpret properly. More
specifically, the demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary part. It is reasonable
to assume that the imaginary part of the received data does not contain essential information,
because the imaginary part of the transmitted data is zero (ignoring small roundoff errors) and
because the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the noise estimate and then
multiplying by -1.

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block's decision mapping reverses the
BPSK modulation that the BPSK Modulator Baseband block performs on the transmitting side of this
model. To examine the demodulator subsystem in more detail, double-click the icon labeled Soft-
Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values, the Viterbi
Decoder block decodes it. The block uses a soft-decision algorithm with 23 different input values
because the Decision type parameter is Soft Decision and the Number of soft decision bits
parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block requires
input values between 0 and 2b-1, where b is the Number of soft decision bits parameter. The block
interprets 0 as the most confident decision that the codeword bit is a 0 and interprets 2b-1 as the
most confident decision that the codeword bit is a 1. The values in between these extremes represent
less confident decisions. The following table lists the interpretations of the eight possible input values
for this example.
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Decision Value Interpretation
0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Traceback and Decoding Delay

The traceback depth influences the decoding delay. The decoding delay is the number of zero symbols
that precede the first decoded symbol in the output.

• For the continuous operating mode, the decoding delay is equal to the number of traceback depth
symbols.

• For the truncated or terminated operating mode, the decoding delay is zero. In this case, the
traceback depth must be less than or equal to the number of symbols in each input.

Traceback Depth Estimate

As a general estimate, a typical traceback depth value is approximately two to three times
(ConstraintLength – 1) / (1 – coderate). The constraint length of the code, ConstraintLength, is equal
to (log2(trellis.numStates) + 1). The coderate is equal to (K / N) × (length(PuncturePattern) /
sum(PuncturePattern).

K is the number of input symbols, N is the number of output symbols, and PuncturePattern is the
puncture pattern vector.

For example, applying this general estimate, results in these approximate traceback depths.

• A rate 1/2 code has a traceback depth of 5(ConstraintLength – 1).
• A rate 2/3 code has a traceback depth of 7.5(ConstraintLength – 1).
• A rate 3/4 code has a traceback depth of 10(ConstraintLength – 1).
• A rate 5/6 code has a traceback depth of 15(ConstraintLength – 1).

The Traceback depth parameter in the Viterbi Decoder block represents the length of the decoding
delay. Some hardware implementations offer options of 48 and 96. This example chooses 48 because
that is closer to the estimated target for a rate ½ code with a constraint length of 7.

Delay in Received Data

The Receive delay parameter of the Error Rate Calculation block is nonzero because a given
message bit and its corresponding recovered bit are separated in time by a nonzero amount of
simulation time. The Receive delay parameter tells the block which elements of its input signals to
compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (48).
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Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the bit error rate that
would theoretically result from unquantized decoding. The process includes these steps

• Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional code in this model,
you can use this estimate based on unquantized-decision decoding:

Pb < ∑
d = f

∞
cdPd

In this estimate, cd is the sum of bit errors for error events of distance d, and f is the free distance
of the code. The quantity Pd is the pairwise error probability, given by

Pd = 1
2erfc dR

Eb
N0

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function, defined
by

erfc(x) = 2
π∫x

∞
e−t2dt

Values for the coefficients cd and the free distance f are in published articles such as
"Convolutional Codes with Optimum Distance Spectrum" [3]. The free distance for this code is
f = 10.

The following commands calculate the values of Pb for Eb/N0 values in the range from 1 to 4, in
increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...
        3322763 0 21292910 0 134365911 0 843425871 0]; 
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29
   P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

• Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the simulation
from the MATLAB command line. For example, the following code calculates the bit error rate at
bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of 0.5 dB. It collects all bit
error rates from these simulations in the matrix BERVec. It also plots the bit error rates in a figure
window along with the theoretical bounds computed in the preceding code fragment.
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Note To model the model, enter doc_softdecision at the MATLAB command line. Then
execute these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;
semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');
xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');
title('Bit Error Rate (BER)');
legend('Theoretical bound on BER','Actual BER');
axis([1 4 1e-5 1]);
hold on;

BERVec = [];
% Make the noise level variable.
set_param('doc_softdecision/AWGN Channel',...
    'EsNodB','EbNodB+10*log10(1/2)');
% Simulate multiple times.
for n = 1:length(EbNoVec)
    EbNodB = EbNoVec(n);
    sim('doc_softdecision',5000000);
    BERVec(n,:) = BER_Data;
    semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.
    drawnow;
end
hold off;

Note The estimate for Pb assumes that the decoder uses unquantized data, that is, an infinitely
fine quantization. By contrast, the simulation in this example uses 8-level (3-bit) quantization.
Because of this quantization, the simulated bit error rate is not quite as low as the bound when
the signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual BER
points might vary because the simulation involves random numbers.
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Design a Rate-2/3 Feedforward Encoder Using MATLAB

The example below uses the rate 2/3 feedforward encoder depicted in this schematic. The
accompanying description explains how to determine the trellis structure parameter from a
schematic of the encoder and then how to perform coding using this encoder.

Determining Coding Parameters

The convenc and vitdec functions can implement this code if their parameters have the
appropriate values.

The encoder's constraint length is a vector of length 2 because the encoder has two inputs. The
elements of this vector indicate the number of bits stored in each shift register, including the current
input bits. Counting memory spaces in each shift register in the diagram and adding one for the
current inputs leads to a constraint length of [5 4].
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To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the element in
the ith row and jth column to indicate how the ith input contributes to the jth output. For example, to
compute the element in the second row and third column, the leftmost and two rightmost elements in
the second shift register of the diagram feed into the sum that forms the third output. Capture this
information as the binary number 1011, which is equivalent to the octal number 13. The full value of
the code generator matrix is [23 35 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc and vitdec functions,
use the poly2trellis function to convert those parameters into a trellis structure. The command to
do this is below.

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Define trellis.

Using the Encoder

Below is a script that uses this encoder.

len = 1000;

msg = randi([0 1],2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Trellis
% Create a ConvolutionalEncoder System object
hConvEnc = comm.ConvolutionalEncoder(trel);
% Create a ViterbiDecoder System object
hVitDec = comm.ViterbiDecoder(trel, 'InputFormat', 'hard', ...
    'TracebackDepth', 34, 'TerminationMethod', 'Continuous');
% Create a ErrorRate Calculator System object. Since each symbol represents
% two bits, the receive delay for this object is twice the traceback length
% of the viterbi decoder.
hErrorCalc = comm.ErrorRate('ReceiveDelay', 68);
ber = zeros(3,1); % Store BER values
code = step(hConvEnc,msg); % Encode the message.
ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = step(hVitDec, ncode); % Decode.
ber = step(hErrorCalc, msg, decoded);

convenc accepts a vector containing 2-bit symbols and produces a vector containing 3-bit symbols,
while vitdec does the opposite. Also notice that biterr ignores the first 68 elements of decoded.
That is, the decoding delay is 68, which is the number of bits per symbol (2) of the recovered message
times the traceback depth value (34) in the vitdec function. The first 68 elements of decoded are
0s, while subsequent elements represent the decoded messages.

Design a Rate 2/3 Feedforward Encoder Using Simulink

This example uses the rate 2/3 feedforward convolutional encoder depicted in the following figure.
The description explains how to determine the coding blocks' parameters from a schematic of a rate
2/3 feedforward encoder. This example also illustrates the use of the Error Rate Calculation block
with a receive delay.
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How to Determine Coding Parameters

The Convolutional Encoder and Viterbi Decoder blocks can implement this code if their parameters
have the appropriate values.

The encoder's constraint length is a vector of length 2 since the encoder has two inputs. The
elements of this vector indicate the number of bits stored in each shift register, including the current
input bits. Counting memory spaces in each shift register in the diagram and adding one for the
current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the element in
the ith row and jth column to indicate how the ith input contributes to the jth output. For example, to
compute the element in the second row and third column, notice that the leftmost and two rightmost
elements in the second shift register of the diagram feed into the sum that forms the third output.
Capture this information as the binary number 1011, which is equivalent to the octal number 13. The
full value of the code generator matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the Convolutional Encoder and Viterbi
Decoder blocks, use the poly2trellis function to convert those parameters into a trellis structure.

How to Simulate the Encoder

The following model simulates this encoder.

To open the completed model, enter doc_convcoding at the MATLAB command line. To build the
model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library
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• Set Probability of a zero to .5.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Set Sample time to .5.
• Check the Frame-based outputs check box.
• Set Samples per frame to 2.

• Convolutional Encoder

• Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
• Binary Symmetric Channel, in the Channels library

• Set Error probability to 0.02.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Clear the Output error vector check box.

• Viterbi Decoder

• Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
• Set Decision type to Hard decision.

• Error Rate Calculation, in the Comm Sinks library

• Set Receive delay to 68.
• Set Output data to Port.
• Check the Stop simulation check box.
• Set Target number of errors to 100.

• Display, in the Simulink Sinks library

• Drag the bottom edge of the icon to make the display big enough for three entries.

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to inf. The Simulate section appears on multiple tabs.

Notes on the Model

You can display the matrix size of signals in your model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

The encoder accepts a 2-by-1 column vector and produces a 3-by-1 column vector, while the decoder
does the opposite. The Samples per frame parameter in the Bernoulli Binary Generator block is 2
because the block must generate a message word of length 2.

The Receive delay parameter in the Error Rate Calculation block is 68, which is the vector length (2)
of the recovered message times the Traceback depth value (34) in the Viterbi Decoder block. If you
examine the transmitted and received signals as matrices in the MATLAB workspace, you see that the
first 34 rows of the recovered message consist of zeros, while subsequent rows are the decoded
messages. Thus the delay in the received signal is 34 vectors of length 2, or 68 samples.

Running the model produces display output consisting of three numbers: the error rate, the total
number of errors, and the total number of comparisons that the Error Rate Calculation block makes
during the simulation. (The first two numbers vary depending on your Initial seed values in the
Bernoulli Binary Generator and Binary Symmetric Channel blocks.) The simulation stops after 100
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errors occur, because Target number of errors is set to 100 in the Error Rate Calculation block.
The error rate is much less than 0.02, the Error probability in the Binary Symmetric Channel block.

Puncture a Convolutional Code Using MATLAB

This example processes a punctured convolutional code. It begins by generating 30,000 random bits
and encoding them using a rate-3/4 convolutional encoder with a puncture pattern of [1 1 1 0 0 1].
The resulting vector contains 40,000 bits, which are mapped to values of -1 and 1 for transmission.
The punctured code, punctcode, passes through an additive white Gaussian noise channel. Then
vitdec decodes the noisy vector using the 'unquant' decision type.

Finally, the example computes the bit error rate and the number of bit errors.

len = 30000; msg = randi([0 1], len, 1); % Random data
t = poly2trellis(7, [133 171]); % Define trellis.
% Create a ConvolutionalEncoder System object
hConvEnc = comm.ConvolutionalEncoder(t, ...
    'PuncturePatternSource', 'Property', ...
    'PuncturePattern', [1;1;1;0;0;1]);
% Create an AWGNChannel System object.
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
  'SNR', 3);
% Create a ViterbiDecoder System object
hVitDec = comm.ViterbiDecoder(t, 'InputFormat', 'Unquantized', ...
    'TracebackDepth', 96, 'TerminationMethod', 'Truncated', ...
    'PuncturePatternSource', 'Property', ...
    'PuncturePattern', [1;1;1;0;0;1]);
% Create a ErrorRate Calculator System object.
hErrorCalc = comm.ErrorRate;
berP = zeros(3,1); berPE = berP; % Store BER values
punctcode = step(hConvEnc,msg); % Length is (2*len)*2/3.
tcode = 1-2*punctcode; % Map "0" bit to 1 and "1" bit to -1
hChan.SignalPower = (tcode'*tcode)/length(tcode);
ncode = step(hChan,tcode); % Add noise.

% Decode the punctured code
decoded = step(hVitDec,ncode); % Decode.
berP = step(hErrorCalc, msg, decoded);% Bit error rate
% Erase the least reliable 100 symbols, then decode
release(hVitDec); reset(hErrorCalc)
hVitDec.ErasuresInputPort = true;
[dummy idx] = sort(abs(ncode));
erasures =  zeros(size(ncode)); erasures(idx(1:100)) = 1;
decoded = step(hVitDec,ncode, erasures); % Decode.
berPE = step(hErrorCalc, msg, decoded);% Bit error rate

fprintf('Number of errors with puncturing: %d\n', berP(2))
fprintf('Number of errors with puncturing and erasures: %d\n', berPE(2))

Implement a Systematic Encoder with Feedback Using Simulink

This section explains how to use the Convolutional Encoder block to implement a systematic encoder
with feedback. A code is systematic if the actual message words appear as part of the codewords. The
following diagram shows an example of a systematic encoder.
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To implement this encoder, set the Trellis structure parameter in the Convolutional Encoder block
to poly2trellis(5, [37 33], 37). This setting corresponds to

• Constraint length: 5
• Generator polynomial pair: [37 33]
• Feedback polynomial: 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1], corresponding to the upper
row of binary digits. These digits indicate connections from the outputs of the registers to the adder.
The initial 1 corresponds to the input bit. The octal representation of the binary number 11111 is 37.

To implement a systematic code, set the first generator polynomial to be the same as the feedback
polynomial in the Trellis structure parameter of the Convolutional Encoder block. In this example,
both polynomials have the octal representation 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1], corresponding to the
lower row of binary digits. The octal number corresponding to the binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional Encoder block, see
Polynomial Description of a Convolutional Code on page 16-31.

Soft-Decision Decoding

This example creates a rate 1/2 convolutional code. It uses a quantizer and the Viterbi Decoder block
to perform soft-decision decoding. This description covers these topics:

• “Overview of the Simulation” on page 16-48
• “Defining the Convolutional Code” on page 16-49
• “Mapping the Received Data” on page 16-50
• “Decoding the Convolutional Code” on page 16-50
• “Delay in Received Data” on page 16-51
• “Comparing Simulation Results with Theoretical Results” on page 16-51

Overview of the Simulation

The model is in the following figure. To open the model, enter doc_softdecision at the MATLAB
command line. The simulation creates a random binary message signal, encodes the message into a
convolutional code, modulates the code using the binary phase shift keying (BPSK) technique, and
adds white Gaussian noise to the modulated data in order to simulate a noisy channel. Then, the
simulation prepares the received data for the decoding block and decodes. Finally, the simulation
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compares the decoded information with the original message signal in order to compute the bit error
rate. The Convolutional encoder is configured as a rate 1/2 encoder. For every 2 bits, the encoder
adds another 2 redundant bits. To accommodate this, and add the correct amount of noise, the Eb/No
(dB) parameter of the AWGN block is in effect halved by subtracting 10*log10(2). The simulation
ends after processing 100 bit errors or 107 message bits, whichever comes first.

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

The encoder's constraint length is a scalar since the encoder has one input. The value of the
constraint length is the number of bits stored in the shift register, including the current input. There
are six memory registers, and the current input is one bit. Thus the constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input and two
outputs. The first element in the matrix indicates which input values contribute to the first output,
and the second element in the matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the rightmost and the
four leftmost elements in the diagram's array of input values. The seven-digit binary number 1111001
captures this information, and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of bits uses the leftmost bit as
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the most significant bit. The second output corresponds to the binary number 1011011, which is
equivalent to the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block which code to
use when processing data. In this case, the poly2trellis function, in Communications Toolbox,
converts the constraint length and the pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream, the encoded
data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex numbers that
are close to -1 and 1. In order to reconstruct the original binary message, the receiver part of the
model must decode the convolutional code. The Viterbi Decoder block in this model expects its input
data to be integers between 0 and 7. The demodulator, a custom subsystem in this model, transforms
the received data into a format that the Viterbi Decoder block can interpret properly. More
specifically, the demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary part. It is reasonable
to assume that the imaginary part of the received data does not contain essential information,
because the imaginary part of the transmitted data is zero (ignoring small roundoff errors) and
because the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the noise estimate and then
multiplying by -1.

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block's decision mapping reverses the
BPSK modulation that the BPSK Modulator Baseband block performs on the transmitting side of this
model. To examine the demodulator subsystem in more detail, double-click the icon labeled Soft-
Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values, the Viterbi
Decoder block decodes it. The block uses a soft-decision algorithm with 23 different input values
because the Decision type parameter is Soft Decision and the Number of soft decision bits
parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block requires
input values between 0 and 2b-1, where b is the Number of soft decision bits parameter. The block
interprets 0 as the most confident decision that the codeword bit is a 0 and interprets 2b-1 as the
most confident decision that the codeword bit is a 1. The values in between these extremes represent
less confident decisions. The following table lists the interpretations of the eight possible input values
for this example.

Decision Value Interpretation
0 Most confident 0
1 Second most confident 0
2 Third most confident 0
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Decision Value Interpretation
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents the length of the decoding
delay. Typical values for a traceback depth are about five or six times the constraint length, which
would be 35 or 42 in this example. However, some hardware implementations offer options of 48 and
96. This example chooses 48 because that is closer to the targets (35 and 42) than 96 is.

Delay in Received Data

The Receive delay parameter of the Error Rate Calculation block is nonzero because a given
message bit and its corresponding recovered bit are separated in time by a nonzero amount of
simulation time. The Receive delay parameter tells the block which elements of its input signals to
compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (48).

Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the bit error rate that
would theoretically result from unquantized decoding. The process includes a few steps, described in
these sections:

Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional code in this model, you
can use this estimate based on unquantized-decision decoding:

Pb < ∑
d = f

∞
cdPd

In this estimate, cd is the sum of bit errors for error events of distance d, and f is the free distance of
the code. The quantity Pd is the pairwise error probability, given by

Pd = 1
2erfc dR

Eb
N0

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function, defined by

erfc(x) = 2
π∫x

∞
e−t2dt

Values for the coefficients cd and the free distance f are in published articles such as "Convolutional
Codes with Optimum Distance Spectrum" [3]. The free distance for this code is f = 10.
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The following commands calculate the values of Pb for Eb/N0 values in the range from 1 to 4, in
increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...
        3322763 0 21292910 0 134365911 0 843425871 0]; 
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29
   P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the simulation
from the MATLAB command line. For example, the following code calculates the bit error rate at bit
energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of 0.5 dB. It collects all bit error rates
from these simulations in the matrix BERVec. It also plots the bit error rates in a figure window along
with the theoretical bounds computed in the preceding code fragment.

Note To open the model, enter doc_softdecision at the MATLAB command line. Then execute
these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;
semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');
xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');
title('Bit Error Rate (BER)');
legend('Theoretical bound on BER','Actual BER');
axis([1 4 1e-5 1]);
hold on;

BERVec = [];
% Make the noise level variable.
set_param('doc_softdecision/AWGN Channel',...
    'EsNodB','EbNodB+10*log10(1/2)');
% Simulate multiple times.
for n = 1:length(EbNoVec)
    EbNodB = EbNoVec(n);
    sim('doc_softdecision',5000000);
    BERVec(n,:) = BER_Data;
    semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.
    drawnow;
end
hold off;
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Note The estimate for Pb assumes that the decoder uses unquantized data, that is, an infinitely fine
quantization. By contrast, the simulation in this example uses 8-level (3-bit) quantization. Because of
this quantization, the simulated bit error rate is not quite as low as the bound when the signal-to-
noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual BER points
might vary because the simulation involves random numbers.

Tailbiting Encoding Using Feedback Encoders

This example demonstrates Tailbiting encoding using feedback encoders. For feedback encoders, the
ending state depends on the entire block of data. To accomplish tailbiting, you must calculate for a
given information vector (of N bits), the initial state, that leads to the same ending state after the
block of data is encoded.

This is achieved in two steps:

• The first step is to determine the zero-state response for a given block of data. The encoder starts
in the all-zeros state. The whole block of data is input and the output bits are ignored. After N bits,
the encoder is in a state XN [zs]. From this state, we calculate the corresponding initial state X0 and
initialize the encoder with X0.

• The second step is the actual encoding. The encoder starts with the initial state X0, the data block
is input and a valid codeword is output which conforms to the same state boundary condition.

Refer to [8] for a theoretical calculation of the initial state X0 from XN [zs] using state-space
formulation. This is a one-time calculation which depends on the block length and in practice could be
implemented as a look-up table. Here we determine this mapping table by simulating all possible
entries for a chosen trellis and block length.
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To open the model, enter doc_mtailbiting_wfeedback at the MATLAB command line.

function mapStValues = getMapping(blkLen, trellis)
% The function returns the mapping value for the given block
length and trellis to be used for determining the initial
state from the zero-state response.

% All possible combinations of the mappings
mapStValuesTab = perms(0:trellis.numStates-1);

% Loop over all the combinations of the mapping entries:
for i = 1:length(mapStValuesTab)
mapStValues = mapStValuesTab(i,:);

% Model parameterized for the Block length
sim('mtailbiting_wfeedback');

% Check the boundary condition for each run
% if ending and starting states match, choose that mapping set
if unique(out)==0
        return
    end
end

Selecting the returned mapStValues for the Table data parameter of the Direct Lookup Table
(n-D) block in the Lookup subsystem will perform tailbiting encoding for the chosen block length
and trellis.

Selected Bibliography for Convolutional Coding
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New York, Plenum Press, 1992.

[3] Frenger, P., P. Orten, and T. Ottosson. “Convolutional Codes with Optimum Distance Spectrum.”
IEEE Communications Letters 3, no. 11 (November 1999): 317–19. https://doi.org/
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Linear Block Codes
• “Represent Words for Linear Block Codes” on page 16-55
• “Configure Parameters for Linear Block Codes” on page 16-57
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• “Create and Decode Linear Block Codes” on page 16-60

Represent Words for Linear Block Codes

The cyclic, Hamming, and generic linear block code functionality in this product offers you multiple
ways to organize bits in messages or codewords. These topics explain the available formats:

• “Use MATLAB to Create Messages and Codewords in Binary Vector Format” on page 16-55
• “Use MATLAB to Create Messages and Codewords in Binary Matrix Format” on page 16-56
• “Use MATLAB to Create Messages and Codewords in Decimal Vector Format” on page 16-56

To learn how to represent words for BCH or Reed-Solomon codes, see “Represent Words for BCH
Codes” on page 16-68 or “Represent Words for Reed-Solomon Codes” on page 16-73.

Use MATLAB to Create Messages and Codewords in Binary Vector Format

Your messages and codewords can take the form of vectors containing 0s and 1s. For example,
messages and codes might look like msg and code in the lines below.

n = 6; k = 4; % Set codeword length and message length
% for a [6,4] code.
msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.
code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'
code'

The output is below.

ans =

  Columns 1 through 5

      1            0            0            1            1

  Columns 6 through 10

      0            1            0            1            0

  Columns 11 through 12

      1            1

ans =

  Columns 1 through 5

      1            1            1            0            0

  Columns 6 through 10

      1            0            0            1            0

  Columns 11 through 15

      1            0            0            1            1
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  Columns 16 through 18

      0            1            1      

In this example, msg consists of 12 entries, which are interpreted as three 4-digit (because k = 4)
messages. The resulting vector code comprises three 6-digit (because n = 6) codewords, which are
concatenated to form a vector of length 18. The parity bits are at the beginning of each codeword.
Use MATLAB to Create Messages and Codewords in Binary Matrix Format

You can organize coding information so as to emphasize the grouping of digits into messages and
codewords. If you use this approach, each message or codeword occupies a row in a binary matrix.
The example below illustrates this approach by listing each 4-bit message on a distinct row in msg
and each 6-bit codeword on a distinct row in code.

n = 6; k = 4; % Set codeword length and message length.
msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg
code

The output is below.

msg =

     1     0     0     1
     1     0     1     0
     1     0     1     1

code =

     1     1     1     0     0     1
     0     0     1     0     1     0
     0     1     1     0     1     1

Note In the binary matrix format, the message matrix must have k columns. The corresponding code
matrix has n columns. The parity bits are at the beginning of each row.

Use MATLAB to Create Messages and Codewords in Decimal Vector Format

Your messages and codewords can take the form of vectors containing integers. Each element of the
vector gives the decimal representation of the bits in one message or one codeword.

Note If 2^n or 2^k is very large, you should use the default binary format instead of the decimal
format. This is because the function uses a binary format internally, while the roundoff error
associated with converting many bits to large decimal numbers and back might be substantial.

Note When you use the decimal vector format, encode expects the leftmost bit to be the least
significant bit.

The syntax for the encode command must mention the decimal format explicitly, as in the example
below. Notice that /decimal is appended to the fourth argument in the encode command.
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n = 6; k = 4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.
code = encode(msg,n,k,'cyclic/decimal')

The output is below.

code =

    39
    20
    54

Note The three examples above used cyclic coding. The formats for messages and codes are similar
for Hamming and generic linear block codes.

Configure Parameters for Linear Block Codes

This subsection describes the items that you might need in order to process [n,k] cyclic, Hamming,
and generic linear block codes. The table below lists the items and the coding techniques for which
they are most relevant.

Parameters Used in Block Coding Techniques

Parameter Block Coding Technique
“Generator Matrix” on page 16-57 Generic linear block
“Parity-Check Matrix” on page 16-57 Generic linear block
“Generator Polynomial” on page 16-59 Cyclic
“Use Decoding Table in MATLAB” on page 16-59 Generic linear block, Hamming

Generator Matrix

The process of encoding a message into an [n,k] linear block code is determined by a k-by-n
generator matrix G. Specifically, the 1-by-k message vector v is encoded into the 1-by-n codeword
vector vG. If G has the form [Ik P] or [P Ik], where P is some k-by-(n-k) matrix and Ik is the k-by-k
identity matrix, G is said to be in standard form. (Some authors, e.g., Clark and Cain [2], use the first
standard form, while others, e.g., Lin and Costello [3], use the second.) Most functions in this toolbox
assume that a generator matrix is in standard form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check Matrix” on page 16-57.

Parity-Check Matrix

Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix H. It satisfies GHtr = 0
(mod 2), where Htr denotes the matrix transpose of H, G is the code's generator matrix, and this zero
matrix is k-by-(n-k). If G = [Ik P] then H = [-Ptr In-k]. Most functions in this product assume that a
parity-check matrix is in standard form when you use it as an input argument.

The table below summarizes the standard forms of the generator and parity-check matrices for an
[n,k] binary linear block code.
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Type of Matrix Standard Form Dimensions
Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P' ] (n-k)-by-n

Ik is the identity matrix of size k and the ' symbol indicates matrix transpose. (For binary codes, the
minus signs in the parity-check form listed above are irrelevant; that is, -1 = 1 in the binary field.)

Examples

In the command below, parmat is a parity-check matrix and genmat is a generator matrix for a
Hamming code in which [n,k] = [23-1, n-3] = [7,4]. genmat has the standard form [P Ik].

[parmat,genmat] = hammgen(3)
parmat =

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

genmat =

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

The next example finds parity-check and generator matrices for a [7,3] cyclic code. The cyclpoly
function is mentioned below in “Generator Polynomial” on page 16-59.

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)
parmat =

     1     0     0     0     1     1     0
     0     1     0     0     0     1     1
     0     0     1     0     1     1     1
     0     0     0     1     1     0     1

genmat =

     1     0     1     1     1     0     0
     1     1     1     0     0     1     0
     0     1     1     1     0     0     1

The example below converts a generator matrix for a [5,3] linear block code into the corresponding
parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];
parmat = gen2par(genmat)

parmat =

     1     1     0     1     0
     0     1     1     0     1

The same function gen2par can also convert a parity-check matrix into a generator matrix.
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Generator Polynomial

Cyclic codes have algebraic properties that allow a polynomial to determine the coding process
completely. This so-called generator polynomial is a degree-(n-k) divisor of the polynomial xn-1. Van
Lint [5] explains how a generator polynomial determines a cyclic code.

The cyclpoly function produces generator polynomials for cyclic codes. cyclpoly represents a
generator polynomial using a row vector that lists the polynomial's coefficients in order of ascending
powers of the variable. For example, the command

genpoly = cyclpoly(7,3)

genpoly =

     1     0     1     1     1

finds that one valid generator polynomial for a [7,3] cyclic code is 1 + x2 + x3 + x4.
Use Decoding Table in MATLAB

A decoding table tells a decoder how to correct errors that might have corrupted the code during
transmission. Hamming codes can correct any single-symbol error in any codeword. Other codes can
correct, or partially correct, errors that corrupt more than one symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and 2^(n-k) rows. Each row
gives a correction vector for one received codeword vector. A Hamming decoding table has n+1 rows.
The syndtable function generates a decoding table for a given parity-check matrix.

This example uses a Hamming decoding table to correct an error in a received message. The
hammgen function produces the parity-check matrix and the syndtable function produces the
decoding table. To determine the syndrome, the transpose of the parity-check matrix is multiplied on
the left by the received codeword. The decoding table helps determine the correction vector. The
corrected codeword is the sum (modulo 2) of the correction vector and the received codeword.

Set parameters for a [7,4] Hamming code.

m = 3; 
n = 2^m-1; 
k = n-m;

Produce a parity-check matrix and decoding table.

parmat = hammgen(m);    
trt = syndtable(parmat);

Specify a vector of received data.

recd = [1 0 0 1 1 1 1]

recd = 1×7

     1     0     0     1     1     1     1

Calculate the syndrome, and then display the decimal and binary value for the syndrome.

syndrome = rem(recd * parmat',2);
syndrome_int = bit2int(syndrome',m); % Convert to decimal.
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disp(['Syndrome = ',num2str(syndrome_int),...
      ' (decimal), ',num2str(syndrome),' (binary)'])

Syndrome = 3 (decimal), 0  1  1 (binary)

Determine the correction vector by using the decoding table and syndrome, and then compute the
corrected codeword by using the correction vector.

corrvect = trt(1+syndrome_int,:)

corrvect = 1×7

     0     0     0     0     1     0     0

correctedcode = rem(corrvect+recd,2)

correctedcode = 1×7

     1     0     0     1     0     1     1

Create and Decode Linear Block Codes

The functions for encoding and decoding cyclic, Hamming, and generic linear block codes are
encode and decode. This section discusses how to use these functions to create and decode generic
linear block on page 16-60 codes, cyclic on page 16-61 codes, and Hamming on page 16-62 codes.
Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix. If you have
defined variables msg, n, k, and genmat, either of the commands

code = encode(msg,n,k,'linear',genmat);
code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix genmat determines.
The /decimal option, suitable when 2^n and 2^k are not very large, indicates that msg contains
nonnegative decimal integers rather than their binary representations. See “Represent Words for
Linear Block Codes” on page 16-55 or the reference page for encode for a description of the formats
of msg and code.

Decoding the code requires the generator matrix and possibly a decoding table. If you have defined
variables code, n, k, genmat, and possibly also trt, then the commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);
newmsg = decode(code,n,k,'linear',genmat,trt);
newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat determines.
decode also corrects errors according to instructions in the decoding table that trt represents.

Example: Generic Linear Block Coding

The example below encodes a message, artificially adds some noise, decodes the noisy code, and
keeps track of errors that the decoder detects along the way. Because the decoding table contains
only zeros, the decoder does not correct any errors.
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n = 4; k = 2;
genmat = [[1 1; 1 0], eye(2)]; % Generator matrix
msg = [0 1; 0 0; 1 0]; % Three messages, two bits each
% Create three codewords, four bits each.
code = encode(msg,n,k,'linear',genmat);
noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2^(n-k),n);  % No correction of errors
% Decode, keeping track of all detected errors.
[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your results might vary
because this example uses random numbers as errors.

err_words =

     1
     2

Cyclic Codes

A cyclic code is a linear block code with the property that cyclic shifts of a codeword (expressed as a
series of bits) are also codewords. An alternative characterization of cyclic codes is based on its
generator polynomial, as mentioned in “Generator Polynomial” on page 16-59 and discussed in [5].

Encoding a message using a cyclic code requires a generator polynomial. If you have defined
variables msg, n, k, and genpoly, then either of the commands

code = encode(msg,n,k,'cyclic',genpoly);
code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the generator polynomial
genpoly. genpoly is an optional argument for encode. The default generator polynomial is
cyclpoly(n,k). The /decimal option, suitable when 2^n and 2^k are not very large, indicates that
msg contains nonnegative decimal integers rather than their binary representations. See “Represent
Words for Linear Block Codes” on page 16-55 or the reference page for encode for a description of
the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding table. If you have
defined variables code, n, k, genpoly, and trt, then the commands

newmsg = decode(code,n,k,'cyclic',genpoly);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly);
newmsg = decode(code,n,k,'cyclic',genpoly,trt);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat determines.
decode also corrects errors according to instructions in the decoding table that trt represents.
genpoly is an optional argument in the first two syntaxes above. The default generator polynomial is
cyclpoly(n,k).

Example

You can modify the example in “Generic Linear Block Codes” on page 16-60 so that it uses the cyclic
coding technique, instead of the linear block code with the generator matrix genmat. Make the
changes listed below:
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• Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x^2
• In the fifth and ninth lines (encode and decode commands), replace genmat by genpoly and

replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference page for encode.
Hamming Codes

The reference pages for encode and decode contain examples of encoding and decoding Hamming
codes. Also, the section “Use Decoding Table in MATLAB” on page 16-59 illustrates error correction
in a Hamming code.

Hamming Codes
• “Create a Hamming Code in Binary Format Using Simulink” on page 16-62
• “Reduce the Error Rate Using a Hamming Code” on page 16-63

Create a Hamming Code in Binary Format Using Simulink

This example shows very simply how to use an encoder and decoder. It illustrates the appropriate
vector lengths of the code and message signals for the coding blocks. Because the Error Rate
Calculation block accepts only scalars or frame-based column vectors as the transmitted and received
signals, this example uses frame-based column vectors throughout. (It thus avoids having to change
signal attributes using a block such as Convert 1-D to 2-D.)

Open this model by entering doc_hamming at the MATLAB command line. To build the model, gather
and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

• Set Probability of a zero to .5.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Check the Frame-based outputs check box.
• Set Samples per frame to 4.

• Hamming Encoder, with default parameter values
• Hamming Decoder, with default parameter values
• Error Rate Calculation, in the Comm Sinks library, with default parameter values

Connect the blocks as in the preceding figure. You can display the vector length of signals in your
model. On the Debug tab, expand Information Overlays. In the Signals section, select Signal
Dimensions. After updating the diagram, if necessary, press Ctrl+D to compile the model and check
error statistics.
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The connector lines show relevant signal attributes. The connector lines are double lines to indicate
frame-based signals, and the annotations next to the lines show that the signals are column vectors of
appropriate sizes.

Reduce the Error Rate Using a Hamming Code

This section describes how to reduce the error rate by adding an error-correcting code. This figure
shows model that uses a Hamming code.

To open a complete version of the model, enter doc_hamming at the MATLAB prompt.

Building the Hamming Code Model

You can build the Hamming code model by following these steps:

1 Type doc_channel at the MATLAB command line to open the channel noise model.

Then save the model as my_hamming in the folder where you keep your work files.
2 From the Simulink Library Browser drag the Hamming Encoder and Hamming Decoder blocks

from the Error Detection and Correction/Block sublibrary into the model window.
3 Click the right border of the model and drag it to the right to widen the model window.
4 Move the Binary Symmetric Channel, Error Rate Calculation, and Display blocks to the right by

clicking and dragging.
5 Create enough space between the Bernoulli Binary Generator and Binary Symmetric Channel

blocks to fit the Hamming Encoder between them.
6 Click and drag the Hamming Encoder block on top of the line between the Bernoulli Binary

Generator block and the Binary Symmetric Channel block, to the right of the branch point, as
shown in the following figure. Then release the mouse button. The Hamming Encoder block
should automatically connect to the line from the Bernoulli Binary Generator block to the Binary
Symmetric Channel block.

7 Move blocks again to create enough space between the Binary Symmetric Channel and the Error
Rate Calculation blocks to fit the Hamming Decoder between them.

8 Click and drag the Hamming Decoder block on top of the line between the Binary Symmetric
Channel block and the Error Rate Calculation block.

The model should now resemble this figure.
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Using the Hamming Encoder and Decoder Blocks

The Hamming Encoder block encodes the data before it is sent through the channel. The default code
is the [7,4] Hamming code, which encodes message words of length 4 into codewords of length 7. As
a result, the block converts frames of size 4 into frames of size 7. The code can correct one error in
each transmitted codeword.

For an [n,k] code, the input to the Hamming Encoder block must consist of vectors of size k. In this
example, k = 4.

The Hamming Decoder block decodes the data after it is sent through the channel. If at most one
error is created in a codeword by the channel, the block decodes the word correctly. However, if more
than one error occurs, the Hamming Decoder block might decode incorrectly.

To learn more about block coding features, see Block Codes on page 16-17.

Setting Parameters in the Hamming Code Model

Double-click the Bernoulli Binary Generator block and make the following changes to the parameter
settings in the block's dialog box, as shown in the following figure:

1 Set Samples per frame to 4. This converts the output of the block into frames of size 4, in order
to meet the input requirement of the Hamming Encoder Block. See “Sample-Based and Frame-
Based Processing” on page 10-4 for more information about frames.

Note Many blocks, such as the Hamming Encoder block, require their input to be a vector of a
specific size. If you connect a source block, such as the Bernoulli Binary Generator block, to one
of these blocks, set Samples per frame to the required value. For this model the Samples per
frame parameter of the Bernoulli Binary Generator block must be a multiple of the Message
Length K parameter of the Hamming Encoder block.

Labeling the Display Block

You can change the label that appears below a block to make it more informative. For example, to
change the label below the Display block to 'Error Rate Display', first select the label with the
mouse. This causes a box to appear around the text. Enter the changes to the text in the box.

Running the Hamming Code Model

To run the model, select Simulation > Run. The model terminates after 100 errors occur. The error
rate, displayed in the top window of the Display block, is approximately .001. You get slightly
different results if you change the Initial seed parameters in the model or run a simulation for a
different length of time.

You expect an error rate of approximately .001 for the following reason: The probability of two or
more errors occurring in a codeword of length 7 is

16 System Design

16-64



1 – (0.99)7 – 7(0.99)6(0.01) = 0.002

If the codewords with two or more errors are decoded randomly, you expect about half the bits in the
decoded message words to be incorrect. This indicates that .001 is a reasonable value for the bit
error rate.

To obtain a lower error rate for the same probability of error, try using a Hamming code with larger
parameters. To do this, change the parameters Codeword length and Message length in the
Hamming Encoder and Hamming Decoder block dialog boxes. You also have to make the appropriate
changes to the parameters of the Bernoulli Binary Generator block and the Binary Symmetric
Channel block.

Displaying Frame Sizes

You can display the sizes of data frames in different parts in your model. On the Debug tab, expand
Information Overlays. In the Signals section, select Signal Dimensions. The line leading out of
the Bernoulli Binary Generator block is labeled [4x1], indicating that its output consists of column
vectors of size 4. Because the Hamming Encoder block uses a [7,4] code, it converts frames of size 4
into frames of size 7, so its output is labeled [7x1].

Adding a Scope to the Model

To display the channel errors produced by the Binary Symmetric Channel block, add a Scope block to
the model. This is a good way to see whether your model is functioning correctly. The example shown
in the following figure shows where to insert the Scope block into the model.

To build this model from the one shown in the figure “Reduce the Error Rate Using a Hamming Code”
on page 16-63, follow these steps:

1 Drag the following blocks from the Simulink Library Browser into the model window:

• Relational Operator block, from the Simulink Logic and Bit Operations library
• Scope block, from the Simulink Sinks library
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• Two copies of the Unbuffer block, from the Buffers sublibrary of the Signal Management
library in DSP System Toolbox

2 Double-click the Binary Symmetric Channel block to open its dialog box, and select Output
error vector. This creates a second output port for the block, which carries the error vector.

3 Double-click the Scope block, under View > Configuration Properties, set Number of input
ports to 2. Select Layout and highlight two blocks vertically. Click OK.

4 Connect the blocks as shown in the preceding figure.

Setting Parameters in the Expanded Model

Make the following changes to the parameters for the blocks you added to the model.

• Error Rate Calculation Block – Double-click the Error Rate Calculation block and clear the box
next to Stop simulation in the block's dialog box.

• Scope Block – The Scope block displays the channel errors and uncorrected errors. To configure
the block,

1 Double-click the Scope block, select View > Configuration Properties.
2 Select the Time tab and set Time span to 5000.
3 Select the Logging tab and set Limit data points to last to 30000.
4 Click OK.
5 The scope should now appear as shown.

6 To configure the axes, follow these steps:

a Right-click the vertical axis at the left side of the upper scope.
b In the context menu, select Configuration Properties.
c Set Y-limits (Minimum) to -1.
d Set Y-limits (Maximum) to 2, and click OK.
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e Repeat the same steps for the vertical axis of the lower scope.
f Widen the scope window until it is roughly three times as wide as it is high. You can do

this by clicking the right border of the window and dragging the border to the right,
while pressing the left-mouse button.

• Relational Operator – Set Relational Operator to ~= in the block's dialog box. The Relational
Operator block compares the transmitted signal, coming from the Bernoulli Random Generator
block, with the received signal, coming from the Hamming Decoder block. The block outputs a 0
when the two signals agree and a 1 when they disagree.

Observing Channel Errors with the Scope

When you run the model, the scope displays the error data. At the end of each 5000 time steps, the
scope appears as shown this figure. The scope then clears the displayed data and displays the next
5000 data points.

The upper scope shows the channel errors generated by the Binary Symmetric Channel block. The
lower scope shows errors that are not corrected by channel coding.

Click the Stop button on the toolbar at the top of the model window to stop the scope.

You can see individual errors by zooming in on the scope. First click the middle magnifying glass
button at the top left of the Scope window. Then click one of the lines in the lower scope. This zooms
in horizontally on the line. Continue clicking the lines in the lower scope until the horizontal scale is
fine enough to detect individual errors. A typical example of what you might see is shown in the
figure below.

The wider rectangular pulse in the middle of the upper scope represents two 1s. These two errors,
which occur in a single codeword, are not corrected. This accounts for the uncorrected errors in the
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lower scope. The narrower rectangular pulse to the right of the upper scope represents a single error,
which is corrected.

When you are done observing the errors, select Simulation > Stop.

“Export Data to MATLAB” on page 9-3 explains how to send the error data to the MATLAB workspace
for more detailed analysis.

BCH Codes
• “Represent Words for BCH Codes” on page 16-68
• “Parameters for BCH Codes” on page 16-68
• “Create and Decode BCH Codes” on page 16-69
• “Algorithms for BCH and RS Errors-only Decoding” on page 16-70

Represent Words for BCH Codes

A message for an [n,k] BCH code must be a k-column binary Galois field array. The code that
corresponds to that message is an n-column binary Galois field array. Each row of these Galois field
arrays represents one word.

The example below illustrates how to represent words for a [15, 11] BCH code.

msg = [1 0 0 1 0; 1 0 1 1 1]; % Messages in a Galois array
obj = comm.BCHEncoder;
c1 = step(obj, msg(1,:)');
c2 = step(obj, msg(2,:)');
cbch = [c1 c2].'

The output is

  Columns 1 through 5

      1            0            0            1            0
      1            0            1            1            1

  Columns 6 through 10

      0            0            1            1            1
      0            0            0            0            1

  Columns 11 through 15

      1            0            1            0            1
      0            1            0            0            1  

Parameters for BCH Codes

BCH codes use special values of n and k:

• n, the codeword length, is an integer of the form 2m-1 for some integer m > 2.
• k, the message length, is a positive integer less than n. However, only some positive integers less

than n are valid choices for k. See the BCH Encoder block reference page for a list of some valid
values of k corresponding to values of n up to 511.
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Create and Decode BCH Codes

The BCH Encoder and BCH Decoder System objects create and decode BCH codes, using the data
described in “Represent Words for BCH Codes” on page 16-68 and “Parameters for BCH Codes” on
page 16-68.

The topics are

• “Example: BCH Coding Syntaxes” on page 16-69
• “Detect and Correct Errors in a BCH Code Using MATLAB” on page 16-69

Example: BCH Coding Syntaxes

The example below illustrates how to encode and decode data using a [15, 5] BCH code.

n = 15; k = 5; % Codeword length and message length
msg = randi([0 1],4*k,1); % Four random binary messages

% Simplest syntax for encoding
enc = comm.BCHEncoder(n,k);
dec = comm.BCHDecoder(n,k);
c1 = step(enc,msg); % BCH encoding
d1 = step(dec,c1); % BCH decoding

% Check that the decoding worked correctly.
chk = isequal(d1,msg)

% The following code shows how to perform the encoding and decoding
% operations if one chooses to prepend the parity symbols.

% Steps for converting encoded data with appended parity symbols
% to encoded data with prepended parity symbols
c11 = reshape(c1, n, []);
c12 = circshift(c11,n-k);
c1_prepend = c12(:); % BCH encoded data with prepended parity symbols

% Steps for converting encoded data with prepended parity symbols
% to encoded data with appended parity symbols prior to decoding
c21 = reshape(c1_prepend, n, []);
c22 = circshift(c21,k);
c1_append = c22(:); % BCH encoded data with appended parity symbols

% Check that the prepend-to-append conversion worked correctly.
d1_append = step(dec,c1_append);
chk = isequal(msg,d1_append)

The output is below.

chk =

     1

Detect and Correct Errors in a BCH Code Using MATLAB

The following example illustrates the decoding results for a corrupted code. The example encodes
some data, introduces errors in each codeword, and attempts to decode the noisy code using the BCH
Decoder System object.
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n = 15; k = 5; % Codeword length and message length
[gp,t] = bchgenpoly(n,k); % t is error-correction capability.
nw = 4; % Number of words to process
msgw = randi([0 1], nw*k, 1); % Random k-symbol messages
enc = comm.BCHEncoder(n,k,gp);
dec = comm.BCHDecoder(n,k,gp);
c = step(enc, msgw); % Encode the data.
noise = randerr(nw,n,t); % t errors per codeword
noisy = noise';
noisy = noisy(:);
cnoisy = mod(c + noisy,2); % Add noise to the code.
[dc, nerrs] = step(dec, cnoisy); % Decode cnoisy.

% Check that the decoding worked correctly.
chk2 = isequal(dc,msgw)
nerrs % Find out how many errors have been corrected.

Notice that the array of noise values contains binary values, and that the addition operation
c + noise takes place in the Galois field GF(2) because c is a Galois field array in GF(2).

The output from the example is below. The nonzero value of ans indicates that the decoder was able
to correct the corrupted codewords and recover the original message. The values in the vector nerrs
indicate that the decoder corrected t errors in each codeword.

chk2 =

     1

nerrs =

     3
     3
     3
     3

Excessive Noise in BCH Codewords

In the previous example, the BCH Decoder System object corrected all the errors. However, each
BCH code has a finite error-correction capability. To learn more about how the BCH Decoder System
object behaves when the noise is excessive, see the analogous discussion for Reed-Solomon codes in
“Excessive Noise in Reed-Solomon Codewords” on page 16-76.

Algorithms for BCH and RS Errors-only Decoding
Overview

The errors-only decoding algorithm used for BCH and RS codes can be described by the following
steps (sections 5.3.2, 5.4, and 5.6 in [2]).

1 Calculate the first 2t terms of the infinite degree syndrome polynomial, S(z).
2 If those 2t terms of S(z) are all equal to 0, then the code has no errors , no correction needs to be

performed, and the decoding algorithm ends.
3 If one or more terms of S(z) are nonzero, calculate the error locator polynomial, Λ(z), via the

Berlekamp algorithm.
4 Calculate the error evaluator polynomial, Ω z , via
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Λ z S z = Ω z modz2t

5 Correct an error in the codeword according to

eim = Ω(α−im)
Λ′(α−im)

where eim is the error magnitude in the imth position in the codeword, m is a value less than the
error-correcting capability of the code, Ω z  is the error magnitude polynomial, Λ'(z) is the formal
derivative [5] of the error locator polynomial, Λ(z), and α is the primitive element of the Galois
field of the code.

Further description of several of the steps is given in the following sections.

Syndrome Calculation

For narrow-sense codes, the 2t terms of S(z) are calculated by evaluating the received codeword at
successive powers of α (the field’s primitive element) from 0 to 2t-1. In other words, if we assume
one-based indexing of codewords C(z) and the syndrome polynomial S(z), and that codewords are of
the form [c1 c1 ...  cN], then each term Si of S(z) is given as

Si = ∑
i = 1

N
ciαN − 1− i

Error Locator Polynomial Calculation

The error locator polynomial, Λ(z), is found using the Berlekamp algorithm. A complete description of
this algorithm is found in [2], but we summarize the algorithm as follows.

We define the following variables.

Variable Description
n Iterator variable
k Iterator variable
L Length of the feedback register used to generate the first 2t terms

of S(z)
D(z) Correction polynomial
d Discrepancy

The following diagram shows the iterative procedure (i.e., the Berlekamp algorithm) used to find Λ(z).
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Error Evaluator Polynomial Calculation

The error evaluator polynomial, Ω z , is simply the convolution of Λ(z) and S(z).

Reed-Solomon Codes
• “Represent Words for Reed-Solomon Codes” on page 16-73
• “Parameters for Reed-Solomon Codes” on page 16-73
• “Create and Decode Reed-Solomon Codes” on page 16-74
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• “Find a Generator Polynomial” on page 16-77
• “Reed Solomon Examples with Shortening, Puncturing, and Erasures” on page 16-78

Represent Words for Reed-Solomon Codes

This toolbox supports Reed-Solomon codes that use m-bit symbols instead of bits. A message for an
[n,k] Reed-Solomon code must be a k-column Galois field array in the field GF(2m). Each array entry
must be an integer between 0 and 2m-1. The code corresponding to that message is an n-column
Galois field array in GF(2m). The codeword length n must be between 3 and 2m-1.

Note For information about Galois field arrays and how to create them, see “Representing Elements
of Galois Fields” on page 16-82 or the reference page for the gf function.

The example below illustrates how to represent words for a [7,3] Reed-Solomon code.

n = 7; k = 3; % Codeword length and message length
m = 3; % Number of bits in each symbol
msg = [1 6 4; 0 4 3]; % Message is a Galois array.
obj = comm.RSEncoder(n, k);
c1 = step(obj, msg(1,:)');
c2 = step(obj, msg(2,:)');
c = [c1 c2].'

The output is

C =

     1     6     4     4     3     6     3
     0     4     3     3     7     4     7

Parameters for Reed-Solomon Codes

This section describes several integers related to Reed-Solomon codes and discusses how to find
generator polynomials on page 16-73.
Allowable Values of Integer Parameters

The table below summarizes the meanings and allowable values of some positive integer quantities
related to Reed-Solomon codes as supported in this toolbox. The quantities n and k are input
parameters for Reed-Solomon functions in this toolbox.

Symbol Meaning Value or Range
m Number of bits per symbol Integer between 3 and 16
n Number of symbols per

codeword
Integer between 3 and 2m-1

k Number of symbols per message Positive integer less than n,
such that n-k is even

t Error-correction capability of
the code

(n-k)/2

Generator Polynomial

The rsgenpoly function produces generator polynomials for Reed-Solomon codes. rsgenpoly
represents a generator polynomial using a Galois row vector that lists the polynomial's coefficients in
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order of descending powers of the variable. If each symbol has m bits, the Galois row vector is in the
field GF(2m). For example, the command

r = rsgenpoly(15,13)

r = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     1     6     8

finds that one generator polynomial for a [15,13] Reed-Solomon code is X2 + (A2 + A)X + (A3), where
A is a root of the default primitive polynomial for GF(16).

Algebraic Expression for Generator Polynomials

The generator polynomials that rsgenpoly produces have the form (X - Ab)(X - Ab+1)...(X - Ab+2t-1),
where b is an integer, A is a root of the primitive polynomial for the Galois field, and t is (n-k)/2.
The default value of b is 1. The output from rsgenpoly is the result of multiplying the factors and
collecting like powers of X. The example below checks this formula for the case of a [15,13] Reed-
Solomon code, using b = 1.

n = 15;
a = gf(2,log2(n+1)); % Root of primitive polynomial
f1 = [1 a]; f2 = [1 a^2]; % Factors that form generator polynomial
f = conv(f1,f2) % Generator polynomial, same as r above.

Create and Decode Reed-Solomon Codes

The RS Encoder and RS Decoder System objects create and decode Reed-Solomon codes, using the
data described in “Represent Words for Reed-Solomon Codes” on page 16-73 and “Parameters for
Reed-Solomon Codes” on page 16-73.

This section illustrates how to use the RS Encoder and RS Decoder System objects. The topics are

• “Reed-Solomon Coding Syntaxes in MATLAB” on page 16-74
• “Detect and Correct Errors in a Reed-Solomon Code Using MATLAB” on page 16-76
• “Excessive Noise in Reed-Solomon Codewords” on page 16-76
• “Create Shortened Reed-Solomon Codes” on page 16-77

Reed-Solomon Coding Syntaxes in MATLAB

The example below illustrates multiple ways to encode and decode data using a [15,13] Reed-
Solomon code. The example shows that you can

• Vary the generator polynomial for the code, using rsgenpoly to produce a different generator
polynomial.

• Vary the primitive polynomial for the Galois field that contains the symbols, using an input
argument in gf.

• Vary the position of the parity symbols within the codewords, choosing either the end (default) or
beginning.

This example also shows that corresponding syntaxes of the RS Encoder and RS Decoder System
objects use the same input arguments, except for the first input argument.
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m = 4; % Number of bits in each symbol
n = 2^m-1; k = 13; % Codeword length and message length
msg = randi([0 m-1],4*k,1); % Four random integer messages

% Simplest syntax for encoding
hEnc = comm.RSEncoder(n,k);
hDec = comm.RSDecoder(n,k);
c1 = step(hEnc, msg);
d1 = step(hDec, c1);

% Vary the generator polynomial for the code.
release(hEnc), release(hDec)
hEnc.GeneratorPolynomialSource = 'Property';
hDec.GeneratorPolynomialSource = 'Property';
hEnc.GeneratorPolynomial       = rsgenpoly(n,k,19,2);
hDec.GeneratorPolynomial       = rsgenpoly(n,k,19,2);
c2 = step(hEnc, msg);
d2 = step(hDec, c2);

% Vary the primitive polynomial for GF(16).
release(hEnc), release(hDec)
hEnc.PrimitivePolynomialSource = 'Property';
hDec.PrimitivePolynomialSource = 'Property';
hEnc.GeneratorPolynomialSource = 'Auto';
hDec.GeneratorPolynomialSource = 'Auto';
hEnc.PrimitivePolynomial       = [1 1 0 0 1];
hDec.PrimitivePolynomial       = [1 1 0 0 1];
c3 = step(hEnc, msg);
d3 = step(hDec, c3);

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg) & isequal(d3,msg)

% The following code shows how to perform the encoding and decoding
% operations if one chooses to prepend the parity symbols.

% Steps for converting encoded data with appended parity symbols
% to encoded data with prepended parity symbols
c31 = reshape(c3, n, []);
c32 = circshift(c31,n-k);
c3_prepend = c32(:); % RS encoded data with prepended parity symbols

% Steps for converting encoded data with prepended parity symbols
% to encoded data with appended parity symbols prior to decoding
c34 = reshape(c3_prepend, n, []);
c35 = circshift(c34,k);
c3_append = c35(:); % RS encoded data with appended parity symbols

% Check that the prepend-to-append conversion worked correctly.
d3_append = step(hDec,c3_append);
chk = isequal(msg,d3_append)

The output is

chk =

     1
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Detect and Correct Errors in a Reed-Solomon Code Using MATLAB

The example below illustrates the decoding results for a corrupted code. The example encodes some
data, introduces errors in each codeword, and attempts to decode the noisy code using the RS
Decoder System object.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Codeword length and message length
t = (n-k)/2; % Error-correction capability of the code
nw = 4; % Number of words to process
msgw = randi([0 n],nw*k,1); % Random k-symbol messages
hEnc = comm.RSEncoder(n,k);
hDec = comm.RSDecoder(n,k);
c = step(hEnc, msgw); % Encode the data.
noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t); % t errors per codeword
noisy = noise';
noisy = noisy(:);
cnoisy = gf(c,m) + noisy; % Add noise to the code under gf(m) arithmetic.
[dc nerrs] = step(hDec, cnoisy.x); % Decode the noisy code.
% Check that the decoding worked correctly.
isequal(dc,msgw)
nerrs % Find out how many errors hDec corrected.

The array of noise values contains integers between 1 and 2^m, and the addition operation
c + noise takes place in the Galois field GF(2^m) because c is a Galois field array in GF(2^m).

The output from the example is below. The nonzero value of ans indicates that the decoder was able
to correct the corrupted codewords and recover the original message. The values in the vector nerrs
indicates that the decoder corrected t errors in each codeword.

ans =

     1

nerrs =

     2
     2
     2
     2

Excessive Noise in Reed-Solomon Codewords

In the previous example, RS Encoder System object corrected all of the errors. However, each Reed-
Solomon code has a finite error-correction capability. If the noise is so great that the corrupted
codeword is too far in Hamming distance from the correct codeword, that means either

• The corrupted codeword is close to a valid codeword other than the correct codeword. The
decoder returns the message that corresponds to the other codeword.

• The corrupted codeword is not close enough to any codeword for successful decoding. This
situation is called a decoding failure. The decoder removes the symbols in parity positions from
the corrupted codeword and returns the remaining symbols.

In both cases, the decoder returns the wrong message. However, you can tell when a decoding failure
occurs because RS Decoder System object also returns a value of -1 in its second output.
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To examine cases in which codewords are too noisy for successful decoding, change the previous
example so that the definition of noise is

noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t+1); % t+1 errors/row

Create Shortened Reed-Solomon Codes

Every Reed-Solomon encoder uses a codeword length that equals 2m-1 for an integer m. A shortened
Reed-Solomon code is one in which the codeword length is not 2m-1. A shortened [n,k] Reed-Solomon
code implicitly uses an [n1,k1] encoder, where

• n1 = 2m - 1, where m is the number of bits per symbol
• k1 = k + (n1 - n)

The RS Encoder System object supports shortened codes using the same syntaxes it uses for
nonshortened codes. You do not need to indicate explicitly that you want to use a shortened code.

hEnc = comm.RSEncoder(7,5);
ordinarycode = step(hEnc,[1 1 1 1 1]');
hEnc = comm.RSEncoder(5,3);
shortenedcode = step(hEnc,[1 1 1 ]');

How the RS Encoder System Object Creates a Shortened Code

When creating a shortened code, the RS Encoder System object performs these steps:

• Pads each message by prepending zeros
• Encodes each padded message using a Reed-Solomon encoder having an allowable codeword

length and the desired error-correction capability
• Removes the extra zeros from the nonparity symbols of each codeword

The following example illustrates this process.

n = 12; k = 8; % Lengths for the shortened code
m = ceil(log2(n+1)); % Number of bits per symbol
msg = randi([0 2^m-1],3*k,1); % Random array of 3 k-symbol words
hEnc = comm.RSEncoder(n,k);
code = step(hEnc, msg); % Create a shortened code.

% Do the shortening manually, just to show how it works.
n_pad = 2^m-1; % Codeword length in the actual encoder
k_pad = k+(n_pad-n); % Messageword length in the actual encoder
hEnc = comm.RSEncoder(n_pad,k_pad);
mw = reshape(msg,k,[]); % Each column vector represents a messageword
msg_pad = [zeros(n_pad-n,3); mw]; % Prepend zeros to each word.
msg_pad = msg_pad(:);
code_pad = step(hEnc,msg_pad); % Encode padded words.
cw = reshape(code_pad,2^m-1,[]); % Each column vector represents a codeword
code_eqv = cw(n_pad-n+1:n_pad,:); % Remove extra zeros.
code_eqv = code_eqv(:);
ck = isequal(code_eqv,code); % Returns true (1).

Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the cyclpoly,
bchgenpoly, or rsgenpoly function, respectively. The commands
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genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5)  % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.

genpolyCyclic =

     1     0     0     0     0     1     0     0     0     0     1

 
genpolyBCH = GF(2) array. 
 
Array elements = 
 
     1     0     1     0     0     1     1     0     1     1     1

 
genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)
 
Array elements = 
 
     1     4     8    10    12     9     4     2    12     2     7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector that lists the
polynomial's coefficients in order of ascending powers of the variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row vector that
lists the polynomial's coefficients in order of descending powers of the variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For more
information on the meaning of these coefficients, see “How Integers Correspond to Galois Field
Elements” on page 16-84 and “Polynomials over Galois Fields” on page 16-98.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the generator
polynomial. The syntaxes for functions in the example above also include options for retrieving
generator polynomials that satisfy certain constraints that you specify. See the functions' reference
pages for details about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form (X - Ab)(X - Ab
+1)...(X - Ab+2t-1), where A is a primitive element for an appropriate Galois field, and b and t are
integers. See the functions' reference pages for more information about this expression.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening, puncturing, and
erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing

The following figure shows a representative example of a (7,3) Reed Solomon encoder with
shortening and puncturing.

16 System Design

16-78



In this figure, the message source outputs two information symbols, designated by I1I2. (For a BCH
example, the symbols are simply binary bits.) Because the code is a shortened (7,3) code, a zero must
be added ahead of the information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is then RS encoded, and the added information zero is subsequently removed,
which yields a result of I1I2P1P2P3P4. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011. Within the
puncture vector, a 1 means that the symbol is kept, and a 0 means that the symbol is thrown away. In
this example, the puncturing operation removes the second parity symbol, yielding a final vector of
I1I2P1P3P4.

Decoder Example with Shortening and Puncturing

The following figure shows how the RS encoder operates on a shortened and punctured codeword.
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This case corresponds to the encoder operations shown in the figure of the RS encoder with
shortening and puncturing. As shown in the preceding figure, the encoder receives a (5,2) codeword,
because it has been shortened from a (7,3) codeword by one symbol, and one symbol has also been
punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity position of the
codeword. This corresponds to the puncture vector 1011. Adding a zero accounts for shortening, in
the same way as shown in the preceding figure. The single erasure does not exceed the erasure-
correcting capability of the code, which can correct four erasures. The decoding operation results in
the three-symbol message DI1I2. The first symbol is truncated, as in the preceding figure, yielding a
final output of I1I2.

Encoder Example with Shortening, Puncturing, and Erasures

The following figure shows the decoder operating on the punctured, shortened codeword, while also
correcting erasures generated by the receiver.

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder sent. The demodulator
declares that two of the five received symbols are unreliable enough to be erased, such that symbols
2 and 5 are deemed to be erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be replaced with an erasure
symbol, and a 0 means that the symbol is passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the erasures indicated
by the vector 01001. Within the erasures vector, a 1 means that the symbol is to be replaced with an
erasure symbol, and a 0 means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding operation
(i.e., 1011). Thus, an erasure symbol is inserted between P1 and P3, yielding a codeword vector of
I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information vector accounts for
the shortening. The resulting vector is 0I1EP1EP3E, such that a (7,3) codeword is sent to the
Berlekamp algorithm.
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This codeword is decoded, yielding a three-symbol message of DI1I2 (where D refers to a dummy
symbol). Finally, the removal of the D symbol from the message vector accounts for the shortening
and yields the original I1I2 vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and Shortening
in Simulink” on page 19-3 example.

LDPC Codes
Low-Density Parity-Check (LDPC) codes are linear error control codes with:

• Sparse parity-check matrices
• Long block lengths that can attain performance near the Shannon limit (see LDPC Encoder and

LDPC Decoder)

Communications Toolbox performs LDPC Coding using Simulink blocks and MATLAB objects.

The decoding process is done iteratively. If the number of iterations is too small, the algorithm may
not converge. You may need to experiment with the number of iterations to find an appropriate value
for your model. For details on the decoding algorithm, see Decoding Algorithm.

Unlike some other codecs, you cannot connect an LDPC decoder directly to the output of an LDPC
encoder, because the decoder requires log-likelihood ratios (LLR). Thus, you may use a demodulator
to compute the LLRs.

Also, unlike other decoders, it is possible (although rare) that the output of the LDPC decoder does
not satisfy all parity checks.

Galois Field Computations
A Galois field is an algebraic field that has a finite number of members. Galois fields having 2m

members are used in error-control coding and are denoted GF(2m). This chapter describes how to
work with fields that have 2m members, where m is an integer between 1 and 16. The sections in this
chapter are as follows.

• “Galois Field Terminology” on page 16-82
• “Representing Elements of Galois Fields” on page 16-82
• “Arithmetic in Galois Fields” on page 16-87
• “Logical Operations in Galois Fields” on page 16-91
• “Matrix Manipulation in Galois Fields” on page 16-93
• “Linear Algebra in Galois Fields” on page 16-94
• “Signal Processing Operations in Galois Fields” on page 16-96
• “Polynomials over Galois Fields” on page 16-98
• “Manipulating Galois Variables” on page 16-101
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• “Speed and Nondefault Primitive Polynomials” on page 16-103
• “Selected Bibliography for Galois Fields” on page 16-104

If you need to use Galois fields having an odd number of elements, see “Galois Fields of Odd
Characteristic” on page 16-104.

For more details about specific functions that process arrays of Galois field elements, see the online
reference pages in the documentation for MATLAB or for Communications Toolbox software.

Note Please note that the Galois field objects do not support the copy method.

MATLAB functions whose generalization to Galois fields is straightforward to describe do not have
reference pages in this manual because the entries would be identical to those in the MATLAB
documentation.

Galois Field Terminology

The discussion of Galois fields in this document uses a few terms that are not used consistently in the
literature. The definitions adopted here appear in van Lint [4]:

• A primitive element of GF(2m) is a cyclic generator of the group of nonzero elements of GF(2m).
This means that every nonzero element of the field can be expressed as the primitive element
raised to some integer power.

• A primitive polynomial for GF(2m) is the minimal polynomial of some primitive element of GF(2m).
It is the binary-coefficient polynomial of smallest nonzero degree having a certain primitive
element as a root in GF(2m). As a consequence, a primitive polynomial has degree m and is
irreducible.

The definitions imply that a primitive element is a root of a corresponding primitive polynomial.

Representing Elements of Galois Fields

• “Section Overview” on page 16-82
• “Creating a Galois field array” on page 16-83
• “Example: Creating Galois Field Variables” on page 16-83
• “Example: Representing Elements of GF(8)” on page 16-84
• “How Integers Correspond to Galois Field Elements” on page 16-84
• “Example: Representing a Primitive Element” on page 16-85
• “Primitive Polynomials and Element Representations” on page 16-85

Section Overview

This section describes how to create a Galois field array, which is a MATLAB expression that
represents the elements of a Galois field. This section also describes how MATLAB technical
computing software interprets the numbers that you use in the representation, and includes several
examples.
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Creating a Galois field array

To begin working with data from a Galois field GF(2^m), you must set the context by associating the
data with crucial information about the field. The gf function performs this association and creates a
Galois field array in MATLAB. This function accepts as inputs

• The Galois field data, x, which is a MATLAB array whose elements are integers between 0 and
2^m-1.

• (Optional) An integer, m, that indicates x is in the field GF(2^m). Valid values of m are between 1
and 16. The default is 1, which means that the field is GF(2).

• (Optional) A positive integer that indicates which primitive polynomial for GF(2^m) you are using
in the representations in x. If you omit this input argument, gf uses a default primitive polynomial
for GF(2^m). For information about this argument, see “Primitive Polynomials and Element
Representations” on page 16-85.

The output of the gf function is a variable that MATLAB recognizes as a Galois field array, rather
than an array of integers. As a result, when you manipulate the variable, MATLAB works within the
Galois field you have specified. For example, if you apply the log function to a Galois field array,
MATLAB computes the logarithm in the Galois field and not in the field of real or complex numbers.

When MATLAB Implicitly Creates a Galois field array

Some operations on Galois field arrays require multiple arguments. If you specify one argument that
is a Galois field array and another that is an ordinary MATLAB array, MATLAB interprets both as
Galois field arrays in the same field. It implicitly invokes the gf function on the ordinary MATLAB
array. This implicit invocation simplifies your syntax because you can omit some references to the gf
function. For an example of the simplification, see “Example: Addition and Subtraction” on page 16-
88.
Example: Creating Galois Field Variables

The code below creates a row vector whose entries are in the field GF(4), and then adds the row to
itself.

x = 0:3; % A row vector containing integers
m = 2; % Work in the field GF(2^2), or, GF(4).
a = gf(x,m) % Create a Galois array in GF(2^m).

b = a + a % Add a to itself, creating b.

The output is

a = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

     0     1     2     3

b = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

     0     0     0     0

The output shows the values of the Galois field arrays named a and b. Each output section indicates
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• The field containing the variable, namely, GF(2^2) = GF(4).
• The primitive polynomial for the field. In this case, it is the toolbox's default primitive polynomial

for GF(4).
• The array of Galois field values that the variable contains. In particular, the array elements in a

are exactly the elements of the vector x, and the array elements in b are four instances of the zero
element in GF(4).

The command that creates b shows how, having defined the variable a as a Galois field array, you can
add a to itself by using the ordinary + operator. MATLAB performs the vectorized addition operation
in the field GF(4). The output shows that

• Compared to a, b is in the same field and uses the same primitive polynomial. It is not necessary
to indicate the field when defining the sum, b, because MATLAB remembers that information from
the definition of the addends, a.

• The array elements of b are zeros because the sum of any value with itself, in a Galois field of
characteristic two, is zero. This result differs from the sum x + x, which represents an addition
operation in the infinite field of integers.

Example: Representing Elements of GF(8)

To illustrate what the array elements in a Galois field array mean, the table below lists the elements
of the field GF(8) as integers and as polynomials in a primitive element, A. The table should help you
interpret a Galois field array like

gf8 = gf([0:7],3); % Galois vector in GF(2^3)

Integer Representation Binary Representation Element of GF(8)
0 000 0
1 001 1
2 010 A
3 011 A + 1
4 100 A2

5 101 A2 + 1
6 110 A2 + A
7 111 A2 + A + 1

How Integers Correspond to Galois Field Elements

Building on the GF(8) example above on page 16-84, this section explains the interpretation of array
elements in a Galois field array in greater generality. The field GF(2^m) has 2^m distinct elements,
which this toolbox labels as 0, 1, 2,..., 2^m-1. These integer labels correspond to elements of the
Galois field via a polynomial expression involving a primitive element of the field. More specifically,
each integer between 0 and 2^m-1 has a binary representation in m bits. Using the bits in the binary
representation as coefficients in a polynomial, where the least significant bit is the constant term,
leads to a binary polynomial whose order is at most m-1. Evaluating the binary polynomial at a
primitive element of GF(2^m) leads to an element of the field.

Conversely, any element of GF(2^m) can be expressed as a binary polynomial of order at most m-1,
evaluated at a primitive element of the field. The m-tuple of coefficients of the polynomial corresponds
to the binary representation of an integer between 0 and 2^m.
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Below is a symbolic illustration of the correspondence of an integer X, representable in binary form,
with a Galois field element. Each bk is either zero or one, while A is a primitive element.

X = bm− 1 ⋅ 2m− 1 +⋯+ b2 ⋅ 4 + b1 ⋅ 2 + b0

bm− 1 ⋅ Am− 1 +⋯+ b2 ⋅ A2 + b1 ⋅ A + b0

Example: Representing a Primitive Element

The code below defines a variable alph that represents a primitive element of the field GF(24).

m = 4; % Or choose any positive integer value of m.
alph = gf(2,m) % Primitive element in GF(2^m)

The output is

alph = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     2

The Galois field array alph represents a primitive element because of the correspondence among

• The integer 2, specified in the gf syntax
• The binary representation of 2, which is 10 (or 0010 using four bits)
• The polynomial A + 0, where A is a primitive element in this field (or 0A3 + 0A2 + A + 0 using the

four lowest powers of A)

Primitive Polynomials and Element Representations

This section builds on the discussion in “Creating a Galois field array” on page 16-83 by describing
how to specify your own primitive polynomial when you create a Galois field array. The topics are

If you perform many computations using a nondefault primitive polynomial, see “Speed and
Nondefault Primitive Polynomials” on page 16-103.

Specifying the Primitive Polynomial

The discussion in “How Integers Correspond to Galois Field Elements” on page 16-84 refers to a
primitive element, which is a root of a primitive polynomial of the field. When you use the gf function
to create a Galois field array, the function interprets the integers in the array with respect to a
specific default primitive polynomial for that field, unless you explicitly provide a different primitive
polynomial. A list of the default primitive polynomials is on the reference page for the gf function.

To specify your own primitive polynomial when creating a Galois field array, use a syntax like

c = gf(5,4,25) % 25 indicates the primitive polynomial for GF(16).

instead of

c1= gf(5,4); % Use default primitive polynomial for GF(16).

The extra input argument, 25 in this case, specifies the primitive polynomial for the field GF(2^m) in a
way similar to the representation described in “How Integers Correspond to Galois Field Elements”
on page 16-84. In this case, the integer 25 corresponds to a binary representation of 11001, which in
turn corresponds to the polynomial D4 + D3 + 1.
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Note When you specify the primitive polynomial, the input argument must have a binary
representation using exactly m+1 bits, not including unnecessary leading zeros. In other words, a
primitive polynomial for GF(2^m) always has order m.

When you use an input argument to specify the primitive polynomial, the output reflects your choice
by showing the integer value as well as the polynomial representation.

d = gf([1 2 3],4,25)

d = GF(2^4) array. Primitive polynomial = D^4+D^3+1 (25 decimal)

Array elements =

     1     2     3

Note After you have defined a Galois field array, you cannot change the primitive polynomial with
respect to which MATLAB interprets the array elements.

Finding Primitive Polynomials

You can use the primpoly function to find primitive polynomials for GF(2^m) and the isprimitive
function to determine whether a polynomial is primitive for GF(2^m). The code below illustrates.

m = 4;
defaultprimpoly = primpoly(m) % Default primitive poly for GF(16)
allprimpolys = primpoly(m,'all') % All primitive polys for GF(16)
i1 = isprimitive(25) % Can 25 be the prim_poly input in gf(...)?
i2 = isprimitive(21) % Can 21 be the prim_poly input in gf(...)?

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

defaultprimpoly =

    19

Primitive polynomial(s) =

D^4+D^1+1
D^4+D^3+1

allprimpolys =

    19
    25

i1 =

     1

i2 =

     0
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Effect of Nondefault Primitive Polynomials on Numerical Results

Most fields offer multiple choices for the primitive polynomial that helps define the representation of
members of the field. When you use the gf function, changing the primitive polynomial changes the
interpretation of the array elements and, in turn, changes the results of some subsequent operations
on the Galois field array. For example, exponentiation of a primitive element makes it easy to see how
the primitive polynomial affects the representations of field elements.

a11 = gf(2,3); % Use default primitive polynomial of 11.
a13 = gf(2,3,13); % Use D^3+D^2+1 as the primitive polynomial.
z = a13.^3 + a13.^2 + 1 % 0 because a13 satisfies the equation
nz = a11.^3 + a11.^2 + 1 % Nonzero. a11 does not satisfy equation.

The output below shows that when the primitive polynomial has integer representation 13, the Galois
field array satisfies a certain equation. By contrast, when the primitive polynomial has integer
representation 11, the Galois field array fails to satisfy the equation.

z = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

     0

nz = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

     6

The output when you try this example might also include a warning about lookup tables. This is
normal if you did not use the gftable function to optimize computations involving a nondefault
primitive polynomial of 13.

Arithmetic in Galois Fields

• “Section Overview” on page 16-87
• “Example: Addition and Subtraction” on page 16-88
• “Example: Multiplication” on page 16-89
• “Example: Division” on page 16-90
• “Example: Exponentiation” on page 16-90
• “Example: Elementwise Logarithm” on page 16-91

Section Overview

You can perform arithmetic operations on Galois field arrays by using familiar MATLAB operators,
listed in the table below. Whenever you operate on a pair of Galois field arrays, both arrays must be in
the same Galois field.

Operation Operator
Addition +
Subtraction -
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Operation Operator
Elementwise multiplication .*
Matrix multiplication *
Elementwise left division ./
Elementwise right division .\
Matrix left division /
Matrix right division \
Elementwise exponentiation .^
Elementwise logarithm log()
Exponentiation of a square Galois matrix by a
scalar integer

^

For multiplication and division of polynomials over a Galois field, see “Addition and Subtraction of
Polynomials” on page 16-98.
Example: Addition and Subtraction

The code below adds two Galois field arrays to create an addition table for GF(8). Addition uses the
ordinary + operator. The code below also shows how to index into the array addtb to find the result
of adding 1 to the elements of GF(8).

m = 3;
e = repmat([0:2^m-1],2^m,1);
f = gf(e,m); % Create a Galois array.
addtb = f + f' % Add f to its own matrix transpose.

addone = addtb(2,:); % Assign 2nd row to the Galois vector addone.

The output is below.

addtb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

     0     1     2     3     4     5     6     7
     1     0     3     2     5     4     7     6
     2     3     0     1     6     7     4     5
     3     2     1     0     7     6     5     4
     4     5     6     7     0     1     2     3
     5     4     7     6     1     0     3     2
     6     7     4     5     2     3     0     1
     7     6     5     4     3     2     1     0

As an example of reading this addition table, the (7,4) entry in the addtb array shows that gf(6,3)
plus gf(3,3) equals gf(5,3). Equivalently, the element A2+A plus the element A+1 equals the
element A2+1. The equivalence arises from the binary representation of 6 as 110, 3 as 011, and 5 as
101.

The subtraction table, which you can obtain by replacing + by -, is the same as addtb. This is
because subtraction and addition are identical operations in a field of characteristic two. In fact, the
zeros along the main diagonal of addtb illustrate this fact for GF(8).

Simplifying the Syntax
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The code below illustrates scalar expansion and the implicit creation of a Galois field array from an
ordinary MATLAB array. The Galois field arrays h and h1 are identical, but the creation of h uses a
simpler syntax.

g = gf(ones(2,3),4); % Create a Galois array explicitly.
h = g + 5; % Add gf(5,4) to each element of g.
h1 = g + gf(5*ones(2,3),4) % Same as h.

The output is below.

h1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     4     4     4
     4     4     4

Notice that 1+5 is reported as 4 in the Galois field. This is true because the 5 represents the
polynomial expression A2+1, and 1+(A2+1) in GF(16) is A2. Furthermore, the integer that represents
the polynomial expression A2 is 4.

Example: Multiplication

The example below multiplies individual elements in a Galois field array using the .* operator. It then
performs matrix multiplication using the * operator. The elementwise multiplication produces an
array whose size matches that of the inputs. By contrast, the matrix multiplication produces a Galois
scalar because it is the matrix product of a row vector with a column vector.

m = 5;
row1 = gf([1:2:9],m); row2 = gf([2:2:10],m);
col = row2'; % Transpose to create a column array.
ep = row1 .* row2; % Elementwise product.
mp = row1 * col; % Matrix product.

Multiplication Table for GF(8)

As another example, the code below multiplies two Galois vectors using matrix multiplication. The
result is a multiplication table for GF(8).

m = 3;
els = gf([0:2^m-1]',m);
multb = els * els' % Multiply els by its own matrix transpose.

The output is below.

multb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

     0     0     0     0     0     0     0     0
     0     1     2     3     4     5     6     7
     0     2     4     6     3     1     7     5
     0     3     6     5     7     4     1     2
     0     4     3     7     6     2     5     1
     0     5     1     4     2     7     3     6
     0     6     7     1     5     3     2     4
     0     7     5     2     1     6     4     3
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Example: Division

The examples below illustrate the four division operators in a Galois field by computing multiplicative
inverses of individual elements and of an array. You can also compute inverses using inv or using
exponentiation by -1.

Elementwise Division

This example divides 1 by each of the individual elements in a Galois field array using the ./ and .\
operators. These two operators differ only in their sequence of input arguments. Each quotient vector
lists the multiplicative inverses of the nonzero elements of the field. In this example, MATLAB
expands the scalar 1 to the size of nz before computing; alternatively, you can use as arguments two
arrays of the same size.

m = 5;
nz = gf([1:2^m-1],m); % Nonzero elements of the field
inv1 = 1 ./ nz; % Divide 1 by each element.
inv2 = nz .\ 1; % Obtain same result using .\ operator.

Matrix Division

This example divides the identity array by the square Galois field array mat using the / and \
operators. Each quotient matrix is the multiplicative inverse of mat. Notice how the transpose
operator (') appears in the equivalent operation using \. For square matrices, the sequence of
transpose operations is unnecessary, but for nonsquare matrices, it is necessary.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minv1 = eye(3) / mat; % Compute matrix inverse.
minv2 = (mat' \ eye(3)')'; % Obtain same result using \ operator.

Example: Exponentiation

The examples below illustrate how to compute integer powers of a Galois field array. To perform
matrix exponentiation on a Galois field array, you must use a square Galois field array as the base and
an ordinary (not Galois) integer scalar as the exponent.

Elementwise Exponentiation

This example computes powers of a primitive element, A, of a Galois field. It then uses these
separately computed powers to evaluate the default primitive polynomial at A. The answer of zero
shows that A is a root of the primitive polynomial. The .^ operator exponentiates each array element
independently.

m = 3;
av = gf(2*ones(1,m+1),m); % Row containing primitive element
expa = av .^ [0:m]; % Raise element to different powers.
evp = expa(4)+expa(2)+expa(1) % Evaluate D^3 + D + 1.

The output is below.

evp = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

     0
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Matrix Exponentiation

This example computes the inverse of a square matrix by raising the matrix to the power -1. It also
raises the square matrix to the powers 2 and -2.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minvs = mat ^ (-1); % Matrix inverse
matsq = mat^2; % Same as mat * mat
matinvssq = mat^(-2); % Same as minvs * minvs

Example: Elementwise Logarithm

The code below computes the logarithm of the elements of a Galois field array. The output indicates
how to express each nonzero element of GF(8) as a power of the primitive element. The logarithm of
the zero element of the field is undefined.

gf8_nonzero = gf([1:7],3); % Vector of nonzero elements of GF(8)
expformat = log(gf8_nonzero) % Logarithm of each element

The output is

expformat =

     0     1     3     2     6     4     5

As an example of how to interpret the output, consider the last entry in each vector in this example.
You can infer that the element gf(7,3) in GF(8) can be expressed as either

• A5, using the last element of expformat
• A2+A+1, using the binary representation of 7 as 111. See “Example: Representing Elements of

GF(8)” on page 16-84 for more details.

Logical Operations in Galois Fields

• “Section Overview” on page 16-91
• “Testing for Equality” on page 16-91
• “Testing for Nonzero Values” on page 16-92

Section Overview

You can apply logical tests to Galois field arrays and obtain a logical array. Some important types of
tests are testing for the equality of two Galois field arrays and testing for nonzero values on page 16-
92 in a Galois field array.
Testing for Equality

To compare corresponding elements of two Galois field arrays that have the same size, use the
operators == and ~=. The result is a logical array, each element of which indicates the truth or falsity
of the corresponding elementwise comparison. If you use the same operators to compare a scalar
with a Galois field array, MATLAB technical computing software compares the scalar with each
element of the array, producing a logical array of the same size.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg1 = (r1 .* r2 == [1 1 1]) % Does each element equal one?
lg2 = (r1 .* r2 == 1) % Same as above, using scalar expansion
lg3 = (r1 ~= r2) % Does each element differ from its inverse?
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The output is below.

lg1 =

     1     1     1

lg2 =

     1     1     1

lg3 =

     0     1     1

Comparison of isequal and ==

To compare entire arrays and obtain a logical scalar result rather than a logical array, use the built-in
isequal function. However, isequal uses strict rules for its comparison, and returns a value of 0
(false) if you compare

• A Galois field array with an ordinary MATLAB array, even if the values of the underlying array
elements match

• A scalar with a nonscalar array, even if all elements in the array match the scalar

The example below illustrates this difference between == and isequal.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg4 = isequal(r1 .* r2, [1 1 1]); % False
lg5 = isequal(r1 .* r2, gf(1,m)); % False
lg6 = isequal(r1 .* r2, gf([1 1 1],m)); % True

Testing for Nonzero Values

To test for nonzero values in a Galois vector, or in the columns of a Galois field array that has more
than one row, use the any or all function. These two functions behave just like the ordinary MATLAB
functions any and all, except that they consider only the underlying array elements while ignoring
information about which Galois field the elements are in. Examples are below.

m = 3; randels = gf(randi([0 2^m-1],6,1),m);
if all(randels) % If all elements are invertible
    invels = randels .\ 1; % Compute inverses of elements.
else
    disp('At least one element was not invertible.');
end
alph = gf(2,4);
poly = 1 + alph + alph^3;
if any(poly) % If poly contains a nonzero value
    disp('alph is not a root of 1 + D + D^3.');
end
code = [0:4 4 0; 3:7 4 5]
if all(code,2) % Is each row entirely nonzero?
    disp('Both codewords are entirely nonzero.');
else
    disp('At least one codeword contains a zero.');
end
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Matrix Manipulation in Galois Fields

• “Basic Manipulations of Galois Field Arrays” on page 16-93
• “Basic Information About Galois Field Arrays” on page 16-93

Basic Manipulations of Galois Field Arrays

Basic array operations on Galois field arrays are in the table below. The functionality of these
operations is analogous to the MATLAB operations having the same syntax.

Operation Syntax
Index into array, possibly using colon operator
instead of a vector of explicit indices

a(vector) or a(vector,vector1), where
vector and/or vector1 can be ":" instead of a
vector

Transpose array a'
Concatenate matrices [a,b] or [a;b]
Create array having specified diagonal elements diag(vector) or diag(vector,k)
Extract diagonal elements diag(a) or diag(a,k)
Extract lower triangular part tril(a) or tril(a,k)
Extract upper triangular part triu(a) or triu(a,k)
Change shape of array reshape(a,k1,k2)

The code below uses some of these syntaxes.

m = 4; a = gf([0:15],m);
a(1:2) = [13 13]; % Replace some elements of the vector a.
b = reshape(a,2,8); % Create 2-by-8 matrix.
c = [b([1 1 2],1:3); a(4:6)]; % Create 4-by-3 matrix.
d = [c, a(1:4)']; % Create 4-by-4 matrix.
dvec = diag(d); % Extract main diagonal of d.
dmat = diag(a(5:9)); % Create 5-by-5 diagonal matrix
dtril = tril(d); % Extract upper and lower triangular
dtriu = triu(d); % parts of d.

Basic Information About Galois Field Arrays

You can determine the length of a Galois vector or the size of any Galois field array using the length
and size functions. The functionality for Galois field arrays is analogous to that of the MATLAB
operations on ordinary arrays, except that the output arguments from size and length are always
integers, not Galois field arrays. The code below illustrates the use of these functions.

m = 4; e = gf([0:5],m); f = reshape(e,2,3);
lne = length(e); % Vector length of e
szf = size(f); % Size of f, returned as a two-element row
[nr,nc] = size(f); % Size of f, returned as two scalars
nc2 = size(f,2); % Another way to compute number of columns

Positions of Nonzero Elements

Another type of information you might want to determine from a Galois field array are the positions of
nonzero elements. For an ordinary MATLAB array, you might use the find function. However, for a
Galois field array, you should use find in conjunction with the ~= operator, as illustrated.
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x = [0 1 2 1 0 2]; m = 2; g = gf(x,m);
nzx = find(x); % Find nonzero values in the ordinary array x.
nzg = find(g~=0); % Find nonzero values in the Galois array g.

Linear Algebra in Galois Fields

• “Inverting Matrices and Computing Determinants” on page 16-94
• “Computing Ranks” on page 16-94
• “Factoring Square Matrices” on page 16-95
• “Solving Linear Equations” on page 16-95

Inverting Matrices and Computing Determinants

To invert a square Galois field array, use the inv function. Related is the det function, which
computes the determinant of a Galois field array. Both inv and det behave like their ordinary
MATLAB counterparts, except that they perform computations in the Galois field instead of in the
field of complex numbers.

Note A Galois field array is singular if and only if its determinant is exactly zero. It is not necessary
to consider roundoff errors, as in the case of real and complex arrays.

The code below illustrates matrix inversion and determinant computation.

m = 4;
randommatrix = gf(randi([0 2^m-1],4,4),m);
gfid = gf(eye(4),m);
if det(randommatrix) ~= 0
    invmatrix = inv(randommatrix);
    check1 = invmatrix * randommatrix;
    check2 = randommatrix * invmatrix;
    if (isequal(check1,gfid) & isequal(check2,gfid))
        disp('inv found the correct matrix inverse.');
    end
else
    disp('The matrix is not invertible.');
end

The output from this example is either of these two messages, depending on whether the randomly
generated matrix is nonsingular or singular.

inv found the correct matrix inverse.
The matrix is not invertible.

Computing Ranks

To compute the rank of a Galois field array, use the rank function. It behaves like the ordinary
MATLAB rank function when given exactly one input argument. The example below illustrates how to
find the rank of square and nonsquare Galois field arrays.

m = 3;
asquare = gf([4 7 6; 4 6 5; 0 6 1],m);
r1 = rank(asquare);
anonsquare = gf([4 7 6 3; 4 6 5 1; 0 6 1 1],m);
r2 = rank(anonsquare);
[r1 r2]
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The output is

ans =

     2     3

The values of r1 and r2 indicate that asquare has less than full rank but that anonsquare has full
rank.

Factoring Square Matrices

To express a square Galois field array (or a permutation of it) as the product of a lower triangular
Galois field array and an upper triangular Galois field array, use the lu function. This function
accepts one input argument and produces exactly two or three output arguments. It behaves like the
ordinary MATLAB lu function when given the same syntax. The example below illustrates how to
factor using lu.

tofactor = gf([6 5 7 6; 5 6 2 5; 0 1 7 7; 1 0 5 1],3);
[L,U]=lu(tofactor); % lu with two output arguments
c1 = isequal(L*U, tofactor) % True
tofactor2 = gf([1 2 3 4;1 2 3 0;2 5 2 1; 0 5 0 0],3);
[L2,U2,P] = lu(tofactor2); % lu with three output arguments
c2 = isequal(L2*U2, P*tofactor2) % True

Solving Linear Equations

To find a particular solution of a linear equation in a Galois field, use the \ or / operator on Galois
field arrays. The table below indicates the equation that each operator addresses, assuming that A
and B are previously defined Galois field arrays.

Operator Linear Equation Syntax Equivalent Syntax Using \
Backslash (\) A * x = B x = A \ B Not applicable
Slash (/) x * A = B x = B / A x = (A'\B')'

The results of the syntax in the table depend on characteristics of the Galois field array A:

• If A is square and nonsingular, the output x is the unique solution to the linear equation.
• If A is square and singular, the syntax in the table produces an error.
• If A is not square, MATLAB attempts to find a particular solution. If A'*A or A*A' is a singular

array, or if A is a matrix, where the rows outnumber the columns, that represents an
overdetermined system, the attempt might fail.

Note An error message does not necessarily indicate that the linear equation has no solution. You
might be able to find a solution by rephrasing the problem. For example, gf([1 2; 0 0],3) \
gf([1; 0],3) produces an error but the mathematically equivalent gf([1 2],3) \ gf([1],3)
does not. The first syntax fails because gf([1 2; 0 0],3) is a singular square matrix.

Example: Solving Linear Equations

The examples below illustrate how to find particular solutions of linear equations over a Galois field.

m = 4;
A = gf(magic(3),m); % Square nonsingular matrix
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Awide=[A, 2*A(:,3)]; % 3-by-4 matrix with redundancy on the right
Atall = Awide'; % 4-by-3 matrix with redundancy at the bottom
B = gf([0:2]',m);
C = [B; 2*B(3)];
D = [B; B(3)+1];
thesolution = A \ B; % Solution of A * x = B
thesolution2 = B' / A; % Solution of x * A = B'
ck1 = all(A * thesolution == B) % Check validity of solutions.
ck2 = all(thesolution2 * A == B')
% Awide * x = B has infinitely many solutions. Find one.
onesolution = Awide \ B;
ck3 = all(Awide * onesolution == B) % Check validity of solution.
% Atall * x = C has a solution.
asolution = Atall \ C;
ck4 = all(Atall * asolution == C) % Check validity of solution.
% Atall * x = D has no solution.
notasolution = Atall \ D;
ck5 = all(Atall * notasolution == D) % It is not a valid solution.

The output from this example indicates that the validity checks are all true (1), except for ck5, which
is false (0).

Signal Processing Operations in Galois Fields

• “Section Overview” on page 16-96
• “Filtering” on page 16-96
• “Convolution” on page 16-97
• “Discrete Fourier Transform” on page 16-97

Section Overview

You can perform some signal-processing operations on Galois field arrays, such as filtering on page
16-96, convolution on page 16-97, and the discrete Fourier transform on page 16-97.

This section describes how to perform these operations.

Other information about the corresponding operations for ordinary real vectors is in the Signal
Processing Toolbox™ documentation.

Filtering

To filter a Galois vector, use the filter function. It behaves like the ordinary MATLAB filter
function when given exactly three input arguments.

The code and diagram below give the impulse response of a particular filter over GF(2).

m = 1; % Work in GF(2).
b = gf([1 0 0 1 0 1 0 1],m); % Numerator
a = gf([1 0 1 1],m); % Denominator
x = gf([1,zeros(1,19)],m);
y = filter(b,a,x); % Filter x.
figure; stem(y.x); % Create stem plot.
axis([0 20 -.1 1.1])
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Convolution

Communications Toolbox software offers two equivalent ways to convolve a pair of Galois vectors:

• Use the conv function, as described in “Multiplication and Division of Polynomials” on page 16-
99. This works because convolving two vectors is equivalent to multiplying the two polynomials
whose coefficients are the entries of the vectors.

• Use the convmtx function to compute the convolution matrix of one of the vectors, and then
multiply that matrix by the other vector. This works because convolving two vectors is equivalent
to filtering one of the vectors by the other. The equivalence permits the representation of a digital
filter as a convolution matrix, which you can then multiply by any Galois vector of appropriate
length.

Tip If you need to convolve large Galois vectors, multiplying by the convolution matrix might be
faster than using conv.

Example

Computes the convolution matrix for a vector b in GF(4). Represent the numerator coefficients for a
digital filter, and then illustrate the two equivalent ways to convolve b with x over the Galois field.

m = 2; b = gf([1 2 3]',m);
n = 3; x = gf(randi([0 2^m-1],n,1),m);
C = convmtx(b,n); % Compute convolution matrix.
v1 = conv(b,x); % Use conv to convolve b with x
v2 = C*x; % Use C to convolve b with x.

Discrete Fourier Transform

The discrete Fourier transform is an important tool in digital signal processing. This toolbox offers
these tools to help you process discrete Fourier transforms:
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• fft, which transforms a Galois vector
• ifft, which inverts the discrete Fourier transform on a Galois vector
• dftmtx, which returns a Galois field array that you can use to perform or invert the discrete

Fourier transform on a Galois vector

In all cases, the vector being transformed must be a Galois vector of length 2m-1 in the field GF(2m).
The following example illustrates the use of these functions. You can check, using the isequal
function, that y equals y1, z equals z1, and z equals x.

m = 4;
x = gf(randi([0 2^m-1],2^m-1,1),m); % A vector to transform
alph = gf(2,m);
dm = dftmtx(alph);
idm = dftmtx(1/alph);
y = dm*x; % Transform x using the result of dftmtx.
y1 = fft(x); % Transform x using fft.
z = idm*y; % Recover x using the result of dftmtx(1/alph).
z1 = ifft(y1); % Recover x using ifft.

Tip If you have many vectors that you want to transform (in the same field), it might be faster to use
dftmtx once and matrix multiplication many times, instead of using fft many times.

Polynomials over Galois Fields

• “Section Overview” on page 16-98
• “Addition and Subtraction of Polynomials” on page 16-98
• “Multiplication and Division of Polynomials” on page 16-99
• “Evaluating Polynomials” on page 16-99
• “Roots of Polynomials” on page 16-100
• “Roots of Binary Polynomials” on page 16-100
• “Minimal Polynomials” on page 16-101

Section Overview

You can use Galois vectors to represent polynomials in an indeterminate quantity x, with coefficients
in a Galois field. Form the representation by listing the coefficients of the polynomial in a vector in
order of descending powers of x. For example, the vector

gf([2 1 0 3],4)

represents the polynomial Ax3 + 1x2 + 0x + (A+1), where

• A is a primitive element in the field GF(24).
• x is the indeterminate quantity in the polynomial.

You can then use such a Galois vector to perform arithmetic with, evaluate on page 16-99, and find
roots on page 16-100 of polynomials. You can also find minimal polynomials on page 16-101 of
elements of a Galois field.
Addition and Subtraction of Polynomials

To add and subtract polynomials, use + and - on equal-length Galois vectors that represent the
polynomials. If one polynomial has lower degree than the other, you must pad the shorter vector with
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zeros at the beginning so the two vectors have the same length. The example below shows how to add
a degree-one and a degree-two polynomial.

lin = gf([4 2],3); % A^2 x + A, which is linear in x
linpadded = gf([0 4 2],3); % The same polynomial, zero-padded
quadr = gf([1 4 2],3); % x^2 + A^2 x + A, which is quadratic in x
% Can't do lin + quadr because they have different vector lengths.
sumpoly = [0, lin] + quadr; % Sum of the two polynomials
sumpoly2 = linpadded + quadr; % The same sum

Multiplication and Division of Polynomials

To multiply and divide polynomials, use conv and deconv on Galois vectors that represent the
polynomials. Multiplication and division of polynomials is equivalent to convolution and deconvolution
of vectors. The deconv function returns the quotient of the two polynomials as well as the remainder
polynomial. Examples are below.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
bpoly = gf([1 1],m); % x + 1
xpoly = gf([1 0],m); % x
% Product is A^2 x^3 + x^2 + (A^2 + A) x + (A + 1).
cpoly = conv(apoly,bpoly);
[a2,remd] = deconv(cpoly,bpoly); % a2==apoly. remd is zero.
[otherpol,remd2] = deconv(cpoly,xpoly); % remd is nonzero.

The multiplication and division operators in “Arithmetic in Galois Fields” on page 16-87 multiply
elements or matrices, not polynomials.

Evaluating Polynomials

To evaluate a polynomial at an element of a Galois field, use polyval. It behaves like the ordinary
MATLAB polyval function when given exactly two input arguments. The example below evaluates a
polynomial at several elements in a field and checks the results using .^ and .* in the field.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
x0 = gf([0 1 2],m); % Points at which to evaluate the polynomial
y = polyval(apoly,x0)

a = gf(2,m); % Primitive element of the field, corresponding to A.
y2 = a.^2.*x0.^2 + (a.^2+1).*x0 + (a+1) % Check the result.

The output is below.

y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     3     2    10

y2 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     3     2    10

 Error Detection and Correction

16-99



The first element of y evaluates the polynomial at 0 and, therefore, returns the polynomial's constant
term of 3.
Roots of Polynomials

To find the roots of a polynomial in a Galois field, use the roots function on a Galois vector that
represents the polynomial. This function finds roots that are in the same field that the Galois vector is
in. The number of times an entry appears in the output vector from roots is exactly its multiplicity as
a root of the polynomial.

Note If the Galois vector is in GF(2m), the polynomial it represents might have additional roots in
some extension field GF((2m)k). However, roots does not find those additional roots or indicate their
existence.

The examples below find roots of cubic polynomials in GF(8).

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3
   root = rts(ii);
   rootsquared = gfmul(root,root,field);
   rootcubed = gfmul(root,rootsquared,field);
   answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
   % Recall that 1 is really alpha to the zero power.
   % If answer = -Inf, then the variable root represents
   % a root of the polynomial.
end
answer

Roots of Binary Polynomials

In the special case of a polynomial having binary coefficients, it is also easy to find roots that exist in
an extension field. This is because the elements 0 and 1 have the same unambiguous representation
in all fields of characteristic two. To find roots of a binary polynomial in an extension field, apply the
roots function to a Galois vector in the extension field whose array elements are the binary
coefficients of the polynomial.

The example below seeks the roots of a binary polynomial in various fields.

gf2poly = gf([1 1 1],1); % x^2 + x + 1 in GF(2)
noroots = roots(gf2poly); % No roots in the ground field, GF(2)
gf4poly = gf([1 1 1],2); % x^2 + x + 1 in GF(4)
roots4 = roots(gf4poly); % The roots are A and A+1, in GF(4).
gf16poly = gf([1 1 1],4); % x^2 + x + 1 in GF(16)
roots16 = roots(gf16poly); % Roots in GF(16)
checkanswer4 = polyval(gf4poly,roots4); % Zero vector
checkanswer16 = polyval(gf16poly,roots16); % Zero vector

The roots of the polynomial do not exist in GF(2), so noroots is an empty array. However, the roots
of the polynomial exist in GF(4) as well as in GF(16), so roots4 and roots16 are nonempty.

Notice that roots4 and roots16 are not equal to each other. They differ in these ways:
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• roots4 is a GF(4) array, while roots16 is a GF(16) array. MATLAB keeps track of the underlying
field of a Galois field array.

• The array elements in roots4 and roots16 differ because they use representations with respect
to different primitive polynomials. For example, 2 (which represents a primitive element) is an
element of the vector roots4 because the default primitive polynomial for GF(4) is the same
polynomial that gf4poly represents. On the other hand, 2 is not an element of roots16 because
the primitive element of GF(16) is not a root of the polynomial that gf16poly represents.

Minimal Polynomials

The minimal polynomial of an element of GF(2m) is the smallest degree nonzero binary-coefficient
polynomial having that element as a root in GF(2m). To find the minimal polynomial of an element or a
column vector of elements, use the minpol function.

The code below finds that the minimal polynomial of gf(6,4) is D2 + D + 1 and then checks that
gf(6,4) is indeed among the roots of that polynomial in the field GF(16).

m = 4;
e = gf(6,4);
em = minpol(e) % Find minimal polynomial of e. em is in GF(2).

emr = roots(gf([0 0 1 1 1],m)) % Roots of D^2+D+1 in GF(2^m)

The output is

em = GF(2) array.

Array elements =

     0     0     1     1     1

emr = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

     6
     7

To find out which elements of a Galois field share the same minimal polynomial, use the cosets
function.

Manipulating Galois Variables

• “Section Overview” on page 16-101
• “Determining Whether a Variable Is a Galois Field Array” on page 16-102
• “Extracting Information from a Galois Field Array” on page 16-102

Section Overview

This section describes techniques for manipulating Galois variables or for transferring information
between Galois field arrays and ordinary MATLAB arrays.
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Note These techniques are particularly relevant if you write MATLAB file functions that process
Galois field arrays. For an example of this type of usage, enter edit gf/conv in the Command
Window and examine the first several lines of code in the editor window.

Determining Whether a Variable Is a Galois Field Array

To find out whether a variable is a Galois field array rather than an ordinary MATLAB array, use the
isa function. An illustration is below.

mlvar = eye(3);
gfvar = gf(mlvar,3);
no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
yes = isa(gfvar,'gf'); % True because gfvar is a Galois array

Extracting Information from a Galois Field Array

To extract the array elements, field order, or primitive polynomial from a variable that is a Galois field
array, append a suffix to the name of the variable. The table below lists the exact suffixes, which are
independent of the name of the variable.

Information Suffix Output Value
Array elements .x MATLAB array of type uint16

that contains the data values
from the Galois field array.

Field order .m Integer of type double that
indicates that the Galois field
array is in GF(2^m).

Primitive polynomial .prim_poly Integer of type uint32 that
represents the primitive
polynomial. The representation
is similar to the description in
“How Integers Correspond to
Galois Field Elements” on page
16-84.

Note If the output value is an integer data type and you want to convert it to double for later
manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr uses a vector of binary
coefficients of a polynomial to create a Galois field array in an extension field. Another part of the
example retrieves the primitive polynomial for the field and converts it to a binary vector
representation having the appropriate number of bits.

% Check that e solves its own minimal polynomial.
e = gf(6,4); % An element of GF(16)
emp = minpol(e); % The minimal polynomial, emp, is in GF(2).
empr = roots(gf(emp.x,e.m)); % Find roots of emp in GF(16).

% Check that the primitive element gf(2,m) is
% really a root of the primitive polynomial for the field.
primpoly_int = double(e.prim_poly);
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mval = e.m;
primpoly_vect = gf(de2bi(primpoly_int,mval+1,'left-msb'),mval);
containstwo = roots(primpoly_vect); % Output vector includes 2.

Converting Galois Field Array to Doubles

a = gf([1,0])
b = double(a.x) %a.x is in uint16

MATLAB returns the following:

a = GF(2) array.

Array elements =

           1           0

b =

     1     0

Speed and Nondefault Primitive Polynomials

“Primitive Polynomials and Element Representations” on page 16-85 describes how to represent
elements of a Galois field with respect to a primitive polynomial of your choice. This section describes
how you can increase the speed of computations involving a Galois field array that uses a primitive
polynomial other than the default primitive polynomial. The technique is recommended if you perform
many such computations.

The mechanism for increasing the speed is a data file, userGftable.mat, that some computational
functions use to avoid performing certain computations repeatedly. To take advantage of this
mechanism for your combination of field order (m) and primitive polynomial (prim_poly):

1 Navigate in the MATLAB application to a folder to which you have write permission. You can use
either the cd function or the Current Folder feature to navigate.

2 Define m and prim_poly as workspace variables. For example:

m = 3; prim_poly = 13; % Examples of valid values
3 Invoke the gftable function:

gftable(m,prim_poly); % If you previously defined m and prim_poly

The function revises or creates userGftable.mat in your current working folder to include data
relating to your combination of field order and primitive polynomial. After you initially invest the time
to invoke gftable, subsequent computations using those values of m and prim_poly should be
faster.

Note If you change your current working directory after invoking gftable, you must place
userGftable.mat on your MATLAB path to ensure that MATLAB can see it. Do this by using the
addpath command to prefix the directory containing userGftable.mat to your MATLAB path. If
you have multiple copies of userGftable.mat on your path, use which('userGftable.mat','-
all') to find out where they are and which one MATLAB is using.
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To see how much gftable improves the speed of your computations, you can surround your
computations with the tic and toc functions. See the gftable reference page for an example.
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Galois Fields of Odd Characteristic
A Galois field is an algebraic field having pm elements, where p is prime and m is a positive integer.
This chapter describes how to work with Galois fields in which p is odd. To work with Galois fields
having an even number of elements, see Galois Field Computations on page 16-81. The sections in
this chapter are as follows.

• “Galois Field Terminology” on page 16-104
• “Representing Elements of Galois Fields” on page 16-104
• “Default Primitive Polynomials” on page 16-107
• “Converting and Simplifying Element Formats” on page 16-107
• “Arithmetic in Galois Fields” on page 16-110
• “Polynomials over Prime Fields” on page 16-112
• “Other Galois Field Functions” on page 16-114
• “Selected Bibliography for Galois Fields” on page 16-115

Galois Field Terminology

Throughout this section, p is an odd prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the literature. The definitions
adopted here appear in van Lint [5].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero elements of GF(pm).
This means that every nonzero element of the field can be expressed as the primitive element
raised to some integer power. Primitive elements are called A throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some primitive element of GF(pm).
As a consequence, it has degree m and is irreducible.

Representing Elements of Galois Fields

• “Section Overview” on page 16-105
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• “Exponential Format” on page 16-105
• “Polynomial Format” on page 16-106
• “List of All Elements of a Galois Field” on page 16-106
• “Nonuniqueness of Representations” on page 16-107

Section Overview

This section discusses how to represent Galois field elements using this toolbox's exponential on page
16-105 format and polynomial on page 16-106 format. It also describes a way to list all elements on
page 16-106 of the Galois field, because some functions use such a list as an input argument. Finally,
it discusses the nonuniqueness on page 16-107 of representations of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least 2, GF(pm) is called an extension field. Integers alone cannot represent the
elements of GF(pm) in a straightforward way. MATLAB technical computing software uses two main
conventions for representing elements of GF(pm): the exponential format and the polynomial format.

Note Both the exponential format and the polynomial format are relative to your choice of a
particular primitive element A of GF(pm).

Exponential Format

This format uses the property that every nonzero element of GF(pm) can be expressed as Ac for some
integer c between 0 and pm-2. Higher exponents are not needed, because the theory of Galois fields
implies that every nonzero element of GF(pm) satisfies the equation xq-1 = 1 where q = pm.

The use of the exponential format is shown in the table below.

Element of GF(pm) MATLAB Representation of the Element
0 -Inf
A0 = 1 0
A1 1
... ...
Aq-2 where q = pm q-2

Although -Inf is the standard exponential representation of the zero element, all negative integers
are equivalent to -Inf when used as input arguments in exponential format. This equivalence can be
useful; for example, see the concise line of code at the end of the section “Default Primitive
Polynomials” on page 16-107.

Note The equivalence of all negative integers and -Inf as exponential formats means that, for
example, -1 does not represent A-1, the multiplicative inverse of A. Instead, -1 represents the zero
element of the field.
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Polynomial Format

The polynomial format uses the property that every element of GF(pm) can be expressed as a
polynomial in A with exponents between 0 and m-1, and coefficients in GF(p). In the polynomial
format, the element

A(1) + A(2) A + A(3) A2 + ... + A(m) Am-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note The Galois field functions in this toolbox represent a polynomial as a vector that lists the
coefficients in order of ascending powers of the variable. This is the opposite of the order that other
MATLAB functions use.

List of All Elements of a Galois Field

Some Galois field functions in this toolbox require an argument that lists all elements of an extension
field GF(pm). This is again relative to a particular primitive element A of GF(pm). The proper format
for the list of elements is that of a matrix having pm rows, one for each element of the field. The
matrix has m columns, one for each coefficient of a power of A in the polynomial format shown in
“Polynomial Format” on page 16-106 above. The first row contains only zeros because it corresponds
to the zero element in GF(pm). If k is between 2 and pm, then the kth row specifies the polynomial
format of the element Ak-2.

The minimal polynomial of A aids in the computation of this matrix, because it tells how to express Am

in terms of lower powers of A. For example, the table below lists the elements of GF(32), where A is a
root of the primitive polynomial 2 + 2x + x2. This polynomial allows repeated use of the substitution

A2 = -2 - 2A = 1 + A

when performing the computations in the middle column of the table.

Elements of GF(9) 

Exponential Format Polynomial Format Row of MATLAB Matrix of
Elements

A-Inf 0 0 0
A0 1 1 0
A1 A 0 1
A2 1+A 1 1
A3 A + A2 = A + 1 + A = 1 + 2A 1 2
A4 A + 2A2 = A + 2 + 2A = 2 2 0
A5 2A 0 2
A6 2A2 = 2 + 2A 2 2
A7 2A + 2A2 = 2A + 2 + 2A = 2 + A 2 1

Example
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An automatic way to generate the matrix whose rows are in the third column of the table above is to
use the code below.

p = 3; m = 2;
% Use the primitive polynomial 2 + 2x + x^2 for GF(9).
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);

The gftuple function is discussed in more detail in “Converting and Simplifying Element Formats”
on page 16-107.

Nonuniqueness of Representations

A given field has more than one primitive element. If two primitive elements have different minimal
polynomials, then the corresponding matrices of elements will have their rows in a different order. If
the two primitive elements share the same minimal polynomial, then the matrix of elements of the
field is the same.

Note You can use whatever primitive element you want, as long as you understand how the inputs
and outputs of Galois field functions depend on the choice of some primitive polynomial. It is usually
best to use the same primitive polynomial throughout a given script or function.

Other ways in which representations of elements are not unique arise from the equations that Galois
field elements satisfy. For example, an exponential format of 8 in GF(9) is really the same as an
exponential format of 0, because A8 = 1 = A0 in GF(9). As another example, the substitution
mentioned just before the table Elements of GF(9)  shows that the polynomial format [0 0 1] is really
the same as the polynomial format [1 1].

Default Primitive Polynomials

This toolbox provides a default primitive polynomial for each extension field. You can retrieve this
polynomial using the gfprimdf function. The command

prim_poly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal polynomial for GF(pm).

For example, the command below shows that the default primitive polynomial for GF(9) is 2 + x + x2,
not the polynomial used in “List of All Elements of a Galois Field” on page 16-106.

poly1=gfprimdf(2,3);

poly1 =

     2     1     1

To generate a list of elements of GF(pm) using the default primitive polynomial, use the command

field = gftuple([-1:p^m-2]',m,p);

Converting and Simplifying Element Formats

• “Converting to Simplest Polynomial Format” on page 16-108
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• “Example: Generating a List of Galois Field Elements” on page 16-109
• “Converting to Simplest Exponential Format” on page 16-109

Converting to Simplest Polynomial Format

The gftuple function produces the simplest polynomial representation of an element of GF(pm),
given either an exponential representation or a polynomial representation of that element. This can
be useful for generating the list of elements of GF(pm) that other functions require.

Using gftuple requires three arguments: one representing an element of GF(pm), one indicating the
primitive polynomial that MATLAB technical computing software should use when computing the
output, and the prime p. The table below indicates how gftuple behaves when given the first two
arguments in various formats.

Behavior of gftuple Depending on Format of First Two Inputs

How to Specify Element How to Indicate Primitive
Polynomial

What gftuple Produces

Exponential format; c = any
integer

Integer m > 1 Polynomial format of Ac, where
A is a root of the default
primitive polynomial for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here
Exponential format; c = any
integer

Vector of coefficients of
primitive polynomial

Polynomial format of Ac, where
A is a root of the given primitive
polynomial

Example: polynomial = gfprimdf(2,3); tp = gftuple(6,polynomial,3); % c = 6
here
Polynomial format of any degree Integer m > 1 Polynomial format of degree <

m, using default primitive
polynomial for GF(pm) to
simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);
Polynomial format of any degree Vector of coefficients of

primitive polynomial
Polynomial format of degree <
m, using the given primitive
polynomial for GF(pm) to
simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0
1],polynomial,3);

The four examples that appear in the table above all produce the same vector tp = [2, 1], but
their different inputs to gftuple correspond to the lines of the table. Each example expresses the
fact that A6 = 2+A, where A is a root of the (default) primitive polynomial 2 + x+ x2 for GF(32).

Example

This example shows how gfconv and gftuple combine to multiply two polynomial-format elements
of GF(34). Initially, gfconv multiplies the two polynomials, treating the primitive element as if it were
a variable. This produces a high-order polynomial, which gftuple simplifies using the polynomial
equation that the primitive element satisfies. The final result is the simplest polynomial format of the
product.
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p = 3; m = 4;
a = [1 2 0 1]; b = [2 2 1 2];
notsimple = gfconv(a,b,p) % a times b, using high powers of alpha
simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

The output is below.

notsimple =

     2     0     2     0     0     1     2

simple =

     2     1     0     1

Example: Generating a List of Galois Field Elements

This example applies the conversion functionality to the task of generating a matrix that lists all
elements of a Galois field. A matrix that lists all field elements is an input argument in functions such
as gfadd and gfmul. The variables field1 and field2 below have the format that such functions
expect.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field1 = gftuple([-1:p^m-2]',m,p);

prim_poly = gfprimdf(m,p); % Or any primitive polynomial
% for GF(p^m)
field2 = gftuple([-1:p^m-2]',prim_poly,p);

Converting to Simplest Exponential Format

The same function gftuple also produces the simplest exponential representation of an element of
GF(pm), given either an exponential representation or a polynomial representation of that element. To
retrieve this output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in the table Behavior of gftuple Depending on
Format of First Two Inputs. In addition, the variable expformat contains the simplest exponential
format of the element represented in polyformat. It is simplest in the sense that the exponent is
either -Inf or a number between 0 and pm-2.

Example

To recover the exponential format of the element 2 + A that the previous section considered, use the
commands below. In this case, polyformat contains redundant information, while expformat
contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

     2     1

expformat =
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     6

This output appears at first to contradict the information in the table Elements of GF(9) , but in fact it
does not. The table uses a different primitive element; two plus that primitive element has the
polynomial and exponential formats shown below.

prim_poly = [2 2 1];
[polyformat2, expformat2] = gftuple([2 1],prim_poly,3)

The output below reflects the information in the bottom line of the table.

polyformat2 =

     2     1

expformat2 =

     7

Arithmetic in Galois Fields

• “Section Overview” on page 16-110
• “Arithmetic in Prime Fields” on page 16-110
• “Arithmetic in Extension Fields” on page 16-111

Section Overview

You can add, subtract, multiply, and divide elements of Galois fields using the functions gfadd,
gfsub, gfmul, and gfdiv, respectively. Each of these functions has a mode for prime fields on page
16-110 and a mode for extension fields on page 16-111.

Arithmetic in Prime Fields

Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd, gfmul, gfsub, and
gfdiv accept two arguments that represent elements of GF(p) as integers between 0 and p-1. The
third argument specifies p.

Example: Addition Table for GF(5)

The code below constructs an addition table for GF(5). If a and b are between 0 and 4, then the
element gfp_add(a+1,b+1) represents the sum a+b in GF(5). For example, gfp_add(3,5) = 1
because 2+4 is 1 modulo 5.

p = 5;
row = 0:p-1;
table = ones(p,1)*row;
gfp_add = gfadd(table,table',p)

The output for this example follows.

gfp_add =

     0     1     2     3     4
     1     2     3     4     0
     2     3     4     0     1

16 System Design

16-110



     3     4     0     1     2
     4     0     1     2     3

Other values of p produce tables for different prime fields GF(p). Replacing gfadd by gfmul, gfsub,
or gfdiv produces a table for the corresponding arithmetic operation in GF(p).

Arithmetic in Extension Fields

The same arithmetic functions can add elements of GF(pm) when m > 1, but the format of the
arguments is more complicated than in the case above. In general, arithmetic in extension fields is
more complicated than arithmetic in prime fields; see the works listed in “Selected Bibliography for
Galois Fields” on page 16-115 for details about how the arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and gfdiv use the first two
arguments to represent elements of GF(pm) in exponential format. The third argument, which is
required, lists all elements of GF(pm) as described in “List of All Elements of a Galois Field” on page
16-106. The result is in exponential format.

Example: Addition Table for GF(9)

The code below constructs an addition table for GF(32), using exponential formats relative to a root of
the default primitive polynomial for GF(9). If a and b are between -1 and 7, then the element
gfpm_add(a+2,b+2) represents the sum of Aa and Ab in GF(9). For example, gfpm_add(4,6) = 5
because

A2 + A4 = A5

Using the fourth and sixth rows of the matrix field, you can verify that

A2 + A4 = (1 + 2A) + (2 + 0A) = 3 + 2A = 0 + 2A = A5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).
field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.
row = -1:p^m-2;
table = ones(p^m,1)*row;
gfpm_add = gfadd(table,table',field)

The output is below.

gfpm_add =

  -Inf     0     1     2     3     4     5     6     7
     0     4     7     3     5  -Inf     2     1     6
     1     7     5     0     4     6  -Inf     3     2
     2     3     0     6     1     5     7  -Inf     4
     3     5     4     1     7     2     6     0  -Inf
     4  -Inf     6     5     2     0     3     7     1
     5     2  -Inf     7     6     3     1     4     0
     6     1     3  -Inf     0     7     4     2     5
     7     6     2     4  -Inf     1     0     5     3

Note If you used a different primitive polynomial, then the tables would look different. This makes
sense because the ordering of the rows and columns of the tables was based on that particular choice
of primitive polynomial and not on any natural ordering of the elements of GF(9).
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Other values of p and m produce tables for different extension fields GF(p^m). Replacing gfadd by
gfmul, gfsub, or gfdiv produces a table for the corresponding arithmetic operation in GF(p^m).

Polynomials over Prime Fields

• “Section Overview” on page 16-112
• “Cosmetic Changes of Polynomials” on page 16-112
• “Polynomial Arithmetic” on page 16-112
• “Characterization of Polynomials” on page 16-113
• “Roots of Polynomials” on page 16-113

Section Overview

A polynomial over GF(p) is a polynomial whose coefficients are elements of GF(p). Communications
Toolbox software provides functions for

• Changing polynomials in cosmetic on page 16-112 ways
• Performing polynomial arithmetic on page 16-112
• Characterizing polynomials as primitive or irreducible on page 16-113
• Finding roots on page 16-113 of polynomials in a Galois field

Note The Galois field functions in this toolbox represent a polynomial over GF(p) for odd values of
p as a vector that lists the coefficients in order of ascending powers of the variable. This is the
opposite of the order that other MATLAB functions use.

Cosmetic Changes of Polynomials

To display the traditionally formatted polynomial that corresponds to a row vector containing
coefficients, use gfpretty. To truncate a polynomial by removing all zero-coefficient terms that have
exponents higher than the degree of the polynomial, use gftrunc. For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])
gfpretty(polynom)

The output is below.

polynom =

     1    20   394    10     0     0    29     3

                                   2       3       6      7
                   1 + 20 X + 394 X  + 10 X  + 29 X  + 3 X

Note If you do not use a fixed-width font, then the spacing in the display might not look correct.

Polynomial Arithmetic

The functions gfadd and gfsub add and subtract, respectively, polynomials over GF(p). The gfconv
function multiplies polynomials over GF(p). The gfdeconv function divides polynomials in GF(p),
producing a quotient polynomial and a remainder polynomial. For example, the commands below
show that 2 + x + x2 times 1 + x over the field GF(3) is 2 + 2x2 + x3.
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a = gfconv([2 1 1],[1 1],3)
[quot, remd] = gfdeconv(a,[2 1 1],3)

The output is below.

a =

     2     0     2     1

quot =

     1     1

remd =

     0

The previously discussed functions gfadd and gfsub add and subtract, respectively, polynomials.
Because it uses a vector of coefficients to represent a polynomial, MATLAB does not distinguish
between adding two polynomials and adding two row vectors elementwise.

Characterization of Polynomials

Given a polynomial over GF(p), the gfprimck function determines whether it is irreducible and/or
primitive. By definition, if it is primitive then it is irreducible; however, the reverse is not necessarily
true. The gfprimdf and gfprimfd functions return primitive polynomials.

Given an element of GF(pm), the gfminpol function computes its minimal polynomial over GF(p).

Example

For example, the code below reflects the irreducibility of all minimal polynomials. However, the
minimal polynomial of a nonprimitive element is not a primitive polynomial.

p = 3; m = 4;
% Use default primitive polynomial here.

prim_poly = gfminpol(1,m,p);
ckprim = gfprimck(prim_poly,p);
% ckprim = 1, since prim_poly represents a primitive polynomial.

notprimpoly = gfminpol(5,m,p);
cknotprim = gfprimck(notprimpoly,p);
% cknotprim = 0 (irreducible but not primitive)
% since alpha^5 is not a primitive element when p = 3.

ckreducible = gfprimck([0 1 1],p);
% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials

Given a polynomial over GF(p), the gfroots function finds the roots of the polynomial in a suitable
extension field GF(pm). There are two ways to tell MATLAB the degree m of the extension field
GF(pm), as shown in the following table.
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Formats for Second Argument of gfroots 

Second Argument Represents
A positive integer m as in GF(pm). MATLAB uses the default

primitive polynomial in its computations.
A row vector A primitive polynomial for GF(pm). Here m is the

degree of this primitive polynomial.

Example: Roots of a Polynomial in GF(9)

The code below finds roots of the polynomial 1 + x2 + x3 in GF(9) and then checks that they are
indeed roots. The exponential format of elements of GF(9) is used throughout.

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3
   root = rts(ii);
   rootsquared = gfmul(root,root,field);
   rootcubed = gfmul(root,rootsquared,field);
   answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
   % Recall that 1 is really alpha to the zero power.
   % If answer = -Inf, then the variable root represents
   % a root of the polynomial.
end
answer

The output shows that A0 (which equals 1), A5, and A7 are roots.

roots =

     0
     5
     7

answer =

  -Inf  -Inf  -Inf

See the reference page for gfroots to see how gfroots can also provide you with the polynomial
formats of the roots and the list of all elements of the field.

Other Galois Field Functions

See the online reference pages for information about these other Galois field functions in
Communications Toolbox software:

• gfcosets, which produces cyclotomic cosets
• gffilter, which filters data using GF(p) polynomials
• gfprimfd, which finds primitive polynomials
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• gfrank, which computes the rank of a matrix over GF(p)
• gfrepcov, which converts one binary polynomial representation to another

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, Mass., Addison-Wesley,
1983.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley, 1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, N.J., Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.
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Interleaving

In this section...
“Block Interleaving” on page 16-116
“Convolutional Interleaving” on page 16-120
“Selected Bibliography for Interleaving” on page 16-128

Block Interleaving
• “Block Interleaving Features” on page 16-116
• “Improve Error Rate Using Block Interleaving in MATLAB” on page 16-117
• “Improve Error Rate Using Block Interleaving in Simulink” on page 16-118

Block Interleaving Features

A block interleaver accepts a set of symbols and rearranges them, without repeating or omitting any
of the symbols in the set. The number of symbols in each set is fixed for a given interleaver. The
interleaver's operation on a set of symbols is independent of its operation on all other sets of symbols.

An interleaver permutes symbols according to a mapping. A corresponding deinterleaver uses the
inverse mapping to restore the original sequence of symbols. Interleaving and deinterleaving can be
useful for reducing errors caused by burst errors in a communication system.

Each interleaver function has a corresponding deinterleaver function. In typical usage of the
interleaver/deinterleaver pairs, the inputs of the deinterleaver match those of the interleaver, except
for the data being rearranged.

A block interleaver accepts a set of symbols and rearranges them, without repeating or omitting any
of the symbols in the set. The number of symbols in each set is fixed for a given interleaver.

The set of block interleavers in this toolbox includes a general block interleaver as well as several
special cases. Each special-case interleaver function uses the same computational code that the
general block interleaver function uses, but provides a syntax that is more suitable for the special
case. The interleaver functions are described below.

Type of Interleaver Interleaver Function Description
General block interleaver intrlv Uses the permutation table given

explicitly as an input argument.
Algebraic interleaver algintrlv Derives a permutation table

algebraically, using the Takeshita-
Costello or Welch-Costas method.
These methods are described in [4].

Helical scan interleaver helscanintrlv Fills a matrix with data row by row
and then sends the matrix contents to
the output in a helical fashion.
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Type of Interleaver Interleaver Function Description
Matrix interleaver matintrlv Fills a matrix with data elements row

by row and then sends the matrix
contents to the output column by
column.

Random interleaver randintrlv Chooses a permutation table randomly
using the initial state input that you
provide.

Types of Block Interleavers

The set of block interleavers in this library includes a general interleaver/deinterleaver pair as well as
several special cases. Each special-case block uses the same computational code that its more
general counterpart uses, but provides an interface that is more suitable for the special case.

The Matrix Interleaver block accomplishes block interleaving by filling a matrix with the input
symbols row by row and then sending the matrix contents to the output port column by column. For
example, if the interleaver uses a 2-by-3 matrix to do its internal computations, then for an input of
[1 2 3 4 5 6], the block produces an output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using the Initial seed
parameter that you provide in the block mask. By using the same Initial seed value in the
corresponding Random Deinterleaver block, you can restore the permuted symbols to their original
ordering.

The Algebraic Interleaver block uses a permutation table that is algebraically derived. It supports
Takeshita-Costello interleavers and Welch-Costas interleavers. These interleavers are described in
[4].

Improve Error Rate Using Block Interleaving in MATLAB

The following example illustrates how an interleaver improves the error rate in a communication
system whose channel produces a burst of errors. A random interleaver rearranges the bits of
numerous codewords before two adjacent codewords are each corrupted by three errors.

Three errors exceed the error-correction capability of the Hamming code. However, the example
shows that when the Hamming code is combined with an interleaver, this system is able to recover
the original message despite the 6-bit burst of errors. The improvement in performance occurs
because the interleaving effectively spreads the errors among different codewords so that the number
of errors per codeword is within the error-correction capability of the code.

st1 = 27221; st2 = 4831; % States for random number generator
n = 7; k = 4; % Parameters for Hamming code
msg = randi([0 1],k*500,1); % Data to encode
code = encode(msg,n,k,'hamming/binary'); % Encoded data
% Create a burst error that will corrupt two adjacent codewords.
errors = zeros(size(code)); errors(n-2:n+3) = [1 1 1 1 1 1];

% With Interleaving
%------------------
inter = randintrlv(code,st2); % Interleave.
inter_err = bitxor(inter,errors); % Include burst error.
deinter = randdeintrlv(inter_err,st2); % Deinterleave.
decoded = decode(deinter,n,k,'hamming/binary'); % Decode.
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disp('Number of errors and error rate, with interleaving:');
[number_with,rate_with] = biterr(msg,decoded) % Error statistics

% Without Interleaving
%---------------------
code_err = bitxor(code,errors); % Include burst error.
decoded = decode(code_err,n,k,'hamming/binary'); % Decode.
disp('Number of errors and error rate, without interleaving:');
[number_without,rate_without] = biterr(msg,decoded) % Error statistics

The output from the example follows.

Number of errors and error rate, with interleaving:

number_with =

     0

rate_with =

     0

Number of errors and error rate, without interleaving:

number_without =

     4

rate_without =

    0.0020

Improve Error Rate Using Block Interleaving in Simulink

The following example shows how to use an interleaver to improve the error rate when the channel
produces bursts of errors.

Before running the model, you must create a binary vector that simulates bursts of errors, as
described in “Improve Error Rate Using Block Interleaving in Simulink” on page 16-118. The Signal
From Workspace block imports this vector from the MATLAB workspace into the model, where the
Logical Operator block performs an XOR of the vector with the signal.

To open the completed model, enter doc_interleaver at the MATLAB command line. To build the
model, gather and configure these blocks:
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• Bernoulli Binary Generator, in the Random Data Sources sublibrary of the Comm Sources library

• Check the box next to Frame-based outputs.
• Set Samples per frame to 4.

• Hamming Encoder, in the Block sublibrary of the Error Detection and Correction library. Use
default parameters

• Buffer, in the Buffers sublibrary of the Signal Management library in DSP System Toolbox

• Set Output buffer size (per channel) to 84.
• Random Interleaver, in the Block sublibrary of the Interleaving library in Communications Toolbox

• Set Number of elements to 84.
• Logical Operator, in the Simulink Math Operations library

• Set Operator to XOR.
• Signal From Workspace, in the Sources library of the DSP System Toolbox product

• Set Signal to errors.
• Set Sample time to 4/7.
• Set Samples per frame to 84.

• Random Deinterleaver, in the Block sublibrary of the Interleaving library in Communications
Toolbox

• Set Number of elements to 84.
• Buffer, in the Buffers sublibrary of the Signal Management library in DSP System Toolbox

• Set Output buffer size (per channel) to 7.
• Hamming Decoder, in the Block sublibrary of the Error Detection and Correction library. Use

default parameters.
• Error Rate Calculation, in the Comm Sinks library

• Set Receive delay to (4/7)*84.
• Set Computation delay to 100.
• Set Output data to Port.

• Display, in the Simulink Sinks library. Use default parameters.

On the Simulation tab, in the Simulate section, set Stop time to length(errors). The Simulate
section appears on multiple tabs.

Creating the Vector of Errors

Before running the model, use the following code to create a binary vector in the MATLAB
workspace. The model uses this vector to simulate bursts of errors. The vector contains blocks of
three 1s, representing bursts of errors, at random intervals. The distance between two consecutive
blocks of 1s is a random integer between 1 and 80.

errors=zeros(1,10^4);
n=1;
while n<10^4-80;
n=n+floor(79*rand(1))+3;
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errors(n:n+2)=[1 1 1];
end

To determine the ratio of the number of 1s to the total number of symbols in the vector errors enter

sum(errors)/length(errors)

Your answer should be approximately 3/43, or .0698, since after each sequence of three 1s, the
expected distance to the next sequence of 1s is 40. Consequently, you expect to see three 1s in 43
terms of the sequence. If there were no error correction in the model, the bit error rate would be
approximately .0698.

When you run a simulation with the model, the error rate is approximately .019, which shows the
improvement due to error correction and interleaving. You can see the effect of interleaving by
deleting the Random Interleaver and Random Deinterleaver blocks from the model, connecting the
lines, and running another simulation. The bit error rate is higher without interleaving because the
Hamming code can only correct one error in each codeword.

Convolutional Interleaving
• “Convolutional Interleaving Features” on page 16-120
• “Delays of Convolutional Interleavers” on page 16-121
• “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in

MATLAB” on page 16-125
• “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in

Simulink” on page 16-127

Convolutional Interleaving Features

A convolutional interleaver consists of a set of shift registers, each with a fixed delay. In a typical
convolutional interleaver, the delays are nonnegative integer multiples of a fixed integer (although a
general multiplexed interleaver allows unrestricted delay values). Each new symbol from an input
vector feeds into the next shift register and the oldest symbol in that register becomes part of the
output vector. A convolutional interleaver has memory; that is, its operation depends not only on
current symbols but also on previous symbols.

The schematic below depicts the structure of a general convolutional interleaver by showing the set
of shift registers and their delay values D(1), D(2),..., D(N). The kth shift register holds D(k) symbols,
where k = 1,2,...,N. The convolutional interleaving functions in this toolbox have input arguments that
indicate the number of shift registers and the delay for each shift register.
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Communications Toolbox implements convolutional interleaving functionality using Simulink blocks,
System objects, and MATLAB functions.

The set of convolutional interleavers in this product includes a general interleaver/deinterleaver pair
as well as several special cases. Each special-case function uses the same computational code that its
more general counterpart uses, but provides a syntax that is more suitable for the special case. The
special cases are described below.

Type of Interleaver Interleaving Function Description
General multiplexed
interleaver

muxintrlv Allows unrestricted delay values for
the set of shift registers.

Convolutional interleaver convintrlv The delay values for the set of shift
registers are nonnegative integer
multiples of a fixed integer that you
specify.

Helical interleaver helintrlv Fills an array with input symbols in a
helical fashion and empties the array
row by row.

The helscanintrlv function and the helintrlv function both use a helical array for internal
computations. However, the two functions have some important differences:

• helintrlv uses an unlimited-row array, arranges input symbols in the array along columns,
outputs some symbols that are not from the current input, and leaves some input symbols in the
array without placing them in the output.

• helscanintrlv uses a fixed-size matrix, arranges input symbols in the array across rows, and
outputs all the input symbols without using any default values or values from a previous call.

Types of Convolutional Interleavers

The set of convolutional interleavers in this library includes a general interleaver/deinterleaver pair
as well as several special cases. Each special-case block uses the same computational code that its
more general counterpart uses, but provides an interface that is more suitable for the special case.

The most general block in this library is the General Multiplexed Interleaver block, which allows
arbitrary delay values for the set of shift registers. To implement the preceding schematic using this
block, use an Interleaver delay parameter of [D(1); D(2); ...; D(N)].

More specific is the Convolutional Interleaver block, in which the delay value for the kth shift register
is (k-1) times the block's Register length step parameter. The number of shift registers in this block
is the value of the Rows of shift registers parameter.

Finally, the Helical Interleaver block supports a special case of convolutional interleaving that fills an
array with symbols in a helical fashion and empties the array row by row. To configure this
interleaver, use the Number of columns of helical array parameter to set the width of the array,
and use the Group size and Helical array step size parameters to determine how symbols are
placed in the array. See the reference page for the Helical Interleaver block for more details and an
example.

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a corresponding
convolutional deinterleaver, the restored sequence lags behind the original sequence. The delay,
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measured in symbols, between the original and restored sequences is indicated in the table below.
The variable names in the second column (delay, nrows, slope, col, ngrp, and stp) refer to the
inputs named on each function's reference page.

Delays of Interleaver/Deinterleaver Pairs

Interleaver/Deinterleaver Pair Delay Between Original and Restored Sequences
muxintrlv, muxdeintrlv length(delay)*max(delay)
convintrlv, convdeintrlv nrows*(nrows-1)*slope
helintrlv, heldeintrlv col*ngrp*ceil(stp*(col-1)/ngrp)

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a corresponding
convolutional deinterleaver, the restored sequence lags behind the original sequence. The delay,
measured in symbols, between the original and restored sequences is

Number of shift registers × Maximum delay among all shift registers

for the most general multiplexed interleaver. If your model incurs an additional delay between the
interleaver output and the deinterleaver input, the restored sequence lags behind the original
sequence by the sum of the additional delay and the amount in the preceding formula.

Note For proper synchronization, the delay in your model between the interleaver output and the
deinterleaver input must be an integer multiple of the number of shift registers. You can use the DSP
System Toolbox Delay block to adjust delays manually, if necessary.

Convolutional Interleaver block

In the special case implemented by the Convolutional Interleaver/Convolutional Deinterleaver pair,
the number of shift registers is the Rows of shift registers parameter, while the maximum delay
among all shift registers is

B × (N-1)

where B is the Register length step parameter and N is the Rows of shift registers parameter.

Helical Interleaver block

In the special case implemented by the Helical Interleaver/Helical Deinterleaver pair, the delay
between the restored sequence and the original sequence is

CN s(C− 1)
N

where C is the Number of columns in helical array parameter, N is the Group size parameter,
and s is the Helical array step size parameter.

Effect of Delays on Recovery of Convolutionally Interleaved Data Using MATLAB

If you use a convolutional interleaver followed by a corresponding convolutional deinterleaver, then a
nonzero delay means that the recovered data (that is, the output from the deinterleaver) is not the
same as the original data (that is, the input to the interleaver). If you compare the two data sets
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directly, then you must take the delay into account by using appropriate truncating or padding
operations.

Here are some typical ways to compensate for a delay of D in an interleaver/deinterleaver pair:

• Interleave a version of the original data that is padded with D extra symbols at the end. Before
comparing the original data with the recovered data, omit the first D symbols of the recovered
data. In this approach, all the original symbols appear in the recovered data.

• Before comparing the original data with the recovered data, omit the last D symbols of the original
data and the first D symbols of the recovered data. In this approach, some of the original symbols
are left in the deinterleaver's shift registers and do not appear in the recovered data.

The following code illustrates these approaches by computing a symbol error rate for the
interleaving/deinterleaving operation.

x = randi([0 63],20,1); % Original data
nrows = 3; slope = 2; % Interleaver parameters
D = nrows*(nrows-1)*slope; % Delay of interleaver/deinterleaver pair
hInt   = comm.ConvolutionalInterleaver('NumRegisters', nrows, ...
                    'RegisterLengthStep', slope);
hDeint = comm.ConvolutionalDeinterleaver('NumRegisters', nrows, ...
                    'RegisterLengthStep', slope);

% First approach.
x_padded = [x; zeros(D,1)]; % Pad x at the end before interleaving.
a1 = step(hInt, x_padded); % Interleave padded data.

b1 = step(hDeint, a1)
% Omit input padding and the first D symbols of the recovered data and
% compare
servec1 = step(comm.ErrorRate('ReceiveDelay',D),x_padded,b1);
ser1 = servec1(1)

% Second approach.
release(hInt); release(hDeint)
a2 = step(hInt,x); % Interleave original data.
b2 = step(hDeint,a2)
% Omit the last D symbols of the original data and the first D symbols of
% the recovered data and compare.
servec2 = step(comm.ErrorRate('ReceiveDelay',D),x,b2);
ser2 = servec2(1)

The output is shown below. The zero values of ser1 and ser2 indicate that the script correctly
aligned the original and recovered data before computing the symbol error rates. However, notice
from the lengths of b1 and b2 that the two approaches to alignment result in different amounts of
deinterleaved data.

b1 =

     0
     0
     0
     0
     0
     0
     0
     0
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     0
     0
     0
     0
    59
    42
     1
    28
    52
    54
    43
     8
    56
     5
    35
    37
    48
    17
    28
    62
    10
    31
    61
    39

ser1 =

     0

b2 =

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
    59
    42
     1
    28
    52
    54
    43
     8

ser2 =

     0
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Combining Interleaving Delays and Other Delays

If you use convolutional interleavers in a script that incurs an additional delay, d, between the
interleaver output and the deinterleaver input (for example, a delay from a filter), then the restored
sequence lags behind the original sequence by the sum of d and the amount from the table Delays of
Interleaver/Deinterleaver Pairs on page 16-122. In this case, d must be an integer multiple of the
number of shift registers, or else the convolutional deinterleaver cannot recover the original symbols
properly. If d is not naturally an integer multiple of the number of shift registers, then you can adjust
the delay manually by padding the vector that forms the input to the deinterleaver.

Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in
MATLAB

The example below illustrates convolutional interleaving and deinterleaving using a sequence of
consecutive integers. It also illustrates the inherent delay of the interleaver/deinterleaver pair.

x = [1:10]'; % Original data
delay = [0; 1; 2]; % Set delays of three shift registers.
hInt = comm.MultiplexedInterleaver('Delay', delay);
hDeint = comm.MultiplexedDeinterleaver('Delay', delay);
y = step(hInt,x) % Interleave.
z = step(hDeint,y) % Deinterleave.

In this example, the muxintrlv function initializes the three shift registers to the values [], [0],
and [0 0], respectively. Then the function processes the input data [1:10]', performing internal
computations as indicated in the table below.

Current Input Current Shift Register Current Output Contents of Shift
Registers

1 1 1 []
[0]
[0 0]

2 2 0 []
[2]
[0 0]

3 3 0 []
[2]
[0 3]

4 1 4 []
[2]
[0 3]

5 2 2 []
[5]
[0 3]

6 3 0 []
[5]
[3 6]

7 1 7 []
[5]
[3 6]
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Current Input Current Shift Register Current Output Contents of Shift
Registers

8 2 5 []
[8]
[3 6]

9 3 3 []
[8]
[6 9]

10 1 10 []
[8]
[6 9]

The output from the example is below.

y =

     1
     0
     0
     4
     2
     0
     7
     5
     3
    10

state_y =

    value: {3x1 cell}
    index: 2

z =

     0
     0
     0
     0
     0
     0
     1
     2
     3
     4

Notice that the “Current Output” column of the table above agrees with the values in the vector y.
Also, the last row of the table above indicates that the last shift register processed for the given data
set is the first shift register. This agrees with the value of 2 for state_y.index, which indicates that
any additional input data would be directed to the second shift register. You can optionally check that
the state values listed in state_y.value match the “Contents of Shift Registers” entry in the last
row of the table by typing state_y.value{:} in the Command Window after executing the
example.
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Another feature to notice about the example output is that z contains six zeros at the beginning
before containing any of the symbols from the original data set. The six zeros illustrate that the delay
of this convolutional interleaver/deinterleaver pair is length(delay)*max(delay) = 3*2 = 6.
For more information about delays, see “Delays of Convolutional Interleavers” on page 16-121.

Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in
Simulink

The example below illustrates convolutional interleaving and deinterleaving using a sequence of
consecutive integers. It also illustrates the inherent delay and the effect of the interleaving blocks'
initial conditions.

To open the model, enter doc_convinterleaver at the MATLAB command line. To build the model,
gather and configure these blocks:

• Ramp, in the Simulink Sources library. Use default parameters.
• Zero-Order Hold, in the Simulink Discrete library. Use default parameters.
• Convolutional Interleaver

• Set Rows of shift registers to 3.
• Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver

• Set Rows of shift registers to 3.
• Set Initial conditions to [-1 -2 -3]'.

• Two copies of To Workspace, in the Simulink Sinks library

• Set Variable name to interleaved and restored, respectively, in the two copies of this
block.

• Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to 20. The Simulate section appears on multiple tabs. Run the simulation and
execute the following command:

comparison = [[0:20]', interleaved, restored]

comparison =

     0     0    -1
     1    -2    -2
     2    -3    -3
     3     3    -1
     4    -2    -2
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     5    -3    -3
     6     6    -1
     7     1    -2
     8    -3    -3
     9     9    -1
    10     4    -2
    11    -3    -3
    12    12     0
    13     7     1
    14     2     2
    15    15     3
    16    10     4
    17     5     5
    18    18     6
    19    13     7
    20     8     8

In this output, the first column contains the original symbol sequence. The second column contains
the interleaved sequence, while the third column contains the restored sequence.

The negative numbers in the interleaved and restored sequences come from the interleaving blocks'
initial conditions, not from the original data. The first of the original symbols appears in the restored
sequence only after a delay of 12 symbols. The delay of the interleaver-deinterleaver combination is
the product of the number of shift registers (3) and the maximum delay among all shift registers (4).

For a similar example that also indicates the contents of the shift registers at each step of the
process, see “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive
Integers in MATLAB” on page 16-125.
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Digital Modulation
In most media for communication, only a fixed range of frequencies is available for transmission. One
way to communicate a message signal whose frequency spectrum does not fall within that fixed
frequency range, or one that is otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called modulation, and it is the
modulated signal that you transmit. The receiver then recovers the original signal through a process
called demodulation.

In this section...
“Digital Modulation Features” on page 16-129
“Signals and Delays” on page 16-132
“PM Modulation” on page 16-138
“AM Modulation” on page 16-140
“CPM Modulation” on page 16-143
“Exact LLR Algorithm” on page 16-145
“Approximate LLR Algorithm” on page 16-146
“Delays in Digital Modulation” on page 16-146
“Selected Bibliography for Digital Modulation” on page 16-148

Digital Modulation Features
• “Modulation Techniques” on page 16-129
• “Baseband and Passband Simulation” on page 16-131
• “Modulation Terminology” on page 16-132
• “Representing Digital Signals” on page 16-132

Modulation Techniques

The Communications Toolbox supports these modulation techniques for digital data. All the methods
at the far right are implemented in library blocks.
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Like analog modulation, digital modulation alters a transmittable signal according to the information
in a message signal. However, for digital modulation the message signal is restricted to a finite set.
Modulation functions output the complex envelope of the modulated signal. Communications Toolbox
features enable you to modulate and demodulate signals using various digital modulation techniques.
Constellation plots enable you to visualize the constellation diagram of the modulation symbols.

Note Unless otherwise indicated, the modulation and demodulation functions do not perform pulse
shaping or filtering. See Combining Pulse Shaping and Filtering with Modulation on page 16-142 for
more information about filtering.

The available methods of modulation depend on whether the input signal is analog or digital. The
“Modulation” category lists the digital and analog modulation techniques supported.

Accessing Digital Modulation Blocks

Open the Modulation library by double-clicking the icon in the main block library. Then open the
Digital Baseband sublibrary by double-clicking its icon in the Modulation library.

The Digital Baseband library has sublibraries of its own. Open each of these sublibraries by double-
clicking the icon listed in the table below.

Kind of Modulation Icon in Digital Baseband Library
Amplitude modulation AM
Phase modulation PM
Frequency modulation FM
Continuous phase modulation CPM
Trellis-coded modulation TCM

Some digital modulation sublibraries contain blocks that implement specific modulation techniques.
These specific-case modulation blocks use the same computational code that their general
counterparts use, but provide an interface that is either simpler or more suitable for the specific case.
This table lists general modulators along with the conditions under which is general modulator is
equivalent to a specific modulator. The situation is analogous for demodulators.
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General and Specific Blocks

General Modulator General Modulator Conditions Specific Modulator
General QAM Modulator
Baseband

Predefined constellation containing
2K points on a rectangular lattice.

K is the modulation order.

Rectangular QAM Modulator
Baseband

M-PSK Modulator
Baseband

M-ary number parameter is 2. BPSK Modulator Baseband
M-ary number parameter is 4. QPSK Modulator Baseband

M-DPSK Modulator
Baseband

M-ary number parameter is 2. DBPSK Modulator Baseband
M-ary number parameter is 4. DQPSK Modulator Baseband

CPM Modulator Baseband M-ary number parameter is 2,
Frequency pulse shape parameter
is Gaussian.

GMSK Modulator Baseband

M-ary number parameter is 2,
Frequency pulse shape parameter
is Rectangular, Pulse length
parameter is 1.

MSK Modulator Baseband

Frequency pulse shape parameter
is Rectangular, Pulse length
parameter is 1.

CPFSK Modulator Baseband

General TCM Encoder Predefined signal constellation
containing 2K points on a
rectangular lattice.

Rectangular QAM TCM Encoder

Predefined signal constellation
containing 2K points on a circle.

M-PSK TCM Encoder

Furthermore, the CPFSK Modulator Baseband block is similar to the M-FSK Modulator Baseband
block, when the M-FSK block uses continuous phase transitions. However, the M-FSK features of this
product differ from the CPFSK features in their mask interfaces and in the demodulator
implementations.

Baseband and Passband Simulation

For a given modulation technique, two ways to simulate modulation techniques are called baseband
and passband. Baseband simulation, also known as the lowpass equivalent method, requires less
computation. The Communications Toolbox supports baseband simulation for digital modulation and
passband simulation for analog modulation.

Baseband Modulated Signals Defined

If you use baseband modulation to produce the complex envelope y of the modulation of a message
signal x, then y is a complex-valued signal that is related to the output of a passband modulator. If the
modulated signal has the waveform

Y1(t) 2cos(2πfct + θ)− Y2(t) 2sin(2πfct + θ) ,

where fc is the carrier frequency and θ is the carrier signal's initial phase, then a baseband simulation
recognizes that this equals the real part of
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[(Y1(t) + jY2(t))e jθ]exp( j2πfct) .

and models only the part inside the square brackets. Here j is the square root of -1. The complex
vector y is a sampling of the complex signal

(Y1(t) + jY2(t))e jθ .

If you prefer to work with passband signals instead of baseband signals, then you can build functions
that convert between the two. Be aware that passband modulation tends to be more computationally
intensive than baseband modulation because the carrier signal typically needs to be sampled at a
high rate.

Modulation Terminology

Modulation is a process by which a carrier signal is altered according to information in a message
signal. The carrier frequency, Fc, is the frequency of the carrier signal. The sampling rate is the rate
at which the message signal is sampled during the simulation.

The frequency of the carrier signal is usually much greater than the highest frequency of the input
message signal. The Nyquist sampling theorem requires that the simulation sampling rate, Fs, be
greater than two times the sum of the carrier frequency and the highest frequency of the modulated
signal in order for the demodulator to recover the message correctly.

Representing Digital Signals

To modulate a signal using digital modulation with an alphabet having M symbols, start with a real
message signal whose values are integers from 0 to M-1. Represent the signal by listing its values in
a vector, x. Alternatively, you can use a matrix to represent a multichannel signal, where each column
of the matrix represents one channel.

For example, if the modulation uses an alphabet with eight symbols, then the vector [2 3 7 1 0 5
5 2 6]' is a valid single-channel input to the modulator. As a multichannel example, the two-column
matrix

[2 3;
 3 3;
 7 3;
 0 3;]

defines a two-channel signal in which the second channel has a constant value of 3.

Signals and Delays
All digital modulation blocks process only discrete-time signals and use the baseband representation.
The data types of inputs and outputs are depicted in the following figure.

Note If you want to separate the in-phase and quadrature components of the complex modulated
signal, use the Complex to Real-Imag block in the Simulink Math Operations library.
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Integer-Valued Signals and Binary-Valued Signals

Some digital modulation blocks can accept either integer-valued or binary–valued signals. The
corresponding demodulation blocks can output either integers or groups of individual bits that
represent integers. This section describes how modulation blocks process integer or binary inputs;
the case for demodulation blocks is the reverse. You should note that modulation blocks have an
Input type parameter and that demodulation blocks have an Output type parameter.

When you set the Input type parameter to Integer, the block accepts integer values from 0 to M-1.
M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of K = log2(M) bits

where

K represents the number of bits per symbol. Since M = 2K, K is commonly referred to as the
modulation order.

The input vector length must be an integer multiple of K. In this configuration, the block accepts a
group of K bits and maps that group onto a symbol at the block output. The block outputs one
modulated symbol for each group of K bits.

Constellation Ordering (or Symbol Set Ordering)

Depending on the modulation scheme, the Constellation ordering or Symbol set ordering
parameter indicates how the block maps a group of K input bits to a corresponding symbol. When you
set the parameter to Binary, the block maps [u(1) u(2) ... u(K)] to the integer

∑
i = 1

K
u(i)2K − i

and assumes that this integer is the input value. u(1) is the most significant bit.

If you set M = 8, Constellation ordering (or Symbol set ordering) to Binary, and the binary input
word is [1 1 0], the block converts [1 1 0] to the integer 6. The block produces the same output when
the input is 6 and the Input type parameter is Integer.

When you set Constellation ordering (or Symbol set ordering or Symbol mapping) to Gray, the
block uses a Gray-coded arrangement and assigns binary inputs to points of a predefined Gray-coded
signal constellation. The predefined M-ary Gray-coded signal constellation assigns the binary
representation

M = 8; P = [0:M-1]';
de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The following tables show the typical Binary to Gray mapping for M = 8.
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Binary to Gray Mapping for Bits

Binary Code Gray Code
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Gray to Binary Mapping for Integers

Binary Code Gray Code
0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Gray Encoding a Modulated Signal

For the PSK, DPSK, FSK, QAM, and PAM modulation types, Gray constellations are obtained by
setting the symbol mapping to Gray-encoding in the corresponding modulation function or System
object®.

For modulation functions, you can specify 'gray' for the symbol order input argument to obtain Gray-
encoded modulation.

The following example uses the qammod function with Gray-encoded symbol mapping.

y = [0:15];
y = de2bi(y);
M = 16;
symorder = 'gray';
xmap = qammod(y,M,symorder,'InputType','bit','PlotConstellation',true);
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Checking the constellation plot, you can see the modulated symbols are Gray-encoded because all
adjacent elements differ by only one bit.

Upsample Signals and Rate Changes

Some digital modulation blocks can output an upsampled version of the modulated signal, while their
corresponding digital demodulation blocks can accept an upsampled version of the modulated signal
as input. In both cases, the Rate options parameter represents the upsampling factor, which must be
a positive integer. Depending on whether the input signal is single-rate mode or multirate mode, the
block either changes the signal's vector size or its sample time, as the following table indicates. Only
the OQPSK blocks deviate from the information in the table, in that S is replaced by 2S in the scaling
factors.
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Process Upsampled Modulated Data (Except OQPSK Method)

Computation Type Input Status Result
Modulation Single-rate processing Output vector length is S times

the number of integers or binary
words in the input vector.
Output sample time equals the
input sample time.

Modulation Multirate processing Output vector is a scalar. Output
sample time is 1/S times the
input sample time.

Demodulation Single-rate processing Number of integers or binary
words in the output vector is 1/S
times the number of samples in
the input vector. Output sample
time equals the input sample
time.

Demodulation Multirate processing Output signal contains one
integer or one binary word.
Output sample time is S times
the input sample time.

Furthermore, if S > 1 and the
demodulator is from the AM,
PM, or FM sublibrary, the
demodulated signal is delayed
by one output sample period.
There is no delay if S = 1 or if
the demodulator is from the
CPM sublibrary.

Illustrations of Size or Rate Changes

The following schematics illustrate how a modulator (other than OQPSK) upsamples a triplet of
frame-based and sample-based integers. In both cases, the Samples per symbol parameter is 2.
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The following schematics illustrate how a demodulator (other than OQPSK or one from the CPM
sublibrary) processes three doubly sampled symbols using both frame-based and sample-based
inputs. In both cases, the Samples per symbol parameter is 2. The sample-based schematic includes
an output delay of one sample period.
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For more information on delays, see Delays in Digital Modulation on page 16-146.

PM Modulation
DQPSK Signal Constellation Points and Transitions

This model plots the output of the DQPSK Modulator Baseband block. The image shows the possible
transitions from each symbol in the DQPSK signal constellation to the next symbol.
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To build the model, gather and configure these blocks:

• Random Integer Generator
• DQPSK Modulator Baseband
• Complex to Real-Imag (Simulink)
• XY Graph (for more information, see “Visualize Simulation Data on an XY Plot” (Simulink))

For the Random Integer Generator block, set the M-ary number to 4, set the initial seed to any
positive integer scalar (to randomize results you can use the output of the randn function), and set
the sample time to .01.

The plot illustrates pi/4-DQPSK modulation, because the default Phase offset parameter in the DQPSK
Modulator Baseband block is pi/4. To see how the phase offset influences the signal constellation,
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change the Phase offset parameter in the DQPSK Modulator Baseband block to pi/8 or another value.
Run the model again and observe how the plot changes.

AM Modulation
Rectangular QAM Modulation and Scatter Diagram

The model below uses the M-QAM Modulator Baseband block to modulate random data. After passing
the symbols through a noisy channel, the model produces a scatter diagram of the noisy data. The
diagram suggests what the underlying signal constellation looks like and shows that the noise distorts
the modulated signal from the constellation.

To open this model, enter doc_qam_scatter at the MATLAB command line. To build the model,
gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm Sources library

• Set M-ary number to 16.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Set Sample time to .1.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital Baseband sublibrary of
Modulation

• Set Normalization method to Peak Power.
• AWGN Channel, in the Channels library

• Set Es/No to 20.
• Set Symbol period to .1.

• Constellation Diagram, in the Comm Sinks library

• Set Symbols to display to 160.

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to 250. The Simulate section appears on multiple tabs.

Running the model produces a scatter diagram like the following one. Your plot might look somewhat
different, depending on your Initial seed value in the Random Integer Generator block. Because the
modulation technique is 16-QAM, the plot shows 16 clusters of points. If there were no noise, the plot
would show the 16 exact constellation points instead of clusters around the constellation points.
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Compute Symbol Error Rate

The example generates a random digital signal, modulates it, adds noise, demodulates the noisy
signal, and computes the symbol error rate. The noisy, modulated data is plotted in a constellation
diagram. Numerical results and plot may vary due to the random input data.

Create a random digital message and a constellation diagram System object.

M = 16; % Alphabet size, 16-QAM
x = randi([0 M-1],5000,1);

cpts = qammod(0:M-1,M);
constDiag = comm.ConstellationDiagram('ReferenceConstellation',cpts, ...
    'XLimits',[-4 4],'YLimits',[-4 4]);

Apply 16-QAM modulation and transmit signal through an AWGN channel.

y = qammod(x,M);
ynoisy = awgn(y,15,'measured');

Demodulate ynoisy to recover the message and check the symbol error rate.

z = qamdemod(ynoisy,M);
[num,rt] = symerr(x,z)

num = 79

rt = 0.0158

Create constellation diagram from noisy data. The signal reference constellation has 16 precisely
located points but the transmitted symbols with the noise added causes the scatter plot to have a
small cluster of points scattered around each reference constellation point.

constDiag(ynoisy)
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Combine Pulse Shaping and Filtering with Modulation

Modulation is often followed by pulse shaping, and demodulation is often preceded by a filtering or
an integrate-and-dump operation. This section presents an example involving rectangular pulse
shaping. For an example that uses raised cosine pulse shaping, see “Pulse Shaping Using a Raised
Cosine Filter” on page 24-6.
Rectangular Pulse Shaping

Rectangular pulse shaping repeats each output from the modulator a fixed number of times to create
an upsampled signal. Although it is less realistic than other kinds of pulse shaping, rectangular pulse
shaping can be a first step or an exploratory step in algorithm development. If the transmitter
upsamples the modulated signal, then the receiver should downsample the received signal before
demodulating. The code below uses the rectpulse function for rectangular pulse shaping at the
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transmitter and the intdump function for downsampling at the receiver. The “integrate and dump”
operation is one way to downsample the received signal.

% Create a random digital message and a constellation diagram System
% object.
M = 16;                     % Alphabet size, 16-QAM
x = randi([0 M-1],5000,1);  % Message signal
Nsamp = 4;                  % Oversampling rate

% Apply 16-QAM modulation and rectangular pulse shaping. Transmit signal
% through an AWGN channel.
y = qammod(x,M);
ypulse = rectpulse(y,Nsamp);
ynoisy = awgn(ypulse,15,'measured');

% Downsample at the receiver.
ydownsamp = intdump(ynoisy,Nsamp);

% Demodulate to recover the message.
z = qamdemod(ydownsamp,M);

CPM Modulation
Phase Tree for Continuous Phase Modulation

This example plots a phase tree associated with a continuous phase modulation scheme. A phase tree
is a diagram that superimposes many curves, each of which plots the phase of a modulated signal
over time. The distinct curves result from different inputs to the modulator.

This example uses the CPM Modulator Baseband block for its numerical computations. The block is
configured using a raised cosine filter pulse shape. The example also illustrates how you can use
Simulink and MATLAB together. The example uses MATLAB commands to run a series of simulations
with different input signals, to collect the simulation results, and to plot the full data set.

Note In contrast to this example's approach using both MATLAB and Simulink, the
commcpmphasetree example produces a phase tree using a Simulink model without additional lines
of MATLAB code.

To open the model, enter doc_phasetree at the MATLAB command line. To build the model, gather
and configure these blocks:

• Constant, in the Simulink Commonly Used Blocks library

• Set Constant value to s (which will appear in the MATLAB workspace).
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• Set Sampling mode to Frame-based.
• Set Frame period to 1.

• CPM Modulator Baseband

• Set M-ary number to 2.
• Set Modulation index to 2/3.
• Set Frequency pulse shape to Raised Cosine.
• Set Pulse length to 2.

• To Workspace, in the Simulink Sinks library

• Set Variable name to x.
• Set Save format to Array.

Do not run the model, because the variable s is not yet defined in the MATLAB workspace. Instead,
save the model to a folder on your MATLAB path, using the filename doc_phasetree.

The second step of this example is to execute the following MATLAB code:

% Parameters from the CPM Modulator Baseband block
M_ary_number = 2;
modulation_index = 2/3;
pulse_length = 2;
samples_per_symbol = 8;

L = 5;  % Symbols to display
pmat = [];
for ip_sig = 0:(M_ary_number^L)-1
    s = de2bi(ip_sig,L,M_ary_number,'left-msb');
    % Apply the mapping of the input symbol to the CPM
    % symbol 0 -> -(M-1), 1 -> -(M-2), etc.
    s = 2*s'+1-M_ary_number;
    sim('doc_phasetree', .9); % Run model to generate x.
    % Next column of pmat
    pmat(:,ip_sig+1) = unwrap(angle(x(:)));
end;
pmat = pmat/(pi*modulation_index);
t = (0:L*samples_per_symbol-1)'/samples_per_symbol;
plot(t,pmat); figure(gcf); % Plot phase tree.

This code defines the parameters for the CPM Modulator, applies symbol mapping, and plots the
results. Each curve represents a different instance of simulating the CPM Modulator Baseband block
with a distinct (constant) input signal.
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Exact LLR Algorithm
The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being transmitted
versus a 1 bit being transmitted for a received signal. The LLR for a bit b is defined as:

L(b) = log Pr(b = 0 r = (x, y))
Pr(b = 1 r = (x, y))

Assuming equal probability for all symbols, the LLR for an AWGN channel can be expressed as:

L(b) = log
∑

s ∈ S0
e−

1
σ2 (x− sx)2 + (y − sy)2

∑
s ∈ S1

e−
1

σ2 (x− sx)2 + (y − sy)2

where the variables represent the values shown in the following table.

Variable What the Variable Represents
r Received signal with coordinates (x, y).
b Transmitted bit (one of the K bits in an M-ary symbol, assuming all M symbols

are equally probable.
S0 Ideal symbols or constellation points with bit 0, at the given bit position.
S1 Ideal symbols or constellation points with bit 1, at the given bit position.
sx In-phase coordinate of ideal symbol or constellation point.
sy Quadrature coordinate of ideal symbol or constellation point.
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Variable What the Variable Represents
σ2 Noise variance of baseband signal.

σx
2 Noise variance along in-phase axis.

σy
2 Noise variance along quadrature axis.

Note Noise components along the in-phase and quadrature axes are assumed to be independent and
of equal power (i.e., σx

2 = σy
2 = σ2/2).

Approximate LLR Algorithm
Approximate LLR is computed by taking into consideration only the nearest constellation point to the
received signal with a 0 (or 1) at that bit position, rather than all the constellation points as done in
exact LLR. It is defined as [8]:

L(b) = − 1
σ2 min

s ∈ S0
(x− sx)2 +  (y − sy)2 − min

s ∈ S1
(x− sx)2 +  (y − sy)2

Delays in Digital Modulation
Digital modulation and demodulation blocks sometimes incur delays between their inputs and
outputs, depending on their configuration and on properties of their signals. The following table lists
sources of delay and the situations in which they occur.

Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation Type

Situation in Which Delay Occurs Amount of Delay

FM demodulator Sample-based processing One output period
All demodulators in CPM
sublibrary

Multirate processing, and the model uses a
variable-step solver or a fixed-step solver with the
Tasking Mode parameter set to
SingleTasking
D = Traceback length parameter

D+1 output periods

Single-rate processing, D = Traceback depth
parameter

D output periods

OQPSK demodulator Single-rate processing For more information,
see OQPSK
Demodulator
Baseband.

Multirate processing, and the model uses a fixed-
step solver with Tasking Mode parameter set to
Auto or MultiTasking.
Multirate processing processing, and the model
uses a variable-step solver or the Tasking Mode
parameter is set to SingleTasking.

All decoders in TCM
sublibrary

Operation mode set to Continuous, Tr =
Traceback depth parameter, and code rate k/n

Tr*k output bits
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As a result of delays, data that enters a modulation or demodulation block at time T appears in the
output at time T+delay. In particular, if your simulation computes error statistics or compares
transmitted with received data, it must take the delay into account when performing such
computations or comparisons.

First Output Sample in DPSK Demodulation

In addition to the delays mentioned above, the M-DPSK, DQPSK, and DBPSK demodulators produce
output whose first sample is unrelated to the input. This is related to the differential modulation
technique, not the particular implementation of it.

Example: Delays from Demodulation

Demodulation in the model below causes the demodulated signal to lag, compared to the
unmodulated signal. When computing error statistics, the model accounts for the delay by setting the
Error Rate Calculation block's Receive delay parameter to 0. If the Receive delay parameter had a
different value, then the error rate showing at the top of the Display block would be close to 1/2.

To open this model, enter doc_oqpsk_modulation_delay at the MATLAB command line. To build
the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm Sources library

• Set M-ary number to 4.
• Set Initial seed to any positive integer scalar.

• OQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband sublibrary of
Modulation

• AWGN Channel, in the Channels library

• Set Es/No to 6.
• OQPSK Demodulator Baseband, in the PM sublibrary of the Digital Baseband sublibrary of

Modulation
• Error Rate Calculation, in the Comm Sinks library

• Set Receive delay to 1.
• Set Computation delay to 0.
• Set Output data to Port.

• Display, in the Simulink Sinks library

• Drag the bottom edge of the icon to make the display big enough for three entries.

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to 1000. The Simulate section appears on multiple tabs. Then run the model
and observe the error rate at the top of the Display block's icon. Your error rate will vary depending
on your Initial seed value in the Random Integer Generator block.
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Analog Passband Modulation
In this section...
“Analog Modulation Features” on page 16-149
“Represent Signals for Analog Modulation” on page 16-149
“Sampling Issues in Analog Modulation” on page 16-151
“Filter Design Issues” on page 16-152

Analog Modulation Features
In most communication medium, only a fixed range of frequencies is available for transmission. One
way to communicate a message signal whose frequency spectrum does not fall within that fixed
frequency range, or one that is otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called modulation, and it is the
modulated signal that you transmit. The receiver then recovers the original signal through a process
called demodulation. This section describes how to modulate and demodulate analog signals using
blocks.

Open the Modulation library by double-clicking its icon in the main Communications Toolbox block
library. Then, open the Analog Passband sublibrary by double-clicking its icon in the Modulation
library.

The following figure shows the modulation techniques that Communications Toolbox supports for
analog signals. As the figure suggests, some categories of techniques include named special cases.

For a given modulation technique, two ways to simulate modulation techniques are called baseband
and passband. This product supports passband simulation for analog modulation.

The modulation and demodulation blocks also let you control such features as the initial phase of the
modulated signal and post-demodulation filtering.

Represent Signals for Analog Modulation
Analog modulation blocks in this product process only sample-based scalar signals. The input and
output of the analog modulator and demodulator are all real signals.

All analog demodulators in this product produce discrete-time, not continuous-time, output.
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Representing Analog Signals Using MATLAB

To modulate an analog signal using MATLAB, start with a real message signal and a sampling rate Fs
in hertz. Represent the signal using a vector x, the entries of which give the signal's values in time
increments of 1/Fs. Alternatively, you can use a matrix to represent a multichannel signal, where
each column of the matrix represents one channel.

For example, if t measures time in seconds, then the vector x below is the result of sampling a sine
wave 8000 times per second for 0.1 seconds. The vector y represents the modulated signal.

Fs = 8000; % Sampling rate is 8000 samples per second.
Fc = 300; % Carrier frequency in Hz
t = [0:.1*Fs]'/Fs; % Sampling times for .1 second
x = sin(20*pi*t); % Representation of the signal
y = ammod(x,Fc,Fs); % Modulate x to produce y.
figure;
subplot(2,1,1); plot(t,x); % Plot x on top.
subplot(2,1,2); plot(t,y)% Plot y below.

As a multichannel example, the code below defines a two-channel signal in which one channel is a
sinusoid with zero initial phase and the second channel is a sinusoid with an initial phase of pi/8.

Fs = 8000;
t = [0:.1*Fs]'/Fs;
x = [sin(20*pi*t), sin(20*pi*t+pi/8)];

Analog Modulation with Additive White Gaussian Noise (AWGN) Using MATLAB

This example illustrates the basic format of the analog modulation and demodulation functions.
Although the example uses phase modulation, most elements of this example apply to other analog
modulation techniques as well.
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The example samples an analog signal and modulates it. Then it simulates an additive white Gaussian
noise (AWGN) channel, demodulates the received signal, and plots the original and demodulated
signals.

% Prepare to sample a signal for two seconds,
% at a rate of 100 samples per second.
Fs = 100; % Sampling rate
t = [0:2*Fs+1]'/Fs; % Time points for sampling

% Create the signal, a sum of sinusoids.
x = sin(2*pi*t) + sin(4*pi*t);

Fc = 10; % Carrier frequency in modulation
phasedev = pi/2; % Phase deviation for phase modulation

y = pmmod(x,Fc,Fs,phasedev); % Modulate.
y = awgn(y,10,'measured',103); % Add noise.
z = pmdemod(y,Fc,Fs,phasedev); % Demodulate.

% Plot the original and recovered signals.
figure; plot(t,x,'k-',t,z,'g-');
legend('Original signal','Recovered signal');

Other examples using analog modulation functions appear in the reference pages for ammod,
amdemod, ssbdemod, and fmmod.

Sampling Issues in Analog Modulation
The proper simulation of analog modulation requires that the Nyquist criterion be satisfied, taking
into account the signal bandwidth.

Specifically, the sample rate of the system must be greater than twice the sum of the carrier
frequency and the signal bandwidth.
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Filter Design Issues
After demodulating, you might want to filter out the carrier signal. The particular filter used, such as
butter, cheby1, cheby2, and ellip, can be selected on the mask of the demodulator block.
Different filtering methods have different properties, and you might need to test your application with
several filters before deciding which is most suitable.

Varying Filter's Cutoff Frequency Using Simulink

In many situations, a suitable cutoff frequency is half the carrier frequency. Because the carrier
frequency must be higher than the bandwidth of the message signal, a cutoff frequency chosen in this
way properly filters out unwanted frequency components. If the cutoff frequency is too high, the
unwanted components may not be filtered out. If the cutoff frequency is too low, it might narrow the
bandwidth of the message signal.

The following example modulates a sawtooth message signal, demodulates the resulting signal using
a Butterworth filter, and plots the original and recovered signals. The Butterworth filter is
implemented within the SSB AM Demodulator Passband block.

To open this model, enter doc_filtercutoffs at the MATLAB command line.

This example generates the following output:

There is invariably a delay between a demodulated signal and the original received signal. Both the
filter order and the filter parameters directly affect the length of this delay.

Other Filter Cutoffs

To see the effect of a lowpass filter with a higher cutoff frequency, set the Cutoff frequency of the
SSB AM Demodulator Passband block to 49, and run the simulation again. The new result is shown
below. The higher cutoff frequency allows the carrier signal to interfere with the demodulated signal.
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To see the effect of a lowpass filter with a lower cutoff frequency, set the Cutoff frequency of the
SSB AM Demodulator Passband block to 4, and run the simulation again. The new result is shown in
the following figure. The lower cutoff frequency narrows the bandwidth of the demodulated signal.
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Phase-Locked Loops
A phase-locked loop combines a voltage-controlled oscillator and a phase comparator as a feedback
system to adjust the oscillator frequency or phase to track an applied frequency-modulated or phase-
modulated signal.

Voltage-Controlled Oscillator Blocks
A voltage-controlled oscillator is one part of a phase-locked loop. The Continuous-Time VCO and
Discrete-Time VCO blocks implement voltage-controlled oscillators. These blocks produce continuous-
time and discrete-time output signals, respectively. Each block's output signal is sinusoidal, and
changes its frequency in response to the amplitude variations of the input signal.

Overview of PLL Simulation
A phase-locked loop (PLL), when used in conjunction with other components, helps synchronize the
receiver. A PLL is an automatic control system that adjusts the phase of a local signal to match the
phase of the received signal. The PLL design works best for narrowband signals.

A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled oscillator (VCO). For
example, the following figure shows how these components are arranged for an analog passband PLL.
In this case, the phase detector is just a multiplier. The signal e(t) is often called the error signal.

This table indicates the supported types of PLLs and the blocks that implement them.

Supported PLLs in Components Library

Type of PLL Block
Analog passband PLL Phase-Locked Loop
Analog baseband PLL Baseband PLL
Linearized analog baseband PLL Linearized Baseband PLL
Digital PLL using a charge pump Charge Pump PLL

Different PLLs use different phase detectors, filters, and VCO characteristics. Some of these
attributes are built into the PLL blocks in this product, while others depend on parameters that you
set in the block mask:

• You specify the filter's transfer function in the block mask using the Lowpass filter numerator
and Lowpass filter denominator parameters. Each of these parameters is a vector that lists the
coefficients of the respective polynomial in order of descending exponents of the variable s. To
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design a filter, you can use functions such as butter, cheby1, and cheby2 in Signal Processing
Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL blocks use a VCO input
sensitivity parameter. Some blocks also use VCO quiescent frequency, VCO initial phase, and
VCO output amplitude parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot change from the block
mask.

Implementing an Analog Baseband PLL
Unlike passband models for a phase-locked loop, a baseband model does not depend on a carrier
frequency. This allows you to use a lower sampling rate in the simulation. Two blocks implement
analog baseband PLLs:

• Baseband PLL
• Linearized Baseband PLL

The linearized model and the nonlinearized model differ in that the linearized model uses the
approximation

sin Δθ(t) ≅ Δθ(t)

to simplify the computations. This approximation is close when Δθ(t) is near zero. Thus, instead of
using the input signal and the VCO output signal directly, the linearized PLL model uses only their
phases.

Implementing a Digital PLL
The charge pump PLL is a classical digital PLL. Unlike the analog PLLs mentioned above, the charge
pump PLL uses a sequential logic phase detector, which is also known as a digital phase detector or a
phase/frequency detector.
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Multiple-Input Multiple-Output (MIMO)
In this section...
“Orthogonal Space-Time Block Codes (OSTBC)” on page 16-157
“MIMO Fading Channel” on page 16-158
“Spherical Decoding” on page 16-158
“Selected Bibliography for MIMO Systems” on page 16-158

The use of Multiple-Input Multiple-Output (MIMO) techniques for sending and receiving multiple data
signals simultaneously over the same radio channel by exploiting multipath propagation that provide
potential gains in capacity when using multiple antennas at both transmitter and receiver ends of a
communications system. New techniques, which account for the extra spatial dimension, have been
adopted to realize these gains in new systems and previously existing systems.

MIMO technology has been adopted in multiple wireless systems, including Wi-Fi, WiMAX, LTE, and
LTE-Advanced.

The Communications Toolbox product offers components to model:

• OSTBC (orthogonal space-time block coding technique)
• MIMO Fading Channels
• Spherical Decoding

and demos highlighting the use of these components in applications.

For background material on the subject of MIMO systems, see the works listed in Selected
Bibliography for MIMO systems on page 16-158.

Orthogonal Space-Time Block Codes (OSTBC)
Model Orthogonal Space Time Block Coding (OSTBC) which is a MIMO technique offering full spatial
diversity gain with extremely simple single-symbol maximum likelihood decoding as described in [4],
[6], and [8].

In Simulink, the OSTBC Encoder and OSTBC Combiner blocks, residing in the MIMO block library,
implement the orthogonal space time block coding technique. These two blocks offer a variety of
specific codes (with different rates) for up to 4 transmit and 8 receive antenna systems. The encoder
block is used at the transmitter to map symbols to multiple antennas while the combiner block is used
at the receiver to extract the soft information per symbol using the received signal and the channel
state information. You access the MIMO library by double clicking the icon in the main
Communications Toolbox block library. Alternatively, you can type commmimo at the MATLAB
command line.

The OSTBC technique is an attractive scheme because it can achieve the full (maximum) spatial
diversity order and have symbol-wise maximum-likelihood (ML) decoding. For more information about
the algorithmic details and the specific codes implemented, see OSTBC Combining Algorithms on the
OSTBC Combiner block help page and OSTBC Encoding Algorithms on the OSTBC Encoder block
help page. Similar functionality is available in MATLAB by using the comm.OSTBCCombiner and
comm.OSTBCEncoder System objects.
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MIMO Fading Channel
Model a MIMO fading channel using the comm.MIMOChannel System object in MATLAB or the
MIMO Fading Channel block in Simulink. Using them you model the fading channel characteristics of
MIMO links with Rayleigh and Rician fading, and use the Kronecker model for the spatial correlation
between the links as described in [1].

Spherical Decoding
Model a sphere decoder using the comm.SphereDecoder System object in MATLAB or the Sphere
Decoder block in Simulink. You can use them to find the maximum-likelihood solution for a set of
received symbols over a MIMO channel with any number transmit antennas and receive antennas.
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Differential Pulse Code Modulation

In this section...
“Section Overview” on page 16-159
“DPCM Terminology” on page 16-159
“Represent Predictors” on page 16-159
“Example: DPCM Encoding and Decoding” on page 16-160
“Optimize DPCM Parameters” on page 16-161

Section Overview
The quantization in the section Quantizing a Signal on page 16-11 requires no a priori knowledge
about the transmitted signal. In practice, you can often make educated guesses about the present
signal based on past signal transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization method is differential
pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM predictive
quantizer with a linear predictor.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a partition and codebook as
described in “Represent Partitions” on page 16-2 and “Represent Codebooks” on page 16-2, but also
a predictor. The predictor is a function that the DPCM encoder uses to produce the educated guess at
each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p is an m-tuple of real
numbers. Instead of quantizing x itself, the DPCM encoder quantizes the predictive error, x-y. The
integer m above is called the predictive order. The special case when m = 1 is called delta
modulation.

Represent Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the vector as the polynomial
transfer function of a finite impulse response (FIR) filter.
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Example: DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal's current value and its
value at the previous step. Thus the predictor is just y(k) = x (k - 1). The code below
implements this scheme. It encodes a sawtooth signal, decodes it, and plots both the original and
decoded signals. The solid line is the original signal, while the dashed line is the recovered signals.
The example also computes the mean square error between the original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

    0.0327
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Optimize DPCM Parameters
• “Section Overview” on page 16-161
• “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page 16-162

Section Overview

The section “Optimize Quantization Parameters” on page 16-3 describes how to use training data
with the lloyds function to help find quantization parameters that will minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction with the two
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note The training data you use with dpcmopt should be typical of the kinds of signals you will
actually be quantizing with dpcmenco.
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Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example created
predictor, partition, and codebook in a straightforward but haphazard way, this example uses
the same codebook (now called initcodebook) as an initial guess for a new optimized codebook
parameter. This example also uses the predictive order, 1, as the desired order of the new optimized
predictor. The dpcmopt function creates these optimized parameters, using the sawtooth signal x as
training data. The example goes on to quantize the training data itself; in theory, the optimized
parameters are suitable for quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

    0.0063
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Quantize and Compand an Exponential Signal
When transmitting signals with a high dynamic range, quantization using equal length intervals can
result in loss of precision and signal distortion. Companding is a operation that applies a logarithmic
computation to compress the signal before quantization on the transmit side and applies an inverse
operation to expand the signal to restore it to full scale on the receive side. Companding avoids signal
distortion without the need to specify many quantization levels. Compare distortion when using 6-bit
quantization on an exponential signal with and without companding. Plot the original exponential
signal, the quantized signal and the expanded signal.

Create an exponential signal and calculate its maximum value.

sig = exp(-4:0.1:4);
V = max(sig);

Quantize the signal by using equal-length intervals. Set partition and codebook values, assuming 6-bit
quantization. Calculate the mean square distortion.

partition = 0:2^6 - 1;
codebook = 0:2^6;
[~,qsig,distortion] = quantiz(sig,partition,codebook);

Compress the signal by using the compand function configured to apply the mu-law method. Apply
quantization and expand the quantized signal. Calculate the mean square distortion of the
companded signal.

mu = 255; % mu-law parameter
csig_compressed = compand(sig,mu,V,'mu/compressor');
[~,quants] = quantiz(csig_compressed,partition,codebook);
csig_expanded = compand(quants,mu,max(quants),'mu/expander');
distortion2 = sum((csig_expanded - sig).^2)/length(sig);

Compare the mean square distortion for quantization versus combined companding and quantization.
The distortion for the companded and quantized signal is an order of magnitude lower than the
distortion of the quantized signal. Equal-length intervals are well suited to the logarithm of an
exponential signal but not well suited to an exponential signal itself.

[distortion, distortion2]

ans = 1×2

    0.5348    0.0397

Plot the original exponential signal, the quantized signal, and the expanded signal. Zoom in on axis to
highlight the quantized signal error at lower signal levels.

plot([sig' qsig' csig_expanded']);
title('Comparison Between Original, Quantized, and Expanded Signals');
xlabel('Interval');
ylabel('Apmlitude');
legend('Original','Quantized','Expanded','location','nw');
axis([0 70 0 20])

 Quantize and Compand an Exponential Signal
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See Also
Functions
compand | quantiz
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Quantization
In this section...
“Represent Partitions” on page 16-165
“Represent Codebooks” on page 16-165
“Determine Which Interval Each Input Is In” on page 16-165
“Optimize Quantization Parameters” on page 16-166
“Quantize a Signal” on page 16-167

Represent Partitions
Scalar quantization is a process that maps all inputs within a specified range to a common value. This
process maps inputs in a different range of values to a different common value. In effect, scalar
quantization digitizes an analog signal. Two parameters determine a quantization: a partition on page
16-2 and a codebook on page 16-2.

A quantization partition defines several contiguous, nonoverlapping ranges of values within the set of
real numbers. To specify a partition in the MATLAB environment, list the distinct endpoints of the
different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}
• {x: 0< x ≤ 1}
• {x: 1 < x ≤ 3}
• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall into each range of the
partition. Represent a codebook as a vector whose length is the same as the number of partition
intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Determine Which Interval Each Input Is In
The quantiz function also returns a vector that tells which interval each input is in. For example, the
output below says that the input entries lie within the intervals labeled 0, 6, and 5, respectively. Here,
the 0th interval consists of real numbers less than or equal to 3; the 6th interval consists of real
numbers greater than 8 but less than or equal to 9; and the 5th interval consists of real numbers
greater than 7 but less than or equal to 8.
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partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

     0
     6
     5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase the example
more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters
• “Section Overview” on page 16-166
• “Example: Optimizing Quantization Parameters” on page 16-166

Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate partition and
codebook parameters. However, testing and selecting parameters for large signal sets with a fine
quantization scheme can be tedious. One way to produce partition and codebook parameters easily is
to optimize them according to a set of so-called training data.

Note The training data you use should be typical of the kinds of signals you will actually be
quantizing.

Example: Optimizing Quantization Parameters

The lloyds function optimizes the partition and codebook according to the Lloyd algorithm. The
code below optimizes the partition and codebook for one period of a sinusoidal signal, starting from a
rough initial guess. Then it uses these parameters to quantize the original signal using the initial
guess parameters as well as the optimized parameters. The output shows that the mean square
distortion after quantizing is much less for the optimized parameters. The quantiz function
automatically computes the mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
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codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is

ans =

    0.0148    0.0024

Quantize a Signal
• “Scalar Quantization Example 1” on page 16-167
• “Scalar Quantization Example 2” on page 16-167

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map a real
vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

The output is below.

quantized =

  Columns 1 through 6

   -1.0000   -1.0000   -1.0000   -1.0000    0.5000    0.5000

  Columns 7 through 12

    2.0000    2.0000    2.0000    2.0000    2.0000    3.0000

  Column 13

    3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing a sampled
sine wave, it plots the original and quantized signals. The plot contrasts the x's that make up the sine
curve with the dots that make up the quantized signal. The vertical coordinate of each dot is a value
in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
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[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
legend('Original signal','Quantized signal');
axis([-.2 7 -1.2 1.2])

See Also
Functions
quantiz
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OFDM Modulation

• “OFDM with User-Specified Pilot Indices” on page 17-2
• “SER Simulation for OFDM Link” on page 17-6
• “OFDM with MIMO Simulation” on page 17-8
• “Gray-Coded Binary Ordering” on page 17-11
• “CPM Phase Tree” on page 17-16
• “Compare Filtered QPSK and MSK Signals in Simulink” on page 17-20
• “Compare GMSK and MSK Signals in Simulink” on page 17-23
• “Gray Coded 8-PSK” on page 17-28
• “Soft Decision GMSK Demodulator” on page 17-33
• “General QAM Modulation in AWGN Channel” on page 17-40
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OFDM with User-Specified Pilot Indices
This example shows how to construct an orthogonal frequency division modulation (OFDM)
modulator/demodulator pair and to specify their pilot indices. The OFDM modulator System object
enables you to specify pilot subcarrier indices consistent with the constraints described in
comm.OFDMModulator.info. In this example, for OFDM transmission over a 3x2 channel, pilot
indices are created for each of the three transmit antennas. Additionally, the pilot indices differ
between odd and even symbols.

Create an OFDM modulator object having five symbols, three transmit antennas, and length six
windowing.

ofdmMod = comm.OFDMModulator('FFTLength',256, ...
    'NumGuardBandCarriers',[12; 11], ...
    'NumSymbols',5, ...
    'NumTransmitAntennas',3, ...
    'PilotInputPort',true, ...
    'Windowing',true, ...
    'WindowLength',6);

Specify pilot indices for even and odd symbols for the first transmit antenna.

pilotIndOdd = [20; 58; 96; 145; 182; 210];
pilotIndEven = [35; 73; 111; 159; 197; 225];

pilotIndicesAnt1 = cat(2,pilotIndOdd,pilotIndEven,pilotIndOdd, ...
    pilotIndEven,pilotIndOdd);

Generate pilot indices for the second and third antennas based on the indices specified for the first
antenna. Concatenate the indices for the three antennas and assign them to the
PilotCarrierIndices property.

pilotIndicesAnt2 = pilotIndicesAnt1 + 5;
pilotIndicesAnt3 = pilotIndicesAnt1 - 5;

ofdmMod.PilotCarrierIndices = ...
    cat(3,pilotIndicesAnt1,pilotIndicesAnt2,pilotIndicesAnt3);

Create on OFDM demodulator with two receive antennas based on the existing OFDM modulator
System object. Determine the data and pilot dimensions using the info function.

ofdmDemod = comm.OFDMDemodulator(ofdmMod);
ofdmDemod.NumReceiveAntennas = 2;

dims = info(ofdmMod)

dims = struct with fields:
     DataInputSize: [215 5 3]
    PilotInputSize: [6 5 3]
        OutputSize: [1360 3]

Generate data and pilot symbols for the OFDM modulator given the array sizes specified in modDim.

dataIn = ...
    complex(randn(dims.DataInputSize), ...
    randn(dims.DataInputSize));
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pilotIn = ...
    complex(randn(dims.PilotInputSize), ...
    randn(dims.PilotInputSize));

Apply OFDM modulation to the data and pilots.

modOut = ofdmMod(dataIn,pilotIn);

Pass the modulated data through a 3x2 random channel.

chanGain = complex(randn(3,2),randn(3,2));
chanOut = modOut * chanGain;

Demodulate the received data using the OFDM demodulator object.

[dataOut,pilotOut] = ofdmDemod(chanOut);

Show the resource mapping for the three transmit antennas. The gray lines in the figure show the
placement of custom nulls to avoid interference among antennas.

showResourceMapping(ofdmMod)

 OFDM with User-Specified Pilot Indices
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For the first transmit and first receive antenna pair, demonstrate that the input pilot signal matches
the input pilot signal.

pilotCompare = ...
    abs(pilotIn(:,:,1)*chanGain(1,1)) - abs(pilotOut(:,:,1,1));
max(pilotCompare(:) < 1e-10)

ans = logical
   1

 OFDM with User-Specified Pilot Indices
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SER Simulation for OFDM Link
This example shows how to perform a symbol error rate (SER) simulation of an over-the-air OFDM
communication link.

A basic communications link using OFDM modulation with QPSK symbols is simulated. There is a
single transmit and a single receive antenna.

Create QPSK modulator and demodulator objects.

qpskMod = comm.QPSKModulator;
qpskDemod = comm.QPSKDemodulator;

Create a default OFDM modulator and demodulator pair.

ofdmMod = comm.OFDMModulator;
ofdmDemod = comm.OFDMDemodulator;

Use the info function to determine the required input dimensions for the OFDM modulator.

modDim = info(ofdmMod)

modDim = struct with fields:
    DataInputSize: [53 1]
       OutputSize: [80 1]

Set the number of frames. Determine the number of OFDM symbols per frame from the
modDim.DataInputSize array.

nFrames = 10000;
nSymbolsPerFrame = modDim.DataInputSize(1);

Create an error rate counter with a reset input port. Initialize the symbol error rate vector, SER.

errRate = comm.ErrorRate('ResetInputPort',true);
SER = zeros(nFrames,1);

Run the simulation over 10000 OFDM frames (530000 symbols). During loop execution, generate a
random data vector with length equal to the required number of symbols per frame, Apply QPSK
modulation and then apply OFDM modulation. Pass the OFDM modulated data through the AWGN
channel and then apply OFDM demodulation. Demodulate the resultant QPSK data and compare it
with the original data to determine the symbol error rate.

snr = [8 9 10 11];
meanSER = zeros(size(snr));
for j = 1:length(snr)
    for k = 1:nFrames
    % Generate random data for each OFDM frame
    data = randi([0 3],nSymbolsPerFrame,1);

    % Apply QPSK modulation
    txQPSK = qpskMod(data);

    % Apply OFDM modulation
    txSig = ofdmMod(txQPSK);
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    % Pass OFDM signal through AWGN channel
    rxSig = awgn(txSig,snr(j),'measured');

    % Demodulate OFDM data
    rxQPSK = ofdmDemod(rxSig);

    % Demodulate QPSK data
    rxData = qpskDemod(rxQPSK);

    % Compute BER
    errors = errRate(data,rxData,1);
    SER(k) = errors(1);
    end
    meanSER(j) = mean(SER);
end

Display the symbol error rate (SER) curve.

semilogy(snr,meanSER)
xlabel('SNR(dB)')
ylabel('SER')

 SER Simulation for OFDM Link
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OFDM with MIMO Simulation
This example shows how to use an OFDM modulator and demodulator in a simple, 2x2 MIMO error
rate simulation. The OFDM parameters are based on the 802.11n standard.

Create a QPSK modulator and demodulator pair.

qpskMod = comm.QPSKModulator;
qpskDemod = comm.QPSKDemodulator;

Create an OFDM modulator and demodulator pair with user-specified pilot indices, an inserted DC
null, two transmit antennas, and two receive antennas. Specify pilot indices that vary across
antennas.

ofdmMod = comm.OFDMModulator('FFTLength',128, ...
    'PilotInputPort',true, ...
    'PilotCarrierIndices', ...
    cat(3,[12; 40; 54; 76; 90; 118],[13; 39; 55; 75; 91; 117]), ...
    'InsertDCNull',true, ...
    'NumTransmitAntennas',2);
ofdmDemod = comm.OFDMDemodulator(ofdmMod);
ofdmDemod.NumReceiveAntennas = 2;

Show the resource mapping of pilot subcarriers for each transmit antenna. The gray lines in the
figure denote the insertion of null subcarriers to minimize pilot signal interference.

showResourceMapping(ofdmMod)

17 OFDM Modulation

17-8



Determine the dimensions of the OFDM modulator by using the info method.

ofdmModDim = info(ofdmMod);

numData = ofdmModDim.DataInputSize(1);   % Number of data subcarriers
numSym = ofdmModDim.DataInputSize(2);    % Number of OFDM symbols
numTxAnt = ofdmModDim.DataInputSize(3);  % Number of transmit antennas

Generate data symbols to fill 100 OFDM frames.

nframes = 100;
data = randi([0 3],nframes*numData,numSym,numTxAnt);

Apply QPSK modulation to the random symbols and reshape the resulting column vector to match the
OFDM modulator requirements.

modData = qpskMod(data(:));
modData = reshape(modData,nframes*numData,numSym,numTxAnt);

Create an error rate counter.

errorRate = comm.ErrorRate;

Simulate the OFDM system over 100 frames assuming a flat, 2x2, Rayleigh fading channel. Remove
the effects of multipath fading using a simple, least squares solution, and demodulate the OFDM
waveform and QPSK data. Generate error statistics by comparing the original data with the
demodulated data.

 OFDM with MIMO Simulation
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for k = 1:nframes

    % Find row indices for kth OFDM frame
    indData = (k-1)*ofdmModDim.DataInputSize(1)+1:k*numData;

    % Generate random OFDM pilot symbols
    pilotData = complex(rand(ofdmModDim.PilotInputSize), ...
        rand(ofdmModDim.PilotInputSize));

    % Modulate QPSK symbols using OFDM
    dataOFDM = ofdmMod(modData(indData,:,:),pilotData);

    % Create flat, i.i.d., Rayleigh fading channel 2-by-2 channel
    chGain = complex(randn(2,2),randn(2,2))/sqrt(2); 

    % Pass OFDM signal through Rayleigh and AWGN channels
    receivedSignal = awgn(dataOFDM*chGain,30);

    % Apply least squares solution to remove effects of fading channel
    rxSigMF = chGain.' \ receivedSignal.';

    % Demodulate OFDM data
    receivedOFDMData = ofdmDemod(rxSigMF.');

    % Demodulate QPSK data
    receivedData = qpskDemod(receivedOFDMData(:));

    % Compute error statistics
    dataTmp = data(indData,:,:);
    errors = errorRate(dataTmp(:),receivedData);
end

Display the error statistics.

fprintf('\nSymbol error rate = %d from %d errors in %d symbols\n',errors)

Symbol error rate = 9.471154e-02 from 1970 errors in 20800 symbols
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Gray-Coded Binary Ordering
Gray coding is a technique that multilevel modulation schemes often use to minimize the bit error
rate. It consists of ordering modulation symbols so that the binary representations of adjacent
symbols differ by only one bit. This section shows a communications system with Gray-coded 8-ary
phase shift keying (8-PSK) modulation to compare the error rate performance of Gray and natural
binary coded bit ordering.

In this section...
“Introduction” on page 17-11
“Compare Error Rate for Gray- and Binary-Coded Ordering” on page 17-12

Introduction
The example in this section modulates gray and natural binary coded data frames using the 8-PSK
method. The data frames passes through an AWGN channel, and are demodulated using an 8-PSK
demodulator. Error rate calculator System objects measure the symbol and bit error rates.

In this communications system, PSK Modulator System objects:

• Accept binary-valued inputs that represent integers between 0 and M – 1. M is the modulation
order and is equal to 8 for 8-PSK modulation.

• Map binary representations to constellation points using Gray-coded and natural binary-coded
ordering.

• Produce unit-magnitude complex phasor outputs, with evenly spaced phases between 0 and 2π(M
– 1)/M.

This table indicates the relationship between Gray-coded binary representations in the input and
phasors in the output. The second column of the table is an intermediate representation that the
System object uses in its computations.

Modulator Input Gray-Coded
Ordering

Modulator Output

000 0 exp(0)
001 1 exp(jπ/4)
010 3 exp(j3π/4)
011 2 exp(jπ/2) = exp(j2π/4)
100 7 exp(j7π/4)
101 6 exp(j3π/2) = exp(j6π/4)
110 4 exp(jπ) = exp(j4π/4)
111 5 exp(j5π/4)

This table sorts the first two columns from the previous table, according to the output values. This
sorting makes it clearer that there is only a 1 bit difference between neighboring symbols. In the
following figure, notice that the numbers in the second column of the table appear in
counterclockwise order.

 Gray-Coded Binary Ordering
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Modulator Output Modulator Input
exp(0) 000
exp(jπ/4) 001
exp(jπ/2) = exp(j2π/4) 011
exp(j3π/4) 010
exp(jπ) = exp(j4π/4) 110
exp(j5π/4) 111
exp(j3π/2) = exp(j6π/4) 101
exp(j7π/4) 100

Compare Error Rate for Gray- and Binary-Coded Ordering
Compare Gray coding with natural binary coding by using appropriately configured PSK modulator
and PSK demodulator System objects. This simulation iterates over a range of bit energy to noise
power spectral density, Eb/N0, values and runs until either the specified maximum number of bit
errors (maxNumErrs) or the maximum number of bits (maxNumBits) is reached for Gray coding for
each Eb/N0 point.

Initialization

Initialize the system variables and create System objects for modulation, demodulation, AWGN
channel, and error rate operations. Since the comm.AWGNChannel System object™ and the randi
function use the default random stream, set the random number generator seed to ensure repeatable
results. The state of the random number generator is stored before setting the random stream seed,
and restored at the end of the example.

M = 8; % Modulation order for 8-PSK
SamplesPerFrame = 10000;
maxNumErrs=100;
maxNumBits=1e8;
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prevState = rng;
rng(529558);

Create PSK modulator and demodulator System objects to map the binary input data to 8-PSK Gray-
and binary-coded constellations.

pskmod = comm.PSKModulator('ModulationOrder',M, ...
    'SymbolMapping','Gray', ...
    'PhaseOffset',0, ...
    'BitInput',true);
pskdemod = comm.PSKDemodulator('ModulationOrder',M, ...
    'SymbolMapping','Gray', ...
    'PhaseOffset',0, ...
    'BitOutput',true, ...
    'OutputDataType','uint8', ...
    'DecisionMethod','Hard decision');
pskmodb = comm.PSKModulator('ModulationOrder',M, ...
    'SymbolMapping','Binary', ...
    'PhaseOffset',0, ...
    'BitInput',true);
pskdemodb = comm.PSKDemodulator('ModulationOrder',M, ...
    'SymbolMapping','Binary', ...
    'PhaseOffset',0, ...
    'BitOutput',true, ...
    'OutputDataType','uint8', ...
    'DecisionMethod','Hard decision');

Create an AWGN channel System object to add noise to the modulated signal. The noise method is
configured to Eb/N0 for the processing loop. The PSK modulator generates symbols with 1 W of
power, so the signal power property of the AWGN channel object is set to 1 W also.

awgnchan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...
    'BitsPerSymbol',log2(M),'SignalPower',1);

Create a symbol error rate and bit error rate calculator System objects to compare the demodulated
integer and bit data with the original source data. This comparison yields symbol error and bit error
statistics. The output of the error rate calculator System object is a three-element vector containing
the calculated error rate, the number of errors observed, and the amount of data processed. The
simulation uses the three-element vector to determine when to stop the simulation.

symerror = comm.ErrorRate;
biterror = comm.ErrorRate;
biterrorb = comm.ErrorRate;

Frame Processing Loop

Configure a frame processing loop where data is coded, modulated, and demodulated using 8-PSK
modulation. The loop simulates the communications system for Eb/N0 values in the range 0 dB to 12
dB in steps of 2 dB.

For each Eb/N0 value, the simulation stops when either the maximum number of errors
(maxNumErrs) or the maximum number of bits (maxNumBits) processed by the bit error rate
calculator System object is reached for the Gray coded bits.

EbNoVec = 0:2:12; % Eb/No values to simulate
SERVec = zeros(size(EbNoVec)); % SER history
BERVec = zeros(size(EbNoVec)); % BER history for Gray ordered
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BERVecb = zeros(size(EbNoVec)); % BER history for binary ordered
for p = 1:length(EbNoVec)
  % Reset System objects
  reset(symerror);
  reset(biterror);
  reset(biterrorb);
  awgnchan.EbNo = EbNoVec(p);
  % Reset SER / BER for the current Eb/No value
  SER = zeros(3,1);
  BER = zeros(3,1);
  while (BER(2)<maxNumErrs) && (BER(3)<maxNumBits)
    % Generate random data
    txSym = randi([0 M-1],SamplesPerFrame,1,'uint8');
    txBits = reshape(de2bi(txSym,log2(M),'left-msb')',[],1); % Convert symbols to bits
    
    tx = pskmod(txBits);
    txb = pskmodb(txBits);
    rx = awgnchan(tx);
    rxb = awgnchan(txb);
    rxBits = pskdemod(rx);
    rxBitsb = pskdemodb(rxb);
    rxSym = bi2de(reshape(rxBits,log2(M),[])','left-msb');
    
    SER = symerror(txSym,rxSym); % Symbol error rate for Gray-coded data 
    BER = biterror(txBits,rxBits); % Bit error rate for Gray-coded data
    BERb = biterrorb(txBits,rxBitsb); % Bit error rate for natural binary-coded data
  end
  % Save history of SER and BER values
  SERVec(p) = SER(1);
  BERVec(p) = BER(1);
  BERVecb(p) = BERb(1);
end

Restore the default stream.

rng(prevState)

Results Analysis

Analyze the data from the example and compare theoretical performance with simulation
performance. The theoretical symbol error probability of MPSK is

PE M = erfc
ES
N0

sin π
M

where erfc is the complementary error function, ES/N0 is the ratio of energy in a symbol to noise
power spectral density, and M is the number of symbols.

To determine the bit error probability, convert the symbol error probability, PE, to its bit error
equivalent. There is no general formula for the symbol to bit error conversion. Nevertheless, upper
and lower limits are easy to establish. The actual bit error probability, Pb, can be shown to be
bounded by

PE M
log2M ≤ Pb ≤

M/2
M − 1PE M
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The lower limit corresponds to the case where the symbols have undergone Gray coding. The upper
limit corresponds to the case of pure binary coding.

Calculate theoretical error probabilities by using the use the berawgn function. Plot the simulated
symbol error rate for Gray coding, bit error rate for Gray and natural binary coding, and the
theoretical symbol error and bit error probabilities for Gray coding.

[theorBER,theorSER] = berawgn(EbNoVec,'psk',M,'nondiff');

figure;
semilogy(EbNoVec,SERVec,'o',EbNoVec,BERVecb,'x',EbNoVec,BERVec,'*', ...
         EbNoVec,theorSER,'-',EbNoVec,theorBER,'-');
legend('Symbol error rate','Bit error rate (Binary)','Bit error rate (Gray)', ...
          'Theoretical Symbol error rate','Theoretical Bit error rate', ...
          'Location','SouthWest');
xlabel('Eb/No (dB)'); ylabel('Error Probability');
title('Symbol and Bit Error Probability');
grid on;
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CPM Phase Tree
In this section...
“Structure of the Example” on page 17-16
“Results and Displays” on page 17-17
“Exploring the Example” on page 17-19

This model shows how to use the Eye Diagram block to view the phase trajectory, phase tree, and
instantaneous frequency of a CPM modulated signal.

Structure of the Example
This example, doc_cpm_phase_tree, uses various Communications Toolbox, DSP System Toolbox,
and Simulink blocks to model a baseband CPM signal.

In particular, the example model includes these blocks:

• Random Integer Generator block
• Integer to Bit Converter block
• CPM Modulator Baseband block
• Complex to Magnitude-Angle block
• Phase Unwrap block
• Zero-Order Hold block
• Discrete Transfer Fcn block
• Gain block
• Multiple copies of the Eye Diagram Scope block
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Results and Displays
When you run the example, several Eye Diagram blocks show how the CPM signal changes over time:

• The Modulated Signal block displays the in-phase and quadrature signals. Double-click the block
to open the scope. The modulated signal is easy to see in the eye diagram only when the
Modulation index parameter in the CPM Modulator Baseband block is set to 0.5. If you set the
Modulation index to another value, for example 2/3, the features of the modulated signal are
difficult to decipher for this more complex modulation. Unwrapping the phase and plotting it is
another way to illustrate these more complex CPM modulated signals.

• The Phase Trajectory block displays the CPM phase. Double-click the block to open the scope. The
Phase Trajectory block reveals that the signal phase is also difficult to view because it drifts with
the data input to the modulator.

• The Phase Tree block displays the phase tree of the signal. The CPM phase is processed by a few
simple blocks to make the CPM pulse shaping easier to view. This processing holds the phase at
the beginning of the symbol interval and subtracts it from the signal. This resets the phase to zero
every three symbols. The resulting plot shows the many phase trajectories that can be taken by
the signal from any given symbol epoch.
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• The Instantaneous Frequency block displays the instantaneous frequency of the signal. The CPM
phase is differentiated to produce the frequency deviation of the signal. Viewing the CPM
frequency signal enables you to observe the frequency deviation qualitatively, as well as make
quantitative observations, such as measuring peak frequency deviation.
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Exploring the Example
To learn more about the example, try changing the following parameters in the CPM Modulator
Baseband block:

• Change Pulse length to a value between 1 and 6.
• Change Frequency pulse shape to one of the other settings, such as Rectangular or

Gaussian.

You can observe the effect of changing these parameters on the phase tree and instantaneous
frequency of the modulated signal.

 CPM Phase Tree
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Compare Filtered QPSK and MSK Signals in Simulink
This model compares filtered quadrature phase shift keying (QPSK) and minimum shift keying (MSK)
modulation schemes.

The model generates the filtered QPSK signal using random integer data from the Random Integer
Generator block, which gets modulated by the QPSK Modulator Baseband block, and then filtered by
the Raised Cosine Transmit Filter block. The model generates the MSK signal using random binary
data from the Bernoulli Binary Generator block, which gets modulated by the MSK Modulator
Baseband block. Noise is added to both the filtered QPSK and MSK signals by using AWGN Channel
blocks. The Eye Diagram blocks are used to visualize eye diagrams of both signals.

For filtered QPSK modulation, the values of both the in-phase and quadrature components of the
signal are permitted to change at any symbol interval. For MSK modulation, the symbol interval is
half that for QPSK, but the in-phase and quadrature components change values in alternate symbol
epochs.

Compare eye diagram plots of a QPSK modulated signal and an MSK modulated signal. For QPSK the
ideal sampling period is 1/2 sample, with sampling time for both in-phase and quadrature signal
components at 0.5, 1.5, 2.5, .... For MSK, the ideal sample period is 1 sample, with sampling time at
0.5, 1.5, 2.5, ... for the in-phase signal component and 1, 2, 3, ... for the quadrature signal component.
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Compare GMSK and MSK Signals in Simulink
This model compares Gaussian minimum shift keying (GMSK) and minimum shift keying (MSK)
modulation schemes.

The Random Integer Generator block provides a source of uniformly distributed random integers in
the range [0, M-1], where M is the constellation size of the GMSK or MSK signal. The Unipolar to
Bipolar Converter block maps a unipolar input signal to a bipolar output consisting of integers
between -(M-1) and +(M-1). The bipolar data is routed to separate paths. The top path applies GMSK
modulation by using the GMSK Modulator Baseband block. The bottom path applies MSK modulation
by using MSK Modulator Baseband block. Noise is added to both the GMSK and MSK signals by using
AWGN Channel blocks. The Eye Diagram blocks are used to visualize eye diagrams of both signals.

The eye diagrams show the similarity between the GMSK and MSK signals when you set the initial
pulse length of the GMSK Modulator Baseband block to 1.

 Compare GMSK and MSK Signals in Simulink
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Set the initial pulse length in the GMSK modulator to 5 to view the difference that a partial response
modulation has on the eye diagram. The increased pulse length results in an increase in the number
of paths, showing that the CPM waveform depends on values of the previous symbols as well as the
present symbol. Plot the eye diagram of the GMSK signal.

 Compare GMSK and MSK Signals in Simulink
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If you change the initial pulse length to an even number, such as 4, you should set initial phase offset
of the GMSK modulator to pi/4 and the offset argument of the eye diagram 0 for a better view of the
modulated signal. In order to more clearly view the Gaussian pulse shape, you must use scopes that
enable you to view the phase of the signal, as described in the “CPM Phase Tree” on page 17-16
example.
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Gray Coded 8-PSK

In this section...
“Structure of the Example” on page 17-28
“Gray-Coded M-PSK Modulation” on page 17-28
“Exploring the Example” on page 17-30
“Simulation Results” on page 17-31
“Comparison with Pure Binary Coding and Theory” on page 17-32

This model, doc_gray_code, shows a communications link using Gray-coded 8-PSK modulation.
Gray coding is a technique often used in multilevel modulation schemes to minimize the bit error rate
by ordering modulation symbols so that the binary representations of adjacent symbols differ by only
one bit.

Structure of the Example
The example model includes these blocks:

• The Random Integer Generator block serves as the source, producing a sequence of integers.
• The Integer to Bit Converter block converts each integer into a corresponding binary

representation.
• The AWGN Channel block adds white Gaussian noise to the modulated data.
• The M-PSK Demodulator Baseband block demodulates the corrupted data.
• The Bit to Integer Converter block converts each binary representation to a corresponding

integer.
• One copy of the Error Rate Calculation block (labeled Error Rate Calculation1 in this model)

compares the demodulated integer data with the original source data, yielding symbol error
statistics. The output of the Error Rate Calculation block is a three-element vector containing the
calculated error rate, the number of errors observed, and the amount of data processed.

• Another copy of the Error Rate Calculation library block (labeled Error Rate Calculation2 in
this model) compares the demodulated binary data with the binary representations of the source
data, yielding bit error statistics.

Gray-Coded M-PSK Modulation
In this model, the M-PSK Modulator Baseband block:

• Accepts binary-valued inputs that represent integers between 0 and M − 1, where M is the
alphabet size

• Maps binary representations to constellation points using a Gray-coded ordering
• Produces unit-magnitude complex phasor outputs, with evenly spaced phases between 0 and 2π(M

− 1)/M
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The table indicates which binary representations in the input correspond to which phasors in the
output. The second column of the table is an intermediate representation that the block uses in its
computations.

Modulator Input Gray-Coded Ordering Modulator Output
000 0 exp(0) = 1
001 1 exp(jπ/4)
010 3 exp(j3π/4)
011 2 exp(j2π/4) = exp(jπ/2)
100 7 exp(j7π/4)
101 6 exp(j6π/4) = exp(j3π/2)
110 4 exp(j4π/4) = exp(jπ)
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Modulator Input Gray-Coded Ordering Modulator Output
111 5 exp(j5π/4)

The table below sorts the first two columns of the table above, according to the output values. This
sorting makes it clearer that the overall effect of this subsystem is a Gray code mapping, as shown in
the figure below. Notice that the numbers in the second column of the table below appear in
counterclockwise order in the figure.

Modulator Output Modulator Input
exp(0) 000
exp(jπ/4) 001
exp(j2π/4) = exp(jπ/2) 011
exp(j3π/4) 010
exp(j4π/4) = exp(jπ) 110
exp(j5π/4) 111
exp(j6π/4) = exp(j3π/2) 101
exp(j7π/4) 100

Exploring the Example
You can analyze the data that the example produces to compare theoretical performance with
simulation performance.

The theoretical symbol error probability of MPSK is

PE(M) = erfc
Es
N0

sin π
M

where erfc is the complementary error function, Es/N0 is the ratio of energy in a symbol to noise
power spectral density, and M is the number of symbols.
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To determine the bit error probability, the symbol error probability, PE, needs to be converted to its bit
error equivalent. There is no general formula for the symbol to bit error conversion. Upper and lower
limits are nevertheless easy to establish. The actual bit error probability, Pb, can be shown to be
bounded by

PE(M)
log2M ≤ Pb ≤

M/2
M − 1PE(M)

The lower limit corresponds to the case where the symbols have undergone Gray coding. The upper
limit corresponds to the case of pure binary coding.

Simulation Results
To test the Gray code modulation scheme in this model, simulate the graycode model for a range of
Eb/N0 values. If you want to study bit error rates but not symbol error rates, then you can use the
bertool graphical user interface as described in “Use Bit Error Rate Analysis App” on page 23-12.

The rest of this section studies both the bit and symbol error rates and hence does not use bertool.

Because increasing the value of Eb/N0 lowers the number of errors produced, the length of each
simulation must be increased to ensure that the statistics of the errors remain stable.

Using the sim command to run a Simulink simulation from the MATLAB command window, the
following code generates data for symbol error rate and bit error rate curves. It considers Eb/N0
values in the range 0 dB to 12 dB, in steps of 2 dB.

M       = 8;
Tsym    = 0.2;
BERVec  = [];
SERVec  = [];
EbNoVec = [0:2:12];
for n   = 1:length(EbNoVec);
    EbNo = EbNoVec(n);
    sim('doc_gray_code')  ;
    SERVec(n,:) = graySER;
    BERVec(n,:) = grayBER;
end;

After simulating for the full set of Eb/N0 values, you can plot the results using these commands:

semilogy( EbNoVec,SERVec(:,1), 'o', EbNoVec, BERVec(:,1), '*' );
legend  ( 'Symbol error rate', 'Bit error rate' );
xlabel  ( 'Eb/No (dB)' ); ylabel( 'Error Probability' );
title   ( 'Symbol and Bit Error Probability' );
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Comparison with Pure Binary Coding and Theory
As a further exercise, using data obtained from berawgn, you can plot the theoretical curves on the
same axes with the simulation results. You can also compare Gray coding with pure binary coding, by
modifying the M-PSK Modulator Baseband and M-PSK Demodulator Baseband blocks so that their
Constellation ordering parameters are Binary instead of Gray.
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Soft Decision GMSK Demodulator
In this section...
“Structure of the Example” on page 17-33
“The Serial GMSK Receiver” on page 17-34
“Results and Displays” on page 17-34

This model shows a system that includes convolutional coding and GMSK modulation. The receiver in
this model includes two parallel paths, one that uses soft decisions and another that uses hard
decisions. The model uses the bit error rates for the two paths to illustrate that the soft decision
receiver performs better. This is to be expected, because soft decisions enable the system to retain
more information from the demodulation operation to use in the decoding operation.

Structure of the Example
The example model, doc_gmsk_soft_decision, transmits and receives a coded GMSK signal.

The key components are:

• A Bernoulli Binary Generator block, which generates binary numbers.
• A Convolutional Encoder block, which encodes the binary numbers using a rate 1/2 convolutional

code.
• A GMSK modulator section, which computes the logical difference between successive bits and

modulates the result using the GMSK Modulator Baseband block.
• A GMSK soft demodulator section that implements the detector design proposed in [1], called a

serial receiver. This section of the model produces a noisy bipolar signal. The section labeled Soft
Decisions uses an eight-region partition in the Quantizing Encoder block to prepare for 3-bit soft-
decision decoding using the Viterbi Decoder block. The section labeled Hard Decisions uses a
two-region partition to prepare for hard-decision Viterbi decoding. Using a two-region partition
here is equivalent to having the demodulator make hard decisions. In each decoding section, a
Delay block aligns codeword boundaries with frame boundaries so that the Viterbi Decoder block
can decode properly. This is necessary because the combined delay of other blocks in the system is
not an integer multiple of the length of a codeword.

• A pair of Error Rate Calculation blocks, as well as Display blocks that show the BER for the system
with each type of decision.
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The Serial GMSK Receiver
The serial GMSK receiver is based on the fact that GMSK can be represented as a combination of
amplitude pulses [2] - [3], and can, therefore, be demodulated with a matched filter. The GMSK
waveform used in this model has a BT product of 0.3 and a frequency pulse length of 4 symbols. As
such, it can be represented by eight different amplitude pulses, which are shown in Figure 2 of [3].
The matched filter in this model uses only the largest pulse of the eight, because of its simplicity of
implementation. That same simplicity, however, yields BER performance that is inferior to the more
traditional Viterbi-based demodulator.

Results and Displays
The example model includes these visualizations to illustrate its performance:

• The Display blocks illustrate that the soft decision receiver performs better (that is, has a smaller
BER) than the hard decision receiver.

• The Tx Signal window shows the scatter plot of the signal before the AWGN channel.
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• The Rx Signal window shows the scatter plot of the signal after the AWGN channel.
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• The Freq Response window shows the frequency response of the GMSK signal before and after
the AWGN channel.

17 OFDM Modulation

17-36



• The Decision Levels window shows, in yellow, the various soft decision levels in the top plot and
the binary hard decisions in the bottom plot. This window also indicates, in blue, when errors
occur.

 Soft Decision GMSK Demodulator

17-37



References
[1] Bjerke, B., J. Proakis, M. Lee, and Z. Zvonar, "A Comparison of GSM Receivers for Fading

Multipath Channels with Adjacent- and Co-Channel Interference," IEEE J. Select. Areas
Commun., Nov. 2000, pp. 2211-2219.

17 OFDM Modulation

17-38



[2] Laurent, Pierre, "Exact and Approximate Construction of Digital Phase Modulations by
Superposition of Amplitude Modulated Pulses (AMP)," IEEE Trans. Comm., Vol. COM-34, No.
2, Feb. 1986, pp. 150-160.

[3] Jung, Peter, "Laurent's Representation of Binary Digital Continuous Phase Modulated Signals with
Modulation index 1/2 Revisited", IEEE Trans. Comm., Vol. COM-42, No. 2/3/4, Feb./Mar./Apr.
1994, pp. 221-224.

 Soft Decision GMSK Demodulator

17-39



General QAM Modulation in AWGN Channel
Transmit and receive data using a nonrectangular 16-ary constellation in the presence of Gaussian
noise. Show the scatter plot of the noisy constellation and estimate the symbol error rate (SER) for
two different signal-to-noise ratios.

Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.

c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i];
M = length(c);

Generate random symbols.

data = randi([0 M-1],2000,1);

Modulate the data by using the genqammod function. General QAM modulation is necessary because
the custom constellation is not rectangular.

modData = genqammod(data,c);

Pass the signal through an AWGN channel having a 20 dB signal-to-noise ratio (SNR).

rxSig = awgn(modData,20,'measured');

Display a scatter plot of the received signal and the reference constellation, c.

h = scatterplot(rxSig);
hold on
scatterplot(c,[],[],'r*',h)
grid
hold off
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Demodulate the received signal by using the genqamdemod function. Determine the number of
symbol errors and the symbol error ratio.

demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 1

ser = 5.0000e-04

Repeat the transmission and demodulation process with an AWGN channel having a 10 dB SNR.
Determine the symbol error rate for the reduced SNR. As expected, the performance degrades when
the SNR is decreased.

rxSig = awgn(modData,10,'measured');
demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 462

ser = 0.2310
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MSK

• “MSK Signal Recovery” on page 18-2
• “MSK Signal Recovery” on page 18-8
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MSK Signal Recovery
Model channel impairments such as timing phase offset, carrier frequency offset, and carrier phase
offset for a minimum shift keying (MSK) signal. Use comm.MSKTimingSynchronizer and
comm.CarrierSynchronizer System objects to synchronize such signals at the receiver. The MSK
timing synchronizer recovers the timing offset, while a carrier synchronizer recovers the carrier
frequency and phase offsets.

Initialize system variables by running the MATLAB script configureMSKSignalRecoveryEx.
Define the logical control variable recoverTimingPhase to enable timing phase recovery, and
recoverCarrier to enable carrier frequency and phase recovery.

configureMSKSignalRecoveryEx;
recoverTimingPhase = true;
recoverCarrier = true;

Modeling Channel Impairments

Specify the sample delay, timingOffset, that the channel model applies. Create a variable
fractional delay object to introduce the timing delay to the transmitted signal.

timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;

Create a comm.PhaseFrequencyOffset System object to introduce carrier phase and frequency
offsets to a modulated signal. Because the MSK modulator upsamples the transmitted symbols, set
the SampleRate property to the ratio of the samplesPerSymbol and the sample time, Ts.

freqOffset = 50;
phaseOffset = 30;
pfo = comm.PhaseFrequencyOffset(...
    'FrequencyOffset',freqOffset, ...
    'PhaseOffset',phaseOffset, ...
    'SampleRate',samplesPerSymbol/Ts);

Create a comm.AWGNChannel System object to add white Gaussian noise to the modulated signal.
The noise power is determined by the EbNo property, that is the bit energy to noise power spectral
density ratio. Because the MSK modulator generates symbols with 1 Watt of power, set the signal
power property of the AWGN channel System object to 1.

EbNo = 20 + 10*log10(samplesPerSymbol);
chAWGN = comm.AWGNChannel(...
    'NoiseMethod','Signal to noise ratio (Eb/No)', ...
    'EbNo',EbNo,...
    'SignalPower',1, ...
    'SamplesPerSymbol',samplesPerSymbol);

Timing Phase, Carrier Frequency, and Carrier Phase Synchronization

Create an MSK timing synchronizer to recover symbol timing phase using a fourth-order nonlinearity
method.

timeSync = comm.MSKTimingSynchronizer(...
    'SamplesPerSymbol',samplesPerSymbol, ...
    'ErrorUpdateGain',0.02);
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Create a carrier synchronizer to recover both carrier frequency and phase. Because the MSK
constellation is QPSK with a 0-degree phase offset, set the comm.CarrierSynchronizer
accordingly.

phaseSync = comm.CarrierSynchronizer(...
    'Modulation','QPSK', ...
    'ModulationPhaseOffset','Custom', ...
    'CustomPhaseOffset',0, ...
    'SamplesPerSymbol',1);

Stream Processing Loop

The simulation modulates data using MSK modulation. The modulated symbols pass through the
channel model, which applies timing delay, carrier frequency and phase shift, and additive white
Gaussian noise. The receiver performs timing phase and carrier frequency and phase recovery.
Finally, the signal symbols are demodulated and the bit error rate is calculated. The
plotResultsMSKSignalRecoveryEx script generates scatter plots in this order to show these
effects:

1 Channel impairments
2 Timing synchronization
3 Carrier synchronization

At the end of the simulation, the example displays the timing phase, frequency, and phase estimates
as a function of simulation time.

for p = 1:numFrames
    %------------------------------------------------------------------------
    % Generate and modulate data
    %------------------------------------------------------------------------
    txBits = randi([0 1],samplesPerFrame,1);
    txSym = modem(txBits);
    %------------------------------------------------------------------------
    % Transmit through channel
    %------------------------------------------------------------------------
    %
    % Add timing offset
    rxSigTimingOff = varDelay(txSym,timingOffset*samplesPerSymbol);
    %
    % Add carrier frequency and phase offset
    rxSigCFO = pfo(rxSigTimingOff);
    %
    % Pass the signal through an AWGN channel
    rxSig = chAWGN(rxSigCFO);
    %
    % Save the transmitted signal for plotting
    plot_rx = rxSig;
    %
    %------------------------------------------------------------------------
    % Timing recovery
    %------------------------------------------------------------------------
    if recoverTimingPhase
        % Recover symbol timing phase using fourth-order nonlinearity
        % method
        [rxSym,timEst] = timeSync(rxSig);
        % Calculate the timing delay estimate for each sample
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        timEst = timEst(1)/samplesPerSymbol;
    else
        % Do not apply timing recovery and simply downsample the received
        % signal
        rxSym = downsample(rxSig,samplesPerSymbol);
        timEst = 0;
    end

    % Save the timing synchronized received signal for plotting
    plot_rxTimeSync = rxSym;

    %------------------------------------------------------------------------
    % Carrier frequency and phase recovery
    %------------------------------------------------------------------------
    if recoverCarrier
        % The following script applies carrier frequency and phase recovery
        % using a second order phase-locked loop (PLL), and removes phase ambiguity
        [rxSym,phEst] = phaseSync(rxSym);
        removePhaseAmbiguityMSKSignalRecoveryEx;
        freqShiftEst = mean(diff(phEst)/(Ts*2*pi));
        phEst = mod(mean(phEst),360); % in degrees
    else
        freqShiftEst = 0;
        phEst = 0;
    end

    % Save the phase synchronized received signal for plotting
    plot_rxPhSync = rxSym;
    %------------------------------------------------------------------------
    % Demodulate the received symbols
    %------------------------------------------------------------------------
    rxBits = demod(rxSym);
    %------------------------------------------------------------------------
    % Calculate the bit error rate
    %------------------------------------------------------------------------
    errorStats = BERCalc(txBits,rxBits);
    %------------------------------------------------------------------------
    % Plot results
    %------------------------------------------------------------------------
    plotResultsMSKSignalRecoveryEx;
end
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Display the bit error rate and the total number of symbols processed by the error rate calculator.

BitErrorRate = errorStats(1)
TotalNumberOfSymbols = errorStats(3)

BitErrorRate =

   4.0001e-06

TotalNumberOfSymbols =

      499982

Conclusion and Further Experimentation

The recovery algorithms are demonstrated by using constellation plots taken after timing, carrier
frequency, and carrier phase synchronization.

Open the script to create a writable copy of this example and its supporting files. Then, to show the
effects of the recovery algorithms, you can enable and disable the logical control variables
recoverTimingPhase and recoverCarrier and rerun the simulation.

Appendix

This example uses these scripts:
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• configureMSKSignalRecoveryEx
• plotResultsMSKSignalRecoveryEx
• removePhaseAmbiguityMSKSignalRecoveryEx
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MSK Signal Recovery
In this section...
“Exploring the Model” on page 18-8
“Results and Displays” on page 18-9
“Experimenting with the Example” on page 18-12

This model shows how channel impairments such as timing phase offset, carrier frequency offset, and
phase offset for a minimum shift keying (MSK) signal are modeled. The model uses blocks from the
Synchronization library to recover the signal. To open the model, type doc_commmsksync at the
MATLAB command line.

Exploring the Model
The example models an MSK transmitted signal undergoing channel impairments, including these
components:

1 An MSK signal source that uses the Bernoulli Binary Generator block to output equiprobable
symbols and modulates the symbols using an MSK Modulator Baseband block

2 A channel model that incorporates independently variable offsets in the timing phase, frequency,
and phase. The channel model also includes the AWGN Channel block

3 Signal recovery, consisting of:

• Timing recovery using the MSK-Type Signal Timing Recovery block
• Carrier frequency and phase recovery using the Carrier Synchronizer block

4 An MSK Demodulator Baseband block
5 Blocks that compute and display the system's bit error rate (BER)

When you load the model, it also initializes some parameters that several blocks share.
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Results and Displays
When you run the simulation, the displays show the estimated values for the impairments as well as
the BER metrics. Because the Carrier Synchronizer block performs both frequency and phase
correction, the display of estimated phase offset may fluctuate rapidly. The display labeled BER
Metrics shows a three-element vector containing the calculated bit error rate (BER), the number of
errors observed, and the number of bits processed.

You can view the MSK signal via the Constellation Diagram blocks at the different stages. This
provides a compelling visual rendition of the recovery algorithms in action, especially as you turn the
algorithms on and off using the two control switches.

Scatter plot of received signal:

 MSK Signal Recovery

18-9



Scatter plot of signal after timing recovery:
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Scatter plot of signal after carrier frequency and phase recovery:
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You can also reset the BER computation after the signal has reached a steady state.

Experimenting with the Example
The example is designed so that you can vary the impairments independently while the simulation is
running. You can also use the toggle switches to turn the recovery schemes on and off while the
simulation is running, and then see the effects on the scatter plots.

Further items to investigate include:

• Set the frequency offset to 0 and observe the displayed signal constellations and estimated phase
offset.

• Observe that the Carrier Synchronizer block is set for a QPSK constellation with a phase offset of
0°.

• To see how the timing offset is tracked, replace the Constant block with a Sine Wave block. Vary
the offset between 0 and 1 over the duration of the simulation.

• Vary the error update gain of the MSK-Type Signal Timing Recovery block to assess its ability to
track constant and time-varying offsets. To access the block, open the Timing Recovery subsystem
and then open the Timing Recovery Algorithm subsystem.
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Reed-Solomon Coding

• “Reed-Solomon Coding” on page 19-2
• “Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink” on page 19-3
• “Representation of Polynomials in Communications Toolbox” on page 19-11
• “Estimate BER of QPSK in AWGN with Reed-Solomon Coding” on page 19-13
• “Transmit and Receive Shortened Reed-Solomon Codes” on page 19-15
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Reed-Solomon Coding

See Also
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Reed-Solomon Coding with Erasures, Punctures, and
Shortening in Simulink

This model shows how to configure Reed-Solomon (RS) codes to perform block coding with erasures,
punctures, and shortening.

RS decoders can correct both errors and erasures. The erasures can be generated by a receiver that
identifies the most unreliable symbols in a given codeword. When a receiver erases a symbol, it
replaces the symbol with a zero and passes a flag to the decoder indicating that the symbol is an
erasure, not a valid code symbol.

In addition, an encoder can generate punctures for which specific parity symbols are always removed
from its output. The decoder, which knows the puncture pattern, inserts zeros in the puncture
positions and treats those symbols as erasures. The decoder treats encoder-generated punctures and
receiver-generated erasures in exactly the same way when it decodes.

Puncturing has the added benefit of making the code rate a bit more flexible, at the expense of some
error correction capability. Shortened codes achieve the same code rate flexibility without degrading
the error correction performance, given the same demodulator input Eb/N0. Note that puncturing is
the removal of parity symbols from a codeword, and shortening is the removal of message symbols
from a codeword.

Decoding with Receiver Generated Erasures

This example shows a (63,53) RS code operating in concert with a 64-QAM modulation scheme. Since
the code can correct (63-53)/2 = 5 errors, it can alternatively correct (63-53) = 10 erasures. For each
demodulated codeword, the receiver determines the six least reliable symbols by finding the symbols
within a decision region that are nearest to a decision boundary. It then erases those symbols. The
RSCodingErasuresExample model is shown here.

model_e = 'RSCodingErasuresExample';
open_system(model_e);
close_system([model_e,'/Received Signal Scatter Plot'])
close_system([model_e,'/Erased Signal Scatter Plot'])
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Simulation and Visualization with Erasures Only

Define system simulation parameters:

RS_TsUncoded = 1; % Sample time (s)
RS_n = 63; % Codeword length
RS_k = 53; % Message length
RS_MQAM = 64; % QAM order
RS_numBitsPerSymbol = ... % 6 bits per symbol
    log2(RS_MQAM);
RS_sigPower = 42; % Assume points at +/-1, +/-3, +/-5, +/-7
RS_numErasures = 6; % Number of erasures
RS_EbNoUncoded = 15; % In dB

The system is simulated at an uncoded Eb/N0 of 15 dB. However, the coded Eb/N0 is reduced
because of the redundant symbols added by the RS Encoder. Also, the period of each frame in the
model remains constant at 53 seconds, corresponding to a sample time of 1 second at the output of
the Random Integer Generator. Moreover, the symbol time at the output of the RS Encoder is reduced
by a factor of the code rate, because 63 symbols are output over the frame time of 53 seconds. The
AWGN Channel block accounts for this by using these parameters:

RS_EbNoCoded = RS_EbNoUncoded + 10*log10(RS_k/RS_n);
RS_TsymCoded = RS_TsUncoded * (RS_k/RS_n);

The receiver determines which symbols to erase by finding the 64-QAM symbols, per codeword, that
are closest to a decision boundary. It deletes the six least reliable code symbols, which still allows the
RS Decoder to correct (10-6)/2 = 2 errors per codeword.

Run the simulation and show the received symbols and those symbols that were erased.

sim(model_e)
open_system([model_e,'/Received Signal Scatter Plot'])
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open_system([model_e,'/Erased Signal Scatter Plot'])
%
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BER Performance with Erasures Only

Examine the BER performance at the output of the decoder. We set the stop time of the simulation to
inf, then simulate until 100 bit errors are collected out of the RS Decoder. Display the total number of
corrected errors, 64-QAM BER, and RS BER.

fprintf('Total number of corrected errors with\n')
fprintf('erasures: %d\n',totCorrErrors_e(1))
fprintf('64-QAM BER with\n')
fprintf('erasures: %s\n',channelBER_e(1))
fprintf('RS BER with\n')
fprintf('erasures: %s\n',codedBER_e(1))

Total number of corrected errors with
erasures: 6905
64-QAM BER with
erasures: 1.702521e-03
RS BER with
erasures: 2.589668e-06

Simulation with Erasures and Punctures

In addition to decoding receiver-generated erasures, the RS Decoder can correct encoder-generated
punctures. The decoding algorithm is identical for the two cases, but the per-codeword sum of the
punctures and erasures cannot exceed twice the error-correcting capability of the code. Consider the
following model that performs decoding for both erasures and punctures.
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The same puncture vector is specified in both the encoder and decoder blocks. This example
punctures two symbols from each codeword. Vector values of "1" indicate nonpunctured symbols,
while values of "0" indicate punctured symbols. In the erasures vector, however, values of "1" indicate
erased symbols, while values of "0" indicate nonerased symbols.

Several of the parameters for the AWGN Channel block are now slightly different, because the length
of the codeword is now different from the previous example. The block accounts for the size
difference with the following code:

RS_numPuncs = 2;
RS_EbNoCoded = RS_EbNoUncoded + 10*log10(RS_k / (RS_n - RS_numPuncs));
RS_TsymCoded = RS_TsUncoded * (RS_k / (RS_n - RS_numPuncs));

We simulate the model, RSCodingErasuresPunctExample.mdl, collecting 1000 errors out of the RS
Decoder block. Due to puncturing, the signal dimensions out of the encoder are 61-by-1, rather than
63-by-1 in the model with no puncturing. The Create Erasures Vector subsystem must also account
for the size differences as it creates a 61-by-1 erasures vector. The RSCodingErasuresPunctExample
model is shown here.

model_ep = 'RSCodingErasuresPunctExample';
open_system(model_ep);

sim(model_ep)

BER Performance with Erasures and Punctures

Compare the BERs for erasures decoding with and without puncturing.

The BER out of the 64-QAM Demodulator is slightly better in the punctured case, because the Eb/N0
into the demodulator is slightly higher. However, the BER out of the RS Decoder is much worse in the
punctured case, because the two punctures reduce the error correcting capability of the code by one,
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leaving it able to correct only (10-6-2)/2 = 1 error per codeword. Display the total number of
corrected errors, 64-QAM BER, and RS BER for the RS codes with erasures and punctures.

fprintf('Total number of corrected errors with\n')
fprintf('              erasures: %d\n',totCorrErrors_e(1))
fprintf('erasures and punctures: %d\n',totCorrErrors_ep(1))
fprintf('64-QAM BER with\n')
fprintf('              erasures: %s\n',channelBER_e(1))
fprintf('erasures and punctures: %s\n',channelBER_ep(1))
fprintf('RS BER with\n')
fprintf('              erasures: %s\n',codedBER_e(1))
fprintf('erasures and punctures: %s\n',codedBER_ep(1))

Total number of corrected errors with
              erasures: 6905
erasures and punctures: 1960
64-QAM BER with
              erasures: 1.702521e-03
erasures and punctures: 1.475314e-03
RS BER with
              erasures: 2.589668e-06
erasures and punctures: 5.627692e-05

Specifying a Shortened Code

Shortening a block code removes symbols from its message portion, where puncturing removes
symbols from its parity portion. You can incorporate both techniques with the RS encoder and
decoder blocks.

For example, to shorten a (63,53) code to a (53,43) code, you can simply enter 63, 53 and 43 for n, k,
and s respectively, in the encoder and decoder block masks. The
RSCodingErasuresPunctShortExample model is shown here.

model_eps = 'RSCodingErasuresPunctShortExample';
open_system(model_eps);
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Simulation with Erasures, Punctures, and Shortening

Because shortening alters the code rate much like puncturing does, the AWGN parameters must be
changed again. The AWGN Channel block accounts for this with the following code:

RS_EbNoCoded = RS_EbNoUncoded + ...
    10*log10(RS_s  / (RS_n - RS_k + RS_s - RS_numPuncs));
RS_TsymCoded = RS_TsUncoded * RS_s / (RS_n - RS_k + RS_s - RS_numPuncs);

We simulate the model, once again collecting 1000 errors out of the RS Decoder block. Note that the
signal dimensions out of the RS Encoder are 26x1, due to 35 symbols of shortening and 2 symbols of
puncturing. Once again, the Create Erasures Vector subsystem must also account for the size
difference caused by the shortened code.

sim(model_eps)

BER Performance with Erasures, Punctures, and Shortening

Compare the BER performance for decoding with erasures only, with erasures and punctures, and
with erasures, punctures, and shortening.

The BER out of the 64-QAM Demodulator is worse with shortening than it is without shortening. This
is because the code rate of the shortened code is much lower than the code rate of the non-shortened
code and therefore the coded Eb/N0 into the demodulator is worse with shortening. A shortened code
has the same error correcting capability as non-shortened code for the same Eb/N0, but the reduction
in Eb/N0 manifests in the form of a higher BER out of the RS Decoder with shortening than without.
Compare the total number of corrected errors, 64-QAM BER, and RS BER for the RS codes with
erasures, punctures, and shortening.

fprintf('Total number of corrected errors\n')
fprintf( ...
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    '                           erasures: %d\n',totCorrErrors_e(1))
fprintf( ...
    '             erasures and punctures: %d\n',totCorrErrors_ep(1))
fprintf( ...
    'erasures, punctures, and shortening: %d\n',totCorrErrors_eps(1))
fprintf('64-QAM BER with\n')
fprintf('                           erasures: %s\n',channelBER_e(1))
fprintf('             erasures and punctures: %s\n',channelBER_ep(1))
fprintf('erasures, punctures, and shortening: %s\n',channelBER_eps(1))
fprintf('RS BER with\n')
fprintf('                           erasures: %s\n',codedBER_e(1))
fprintf('             erasures and punctures: %s\n',codedBER_ep(1))
fprintf('erasures, punctures, and shortening: %s\n',codedBER_eps(1))

Total number of corrected errors
                           erasures: 6905
             erasures and punctures: 1960
erasures, punctures, and shortening: 3287
64-QAM BER with
                           erasures: 1.702521e-03
             erasures and punctures: 1.475314e-03
erasures, punctures, and shortening: 3.590801e-03
RS BER with
                           erasures: 2.589668e-06
             erasures and punctures: 5.627692e-05
erasures, punctures, and shortening: 9.748840e-05

Further Exploration

You can experiment with these systems by running them over a loop of Eb/N0 values and generating
a BER curve for them. You can then compare their performance against a theoretical 64-QAM/RS
system without erasures, punctures, or shortening. Use BERTool to generate the theoretical BER
curves.

close_system(model_e,0);
close_system(model_ep,0);
close_system(model_eps,0);
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Representation of Polynomials in Communications Toolbox
You can specify polynomials as a character vector or string scalar by using a variety of syntaxes.
Communications Toolbox functions that support character vector and string scalar polynomials
convert these various syntaxes into the appropriate form, which varies depending on the function. For
example, the comm.BCHEncoder function expresses polynomials as a binary row vector with powers
in descending order.

When specifying a character vector or string scalar to represent a polynomial:

• Ascending or descending order is valid.
• Spaces are ignored.
• The caret symbol, ^, which indicates the presence of an exponent, is optional. If omitted, the

function assumes that the integer that follows the variable is an exponent.
• Braces, {}, denote an exponent. For example, you can represent x2 as x{2}.
• Text appearing before the polynomial expression (with or without an equals sign) is ignored.
• Punctuation that follows square brackets is ignored.
• Exponents must be uniformly positive or uniformly negative. Mixed-sign exponents are not

allowed. For example, 'x^2 + x + 1' and '1 + z^-6 + z^-8' are valid, but '1 + z^6 +
z^-8' is not valid.

This list shows some examples of how to express the polynomial x14 + 4x5 + x3 + 2x + 1 in code. Use
single quotes for character vectors (as shown) or double quotes for string scalars.

• '1+2x+x^3+4x^5+x^14'
• '1+2m+m3+4m5+m14'
• 'q14 + 4q5 + q3 + 2q + 1'
• 'g(x) = 1+2x+x3+4x5+x14'
• 'g(z) 1+2z+z3+4z5+z14'
• 'p(x) = x{14} + 4x{5} + x{3} + 2{x} + 1'
• '[D14 + 4D5 + D3 + 2D + 1]'

See Also
Functions
gfadd | bchgenpoly | poly2trellis

Objects
comm.PNSequence | comm.BCHEncoder

Blocks
Gold Sequence Generator | BCH Encoder

Related Examples
• “Working with Galois Fields” on page 20-2
• “Sequence Generators” on page 9-10
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• “Error Detection and Correction” on page 16-14
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Estimate BER of QPSK in AWGN with Reed-Solomon Coding
Transmit Reed-Solomon encoded data using QPSK over an AWGN channel. Demodulate and decode
the received signal and collect error statistics. Compute theoretical bit error rate (BER) for coded and
noncoded data. Plot the BER results to compare performance.

Define the example parameters.

rng(1993);     % Seed random number generator for repeatable results
M = 4;         % Modulation order
bps = log2(M); % Bits per symbol
N = 7;         % RS codeword length
K = 5;         % RS message length

Create modulator, demodulator, AWGN channel, and error rate objects.

pskModulator = comm.PSKModulator('ModulationOrder',M,'BitInput',true);
pskDemodulator = comm.PSKDemodulator('ModulationOrder',M,'BitOutput',true);
awgnChannel = comm.AWGNChannel('BitsPerSymbol',bps);
errorRate = comm.ErrorRate;

Create a (7,5) Reed-Solomon encoder and decoder pair which accepts bit inputs.

rsEncoder = comm.RSEncoder('BitInput',true,'CodewordLength',N,'MessageLength',K);
rsDecoder = comm.RSDecoder('BitInput',true,'CodewordLength',N,'MessageLength',K);

Set the range of Eb/N0 values and account for RS coding gain. Initialize the error statistics matrix.

ebnoVec = (3:0.5:8)';
ebnoVecCodingGain = ebnoVec + 10*log10(K/N); % Account for RS coding gain
errorStats = zeros(length(ebnoVec),3);

Estimate the bit error rate for each Eb/N0 value. The simulation runs until either 100 errors or 107

bits is encountered. The main simulation loop processing includes encoding, modulation,
demodulation, and decoding.

for i = 1:length(ebnoVec)
    awgnChannel.EbNo = ebnoVecCodingGain(i);
    reset(errorRate)
    while errorStats(i,2) < 100 && errorStats(i,3) < 1e7
        data = randi([0 1],1500,1);                % Generate binary data
        encData = rsEncoder(data);                 % RS encode
        modData = pskModulator(encData);           % Modulate
        rxSig = awgnChannel(modData);              % Pass signal through AWGN
        rxData = pskDemodulator(rxSig);            % Demodulate
        decData = rsDecoder(rxData);               % RS decode
        errorStats(i,:) = errorRate(data,decData); % Collect error statistics
    end
end

Fit a curve to the BER data using berfit. Generate an estimate of QPSK performance with and
without coding using the bercoding and berawgn functions.

berCurveFit = berfit(ebnoVecCodingGain,errorStats(:,1));
berwCoding = bercoding(ebnoVec,'RS','hard',N,K,'psk',M,'nondiff');
berNoCoding = berawgn(ebnoVec,'psk',M,'nondiff');
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Plot the RS coded BER data, curve fit of the BER data, theoretical performance with RS coding, and
theoretical performance without RS coding. The (7,5) RS code improves the Eb/N0 required to
achieve a 10−2 bit error rate by approximately 1.2 dB.

semilogy(ebnoVecCodingGain,errorStats(:,1),'b*', ...
ebnoVecCodingGain,berCurveFit,'c-',ebnoVecCodingGain,berwCoding,'r',ebnoVec,berNoCoding)
ylabel('BER')
xlabel('Eb/No (dB)')
legend('RS coded BER','Curve Fit','Theory with coding','Theory no coding')
grid
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Transmit and Receive Shortened Reed-Solomon Codes
Transmit and receive standard and shortened RS-encoded, 64-QAM-modulated data through an
AWGN channel. Compare the performance of the standard and shortened codes.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the nominal
message length, and S is the shortened message length. Specify the modulation order, M.

N = 63;  % Codeword length
K = 51;  % Message length
S = 39;  % Shortened message length
M = 64;  % Modulation order

Specify the simulation parameters, where numErrors is the number of errors per Eb/No point, and
numBits is the maximum number of bits per Eb/No point. Specify the range of Eb/No values to be
simulated. Initialize the BER arrays.

numErrors = 200;
numBits = 1e7;
ebnoVec = (8:13)';
[ber0,ber1] = deal(zeros(size(ebnoVec)));

Create an error rate object to collect error statistics.

errorRate = comm.ErrorRate;

Create a Reed-Solomon encoder and decoder pair for an RS(63,51) code. Calculate the code rate.

rsEncoder = comm.RSEncoder(N,K,'BitInput',true);
rsDecoder = comm.RSDecoder(N,K,'BitInput',true);
rate = K/N;

Execute the main processing loop.

for k = 1:length(ebnoVec)
    
    % Convert the coded Eb/No to an SNR. Initialize the error statistics
    % vector.
    snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));
    errorStats = zeros(3,1);
    
    while errorStats(2) < numErrors && errorStats(3) < numBits
        
        % Generate binary data.
        txData = randi([0 1],K*log2(M),1);
        
        % Encode the data.
        encData = rsEncoder(txData);
        
        % Apply 64-QAM modulation.
        txSig = qammod(encData,M, ...
            'UnitAveragePower',true,'InputType','bit');
        
        % Pass the signal through an AWGN channel.
        rxSig = awgn(txSig,snrdB);
        
        % Demodulated the noisy signal.
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        demodSig = qamdemod(rxSig,M, ...
            'UnitAveragePower',true,'OutputType','bit');
        
        % Decode the data.
        rxData = rsDecoder(demodSig);
        
        % Compute the error statistics.
        errorStats = errorRate(txData,rxData);
    end
    
    % Save the BER data, and reset the errorRate counter.
    ber0(k) = errorStats(1);
    reset(errorRate)
end

Create a Reed-Solomon generator polynomial for an RS(63,51) code.

gp = rsgenpoly(N,K,[],0);

Create a Reed-Solomon encoder and decoder pair using shortened message length S and generator
polynomial gp. Calculate the rate of the shortened code.

rsEncoder = comm.RSEncoder(N,K,gp,S,'BitInput',true);
rsDecoder = comm.RSDecoder(N,K,gp,S,'BitInput',true);
rate = S/(N-(K-S));

Execute the main processing loop using the shortened Reed-Solomon code.

for k = 1:length(ebnoVec)
    
    % Convert the coded Eb/No to an SNR. Initialize the error statistics
    % vector.
    snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));
    errorStats = zeros(3,1);
    
    while errorStats(2) < numErrors && errorStats(3) < numBits
        
        % Generate binary data.
        txData = randi([0 1],S*log2(M),1);
        
        % Encode the data.
        encData = rsEncoder(txData);
        
        % Apply 64-QAM modulation.
        txSig = qammod(encData,M, ...
            'UnitAveragePower',true,'InputType','bit');
        
        % Pass the signal through an AWGN channel.
        rxSig = awgn(txSig,snrdB);
        
        % Demodulated the noisy signal.
        demodSig = qamdemod(rxSig,M, ...
            'UnitAveragePower',true,'OutputType','bit');
        
        % Decode the data.
        rxData = rsDecoder(demodSig);
        
        % Compute the error statistics.
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        errorStats = errorRate(txData,rxData);
    end
    
    % Save the BER data, and reset the errorRate counter.
    ber1(k) = errorStats(1);
    reset(errorRate)
end

Calculate the approximate BER for an RS (63,51) code.

berapprox = bercoding(ebnoVec,'RS','hard',N,K,'qam',64);

Compare the BER curves for the RS(63,51) and RS(51,39) codes. Plot the theoretically approximated
BER curve. Observe that shortening the code does not affect performance.

semilogy(ebnoVec,ber0,'o-',ebnoVec,ber1,'c^-',ebnoVec,berapprox,'k--')
legend('RS(63,51)','RS(51,39)','Theory')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
grid
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Galois Fields

• “Working with Galois Fields” on page 20-2
• “ElGamal Public Key Cryptosystem” on page 20-6
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Working with Galois Fields
This example shows how to work with Galois fields. This example also shows the effects of using with
Hamming codes and Galois field theory for error-control coding.

A Galois field is an algebraic field with a finite number of members. A Galois field that has 2m

members is denoted by GF 2m , where m is an integer in the range [1, 16].

Create Galois Field Arrays

Create Galois field arrays using the gf function. For example, create the element 3 in the Galois field
GF 22 .

A = gf(3,2)

 
A = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)
 
Array elements = 
 
   3

Use Galois Field Arrays

You can now use A as if it is a built-in MATLAB® data type. For example, add two different elements
in a Galois field.

A = gf(3,2);
B = gf(1,2);
C = A+B

 
C = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)
 
Array elements = 
 
   2

Demonstrate Arithmetic in Galois Fields

The rules for arithmetic operations are different for Galois field elements compared to integers. For
example, in GF 22 , 3 + 1 = 2 . This table shows some of the differences between Galois field
arithmetic and integer arithmetic for integers 0 through 3.

+__0__1__2__3

0| 0 1 2 3

1| 1 2 3 4

2| 2 3 4 5

3| 3 4 5 6

Define such a table in MATLAB®.
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A = ones(4,1)*(0:3);
B = (0:3)'*ones(1,4);
A+B

ans = 4×4

     0     1     2     3
     1     2     3     4
     2     3     4     5
     3     4     5     6

Similarly, create an addition table for the Galois field GF 22 .

A = gf(ones(4,1)*(0:3),2);
B = gf((0:3)'*ones(1,4),2);
A+B

 
ans = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)
 
Array elements = 
 
   0   1   2   3
   1   0   3   2
   2   3   0   1
   3   2   1   0

Use MATLAB Functions with Galois Arrays

For a list of MATLAB® functions that work with Galois arrays, see “Galois Computations” on the gf
function reference page. For example, create two different Galois arrays, and then use the conv
function to multiply the two polynomials.

A = gf([1 33],8);
B = gf([1 55],8);

C = conv(A,B)

 
C = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)
 
Array elements = 
 
     1    22   153

You can use the roots function to find the roots of a polynomial. For example, find the roots of
polynomial C. The results show that the roots match the original values in polynomials A and B.

roots(C)

 
ans = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)
 
Array elements = 
 
   33
   55
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Use Hamming Codes and Galois Theory

This section shows how to use a simple Hamming code and Galois field theory for error-control
coding. An error-control code adds redundancy to information bits. For example, a (7,4) Hamming
code maps 4 bits of information to 7-bit codewords by multiplying the 4 information bits by a 4-by-7
generation matrix in Galois field GF 2 . Use the hammgen function to obtain this matrix.

[paritymat,genmat] = hammgen(3)

paritymat = 3×7

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

genmat = 4×7

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

The output paritymat is the parity-check matrix, and the output genmat is the generator matrix. To
encode the information bits [0 1 0 0], multiply the bits by the generator matrix genmat in Galois
field GF 2 .

A = gf([0 1 0 0],1)

 
A = GF(2) array. 
 
Array elements = 
 
   0   1   0   0

code = A*genmat

 
code = GF(2) array. 
 
Array elements = 
 
   0   1   1   0   1   0   0

For this example, suppose that somewhere along transmission, an error is introduced in this
codeword. The Hamming code used in this example can correct up to 1 bit error. Insert an error in
the transmission by changing the first bit from 0 to 1.

code(1) = 1

 
code = GF(2) array. 
 
Array elements = 
 
   1   1   1   0   1   0   0
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Use the parity-check matrix to determine where the error occurred, by multiplying the erroneous
codeword by the parity-check matrix.

paritymat*code'

 
ans = GF(2) array. 
 
Array elements = 
 
   1
   0
   0

Find the error, by inspecting the parity-check matrix, paritymat. The column in paritymat that
matches [1 0 0]' is the location of the error. In this example, the first column is [1 0 0]', so the
first element of the vector code contains the error.

paritymat

paritymat = 3×7

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

See Also
Functions
gf | hammgen

More About
• “Error Detection and Correction” on page 16-14
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ElGamal Public Key Cryptosystem
Use the Galois field array function, gf, to implement an ElGamal public key cryptosystem.

Key Generation

Define the polynomial degree, m.

m = 15;
q = 2^m;

Find a primitive polynomial and group generator. Set the random number generator seed to produce
a repeatable result.

poly = primpoly(m,'nodisplay');

primeFactors = unique(factor(2^m-1));
rng(123456);
while 1
    g = gf(randi([1,q-1]),m,poly);
    isPrimitive = true;
    for i = 1:length(primeFactors)
        if g^((q-1)/primeFactors(i)) == gf(1,m,poly)
            isPrimitive = false;
            break;
        end
    end
    if isPrimitive
        break;
    end
end

Construct private and public keys.

privateKey = 12;
publicKey = {g,g^privateKey,poly};

Encryption

Create and display the original message.

text = ['The Fourier transform decomposes a function of time (a signal)' newline ...
    'into the frequencies that make it up, in a way similar to how a' newline ...
    'musical chord can be expressed as the amplitude (or loudness) of' newline ...
    'its constituent notes.'];
disp(text);

The Fourier transform decomposes a function of time (a signal)
into the frequencies that make it up, in a way similar to how a
musical chord can be expressed as the amplitude (or loudness) of
its constituent notes.

Convert the message to binary and group them every m bits. The message uses ASCII characters.
Since the ASCII table has 128 characters, seven bits per character is sufficient.

bitsPerChar = 7;
binMsg = int2bit(int8(text'),bitsPerChar);
numPaddedBits = m - mod(numel(binMsg),m);
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if numPaddedBits == m
    numPaddedBits = 0;
end
binMsg = [binMsg; zeros(numPaddedBits,1)];
textToEncrypt = bit2int(binMsg,m);

Encrypt the original message.

cipherText = gf(zeros(length(textToEncrypt),2),m,poly);

for i = 1:length(textToEncrypt)
    k = randi([1 2^m-2]);
    cipherText(i,:) = [publicKey{1}^k, ...
        gf(textToEncrypt(i),m,poly)*publicKey{2}^k];
end

Display the encrypted message.

tmp = cipherText.x;
disp(de2char(tmp(:,2),bitsPerChar,m));

vTchba~*TzEC> *o_c;a5
vS>Do7]{B#wDc0`YCDVxV]:FC0|o|    ],7
S)d/uW
]A=]T    sKX+q3K&q ex_>f=C_gZ"*slX=N&$~*[Xh+R[<5:(NpO6 
8+@/)9sBm    &is#Z<DN`Qo~?GaOFIzYA~a+Lygzv?l

Decryption

Decrypt the encrypted original message.

decipherText = gf(zeros(size(cipherText,1),1),m,poly);
for i = 1:size(cipherText,1)
    decipherText(i) = cipherText(i,2) * cipherText(i,1)^(-privateKey);
end

Display the decrypted message.

disp(de2char(decipherText.x,bitsPerChar,m));

The Fourier transform decomposes a function of time (a signal)
into the frequencies that make it up, in a way similar to how a
musical chord can be expressed as the amplitude (or loudness) of
its constituent notes.

Supporting Function

de2char converts the bits to char messages.

function text = de2char(msg,bitsPerChar,m)
binDecipherText = int2bit(msg,m);
text = char(bit2int(binDecipherText(1:end-mod(numel(binDecipherText), ...
    bitsPerChar)),bitsPerChar))';
end

See Also
Functions
gf | reshape
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• “Error Detection and Correction” on page 16-14
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Error Detection and Correction

• “High Rate Convolutional Codes for Turbo Coding” on page 21-2
• “Punctured Convolutional Coding” on page 21-6
• “Punctured Convolutional Encoding” on page 21-10
• “Rate 2/3 Convolutional Code in AWGN” on page 21-15
• “Estimate BER for Hard and Soft Decision Viterbi Decoding” on page 21-17
• “Creation, Validation, and Testing of User Defined Trellis Structure” on page 21-20
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High Rate Convolutional Codes for Turbo Coding
Concatenated convolutional codes offer high reliability and have gained in prominence and usage as
turbo codes. The comm.TurboEncoder and comm.TurboDecoder System objects support rate 1/n
convolutional codes only. This example shows the parallel concatenation of two rate 2/3 convolutional
codes to achieve an effective rate 1/3 turbo code by using comm.ConvolutionalEncoder and
comm.APPDecoder System objects.

System parameters

blkLength = 1024;          % Block length
EbNo = 0:5;                % Eb/No values to loop over
numIter = 3;               % Number of decoding iterations
maxNumBlks = 1e2;          % maximum number of blocks per Eb/No value

Convolutional Encoder/Decoder Parameters

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);
k = log2(trellis.numInputSymbols);      % number of input bits
n = log2(trellis.numOutputSymbols);     % number of output bits
intrIndices = randperm(blkLength/k)';   % Random interleaving
decAlg = 'True App';                    % Decoding algorithm
modOrder = 2;                           % PSK-modulation order

Initialize System Objects

Initialize Systems object for convolutional encoding, APP Decoding, BPSK modulation and
demodulation, AGWN channel, and error rate computation. The demodulation output soft bits using a
log-likelihood ratio method.

cEnc1 = comm.ConvolutionalEncoder('TrellisStructure',...
        trellis,'TerminationMethod','Truncated');
cEnc2 = comm.ConvolutionalEncoder('TrellisStructure',...
        trellis,'TerminationMethod','Truncated');
cAPPDec1 = comm.APPDecoder('TrellisStructure',trellis,...
            'TerminationMethod','Truncated','Algorithm',decAlg);
cAPPDec2 = comm.APPDecoder('TrellisStructure',trellis,...
            'TerminationMethod','Truncated','Algorithm',decAlg);

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...
    'VarianceSource','Input port');

awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

bitError = comm.ErrorRate; % BER measurement

Frame Processing Loop

Loop through a range of Eb/N0 values to generate results for BER performance. The
helperTurboEnc and helperTurboDec helper functions on page 21-0  perform the turbo
encoding and decoding.

ber = zeros(length(EbNo),1); 
bitsPerSymbol = log2(modOrder);
turboEncRate = k/(2*n);
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for ebNoIdx = 1:length(EbNo)
    % Calculate the noise variance from EbNo
    EsNo = EbNo(ebNoIdx) + 10*log10(bitsPerSymbol);
    SNRdB = EsNo + 10*log10(turboEncRate); % Account for code rate
    noiseVar = 10^(-SNRdB/10);

    for  numBlks = 1:maxNumBlks 
        % Generate binary data
        data = randi([0 1],blkLength,1);

        % Turbo encode the data
        [encodedData,outIndices] = helperTurboEnc(data,cEnc1,cEnc2, ...
            trellis,blkLength,intrIndices);

        % Modulate the encoded data
        modSignal = bpskMod(encodedData);

        % Pass the modulated signal through an AWGN channel
        receivedSignal = awgnChan(modSignal,noiseVar);

        % Demodulate the noisy signal using LLR to output soft bits
        demodSignal = bpskDemod(receivedSignal,noiseVar);

        % Turbo decode the demodulated data
        receivedBits = helperTurboDec(-demodSignal,cAPPDec1,cAPPDec2, ...
            trellis,blkLength,intrIndices,outIndices,numIter); 
        
        % Calculate the error statistics
        errorStats = bitError(data,receivedBits);        
    end
    
    ber(ebNoIdx) = errorStats(1);
    reset(bitError);
end

Display Results

While the practical wireless systems, such as LTE and CCSDS, specify base rate-1/n convolutional
codes for turbo codes, the results show use of higher rate convolutional codes as turbo codes is
viable.

figure; 
semilogy(EbNo, ber, '*-');
grid on; 
xlabel('E_b/N_0 (dB)'); 
ylabel('BER'); 
title('High Rate Convolutional Codes for Turbo Coding'); 
legend(['N = ' num2str(blkLength) ', ' num2str(numIter) ' iterations']);
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Helper Functions

function [yEnc,outIndices] = helperTurboEnc(data,hCEnc1,hCEnc2,trellis,blkLength,intrIndices)
% Turbo encoding using two parallel convolutional encoders.
% No tail bits handling and assumes no output stream puncturing.

    % Trellis parameters
    k = log2(trellis.numInputSymbols);
    n = log2(trellis.numOutputSymbols);
    cLen = blkLength*n/k;

    punctrVec = [0;0;0;0;0;0];      % assumes all streams are output
    N = length(find(punctrVec==0));

    % Encode random data bits
    y1 = step(hCEnc1, data);
    y2 = step(hCEnc2, reshape(intrlv(reshape(data, k, [])',intrIndices)', [], 1));
    y1D = reshape(y1(1:cLen), n, []);
    y2D = reshape(y2(1:cLen), n, []);
    yDTemp = [y1D; y2D];
    y = yDTemp(:);

    % Generate output indices vector using puncturing vector
    idx = 0 : 2*n : (blkLength - 1)*2*(n/k);
    punctrVecIdx = find(punctrVec==0);
    dIdx = repmat(idx, N, 1) + punctrVecIdx;
    outIndices = dIdx(:);
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    yEnc = y(outIndices);
end

function yDec = helperTurboDec(yEnc,cAPPDec1,cAPPDec2,trellis,blkLength,intrIndices,inIndices,numIter)
% Turbo decoding using two a-posteriori probability (APP) decoders

    % Trellis parameters
    k = log2(trellis.numInputSymbols);
    n = log2(trellis.numOutputSymbols);
    rCodLen = 2*(n/k)*blkLength;
    typeyEnc = class(yEnc);

    % Re-order encoded bits according to outIndices
    x = zeros(rCodLen, 1);
    x(inIndices) = yEnc;

    % Generate output of first encoder
    yD = reshape(x(1:rCodLen), 2*n, []);
    lc1D = yD(1:n, :);
    Lc1_in = lc1D(:);

    % Generate output of second encoder
    lc2D   = yD(n+1:2*n, :);
    Lc2_in = lc2D(:);

    % Initialize unencoded data input
    Lu1_in = zeros(blkLength, 1, typeyEnc);

    % Turbo Decode
    out1 = zeros(blkLength/k, k, typeyEnc);
    for iterIdx = 1 : numIter
        [Lu1_out, ~] = step(cAPPDec1, Lu1_in, Lc1_in);
        tmp = Lu1_out(1:blkLength);
        Lu2_in = reshape(tmp, k, [])';
        [Lu2_out, ~] = step(cAPPDec2, ...
            reshape(Lu2_in(intrIndices, :)', [], 1), Lc2_in);
        out1(intrIndices, :) = reshape(Lu2_out(1:blkLength), k, [])';
        Lu1_in = reshape(out1', [], 1);
    end
    % Calculate llr and decoded bits for the final iteration
    llr = reshape(out1', [], 1) + Lu1_out(1:blkLength);
    yDec = cast((llr>=0), typeyEnc);
end
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Punctured Convolutional Coding
This example shows how to use the convolutional encoder and Viterbi decoder System objects to
simulate a punctured coding system. The complexity of a Viterbi decoder increases rapidly with the
code rate. Puncturing is a technique that allows the encoding and decoding of higher rate codes
using standard rate 1/2 encoders and decoders.

Introduction

This example showcases the simulation of a communication system consisting of a random binary
source, a convolutional encoder, a BPSK modulator, an additive white Gaussian noise (AWGN)
channel, and a Viterbi decoder. The example shows how to run simulations to obtain bit error rate
(BER) curves and compares these curves to a theoretical bound.

Initialization

Convolutional Encoding with Puncturing

Create a rate 1/2, constraint length 7 comm.ConvolutionalEncoder System object. This encoder
takes one-bit symbols as inputs and generates 2-bit symbols as outputs. If you assume 3-bit message
words as inputs, then the encoder will generate 6-bit codeword outputs.

convEncoder = comm.ConvolutionalEncoder(poly2trellis(7, [171 133]));

Specify a puncture pattern to create a rate 3/4 code from the previous rate 1/2 code using the
puncture pattern vector [1;1;0;1;1;0]. The ones in the puncture pattern vector indicate that bits in
positions 1, 2, 4, and 5 are transmitted, while the zeros indicate that bits in positions 3 and 6 are
punctured or removed from the transmitted signal. The effect of puncturing is that now, for every 3
bits of input, the punctured code generates 4 bits of output (as opposed to the 6 bits produced before
puncturing). This results in a rate 3/4 code. In the example at hand, the length of the puncture
pattern vector must be an integer multiple of 6 since 3-bit inputs get converted into 6-bit outputs by
the rate 1/2 convolutional encoder.

To set the desired puncture pattern in the convolutional encoder System object, hConvEnc , set the
PuncturePatternSource property to Property and the PuncturePattern property to
[1;1;0;1;1;0] .

convEncoder.PuncturePatternSource = 'Property';
convEncoder.PuncturePattern = [1;1;0;1;1;0];

Modulator and Channel

Create a comm.BPSKModulator System object to transmit the encoded data using binary phase shift
keying modulation over a channel.

bpskMod = comm.BPSKModulator;

Create an comm.AWGNChannel System object. Set the NoiseMethod property of the channel to
Signal to noise ratio (Eb/No) to specify the noise level using the energy per bit to noise
power spectral density ratio (Eb/No). When running simulations, test the coding system for different
values of Eb/No ratio by changing the EbNo property of the channel object. The output of the BPSK
modulator generates unit power signals; set the SignalPower property to 1 Watt. The system at
hand is at the symbol rate; set the SamplesPerSymbol property to 1.

channel = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (Eb/No)',...
  'SignalPower', 1, 'SamplesPerSymbol', 1);
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Viterbi Decoding with Depuncturing

Configure a comm.ViterbiDecoder System object so it decodes the punctured code specified for
the convolutional encoder. This example assumes unquantized inputs to the Viterbi decoder, so set
the InputFormat property to Unquantized .

vitDecoder = comm.ViterbiDecoder(poly2trellis(7, [171 133]), ...
  'InputFormat', 'Unquantized');

In general, the puncture pattern vectors you use for the convolutional encoder and Viterbi decoder
must be the same. To specify the puncture pattern, set the PuncturePatternSource property of
the Viterbi decoder System object, hVitDec , to Property . Set the PuncturePattern property to
the same puncture pattern vector you use for the convolutional encoder.

Because the punctured bits are not transmitted, there is no information to indicate their values. As a
result, the decoding process ignores them.

vitDecoder.PuncturePatternSource =  'Property';
vitDecoder.PuncturePattern = convEncoder.PuncturePattern;

For a rate 1/2 code with no puncturing, you normally set the traceback depth of a Viterbi decoder to a
value close to 40. Decoding punctured codes requires a higher value, in order to give the decoder
enough data to resolve the ambiguities that the punctures introduce. This example uses a traceback
depth of 96. Set this value using the TraceBackDepth property of the Viterbi decoder object,
hVitDec .

vitDecoder.TracebackDepth = 96;

Calculating the Error Rate

Create an comm.ErrorRate calculator System object to compare decoded bits to the original
transmitted bits. The output of the error rate calculator object is a three-element vector containing
the calculated bit error rate (BER), the number of errors observed, and the number of bits processed.
The Viterbi decoder creates a delay in the output decoded bit stream equal to the traceback length.
To account for this delay set the ReceiveDelay property of the error rate calculator System object
to 96.

errorCalc = comm.ErrorRate('ReceiveDelay', vitDecoder.TracebackDepth);

Stream Processing Loop

Analyze the BER performance of the punctured coding system for different noise levels.

Uncoded and Coded Eb/No Ratio Values

Typically, you measure system performance according to the value of the energy per bit to noise
power spectral density ratio (Eb/No) available at the input of the channel encoder. The reason for this
is that this quantity is directly controlled by the systems engineer. Analyze the performance of the
coding system for Eb/No values between 2 and 5 dB.

EbNoEncoderInput = 2:0.5:5; % in dB

The signal going into the AWGN channel is the encoded signal. Convert the Eb/No values so that they
correspond to the energy ratio at the encoder output. If you input three bits to the encoder and
obtain four bit outputs, then the energy relation is given by the 3/4 rate as follows:

EbNoEncoderOutput = EbNoEncoderInput + 10*log10(3/4);
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Simulation loop

To obtain BER performance results, transmit frames of 3000 bits through the communications
system. For each Eb/No value, stop simulations upon reaching a specific number of errors or
transmissions. To improve the accuracy of the results, increase the target number of errors or the
maximum number of transmissions.

frameLength = 3000;         % this value must be an integer multiple of 3
targetErrors = 300; 
maxNumTransmissions = 5e6;

Loop through the encoded Eb/No values (the simulation will take a few seconds to complete).

BERVec = zeros(3,length(EbNoEncoderOutput)); % Allocate memory to store results
for n=1:length(EbNoEncoderOutput)
  reset(errorCalc)
  reset(convEncoder)
  reset(vitDecoder)
  channel.EbNo = EbNoEncoderOutput(n); % Set the channel EbNo value for simulation
  while (BERVec(2,n) < targetErrors) && (BERVec(3,n) < maxNumTransmissions)  
    % Generate binary frames of size specified by the frameLength variable
    data = randi([0 1], frameLength, 1);
    % Convolutionally encode the data
    encData = convEncoder(data);
    % Modulate the encoded data
    modData = bpskMod(encData);
    % Pass the modulated signal through an AWGN channel
    channelOutput = channel(modData);
    % Pass the real part of the channel complex outputs as the unquantized
    % input to the Viterbi decoder. 
    decData = vitDecoder(real(channelOutput));
    % Compute and accumulate errors
    BERVec(:,n) = errorCalc(data, decData);
  end
end

Compare Results to Theoretical Curves

We compare the simulation results using an approximation of the bit error probability bound for a
punctured code as per [ 1 ]. The following commands compute an approximation of this bound using
the first seven terms of the summation for Eb/No values in 2:0.5:5. The values used for nerr are
found in Table 2 of [ 2 ].

dist = 5:11;
nerr = [42 201 1492 10469 62935 379644 2253373];
codeRate = 3/4;
bound = nerr*(1/6)*erfc(sqrt(codeRate*(10.0.^((2:.02:5)/10))'*dist))';

Plot results. If the target number of errors or maximum number of transmissions you specify for the
simulation are too small, the curve fitting algorithm might fail.

berfit(EbNoEncoderInput,BERVec(1,:)); % Curve-fitted simulation results
hold on;
semilogy((2:.02:5),bound,'g'); % Theoretical results
legend('Empirical BER','Fit for simulated BER', 'Theoretical bound on BER')
axis([1 6 10^-5 1])
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In some cases, at lower bit error rates, simulation results appear to indicate error rates slightly above
the bound. This results from simulation variance (if fewer than 500 bit errors are observed) or from
the finite traceback depth in the decoder.

Summary

We utilized several System objects to simulate a communications system with convolutional coding
and puncturing. We simulated the system to obtain BER performance versus different Eb/No ratio
values. The BER results were compared to theoretical bounds.

Selected Bibliography

1 Yasuda, Y., K. Kashiki, and Y. Hirata, "High Rate Punctured Convolutional Codes for Soft Decision
Viterbi Decoding," IEEE® Transactions on Communications, Vol. COM-32, March, 1984, pp.
315-319

2 Begin, G., Haccoun, D., and Paquin, C., "Further results on High-Rate Punctured Convolutional
Codes for Viterbi and Sequential Decoding," IEEE Transactions on Communications, Vol. 38, No.
11, November, 1990, p. 1923
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Punctured Convolutional Encoding
In this section...
“Structure of the Example” on page 21-10
“Generating Random Data” on page 21-11
“Convolutional Encoding with Puncturing” on page 21-11
“Transmitting Data” on page 21-12
“Demodulating” on page 21-12
“Viterbi Decoding of Punctured Codes” on page 21-12
“Calculating the Error Rate” on page 21-12
“Evaluating Results” on page 21-13

This model shows how to use the Convolutional Encoder and Viterbi Decoder blocks to simulate a
punctured coding system. The complexity of a Viterbi decoder increases rapidly with the code rate.
Puncturing is a technique that allows the encoding and decoding of higher rate codes using standard
rate 1/2 encoders and decoders.

The example is somewhat similar to the one that appears in “Soft-Decision Decoding” on page 16-48,
which shows convolutional coding without puncturing.

Structure of the Example
This example contains these blocks.

• Bernoulli Binary Generator: Create a sequence of random bits to use as a message.
• Convolutional Encoder: Encode the message using the convolutional encoder.
• BPSK Modulator Baseband: Modulate the encoded message.
• AWGN Channel: Pass the modulated signal through a noisy channel.
• Error Rate Calculation: Compute the number of discrepancies between the original and recovered

messages.

Open the example, doc_punct_conv_code, by entering the following at the MATLAB command
prompt.

doc_punct_conv_code
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Generating Random Data
The Bernoulli Binary Generator block produces the information source for this simulation. The block
generates a frame of three random bits at each sample time. The Samples per frame parameter
determines the number of rows of the output frame.

Convolutional Encoding with Puncturing
The Convolutional Encoder block encodes the data from the Bernoulli Binary Generator. This example
uses the same code as described in “Soft-Decision Decoding” on page 16-48.

The puncture pattern is specified by the Puncture vector parameter in the mask. The puncture
vector is a binary column vector. A 1 indicates that the bit in the corresponding position of the input
vector is sent to the output vector, while a 0 indicates that the bit is removed.

For example, to create a rate 3/4 code from the rate 1/2, constraint length 7 convolutional code, the
optimal puncture vector is [1 1 0 1 1 0].' (where the .' after the vector indicates the transpose). Bits in
positions 1, 2, 4, and 5 are transmitted, while bits in positions 3 and 6 are removed. Now, for every 3
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bits of input, the punctured code generates 4 bits of output (as opposed to the 6 bits produced before
puncturing). This makes the rate 3/4.

In this example, the output from the Bernoulli Binary Generator is a column vector of length 3.
Because the rate 1/2 Convolutional Encoder doubles the length of each vector, the length of the
puncture vector must divide 6.

Transmitting Data
The AWGN Channel block simulates transmission over a noisy channel. The parameters for the block
are set in the mask as follows:

• The Mode parameter for this block is set to Signal to noise ratio (Es/No).
• The Es/No parameter is set to 2 dB. This value typically is changed from one simulation run to the

next.
• The preceding modulation block generates unit power signals so the Input signal power is set to

1 Watt.
• The Symbol period is set to 0.75 seconds because the code has rate 3/4.

Demodulating
In this simulation, the Viterbi Decoder block is set to accept unquantized inputs. As a result, the
simulation passes the channel output through a Simulink Complex to Real-Imag block that extracts
the real part of the complex samples.

Viterbi Decoding of Punctured Codes
The Viterbi Decoder block is configured to decode the same rate 1/2 code specified in the
Convolutional Encoder block.

In this example, the decision type is set to Unquantized. For codes without puncturing, you would
normally set the Traceback depth for this code to a value close to 40. However, for decoding
punctured codes, a higher value is required to give the decoder enough data to resolve the
ambiguities introduced by the punctures.

Since the punctured bits are not transmitted, there is no information to indicate their values. As a
result they are ignored in the decoding process.

The Puncture vector parameter indicates the locations of the punctures or the bits to ignore in the
decoding process. Each 1 in the puncture vector indicates a transmitted bit while each 0 indicates a
puncture or the bit to ignore in the input to the decoder.

In general, the two Puncture vector parameters in the Convolutional Encoder and Viterbi Decoder
must be the same.

Calculating the Error Rate
The Error Rate Calculation block compares the decoded bits to the original source bits. The output of
the Error Rate Calculation block is a three-element vector containing the calculated bit error rate
(BER), the number of errors observed, and the number of bits processed.
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In the mask for this block, the Receive delay parameter is set to 96, because the Traceback depth
value of 96 in the Viterbi Decoder block creates a delay of 96. If there were other blocks in the model
that created delays, the Receive delay would equal the sum of all the delays.

BER simulations typically run until a minimum number of errors have occurred, or until the
simulation processes a maximum number of bits. The Error Rate Calculation block uses its Stop
simulation mode to set these limits and to control the duration of the simulation.

Evaluating Results
Generating a bit error rate curve requires multiple simulations. You can perform multiple simulations
using the sim command. Follow these steps:

• In the model window, remove the Display block and the line connected to its port.
• In the AWGN Channel block, set the Es/No parameter to the variable name EsNodB.
• In the Error Rate Calculation block, set Output data to Workspace and then set Variable name

to BER_Data.
• Save the model in your working directory under a different name, such as

my_punct_conv_code.slx.
• Execute the following code, which runs the simulation multiple times and gathers results.

CodeRate = 0.75;
EbNoVec = [2:.5:5];
EsNoVec = EbNoVec + 10*log10(CodeRate);
BERVec = zeros(length(EsNoVec),3);
for n=1:length(EsNoVec),
    EsNodB = EsNoVec(n);
    sim('my_commpunctcnvcod');
    BERVec(n,:) = BER_Data;
end

To confirm the validity of the results, compare them to an established performance bound. The bit
error rate performance of a rate r = (n-1)/n punctured code is bounded above by the expression:

Pb ≤
1

2(n− 1) ∑
d = df ree

∞

ωderfc rd(Eb/N0)

In this expression, erfc denotes the complementary error function, r is the code rate, and both dfree
and ωd are dependent on the particular code. For the rate 3/4 code of this example, dfree = 5, ω5 = 42,
ω6 = 201, ω7 = 1492, and so on. See reference [ 1 ] for more details.

The following commands compute an approximation of this bound using the first seven terms of the
summation (the values used for nerr are found in Table 2 of reference [ 2 ]:

dist = [5:11];
nerr = [42 201 1492 10469 62935 379644 2253373];
CodeRate = 3/4;
EbNo_dB = [2:.02:5];
EbNo = 10.0.^(EbNo_dB/10);
arg = sqrt(CodeRate*EbNo'*dist);
bound = nerr*(1/6)*erfc(arg)';
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To plot the simulation and theoretical results in the same figure, use the commands below.

berfit(EbNoVec',BERVec(:,1)); % Curve-fitted simulation results
hold on;
semilogy(EbNo_dB,bound,'g'); % Theoretical results
legend('Simulated BER','Fit for simulated BER',...
    'Theoretical bound on BER')

In some cases, at the lower bit error rates, you might notice simulation results that appear to indicate
error rates slightly above the bound. This can result from simulation variance (if fewer than 500 bit
errors are observed) or from the finite traceback depth in the decoder.

References
[1] Yasuda, Y., K. Kashiki, and Y. Hirata, "High Rate Punctured Convolutional Codes for Soft Decision

Viterbi Decoding," IEEE Transactions on Communications, Vol. COM-32, March, 1984, pp.
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[2] Begin, G., Haccoun, D., and Paquin, C., "Further results on High-Rate Punctured Convolutional
Codes for Viterbi and Sequential Decoding," IEEE Transactions on Communications, Vol. 38,
No. 11, November, 1990, p. 1923.
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Rate 2/3 Convolutional Code in AWGN
This example generates a bit error rate versus Eb/No curve for a link that uses 16-QAM modulation
and a rate 2/3 convolutional code in AWGN.

Set the modulation order, and compute the number of bits per symbol.

M = 16;
k = log2(M);

Create a trellis for a rate 2/3 convolutional code. Set the traceback and code rate parameters.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);
traceBack = 16;
codeRate = 2/3;

Create a convolutional encoder and its equivalent Viterbi decoder.

convEncoder = comm.ConvolutionalEncoder('TrellisStructure',trellis);
vitDecoder = comm.ViterbiDecoder('TrellisStructure',trellis, ...
    'InputFormat','Hard','TracebackDepth',traceBack);

Create an error rate object. Set the receiver delay to twice the traceback depth, which is the delay
through the decoder.

errorRate = comm.ErrorRate('ReceiveDelay',2*traceBack);

Set the range of Eb/No values to be simulated. Initialize the bit error rate statistics matrix.

ebnoVec = 0:2:10;
errorStats = zeros(length(ebnoVec),3);

Simulate the link by following these steps:

• Generate binary data.
• Encode the data with a rate 2/3 convolutional code.
• 16-QAM modulate the encoded data, configure bit inputs and unit average power.
• Pass the signal through an AWGN channel.
• 16-QAM demodulate the received signal configure bit outputs and unit average power.
• Decode the demodulated signal by using a Viterbi decoder.
• Collect the error statistics.

for m = 1:length(ebnoVec)
    snr = ebnoVec(m) + 10*log10(k*codeRate);

    while errorStats(m,2) <= 100 && errorStats(m,3) <= 1e7
        dataIn = randi([0 1],10000,1);
        dataEnc = convEncoder(dataIn);
        txSig = qammod(dataEnc,M, ...
            'InputType','bit','UnitAveragePower',true);
        rxSig = awgn(txSig,snr);
        demodSig = qamdemod(rxSig,M, ...
            'OutputType','bit','UnitAveragePower',true);
        dataOut = vitDecoder(demodSig);
        errorStats(m,:) = errorRate(dataIn,dataOut);
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    end
    reset(errorRate)
end

Compute the theoretical BER vs. Eb/No curve for the case without forward error correction coding.

berUncoded = berawgn(ebnoVec','qam',M);

Plot the BER vs. Eb/No curve for the simulated coded data and the theoretical uncoded data. At
higher Eb/No values, the error correcting code provides performance benefits.

semilogy(ebnoVec,[errorStats(:,1) berUncoded])
grid
legend('Coded','Uncoded')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
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Estimate BER for Hard and Soft Decision Viterbi Decoding
Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi decoders in
AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

clear; close all
rng default
M = 64;                 % Modulation order
k = log2(M);            % Bits per symbol
EbNoVec = (4:10)';      % Eb/No values (dB)
numSymPerFrame = 1000;  % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec)); 
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback depth for a rate 1/2, constraint length 7, convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops performs these steps:

• Generate binary data
• Convolutionally encode the data
• Apply QAM modulation to the data symbols. Specify unit average power for the transmitted signal
• Pass the modulated signal through an AWGN channel
• Demodulate the received signal using hard decision and approximate LLR methods. Specify unit

average power for the received signal
• Viterbi decode the signals using hard and unquantized methods
• Calculate the number of bit errors

The while loop continues to process data until either 100 errors are encountered or 107 bits are
transmitted.

for n = 1:length(EbNoVec)
    % Convert Eb/No to SNR
    snrdB = EbNoVec(n) + 10*log10(k*rate);
    % Noise variance calculation for unity average signal power.
    noiseVar = 10.^(-snrdB/10);
    % Reset the error and bit counters
    [numErrsSoft,numErrsHard,numBits] = deal(0);
    
    while numErrsSoft < 100 && numBits < 1e7
        % Generate binary data and convert to symbols
        dataIn = randi([0 1],numSymPerFrame*k,1);
        
        % Convolutionally encode the data
        dataEnc = convenc(dataIn,trellis);
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        % QAM modulate
        txSig = qammod(dataEnc,M,'InputType','bit','UnitAveragePower',true);
        
        % Pass through AWGN channel
        rxSig = awgn(txSig,snrdB,'measured');
        
        % Demodulate the noisy signal using hard decision (bit) and
        % soft decision (approximate LLR) approaches.
        rxDataHard = qamdemod(rxSig,M,'OutputType','bit','UnitAveragePower',true);
        rxDataSoft = qamdemod(rxSig,M,'OutputType','approxllr', ...
            'UnitAveragePower',true,'NoiseVariance',noiseVar);
        
        % Viterbi decode the demodulated data
        dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
        dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');
        
        % Calculate the number of bit errors in the frame. Adjust for the
        % decoding delay, which is equal to the traceback depth.
        numErrsInFrameHard = biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
        numErrsInFrameSoft = biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));
        
        % Increment the error and bit counters
        numErrsHard = numErrsHard + numErrsInFrameHard;
        numErrsSoft = numErrsSoft + numErrsInFrameSoft;
        numBits = numBits + numSymPerFrame*k;

    end
    
    % Estimate the BER for both methods
    berEstSoft(n) = numErrsSoft/numBits;
    berEstHard(n) = numErrsHard/numBits;
end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an uncoded 64-QAM
channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on
semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
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As expected, the soft decision decoding produces the best results.
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Creation, Validation, and Testing of User Defined Trellis
Structure

Create User Defined Trellis Structure
This example demonstrates creation of a nonstandard trellis structure for a convolutional encoder
with uncoded bits and feedback. The encoder cannot be created using poly2trellis because the
peculiar specifications for the encoder do not match the input requirements of poly2trellis.

You can manually create the trellis structure, and then use it as the input trellis structure for an
encoder and decoder. The Convolutional Encoder and Viterbi Decoder blocks used in the
“Convolutional Encoder with Uncoded Bits and Feedback” on page 21-24 model load the trellis
structure created here using a PreLoadFcn callback.

Convolutional Encoder

Create a rate 3/4 convolutional encoder with feedback connection whose MSB bit remains uncoded.

Declare variables according to the specifications.

K = 3;
N = 4;
constraintLength = 4;

Create trellis structure

A trellis is represented by a structure with the following fields:

• numInputSymbols – Number of input symbols
• numOutputSymbols – Number of output symbols
• numStates – Number of states
• nextStates – Next state matrix
• outputs – Output matrix

For more information about these structure fields, see istrellis.
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Reset any previous occurrence of myTrellis structure.

clear myTrellis;

Define the trellis structure fields.

myTrellis.numInputSymbols = 2^K;
myTrellis.numOutputSymbols = 2^N;
myTrellis.numStates  = 2^(constraintLength-1);

Create nextStates Matrix

The nextStates matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of the next
state matrix is the resulting final state index that corresponds to a transition from the initial state i
for an input equal to j.

myTrellis.nextStates = [0  1  2  3  0  1  2  3; ...
                        6  7  4  5  6  7  4  5; ...
                        1  0  3  2  1  0  3  2; ...
                        7  6  5  4  7  6  5  4; ...
                        2  3  0  1  2  3  0  1; ...
                        4  5  6  7  4  5  6  7; ...
                        3  2  1  0  3  2  1  0; ...
                        5  4  7  6  5  4  7  6]    

myTrellis = struct with fields:
     numInputSymbols: 8
    numOutputSymbols: 16
           numStates: 8
          nextStates: [8x8 double]

Plot nextStates Matrix

Use the commcnv_plotnextstates helper function to plot the nextStates matrix to illustrate the
branch transitions between different states for a given input.

commcnv_plotnextstates(myTrellis.nextStates);

 Creation, Validation, and Testing of User Defined Trellis Structure

21-21



Create outputs Matrix

The outputs matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of the output
matrix is the output symbol in octal format given a current state i for an input equal to j.

outputs =  [0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17; ...
            0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17; ...
            0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17; ...
            0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17]

outputs = 8×8

     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17
     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17
     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17
     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17

Use oct2dec to display these values in decimal format.
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outputs_dec = oct2dec(outputs)

outputs_dec = 8×8

     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15
     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15
     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15
     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15

Copy outputs matrix into the myTrellis structure.

myTrellis.outputs = outputs

myTrellis = struct with fields:
     numInputSymbols: 8
    numOutputSymbols: 16
           numStates: 8
          nextStates: [8x8 double]
             outputs: [8x8 double]

Plot outputs Matrix

Use the commcnv_plotoutputs helper function to plot the outputs matrix to illustrate the possible
output symbols for a given state depending on the input symbol.

commcnv_plotoutputs(myTrellis.outputs, myTrellis.numOutputSymbols);
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Check Resulting Trellis Structure

istrellis(myTrellis)

ans = logical
   1

A return value of 1 confirms the trellis structure is valid.

Convolutional Encoder with Uncoded Bits and Feedback
The model serves as a unit test bench for the convolutional code implemented. The model shows how
to define and use a trellis that describes a convolutional code. The particular code in this example
cannot be described by a set of generator and feedback connection polynomials. The code's trellis
cannot be created by the poly2trellis because that function expects generator and feedback
connection polynomials as input arguments.

Structure of the Convolutional Code

This figure shows the convolutional code.
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Structure of the Example

The major components in this example include:

• A transmit path that builds a representation of the convolutional encoder using discrete low-level
delay and sum (XOR) blocks. This representation looks very similar to the figure showing the
structure of the convolutional code.

• A transmit-receive path that builds a representation of the same convolutional encoder using the
Convolutional Encoder block. In this case, the description of the encoder is within the block's
Trellis structure parameter. This portion of the model also includes the Viterbi Decoder block,
which decodes the convolutional code.

• Both paths compute the number of bit errors.

Open Example Model and Explore Its Contents

Open the example model slex_commcnvencoder.
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Results and Displays

When you run the simulation, the block labeled Compare Encoder checks that the two
representations of the encoder yield the same result. The block labeled Compare Encoder -
Decoder checks that the encoder and decoder work properly as a pair. Each Display block in the
model shows an error rate of zero, as expected.

Error rate for Compare Encoder signal: 0.000
Error rate for Compare Encoder-Decoder signal: 0.000

See Also
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Channel Modeling and RF Impairments

• “AWGN Channel” on page 22-2
• “Configure Eb/No for AWGN Channels with Coding” on page 22-5
• “Using AWGN Channel Block for Coded Signals” on page 22-7
• “Fading Channels” on page 22-8
• “Using Channel Visualization” on page 22-34
• “WINNER II Channel” on page 22-35
• “Mapping of WINNER II Open Source Download to WINNER II Channel Model for

Communications Toolbox” on page 22-37
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AWGN Channel
In this section...
“Section Overview” on page 22-2
“AWGN Channel Noise Level” on page 22-2

Section Overview
An AWGN channel adds white Gaussian noise to the signal that passes through it. You can create an
AWGN channel in a model using the comm.AWGNChannel System object, the AWGN Channel block,
or the awgn function.

The following examples use an AWGN Channel: “QPSK Transmitter and Receiver” on page 8-255 and
“General QAM Modulation in AWGN Channel” on page 17-40.

AWGN Channel Noise Level
Typical quantities used to describe the relative power of noise in an AWGN channel include

• Signal-to-noise ratio (SNR) per sample. SNR is the actual input parameter to the awgn function.
• Ratio of bit energy to noise power spectral density (EbN0). This quantity is used by BER

Analyzer Tool and performance evaluation functions in this toolbox.
• Ratio of symbol energy to noise power spectral density (EsN0)

Relationship Between EsN0 and EbN0

The relationship between EsN0 and EbN0, both expressed in dB, is as follows:

Es/N0 (dB) = Eb/N0 (dB) + 10log10(k)

where k is the number of information bits per symbol.

In a communications system, k might be influenced by the size of the modulation alphabet or the code
rate of an error-control code. For example, in a system using a rate-1/2 code and 8-PSK modulation,
the number of information bits per symbol (k) is the product of the code rate and the number of
coded bits per modulated symbol. Specifically, (1/2) log2(8) = 3/2. In such a system, three information
bits correspond to six coded bits, which in turn correspond to two 8-PSK symbols.

Relationship Between EsN0 and SNR

The relationship between EsN0 and SNR, both expressed in dB, is as follows:

Es/N0 (dB) = 10log10 Tsym/Tsamp + SNR (dB)   for complex input signals

Es/N0 (dB) = 10log10 0.5Tsym/Tsamp + SNR (dB) for real input signals

where Tsym is the symbol period of the signal and Tsamp is the sampling period of the signal.

For a complex baseband signal oversampled by a factor of 4, the EsN0 exceeds the corresponding
SNR by 10 log10(4).
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Derivation for Complex Input Signals

You can derive the relationship between EsN0 and SNR for complex input signals as follows:

Es/N0 (dB) = 10log10 (S ⋅ Tsym)/(N/Bn)

= 10log10 (TsymFs) ⋅ (S/N)

= 10log10 Tsym/Tsamp + SNR (dB)

where

• S = Input signal power, in watts
• N = Noise power, in watts
• Bn = Noise bandwidth, in Hertz = Fs = 1/Tsamp.
• Fs = Sampling frequency, in Hertz

Behavior for Real and Complex Input Signals

These figures illustrate the difference between the real and complex cases by showing the noise
power spectral densities of a real bandpass white noise process and its complex lowpass equivalent.

See Also
Objects
comm.AWGNChannel

Blocks
AWGN Channel
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Functions
awgn

More About
• “QPSK Transmitter and Receiver” on page 8-255
• “General QAM Modulation in AWGN Channel” on page 17-40
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Configure Eb/No for AWGN Channels with Coding
This example shows how to set the bit energy to noise density ratio (Eb/No) for communication links
employing channel coding.

Specify the codeword and message length for a Reed-Solomon code. Specify the modulation order.

N = 15;       % R-S codeword length in symbols
K = 9;        % R-S message length in symbols
M = 16;       % Modulation order

Construct a (15,9) Reed-Solomon encoder and a 16-PSK modulator. Specify the objects so that they
accept bit inputs.

rsEncoder = comm.RSEncoder('CodewordLength',N,'MessageLength',K, ...
    'BitInput',true);
pskModulator = comm.PSKModulator('ModulationOrder',M,'BitInput',true);

Create the corresponding Reed-Solomon decoder and 16-PSK demodulator objects.

rsDecoder = comm.RSDecoder('CodewordLength',N,'MessageLength',K, ...
    'BitInput',true);
pskDemodulator = comm.PSKDemodulator('ModulationOrder',M,'BitOutput',true);

Calculate the Reed-Solomon code rate based on the ratio of message symbols to the codeword length.
Determine the bits per symbol for the PSK modulator.

codeRate = K/N;
bitsPerSymbol = log2(M);

Specify the uncoded Eb/No in dB. Convert the uncoded Eb/No to the corresponding coded Eb/No
using the code rate.

UncodedEbNo = 6;
CodedEbNo = UncodedEbNo + 10*log10(codeRate);

Construct an AWGN channel taking into account the number of bits per symbol. Set the EbNo
property of channel to the coded Eb/No.

channel = comm.AWGNChannel('BitsPerSymbol',bitsPerSymbol);
channel.EbNo = CodedEbNo;

Set the total number of errors and bits for the simulation. For accuracy, the simulation should run
until a sufficient number of bit errors are encountered. The number of total bits is used to ensure that
the simulation does not run too long.

totalErrors = 100;
totalBits = 1e6;

Construct an error rate calculator System object™ and initialize the error rate vector.

errorRate = comm.ErrorRate;
errorVec = zeros(3,1);

Run the simulation to determine the BER.

while errorVec(2) < totalErrors && errorVec(3) < totalBits
    % Generate random bits
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    dataIn = randi([0,1],360,1);
    % Use the RS (15,9) encoder to add error correction capability
    dataEnc = rsEncoder(dataIn);
    % Apply 16-PSK modulation
    txSig = pskModulator(dataIn);
    % Pass the modulated data through the AWGN channel
    rxSig = channel(txSig);
    % Demodulate the received signal
    demodData = pskDemodulator(rxSig);
    % Decode the demodulated data with the RS (15,9) decoder
    dataOut = rsDecoder(demodData);
    % Collect error statistics
    errorVec = errorRate(dataIn,demodData);
end

Display the resultant bit error rate.

ber = errorVec(1)

ber = 0.0935
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Using AWGN Channel Block for Coded Signals
Two links perform error control coding on a signal that has passed through an impairment channel.
Both links are set for an uncoded Eb/No of 8 dB.

In the top link, the AWGN channel block is set to provide a coded Eb/No of 8 + 10log10(4/7) dB,
where 4/7 is the code rate. This accounts for the fact that the coded Eb/No is always lower (by a
factor of the code rate) than the uncoded Eb/No. The blue shaded portion of the top link is simply a
binary symmetric channel, which is modeled more compactly in the bottom link. The channel error
probability of the top link is Q(sqrt(2*Ebc/No)), where Q() is the standard Q function and Ebc/No is
the coded Eb/No (in absolute terms, not in dB).

For this example, it is important to note that the bit period at the input of the AWGN Channel block is
4/7 sec. It is 1 sec at the input of the Hamming Encoder block, but that block decreases the bit time
by a factor of the code rate.

If you allow the model to run for 1e6 bits, you'll note that the BERs are virtually identical. The
difference lies in the stochastic nature of the two random number generators.

You can also check these BER results against expected analytical results by typing this command at
the MATLAB® command prompt.

BER = bercoding(8,'block','hard',7,4,3)

This expression finds the upper bound of the BER of a linear, rate 4/7 block code with a minimum
distance of 3, and hard decision decoding.
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Fading Channels
In this section...
“Overview of Fading Channels” on page 22-8
“Methodology for Simulating Multipath Fading Channels” on page 22-10
“Specify Fading Channels” on page 22-13
“Specify Doppler Spectrum of Fading Channel” on page 22-16
“Configure Channel Objects” on page 22-22
“Use Fading Channels” on page 22-24
“Rayleigh Fading Channel” on page 22-26
“Rician Fading Channel” on page 22-31

Overview of Fading Channels
Using Communications Toolbox you can implement fading channels using objects or blocks. Rayleigh
and Rician fading channels are useful models of real-world phenomena in wireless communications.
These phenomena include multipath scattering effects, time dispersion, and Doppler shifts that arise
from relative motion between the transmitter and receiver. This section gives a brief overview of
fading channels and describes how to implement them using the toolbox.

This figure depicts direct and major reflected paths between a stationary radio transmitter and a
moving receiver. The shaded shapes represent reflectors such as buildings.

The major paths result in the arrival of delayed versions of the signal at the receiver. In addition, the
radio signal undergoes scattering on a local scale for each major path. Such local scattering typically
results from reflections off objects near the mobile. These irresolvable components combine at the
receiver and cause a phenomenon known as multipath fading. Due to this phenomenon, each major
path behaves as a discrete fading path. Typically, the fading process is characterized by a Rayleigh
distribution for a non line-of-sight path and a Rician distribution for a line-of-sight path.

The relative motion between the transmitter and receiver causes Doppler shifts. Local scattering
typically comes from many angles around the mobile. This scenario causes a range of Doppler shifts,
known as the Doppler spectrum. The maximum Doppler shift corresponds to the local scattering
components whose direction exactly opposes the trajectory of the mobile.

The channel filter applies path gains to the input signal, Signal in. The path gains are configured
based on settings chosen in the fading channel object or block.
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These blocks and objects enable you to model SISO or MIMO fading channels.

Tool SISO MIMO
MATLAB comm.RayleighChannel

comm.RicianChannel

comm.MIMOChannel

Simulink SISO Fading Channel MIMO Fading Channel

Implement Fading Channel Using an Object

A baseband channel model for multipath propagation scenarios that you implement using objects
includes:

• N discrete fading paths. Each path has its own delay and average power gain. A channel for which
N = 1 is called a frequency-flat fading channel. A channel for which N > 1 is experienced as a
frequency-selective fading channel by a signal of sufficiently wide bandwidth.

• A Rayleigh or Rician model for each path.
• Default channel path modeling using a Jakes Doppler spectrum, with a maximum Doppler shift

that can be specified. Other types of Doppler spectra allowed (identical or different for all paths)
include: flat, restricted Jakes, asymmetrical Jakes, Gaussian, bi-Gaussian, rounded, and bell.

If the maximum Doppler shift is set to 0 or omitted during the construction of a channel object,
then the object models the channel as static. For this configuration, the fading does not evolve
with time and the Doppler spectrum specified has no effect on the fading process.

Some additional information about typical values for delays and gains is in Choosing Realistic
Channel Property Values on page 22-22.

Implement Fading Channel Using a Block

The Channels block library includes MIMO and SISO fading blocks that can simulate real-world
phenomena in mobile communications. These phenomena include multipath scattering effects, in
addition to Doppler shifts that arise from relative motion between the transmitter and receiver.

Tip To model a channel that involves both fading and additive white Gaussian noise, use a fading
channel block followed by an AWGN Channel block.
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The MIMO Fading Channel and SISO Fading Channel blocks can be set to model Rayleigh or Rician
fading distributions of the channel. Based on the type of signal path, choose the fading distribution to
use.

Signal Path Fading Distribution
Direct line-of-sight path from transmitter to
receiver

Rician

One or more major reflected paths from
transmitter to receiver

Rayleigh

You can use a single instance of a fading channel block configured for Rayleigh fading distribution to
model multiple major reflected paths simultaneously.

Choosing appropriate block parameters for your situation is important. For more information, see
Choosing Realistic Channel Property Values on page 22-22, and the MIMO Fading Channel and SISO
Fading Channel block reference pages.

Visualize a Fading Channel

You can view the characteristics of a fading channel using channel visualization tools. For more
information, see Channel Visualization on page 25-27.

Compensate for Fading Response

A communications system involving a fading channel usually requires components that compensate
for the fading response. Typical approaches to compensate for fading include:

• Differential modulation or a one-tap equalizer helps compensate for a frequency-flat fading
channel. For information about implementing differential modulation, see the M-DPSK Modulator
Baseband block reference page.

• An equalizer with multiple taps helps compensate for a frequency-selective fading channel. See
Equalization on page 14-2 for more information.

The “Adaptive Equalization with Filtering and Fading Channel” on page 14-30 example illustrates why
compensating for a fading channel is necessary.

Methodology for Simulating Multipath Fading Channels
The Rayleigh and Rician multipath fading channel simulators in Communications Toolbox use the
band-limited discrete multipath channel model of section 9.1.3.5.2 in [1]. This implementation
assumes that the delay power profile and the Doppler spectrum of the channel are separable [1]. The
multipath fading channel is therefore modeled as a linear finite impulse-response (FIR) filter. Let si
denote the set of samples at the input to the channel. Then the samples yi  at the output of the
channel are related to si  through:

yi = ∑
n = − N1

N2
si− ngn

where gn  is the set of tap weights given by:

gn = ∑
k = 1

K
aksinc

τk
Ts
− n , − N1 ≤ n ≤ N2
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In the equations:

• Ts is the input sample period to the channel.
• τk , where 1 ≤ k ≤ K, is the set of path delays. K is the total number of paths in the multipath

fading channel.
• ak , where 1 ≤ k ≤ K, is the set of complex path gains of the multipath fading channel. These

path gains are uncorrelated with each other.
• N1 and N2 are chosen so that gn  is small when n is less than −N1 or greater than N2.

Two techniques, filtered Gaussian noise and sum-of-sinusoids, are used to generate the set of complex
path gains, ak.

Each path gain process ak is generated by the following steps:

Filtered Gaussian Noise Technique

1 A complex uncorrelated (white) Gaussian process with zero mean and unit variance is generated
in discrete time.

2 The complex Gaussian process is filtered by a Doppler filter with frequency response
H(f ) = S(f ), where S(f ) denotes the desired Doppler power spectrum.

3 The filtered complex Gaussian process is interpolated so that its sample period is consistent with
the sample period of the input signal. A combination of linear and polyphase interpolation is
used.

Sum-of-sinusoids Technique

1 Mutually uncorrelated Rayleigh fading waveforms are generated using the method described in
[2], where i = 1 corresponds to the in-phase component and i = 2 corresponds to the quadrature
component.

zk(t) = μk
(1)(t) + jμk

(2)(t), k = 1, 2, …, K

μk
(i)(t) = 2

Nk
∑

n = 1

Nk
cos 2πfk, n

(i) t + θk, n
(i) , i = 1, 2

Where

• Nk specifies the number of sinusoids used to model a single path.
• fk, n

(i)  is the discrete Doppler frequency and is calculated for each sinusoid component within a
single path.

• θk, n
(i)  is the phase of the nth component of μk

(i) and is an i.i.d. random variable having a uniform
distribution over the interval 0, 2π .

• t is the fading process time.

When modeling a Jakes Doppler spectrum, the discrete Doppler frequencies, fk, n
(i) , with maximum

shift fmax are given by

fk, n
(i) = fmaxcos αk, n

(i)

= fmaxcos π
2Nk

n− 1
2 + αk, 0

(i)
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where

αk, 0
(i) ≜ −1 i− 1 π

4Nk
⋅ k

K + 2, i = 1, 2 and k = 1, 2, …, K

2 To advance the fading process in time, an initial time parameter, tinit, is introduced. The fading
waveforms become

μk
(i)(t) = 2

Nk
∑

n = 1

Nk
cos 2πfk, n

(i) t + tinit + θk, n
(i) , i = 1, 2

When tinit = 0, the fading process starts at time zero. A positive value of tinit advances the fading
process relative to time zero while maintaining its continuity.

3 Channel fading samples are generated using the GMEDS1 [2] algorithm.

Calculate Complex Coefficients

The complex process resulting from either technique, zk, is scaled to obtain the correct average path
gain. In the case of a Rayleigh channel, the fading process is obtained as:

ak = Ωkzk

where

Ωk = E ak
2

In the case of a Rician channel, the fading process is obtained as:

ak = Ωk
zk

Kr, k + 1 +
Kr, k

Kr, k + 1e j 2πfd, LOS, kt + θLOS, k

where Kr, k is the Rician K-factor of the kth path, fd, LOS, k is the Doppler shift of the line-of-sight
component of the kth path (in Hz), and θLOS, k is the initial phase of the line-of-sight component of the
kth path (in rad).

At the input to the band-limited multipath channel model, the transmitted symbols must be
oversampled by a factor at least equal to the bandwidth expansion factor introduced by pulse
shaping. For example, if sinc pulse shaping is used, for which the bandwidth of the pulse-shaped
signal is equal to the symbol rate, then the bandwidth expansion factor is 1, and at least one sample
per symbol is required at the input to the channel. If a raised cosine (RC) filter with a factor more
than 1 is used, for which the bandwidth of the pulse-shaped signal is equal to twice the symbol rate,
then the bandwidth expansion factor is 2, and at least two samples per symbol are required at the
input to the channel.

Channel Filter Model Characteristics

The channel filter implements a fractional delay (FD) finite impulse response (FIR) bandpass filter
with a length of 16 coefficients for each candidate fractional delay at 0, 0.02, 0.04, …, 0.98.

Each discrete path is rounded to its nearest candidate fractional delay, so the delay error limit is 1%
of the sample time. To achieve a group delay bandwidth exceeding 80% and a magnitude bandwidth
exceeding 90%, the algorithm selects the optimal FIR coefficient values for each fractional delay,
while satisfying the following criteria:
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• Group delay ripple ≤ 10%
• Magnitude ripple ≤ 2 dB
• Magnitude bandedge attenuation = 3 dB

The plots show bandwidths that satisfy the design criteria for group delay ripple, magnitude ripple,
and magnitude bandedge attenuation.
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Specify Fading Channels
Communications Toolbox models a fading channel as a linear FIR filter. Filtering a signal using a
fading channel involves these steps:

1 Create a channel object that describes the channel that you want to use. A channel object is a
type of MATLAB variable that contains information about the channel, such as the maximum
Doppler shift.

2 Adjust properties of the channel object, if necessary, to tailor it to your needs. For example, you
can change the path delays or average path gains.

3 Apply the channel object to your signal using calling the object.

This section describes how to define, inspect, and manipulate channel objects. The topics are:

• “Creating Channel Objects” on page 22-14
• “Duplicate and Copy Objects” on page 22-14
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• “Displaying and Changing Object Properties” on page 22-14
• “Relationships Among Channel Object Properties” on page 22-16

Creating Channel Objects

To create a fading channel object suitable for your modeling situation, select one of these System
objects.

Function Object Situation Modeled
comm.RayleighChannel Rayleigh fading channel object One or more major reflected

paths
comm.RicianChannel Rician fading channel object One direct line-of-sight path,

possibly combined with one or
more major reflected paths

For example, this command creates a channel object representing a Rayleigh fading channel that acts
on a signal sampled at 100,000 Hz. The maximum Doppler shift of the channel is 130 Hz.
rayChan1 = comm.RayleighChannel('SampleRate',1e5,...
               'MaximumDopplerShift',130); % Rayleigh fading channel object

To learn how to call the rayChan1 fading channel object to filter the transmitted signal through the
channel, see Using Fading Channels on page 22-24.

Duplicate and Copy Objects

You can also create another object by duplicating an existing object and then adjust the properties of
the new object, if necessary. To duplicate an object always use the clone function such as:
rayChan2 = clone(rayChan1); % Copy rayChan1 to create an independent rayChan2.

instead of rayChan2 = rayChan1. The clone command creates a copy of rayChan1 that is
independent of rayChan1. By contrast, the command rayChan2 = rayChan1 creates rayChan2 as
merely a reference to rayChan1, so that rayChan1 and rayChan2 always have indistinguishable
content.

Displaying and Changing Object Properties

A channel object has numerous properties that record information about the channel model, about
the state of a channel that has already filtered a signal, and about the channel operation on a future
signal.

You can view the properties in these ways:

• To view all properties of a channel object, enter the object name in the Command Window.
• You can view a property of a channel object or assign the value to a variable by entering the object

name followed by a dot (period), followed by the name of the property.

You can change the writable properties of a channel object in these ways:

• To change the default value of a channel object property, enter the desired value in the object
creation syntax.

• To change the value of a writeable property of a channel object, issue an assignment statement
that uses dot notation on the channel object. More specifically, dot notation means an expression
that consists of the object name, followed by a dot, followed by the name of the property.
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Display Rayleigh Channel Object Properties

Create a Rayleigh channel object. Display the object to show the properties initialized by default and
the ones specified when creating the object. Entering rayChan displays all properties of the channel
object. Some of the properties values were assigned when the object was created, while other
properties have default values. For more information about specific channel properties, see the
reference page for the comm.RayleighChannel object.

rayChan = comm.RayleighChannel('SampleRate',1e5,'MaximumDopplerShift',130);
rayChan % View all the properties

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 100000
             PathDelays: 0
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 130
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

g = rayChan.AveragePathGains % Retrieve the AveragePathGains property of rayChan

g = 0

Adjust Rician Channel Object Properties

A Rician fading channel object has an additional property that does not appear for a Rayleigh fading
channel object, namely, a scalar KFactor property. For more information about Rician channel
properties, see the reference page for the comm.RicianChannel object.

Change Rician Channel Object Properties

Create a Rician channel object. The default setting for the Visualization property is 'Off'.
Changing the default setting to 'Impulse response' generates an impulse response plot of the
output signal when the object is called. The output displays a subset of all the properties of the
channel object. Select all properties to see the complete set of properties for ricChan.

ricChan= comm.RicianChannel; % Create object
ricChan.Visualization = 'Impulse response' % Enables the impulse response channel visualization

ricChan = 
  comm.RicianChannel with properties:

                SampleRate: 1
                PathDelays: 0
          AveragePathGains: 0
        NormalizePathGains: true
                   KFactor: 3
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 1.0000e-03
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           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: false

  Show all properties

Relationships Among Channel Object Properties

Some properties of a channel object are related to each other such that when one property's value
changes, another property's value must change in some corresponding way to keep the channel
object consistent. For example, if you change the vector length of PathDelays, then the value of
AveragePathGains must change so that its vector length equals that of the new value of
PathDelays. This is because the length of each of the two vectors equals the number of discrete
paths of the channel. For details about linked properties and an example, see
comm.RayleighChannel or comm.RicianChannel.

Specify Doppler Spectrum of Fading Channel
The Doppler spectrum of a channel object is specified through its DopplerSpectrum property. The
value of this property must be either:

• A Doppler spectrum structure. In this case, the same Doppler spectrum applies to each path of the
channel object.

• A cell array of Doppler spectrum structures of the same length as the PathDelays vector
property. In this case, the Doppler spectrum of each path is given by the corresponding Doppler
spectrum structure in the vector.

• When the vector length of the PathDelays property is increased, the length of
DopplerSpectrum is automatically increased to match the length of PathDelays, by
appending Jakes Doppler spectrum structures.

• If the length of the PathDelays vector property is decreased, the length of
DopplerSpectrum is automatically decreased to match the length of PathDelays, by
removing the last Doppler spectrum structures.

A Doppler spectrum structure contains the properties used to characterize the Doppler spectrum, but
the maximum Doppler shift is a property of the channel object. This section describes how to create
and manipulate Doppler spectrum structures, and how to assign them to the DopplerSpectrum
property of channel objects.

Create a Doppler Spectrum Structure

To create Doppler spectrum structures, use the doppler function. The sole purpose of the doppler
function is to create Doppler spectrum structures used to specify the value of the DopplerSpectrum
property of channel objects. Select from the following:

• doppler('Jakes')
• doppler('Flat')
• doppler('Rounded', ...)
• doppler('Bell', ...)
• doppler('Asymmetric Jakes', ...)
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• doppler('Restricted Jakes', ...)
• doppler('Gaussian', ...)
• doppler('BiGaussian', ...)

For example, a Gaussian spectrum with a normalized (by the maximum Doppler shift of the channel)
standard deviation of 0.1, can be created as:

dopp1 = doppler('Gaussian',0.1);

Note When creating a Doppler spectrum structure, consider the following dependencies:

• If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have the same
specified Doppler spectrum.

• If the FadingTechnique property is 'Sum of sinusoids', DopplerSpectrum must be
doppler('Jakes');

• If you assign a row cell array of different Doppler spectrum structures to DopplerSpectrum,
each path has the Doppler spectrum specified by the corresponding structure in the cell array. In
this case, the length of DopplerSpectrum must be equal to the length of PathDelays.

• To generate C code, specify DopplerSpectrum to a single Doppler spectrum structure.

View and Change Doppler Spectrum Structure Properties

Create a Doppler spectrum structure by specifying the type of Doppler spectrum as 'Rounded', then
modify settings of the polynomial type

A rounded Doppler spectrum structure with default properties is created and displayed, and the third
element of the Polynomial field is modified.

doppRound = doppler('Rounded')

doppRound = struct with fields:
    SpectrumType: 'Rounded'
      Polynomial: [1 -1.7200 0.7850]

Adjust the third coefficient of the polynomial.

doppRound.Polynomial(3) = 0.825

doppRound = struct with fields:
    SpectrumType: 'Rounded'
      Polynomial: [1 -1.7200 0.8250]

Be aware that it is possible to modify a Doppler spectrum structure to an invalid configuration.
Validation of the Doppler spectrum structure settings is performed when the structure is used by a
fading channel object. The doppRound spectrum structure defined above is valid.

ricianCh = comm.RicianChannel('DopplerSpectrum',doppRound)

ricianCh = 
  comm.RicianChannel with properties:
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                SampleRate: 1
                PathDelays: 0
          AveragePathGains: 0
        NormalizePathGains: true
                   KFactor: 3
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 1.0000e-03
           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: false

  Show all properties

Use Doppler Spectrum Structures Within Channel Objects

The DopplerSpectrum property of a channel object can be changed by assigning to it a Doppler
spectrum structure or a vector of Doppler spectrum structures.

Create Rayleigh Channel with Flat Doppler Spectrum

This example shows how to change the default Jakes Doppler spectrum of a configured Rayleigh
channel object to a flat Doppler spectrum.

Create a Rayleigh channel object

Set the sample rate to 9600 Hz and the maximum Doppler shift to 100 Hz.

rayChan = comm.RayleighChannel( ...
    'SampleRate',9600,'MaximumDopplerShift',100)

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: 0
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 100
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

rayChan.DopplerSpectrum

ans = struct with fields:
    SpectrumType: 'Jakes'

Modify the Doppler spectrum

Create a flat Doppler spectrum structure, and then assign it in the rayChan object.

doppFlat = doppler('Flat')
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doppFlat = struct with fields:
    SpectrumType: 'Flat'

rayChan.DopplerSpectrum = doppFlat

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: 0
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 100
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

rayChan.DopplerSpectrum

ans = struct with fields:
    SpectrumType: 'Flat'

Create Rician Channel with Gaussian Doppler Spectrum

This example shows how to change the default Jakes Doppler spectrum of a configured Rician
channel object to a Gaussian Doppler spectrum with normalized standard deviation of 0.3. Then,
display the DopplerSpectrum property and change the normalized standard deviation of the
Doppler spectrum to 1.1.

Create a Rician channel object

Set the sample rate to 9600 Hz, the maximum Doppler shift to 100 Hz, and K factor to 2.

ricChan = comm.RicianChannel( ...
    'SampleRate',9600,'MaximumDopplerShift',100,'KFactor',2)

ricChan = 
  comm.RicianChannel with properties:

                SampleRate: 9600
                PathDelays: 0
          AveragePathGains: 0
        NormalizePathGains: true
                   KFactor: 2
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 100
           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: false

  Show all properties
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ricChan.DopplerSpectrum

ans = struct with fields:
    SpectrumType: 'Jakes'

Modify the Doppler spectrum

Create a Gaussian Doppler spectrum structure with normalized standard deviation of 0.3 and assign
it in the ricChan object.

doppGaus = doppler('Gaussian',0.3)

doppGaus = struct with fields:
                   SpectrumType: 'Gaussian'
    NormalizedStandardDeviation: 0.3000

ricChan.DopplerSpectrum = doppGaus

ricChan = 
  comm.RicianChannel with properties:

                SampleRate: 9600
                PathDelays: 0
          AveragePathGains: 0
        NormalizePathGains: true
                   KFactor: 2
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 100
           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: false

  Show all properties

ricChan.DopplerSpectrum

ans = struct with fields:
                   SpectrumType: 'Gaussian'
    NormalizedStandardDeviation: 0.3000

ricChan.DopplerSpectrum.NormalizedStandardDeviation = 1.1;
ricChan.DopplerSpectrum

ans = struct with fields:
                   SpectrumType: 'Gaussian'
    NormalizedStandardDeviation: 1.1000

Create Rayleigh Channel Using Independent Doppler Spectrum

This example shows how to change the default Jakes Doppler spectrum of a configured three-path
Rayleigh channel object to a cell array of different Doppler spectra, and then change the properties of
the Doppler spectrum of the third path.
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Create a Rayleigh channel object

Set the sample rate to 9600 Hz, the maximum Doppler shift to 100 Hz, and specify path delays of 0,
1e-4, and 2.1e-4 seconds.

rayChan = comm.RayleighChannel( ...
    'SampleRate',9600, ...
    'MaximumDopplerShift',100, ...
    'PathDelays',[0 1e-4 2.1e-4])

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: [0 1.0000e-04 2.1000e-04]
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 100
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

rayChan.DopplerSpectrum

ans = struct with fields:
    SpectrumType: 'Jakes'

Modify the Doppler spectrum

Specify the DopplerSpectrum property as a cell array with an independent Doppler spectrum for
each path.

rayChan.DopplerSpectrum = {doppler('Flat') doppler('Flat') doppler('Rounded')}

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: [0 1.0000e-04 2.1000e-04]
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 100
        DopplerSpectrum: {[1x1 struct]  [1x1 struct]  [1x1 struct]}
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

rayChan.DopplerSpectrum{:}

ans = struct with fields:
    SpectrumType: 'Flat'
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ans = struct with fields:
    SpectrumType: 'Flat'

ans = struct with fields:
    SpectrumType: 'Rounded'
      Polynomial: [1 -1.7200 0.7850]

Change the Polynomial property for the third path.

rayChan.DopplerSpectrum{3}.Polynomial = [1 -1.21 0.7]

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 9600
             PathDelays: [0 1.0000e-04 2.1000e-04]
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 100
        DopplerSpectrum: {[1x1 struct]  [1x1 struct]  [1x1 struct]}
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

rayChan.DopplerSpectrum{:}

ans = struct with fields:
    SpectrumType: 'Flat'

ans = struct with fields:
    SpectrumType: 'Flat'

ans = struct with fields:
    SpectrumType: 'Rounded'
      Polynomial: [1 -1.2100 0.7000]

Configure Channel Objects
Before you filter a signal using a channel object, make sure that the properties of the channel have
suitable values for the situation you want to model. This section offers some guidelines to help you
choose realistic values that are appropriate for your modeling needs. The topics are

• “Choose Realistic Channel Property Values” on page 22-22
• “Configure Channel Objects Based on Simulation Needs” on page 22-24

The syntaxes for viewing and changing values of properties of channel objects are described in
Specifying a Fading Channel on page 22-13.

Choose Realistic Channel Property Values

Here are some tips for choosing property values that describe realistic channels:
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Path Delays

• By convention, the first delay is typically set to zero. The first delay corresponds to the first
arriving path.

• For indoor environments, path delays after the first are typically between 1e-9 seconds and 1e-7
seconds.

• For outdoor environments, path delays after the first are typically between 1e-7 seconds and 1e-5
seconds. Large delays in this range might correspond, for example, to an area surrounded by
mountains.

• The ability of a signal to resolve discrete paths is related to its bandwidth. If the difference
between the largest and smallest path delays is less than about 1% of the symbol period, then the
signal experiences the channel as if it had only one discrete path.

Average Path Gains

• The average path gains in the channel object indicate the average power gain of each fading path.
In practice, an average path gain value is a large negative dB value. However, computer models
typically use average path gains in the range of [-20, 0] dB.

• The dB values in a vector of average path gains often decay roughly linearly as a function of delay,
but the specific delay profile depends on the propagation environment.

• To ensure that the expected total power of the combined path gains is 1, you can normalize path
gains via the NormalizePathGains property of the channel object.

Maximum Doppler Shifts

• Doppler shifts are specified in terms of the relative speed between a transmitter and a receiver.
The maximum Doppler shift in Hertz, fd = vf ∕ c. In the formula, v is the relative speed in m/s, f is
the transmission carrier frequency in Hertz, and c is the speed of light (3×108 m/s). The relative
speed is a magnitude with no directional information.

• Apply the maximum Doppler shift formula assuming a transmission carrier frequency of 900 MHz,
a car moving at freeway speed, and a walking pedestrian. A signal transmitted from a car moving
at freeway speed to a stationary receiver would experience a maximum Doppler shift of
approximately 80 Hz. A signal transmitted from a mobile held by a walking pedestrian to a
stationary receiver would experience a maximum Doppler shift of approximately 4 Hz.

• A maximum Doppler shift of 0 corresponds to a static channel that comes from a Rayleigh or
Rician distribution.

Doppler Spectrum

• The Doppler spectrum used for the channel paths must be outputs of the form returned from the
doppler function.

• Options for the spectrum type are specified by the specType input to the doppler function.

K-Factor for Rician Fading Channels

• The Rician K-factor specifies the ratio of specular-to-diffuse power for a direct line-of-sight path.
The ratio is expressed linearly, not in dB.

• For Rician fading, the K-factor is typically in the range [1, 10].
• A K-factor of 0 corresponds to Rayleigh fading.
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Line-of-Sight (LOS) Path Doppler Shift for Rician Fading Channels

• The Rician LOS path Doppler shift, also known as direct path Doppler shift, specifies the relative
motion of the LOS path between a transmitter and a receiver.

• The Rician LOS path Doppler shift in Hertz, fd_los = (u⋅w) × f ∕ c. In the formula, (u⋅w) is the dot
product of vectors u and w, u is the normalized LOS path from the transmitter to the receiver, w is
the velocity of the receiver relative to transmitter, f is the transmission carrier frequency in Hertz,
and c is the speed of light (3×108 m/s).

• Apply this formula for a transmission carrier frequency of 900 MHz at a specified relative velocity.
For a signal from a transmitter at the coordinate origin that reaches a receiver at the coordinate
[100 100 0], where the relative velocity between the transmitter and receiver w = [3 -6 0.1]. The
LOS path Doppler shift is 4.25 Hz.

Doppler Spectrum Parameters

• See the doppler reference page for the respective Doppler spectrum structures for descriptions
of the parameters and their significance.

Configure Channel Objects Based on Simulation Needs

Tips for configuring a channel object to customize the filtering process:

• If your data is partitioned into a series of vectors (that you process within a loop, for example), you
can call the channel object multiple times (in each iteration within a loop). The state information
of the channel is updated and saved after each invocation. The channel output is irrelevant to how
the data is partitioned (vector length).

• If want the channel output to be repeatable, choose the seed option for the RandomStream
property of the channel object. To repeat the output, call the reset object function to reset both
the internal filters and the internal random number generator.

• If you want to model discontinuously transmitted data, set the FadingTechnique property to
'Sum of sinusoids' and the InitialTimeSource property to 'Input port' for the channel
object. When calling the object, specify the start time of each data vector/frame to be processed
by the channel via an input.

• If you want to normalize the fading process so that the expected value of the path gains' total
power is 1 (the channel does not contribute additional power gain or loss), set the
NormalizePathGains property of the channel object to true.

Use Fading Channels
After you have created a channel object as described in Specifying a Fading Channel on page 22-13,
you can call the object to pass a signal through the channel. Provide the signal as an input argument
to the channel object. At the end of the filtering operation, the channel object retains its state so that
you can find out the final path gains or the total number of samples that the channel has processed by
calling the info object function with the object as the input argument.

For an example that illustrates the basic syntax and state retention, see Power of a Faded Signal on
page 22-26.

To visualize the characteristics of the channel, set the Visualization property to 'Impulse
response', 'Frequency response', or 'Doppler spectrum'. For more information, see
Channel Visualization on page 25-27.
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Visualize Three-Path Rayleigh Channel

This example shows you how to visualize impulse response of a channel.

Create a channel object

While creating the channel object, use name-value pairs to set the Visualization property

to 'Impulse response'.

rayChan = comm.RayleighChannel('SampleRate',100000,'MaximumDopplerShift',130,...
    'PathDelays',[0 1.5e-5 3.2e-5],'AveragePathGains',[0, -3, -3],...
    'Visualization','Impulse response');

Generate a bit stream and create a modulator object. Modulate the bit stream and pass the

modulated DBPSK signal through the channel by calling the channel object.

tx = randi([0 1],500,1);
dbspkMod = comm.DBPSKModulator;
dpskSig = dbspkMod(tx);
y = rayChan(dpskSig);
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The impulse response is plotted when the object is called.

Rayleigh Fading Channel
These examples use fading channels:

• “Power of Faded Signal” on page 22-26
• “DBPSK Empirical Versus Theoretical Performance in Fading Conditions” on page 22-27
• “Work with Channel Filter Delays” on page 22-29
• “Channel Filtering Using For Loop” on page 22-30

Power of Faded Signal

This example plots the power of a faded signal versus sample number. It illustrates the syntax of
creating and calling a comm.RayleighChannel fading channel object and the state retention of the
channel object.

rayChan = comm.RayleighChannel('SampleRate',10000,'MaximumDopplerShift',100);
sig = j*ones(2000,1); % Signal
out = rayChan(sig); % Pass signal through channel.
rayChan % Display all properties of the channel object.

rayChan = 
  comm.RayleighChannel with properties:

             SampleRate: 10000
             PathDelays: 0
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 100
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

Plot power of faded signal, versus sample number.

plot(20*log10(abs(out)))
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DBPSK Empirical Versus Theoretical Performance in Fading Conditions

This example creates a frequency-flat Rayleigh fading channel object and calls it to process a DBPSK
signal consisting of a single vector. Bit error rate is computed for different values of the signal-to-
noise ratio. The fading channel filter is applied before AWGN. This is the recommended sequence to
use when you combine fading with AWGN.

Create Rayleigh fading channel, modulator, and demodulator objects
chan = comm.RayleighChannel('SampleRate',1e4,'MaximumDopplerShift',100);

Create DBPSK modulator and demodulator objects with the modulation order set to 2. Generate
DBPSK modulated data and pass it through the channel.

M = 2; % DBPSK modulation order
tx = randi([0 M-1],50000,1); % Generate a random bit stream

mod = comm.DBPSKModulator;
demod = comm.DBPSKDemodulator;

dpskSig = mod(tx);
fadedSig = chan(dpskSig); % Apply the channel effects

Create an AWGN channel object and an error rate calculator object.

awgnChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');
errorCalc = comm.ErrorRate;
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Compute error rate for different values of SNR.

SNR = 0:2:20; % Range of SNR values, in dB.
numSNR = length(SNR);
berVec = zeros(3, numSNR); % Preallocate a vector for BER results 

for n = 1:numSNR
   awgnChan.SNR = SNR(n);
   rxSig = awgnChan(fadedSig); % Add Gaussian noise
   rx = demod(rxSig);  % Demodulate
   reset(errorCalc)
  
   berVec(:,n) = errorCalc(tx,rx); % Compute error rate.
end
BER = berVec(1,:);

Compute theoretical performance results, for comparison.

BERtheory = berfading(SNR,'dpsk',M,1);

Plot BER results.

semilogy(SNR,BERtheory,'b-',SNR,BER,'r*');
legend('Theoretical BER','Empirical BER');
xlabel('SNR (dB)'); ylabel('BER');
title('Binary DPSK over Rayleigh Fading Channel');
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Work with Channel Filter Delays

The value of a channel object's ChannelFilterDelay property is the number of samples by which the
output of the channel lags the input. If you compare the input and output data sets directly, you must
take the delay into account by using appropriate truncating or padding operations.

The example illustrates a way to account for the delay before computing a bit error rate.

Create DBPSK modulator and demodulator objects with the modulation order set to 2. Generate
DBPSK modulated data and pass it through the channel.

bitRate = 50000;
M = 2; % DQPSK modulation order

mod = comm.DBPSKModulator;
demod = comm.DBPSKDemodulator;

Create Rayleigh fading channel object.

rayChan = comm.RayleighChannel('SampleRate',bitRate,'MaximumDopplerShift',4,...
    'PathDelays',[0 0.5/bitRate],'AveragePathGains',[0 -10]);
chInfo = info(rayChan);
delay = chInfo.ChannelFilterDelay;

Generate random bit stream data. Modulate the data, pass it through the fading channel, and
demodulate it.
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tx = randi([0 M-1],50000,1);

dpskSig = mod(tx);
fadedSig = rayChan(dpskSig);
rx = demod(fadedSig);

Compute bit error rate, taking delay into account.

errorCalc = comm.ErrorRate('ReceiveDelay', delay);
berVec = step(errorCalc,tx,rx);
ber = berVec(1)

ber = 0.0147

num = berVec(2)

num = 737

Channel Filtering Using For Loop

This example filters input data through a Rayleigh fading channel within a for loop. It uses the small
data sets from successive iterations to create an animated effect. The Rayleigh fading channel has
two discrete major paths. For information on filtering data through a channel multiple times while
maintaining continuity from one invocation to the next, see “Configure Channel Objects Based on
Simulation Needs” on page 22-24.

Set up parameters. Specify a bit rate of 50e3 Hz, and a loop iteration count of 125. Create a QPSK
modulator and Rayleigh fading channel objects.

bitRate = 50000;    % Data rate is 50 kb/s
numTrials = 125;    % Number of iterations of loop

M = 4; % QPSK modulation order
qpskMod = comm.QPSKModulator;

rayChan = comm.RayleighChannel('SampleRate',bitRate,'MaximumDopplerShift',4,'PathDelays',[0 2e-5],'AveragePathGains',[0 -9]);

Initialize a scatter plot.

scatterPlot = comm.ConstellationDiagram;

Apply channel in a loop, maintaining continuity. Plot only the current data in each iteration.

for n = 1:numTrials
   tx = randi([0 M-1],500,1); % Generate random bit stream
   pskSig = qpskMod(tx); % PSK modulate signal
   fadedSig = rayChan(pskSig); % Apply channel effects

   % Plot the new data from this iteration.
   update(scatterPlot,fadedSig);
end
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Rician Fading Channel
Quasi-Static Channel Modeling

Typically, a path gain in a fading channel changes insignificantly over a period of 1/(100fd)
seconds, where fd is the maximum Doppler shift. Because this period corresponds to a very large
number of bits in many modern wireless data applications, assessing performance over a statistically
significant range of channel fading requires simulating a prohibitively large amount of data. This
example illustrates the quasi-static channel modeling approach to gathering a statistically significant
number of errors. Quasi-static channel modeling provides a more tractable approach, which you can
implement using these steps:

1 Generate a random channel realization using a maximum Doppler shift of 0.

 Fading Channels

22-31



2 Process some large number of bits.
3 Compute error statistics.
4 Repeat these steps many times to produce a distribution of the performance metric.

Create modulator and demodulator system objects with a modulation order of 4.

M = 4;
dpskMod = comm.DPSKModulator('ModulationOrder',M);
dpskDemod = comm.DPSKDemodulator('ModulationOrder',M);
numBits = 10000; % Each trial uses 10000 bits
numTrials = 20;  % Number of BER computations

Typically, numTrials would be a large number to get an accurate estimate of outage probabilities or
packet error rate. Use 20 here just to make the example run more quickly.

Create a Rician channel object and set the maximum Doppler shift to zero.

ricianChan = comm.RicianChannel('KFactor',3,'MaximumDopplerShift',0);

Within a for loop, generate a random bit stream, DPSK modulate the signal, filter the modulated
signal through a Rician fading and AWGN channels, and demodulate the faded signal. For the symbol
error rate computation on each packet, ignore the first sample because of DPSK initial condition.

nErrors = zeros(1,numTrials);
for n = 1:numTrials
   tx = randi([0 M-1],numBits,1);            % Generate random bit stream
   dpskSig = dpskMod(tx);                    % DPSK modulate signal
   fadedSig = ricianChan(dpskSig);           % Apply channel effects
   rxSig = awgn(fadedSig,15,'measured');     % Add Gaussian noise
   rx = dpskDemod(rxSig);                    % Demodulate
   nErrors(n) = symerr(tx(2:end),rx(2:end)); % Symbol error computation, beginning with sample index 2 
end

After the for loop ends, display the list of symbol error counts in the vector nErrors and a
computation of the packet error rate. Run to run results vary due to randomness in the example.

nErrors

nErrors = 1×20

     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

per = mean(nErrors > 0) % Proportion of packets that had errors

per = 0.0500

More About the Quasi-Static Technique

As an example to show how the quasi-static channel modeling approach can save computation,
consider a wireless local area network (LAN) in which the carrier frequency is 2.4 GHz, mobile speed
is 1 m/s, and bit rate is 10 Mb/s. The following expression shows that the channel changes
insignificantly over 12,500 bits:
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1
100fd

 s 10 Mb/s = c
100vf  s 10 Mb/s

= 3 × 108m/s
100(1 m/s)(2.4 GHz) 10 Mb/s

= 12, 500 b

A traditional Monte Carlo approach for computing the error rate of this system would entail
simulating thousands of times, totalling tens of millions of bits. By contrast, a quasi-static channel
modeling approach would simulate a few packets at each of about 100 locations to arrive at a spatial
distribution of error rates. From this distribution one could determine, for example, how reliable the
communication link is for a random location within the indoor space. If each simulation contains
5,000 bits, 100 simulations would process half a million bits in total. This is substantially fewer bits
compared to the traditional Monte Carlo approach.

Additional Examples Using Fading Channels

• “Multipath Fading Channel in Simulink” on page 8-182
• “Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link” on page 8-405
• “WCDMA End-to-End Physical Layer” on page 8-410
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Using Channel Visualization
Communications Toolbox channel objects include a Visualization property that enables you to
visualize the characteristics of a fading channel when calling the channel object. For more
information, see Channel Visualization on page 25-27.
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WINNER II Channel
Using WINNER II channel models, you can model and simulate spatially defined channels for
multiuser MIMO wireless systems. In the model you can specify an arbitrary number of base stations
(BS) and mobile stations (MS) together with their geometry and location information.

Figure 3.1 from [1] (shown here), depicts a system level simulation including multiple base stations
and multiple mobile terminals. Within the figure the dashed blue line surrounding a car and cell
tower, highlights a link level simulation for the link between one mobile terminal and a base station.
The short blue lines, along the path of the car, represent channel segments where large scale
parameters are fixed. The system level simulation consists of multiple links. Each link is modeled
using the clustered delay line (CDL) method. The inset shows a CDL method model of one link in the
scenario.

The channel model enables you to simulate line-of-sight (LOS) and non-LOS propagation conditions.
The model also enables you to apply multiple indoor and outdoor propagation scenarios. You can
perform channel filtering in a streaming fashion with WINNER-generated channel coefficients.

The channel model supports:

• RF frequencies up to 6 GHz
• Signal bandwidths up to 100 MHz
• LOS and non-LOS propagation
• 12 indoor and outdoor propagation scenarios
• Arbitrarily large antenna arrays (for massive MIMO applications)
• Isotropic, dipole, and user-defined antenna element patterns
• A variety of antenna array types (such as linear, circular, and user-defined)

To use this functionality, download and install the WINNER II Channel Model for Communications
Toolbox add-on.
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The add-on includes the comm.WINNER2Channel System object and provides the capability currently
available in the open source download in [1]. The functionality in the download includes these
functions:

• winner2.AntennaArray — Construct antenna array
• winner2.dipole — Calculate field pattern of half wavelength dipole
• winner2.layoutparset — WINNER II layout parameter configuration
• winner2.wim — Generate channel coefficients using WINNER II channel model
• winner2.wimparset — WINNER II model parameter configuration

The add-on extends the open source download by adding the capability to generate channel
coefficients for use in channel filtering. For more information, see Mapping WINNER II Public
Download to WINNER2Channel on page 22-37.

These examples demonstrate some of the WINNER II fading channel features.

• Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model on page 8-
117

• 802.11ac Multi-User MIMO Precoding with WINNER II Channel Model on page 8-123

examples demonstrate some of the WINNER II fading channel features.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.AntennaArray | winner2.dipole | winner2.layoutparset | winner2.wim |
winner2.wimparset

More About
• WINNER II Channel Model Video
• Mapping WINNER II Public Download to WINNER2Channel on page 22-37
• Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model on page

8-117
• 802.11ac Multi-User MIMO Precoding with WINNER II Channel Model on page 8-123

22 Channel Modeling and RF Impairments

22-36

https://www.mathworks.com/videos/winner-ii-channel-model-1484949729030.html


Mapping of WINNER II Open Source Download to WINNER II
Channel Model for Communications Toolbox

The WINNER II Channel Model for Communications Toolbox is composed of the
comm.WINNER2Channel System object and functions. The functions in the WINNER II Channel
Model for Communications Toolbox map to functions in the WINNER II open source download.

Function in WINNER II Open Source
Download

Corresponding Function in WINNER II
Channel Model for Communications Toolbox

AntennaArray winner2.AntennaArray
AntennaResponse winner2.internal.calcAntennaResponse
arrayparset winner2.arrayparset
dipole winner2.dipole
layoutparset winner2.layoutparset
layout2link winner2.internal.layout2Link
wim winner2.wim
wimparset winner2.wimparset

The following table shows the behavioral changes between the WINNER II open source download and
the WINNER II Channel Model for Communications Toolbox.

Behavioral Condition WINNER II Public Download
Behavior

WINNER II Channel Model for
Communications Toolbox
Behavior

Default value of the
SampleDensity field in the
structure returned by the
winner2.wimparset function

2 2e6

Default velocity returned for each
MS by winner2.layoutparset.

10 m/s 1.43 m/s

Corresponding to approximate
typical walking speed, VMS.

VMS = C / Fcenter × 25 = (2.99792458
e8/5.25e9) × 25 ~ 1.43 m/s

The length of the third dimension of
the channel coefficients output of
the winner2.wim function

Equals the maximum number of
paths or maximum number of paths
plus four for all links with zero
padding, NaN padding, or a
combination of zero and NaN
padding

Equals the number of paths for the
specific link

The number of paths shown in the
channel coefficients and path delay
outputs of the winner2.wim
function

Mismatched for many cases when
there is more than one link

Matched for each link
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Behavioral Condition WINNER II Public Download
Behavior

WINNER II Channel Model for
Communications Toolbox
Behavior

Strongest cluster segregation when
the IntraClusterDsUsed field is
set to 'yes'

The two strongest clusters are
divided into three subclusters only
for the links that have the maximum
number of paths.

For each link, the two strongest
clusters are divided into three
subclusters.

If the second and third strongest
paths have the same power, only the
single strongest cluster is divided
into three subclusters.

Updating of the Phi_LOS field in
the third structure output of the
winner2.wim function

Updated when the
IntraClusterDsUsed field is set
to  'no'

Updated regardless of the setting of
the IntraClusterDsUsed field

Padding of the path delay output of
the winner2.wim function, when
the rows (number of links) have
fewer than the maximum number of
paths

Zero padded when the
IntraClusterDsUsed field is set
to 'yes'

NaN padded

The channel coefficients calculation
specified by [1], Equation 4.14 and
Table 4-2, when the
IntraClusterDsUsed and
PolarisedArrays fields are set to
'yes'

Incorrect Correct

Path loss calculation for A1 NLOS
links

Incorrect when the
PathLossOption field is set to
'CR_heavy' or 'CR_light'

Correct

The Phi_LOS field per step 10 on
page 40 of [1] for the input initial
condition and output final condition
of winner2.wim, should be of size
NL-by-2 to log the phases for both
VV and HH polarization each link.
NL is the number of links.

Incorrect, Phi_LOS is of size NL-
by-1 for VV polarization only. The
phase for HH polarization is not
included. This causes issues for a
link with LOS path.

Correct, Phi_LOS is of size NL-by-2
to log the phases for both VV and
HH polarization each link.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
comm.WINNER2Channel

More About
• “WINNER II Channel” on page 22-35
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• Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model on page
8-117

• 802.11ac Multi-User MIMO Precoding with WINNER II Channel Model on page 8-123
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Measurements

• “Bit Error Rate Analysis Techniques” on page 23-2
• “Use Bit Error Rate Analysis App” on page 23-12
• “Analytical Expressions and Notations Used in BER Analysis” on page 23-45
• “Error Vector Magnitude (EVM)” on page 23-61
• “Modulation Error Ratio (MER)” on page 23-65
• “Adjacent Channel Power Ratio (ACPR)” on page 23-66
• “Complementary Cumulative Distribution Function CCDF” on page 23-72
• “Selected Bibliography for Measurements” on page 23-73
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Bit Error Rate Analysis Techniques
In this section...
“Computation of Theoretical Error Statistics” on page 23-2
“Theoretical Performance Results” on page 23-2
“Performance Results via Simulation” on page 23-5
“Performance Results via Semianalytic Technique” on page 23-8
“Error Rate Plots” on page 23-8

This topic describes how to compute error statistics for various communications systems.

Computation of Theoretical Error Statistics
The biterr function, discussed in the “Compute SERs and BERs Using Simulated Data” on page 23-
6 section,can help you gather empirical error statistics, but validating your results by comparing
them to the theoretical error statistics is good practice. For certain types of communications systems,
closed-form expressions exist for the computation of the bit error rate (BER) or an approximate
bound on the BER. The functions listed in this table compute the closed-form expressions for the BER
or a bound on it for the specified types of communications systems.

Type of Communications System Function
Uncoded AWGN channel berawgn
Uncoded Rayleigh and Rician fading channel berfading
Coded AWGN channel bercoding
Uncoded AWGN channel with imperfect
synchronization

bersync

The analytical expressions used in these functions are discussed in “Analytical Expressions and
Notations Used in BER Analysis” on page 23-45. The reference pages of these functions also list
references to one or more books containing the closed-form expressions implemented by the function.

Theoretical Performance Results
• “Plot Theoretical Error Rates” on page 23-2
• “Compare Theoretical and Empirical Error Rates” on page 23-3

Plot Theoretical Error Rates

This example uses the bercoding function to compute upper bounds on BERs for convolutional
coding with a soft-decision decoder.

coderate = 1/4; % Code rate

Create a structure, dspec, with information about the distance spectrum. Define the energy per bit
to noise power spectral density ratio (Eb/N0) sweep range and generate the theoretical bound results.

dspec.dfree = 10; % Minimum free distance of code
dspec.weight = [1 0 4 0 12 0 32 0 80 0 192 0 448 0 1024 ...
    0 2304 0 5120 0]; % Distance spectrum of code
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EbNo = 3:0.5:8;
berbound = bercoding(EbNo,'conv','soft',coderate,dspec);

Plot the theoretical bound results.

semilogy(EbNo,berbound)
xlabel('E_b/N_0 (dB)'); 
ylabel('Upper Bound on BER');
title('Theoretical Bound on BER for Convolutional Coding');
grid on;

Compare Theoretical and Empirical Error Rates

Using the berawgn function, compute the theoretical symbol error rates (SERs) for pulse amplitude
modulation (PAM) over a range of Eb/N0 values. Simulate 8 PAM with an AWGN channel, and
compute the empirical SERs. Compare the theoretical and then empirical SERs by plotting them on
the same set of axes.

Compute and plot the theoretical SER using berawgn.

rng('default') % Set random number seed for repeatability
M = 8;
EbNo = 0:13;
[ber,ser] = berawgn(EbNo,'pam',M);

semilogy(EbNo,ser,'r');
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legend('Theoretical SER');
title('Theoretical Error Rate');
xlabel('E_b/N_0 (dB)');
ylabel('Symbol Error Rate');
grid on;

Compute the empirical SER by simulating an 8 PAM communications system link. Define simulation
parameters and preallocate variables needed for the results. As described in [1], because
N0 = 2 × NVariance

2, add 3 dB to the Eb/N0 value when converting Eb/N0 values to SNR values.

n = 10000; % Number of symbols to process
k = log2(M); % Number of bits per symbol
snr = EbNo+3+10*log10(k); % In dB
ynoisy = zeros(n,length(snr));
z = zeros(n,length(snr));
errVec = zeros(3,length(EbNo));

Create an error rate calculator System object to compare decoded symbols to the original transmitted
symbols.

errcalc = comm.ErrorRate;

Generate a random data message and apply PAM. Normalize the channel to the signal power. Loop
the simulation to generate error rates over the range of SNR values.

x = randi([0 M-1],n,1); % Create message signal
y = pammod(x,M); % Modulate
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signalpower = (real(y)'*real(y))/length(real(y));

for jj = 1:length(snr)
    reset(errcalc)
    ynoisy(:,jj) = awgn(real(y),snr(jj),'measured'); % Add AWGN
    z(:,jj) = pamdemod(complex(ynoisy(:,jj)),M); % Demodulate
    errVec(:,jj) = errcalc(x,z(:,jj)); % Compute SER from simulation
end

Compare the theoretical and empirical results.

hold on;
semilogy(EbNo,errVec(1,:),'b.');
legend('Theoretical SER','Empirical SER');
title('Comparison of Theoretical and Empirical Error Rates');
hold off;

Performance Results via Simulation
• “Section Overview” on page 23-5
• “Compute SERs and BERs Using Simulated Data” on page 23-6

Section Overview

This section describes how to compare the data messages that enter and leave a communications
system simulation and how to compute error statistics using the Monte Carlo technique. Simulations
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can measure system performance by using the data messages before transmission and after reception
to compute the BER or SER for a communications system. To explore physical layer components used
to model and simulate communications systems, see “PHY Components”.

Curve fitting can be useful when you have a small or imperfect data set but want to plot a smooth
curve for presentation purposes. To explore the use of curve fitting when computing performance
results via simulation, see the “Curve Fitting for Error Rate Plots” on page 23-8 section.

Compute SERs and BERs Using Simulated Data

The example shows how to compute SERs and BERs using the biterr and symerr functions,
respectively. The symerr function compares two sets of data and computes the number of symbol
errors and the SER. The biterr function compares two sets of data and computes the number of bit
errors and the BER. An error is a discrepancy between corresponding points in the two sets of data.

The two sets of data typically represent messages entering a transmitter and recovered messages
leaving a receiver. You can also compare data entering and leaving other parts of your
communications system (for example, data entering an encoder and data leaving a decoder).

If your communications system uses several bits to represent one symbol, counting symbol errors is
different from counting bit errors. In either the symbol- or bit-counting case, the error rate is the
number of errors divided by the total number of transmitted symbols or bits, respectively.

Typically, simulating enough data to produce at least 100 errors provides accurate error rate results.
If the error rate is very small (for example, 10−6 or less), using the semianalytic technique might
compute the result more quickly than using a simulation-only approach. For more information, see
the “Performance Results via Semianalytic Technique” on page 23-8 section.

Compute Error Rates

Use the symerr function to compute the SERs for a noisy linear block code. Apply no digital
modulation, so that each symbol contains a single bit. When each symbol is a single bit, the symbol
errors and bit errors are the same.

After artificially adding noise to the encoded message, compare the resulting noisy code to the
original code. Then, decode and compare the decoded message to the original message.

m = 3; % Set parameters for Hamming code
n = 2^m-1;
k = n-m;
msg = randi([0 1],k*200,1); % Specify 200 messages of k bits each
code = encode(msg,n,k,'hamming');
codenoisy = bsc(code,0.95); % Add noise
newmsg = decode(codenoisy,n,k,'hamming'); % Decode and correct errors

Compute the SERs

[~,noisyVec] = symerr(code,codenoisy);
[~,decodedVec] = symerr(msg,newmsg);

The error rate decreases after decoding because the Hamming decoder correct errors based on the
error-correcting capability of the decoder configuration. Because random number generators produce
the message and noise is added, results vary from run to run. Display the SERs.

disp(['SER in the received code: ',num2str(noisyVec(1))])
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SER in the received code: 0.94571

disp(['SER after decoding: ',num2str(decodedVec(1))])

SER after decoding: 0.9675

Comparing SER and BER

These commands show the difference between symbol errors and bit errors in various situations.

Create two three-element decimal vectors and show the binary representation. The vector a contains
three 2-bit symbols, and the vector b contains three 3-bit symbols.

a = [1 2 3]'; b = [1 4 4]';
de2bi(a)

ans = 3×2

     1     0
     0     1
     1     1

de2bi(b)

ans = 3×3

     1     0     0
     0     0     1
     0     0     1

Compare the binary values of the two vectors and compute the number of errors and the error rate by
using the biterr and symerr functions.

format rat % Display fractions instead of decimals
[snum,srate] = symerr(a,b)

snum = 
       2       

srate = 
       2/3     

snum is 2 because the second and third entries have bit differences. srate is 2/3 because the total
number of symbols is 3.

[bnum,brate] = biterr(a,b)

bnum = 
       5       

brate = 
       5/9     

bnum is 5 because the second entries differ in two bits, and the third entries differ in three bits.
brate is 5/9 because the total number of bits is 9. By definition, the total number of bits is the

 Bit Error Rate Analysis Techniques

23-7



number of entries in a for symbol error computations or b for bit error computations times the
maximum number of bits among all entries of a and b, respectively.

Performance Results via Semianalytic Technique
The technique described in the “Performance Results via Simulation” on page 23-5 section can work
for a large variety of communications systems but can be prohibitively time-consuming for small error
rates (for example, 10-6 or less). The semianalytic technique is an alternative way to compute error
rates. The semianalytic technique can produce results faster than a nonanalytic method that uses
simulated data.

For more information on implementing the semianalytic technique using a combination of simulation
and analysis to determine the error rate of a communications system, see the semianalytic
function.

Error Rate Plots
• “Section Overview” on page 23-8
• “Creation of Error Rate Plots Using semilogy Function” on page 23-8
• “Curve Fitting for Error Rate Plots” on page 23-8
• “Use Curve Fitting on Error Rate Plot” on page 23-9

Section Overview

Error rate plots can be useful when examining the performance of a communications system and are
often included in publications. This section discusses and demonstrates tools you can use to create
error rate plots, modify them to suit your needs, and perform curve fitting on the error rate data and
the plots.

Creation of Error Rate Plots Using semilogy Function

In many error rate plots, the horizontal axis indicates Eb/N0 values in dB, and the vertical axis
indicates the error rate using a logarithmic (base 10) scale. For examples that create such a plot
using the semilogy function, see “Compare Theoretical and Empirical Error Rates” on page 23-3
and “Plot Theoretical Error Rates” on page 23-2.

Curve Fitting for Error Rate Plots

Curve fitting can be useful when you have a small or imperfect data set but want to plot a smooth
curve for presentation purposes. The berfit function includes curve-fitting capabilities that help
your analysis when the empirical data describes error rates at different Eb/N0 values. This function
enables you to:

• Customize various relevant aspects of the curve-fitting process, such as a list of selections for the
type of closed-form function used to generate the fit.

• Plot empirical data along with a curve that berfit fits to the data.
• Interpolate points on the fitted curve between Eb/N0 values in your empirical data set to smooth

the plot.
• Collect relevant information about the fit, such as the numerical values of points along the fitted

curve and the coefficients of the fit expression.
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Note The berfit function is intended for curve fitting or interpolation, not extrapolation.
Extrapolating BER data beyond an order of magnitude below the smallest empirical BER value is
inherently unreliable.

Use Curve Fitting on Error Rate Plot

This example simulates a simple differential binary phase shift keying (DBPSK) communications
system and plots error rate data for a series of Eb/N0 values. It uses the berfit and berconfint
functions to fit a curve to a set of empirical error rates.

Initialize Simulation Parameters

Specify the input signal message length, modulation order, range of Eb/N0 values to simulate, and the
minimum number of errors that must occur before the simulation computes an error rate for a given
Eb/N0 value. Preallocate variables for final results and interim results.

Typically, for statistically accurate error rate results, the minimum number of errors must be on the
order of 100. This simulation uses a small number of errors to shorten the run time and to illustrate
how curve fitting can smooth a set of results.

siglen = 100000; % Number of bits in each trial
M = 2; % DBPSK is binary
EbN0vec = 0:5; % Vector of EbN0 values
minnumerr = 5; % Compute BER after only 5 errors occur
numEbN0 = length(EbN0vec); % Number of EbN0 values

ber = zeros(1,numEbN0); % Final BER values
berVec = zeros(3,numEbN0); % Updated BER values
intv = cell(1,numEbN0); % Cell array of confidence intervals

Create an error rate calculator System object™.

errorCalc = comm.ErrorRate;

Loop the Simulation

Simulate the DBPSK-modulated communications system and compute the BER using a for loop to
vary the Eb/N0 value. The inner while loop ensures that a minimum number of bit errors occur for
each Eb/N0 value. Error rate statistics are saved for each Eb/N0 value and used later in this example
when curve fitting and plotting.

for jj = 1:numEbN0
    EbN0 = EbN0vec(jj);
    snr = EbN0; % For binary modulation SNR = EbN0
    reset(errorCalc)
    
    while (berVec(2,jj) < minnumerr)
        msg = randi([0,M-1],siglen,1); % Generate message sequence
        txsig = dpskmod(msg,M); % Modulate
        rxsig = awgn(txsig,snr,'measured'); % Add noise
        decodmsg = dpskdemod(rxsig,M); % Demodulate
        berVec(:,jj) = errorCalc(msg,decodmsg); % Calculate BER
    end

Use the berconfint function to compute the error rate at a 98% confidence interval for the Eb/N0
values.
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    [ber(jj),intv1] = berconfint(berVec(2,jj),berVec(3,jj),0.98);
    intv{jj} = intv1;
    disp(['EbN0 = ' num2str(EbN0) ' dB, ' num2str(berVec(2,jj)) ...
        ' errors, BER = ' num2str(ber(jj))])
end

EbN0 = 0 dB, 18392 errors, BER = 0.18392
EbN0 = 1 dB, 14307 errors, BER = 0.14307
EbN0 = 2 dB, 10190 errors, BER = 0.1019
EbN0 = 3 dB, 6940 errors, BER = 0.0694
EbN0 = 4 dB, 4151 errors, BER = 0.04151
EbN0 = 5 dB, 2098 errors, BER = 0.02098

Use the berfit function to plot the best fitted curve, interpolating between BER points to get a
smooth plot. Add confidence intervals to the plot.

fitEbN0 = EbN0vec(1):0.25:EbN0vec(end); % Interpolation values
berfit(EbN0vec,ber,fitEbN0);
hold on;
for jj=1:numEbN0
    semilogy([EbN0vec(jj) EbN0vec(jj)],intv{jj},'g-+');
end
hold off;
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See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Use Bit Error Rate Analysis App” on page 23-12
• “Analytical Expressions and Notations Used in BER Analysis” on page 23-45
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Use Bit Error Rate Analysis App
The Bit Error Rate Analysis app calculates BER as a function of the energy per bit to noise power
spectral density ratio (Eb/N0) and enables you to analyze BER performance of communications
systems.

Note The Bit Error Rate Analysis app is designed for analyzing BERs. For example, if your
simulation computes a symbol error rate (SER), convert the SER to a BER before comparing the
simulation results with theoretical results in the app.

This topic describes the Bit Error Rate Analysis app and provides examples that show how to use
the app.

In this section...
“Open Bit Error Rate Analysis App” on page 23-12
“Bit Error Rate Analysis App Environment” on page 23-13
“Compute Theoretical BERs Using Bit Error Analysis App” on page 23-15
“Run MATLAB Simulations in Monte Carlo Tab” on page 23-19
“Requirements for Using MATLAB Functions with Bit Error Rate Analysis App” on page 23-25
“Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis App” on page 23-28
“Run Simulink Simulations in Monte Carlo Tab” on page 23-33
“Requirements for Using Simulink Models with Bit Error Rate Analysis App” on page 23-38
“Manage BER Data” on page 23-39

Open Bit Error Rate Analysis App
You can open the Bit Error Rate Analysis app by using either of these options.

• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click Bit
Error Rate Analysis.

• MATLAB command prompt: Use the bertool function. If the app is already open, another
instance of the app opens.
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Bit Error Rate Analysis App Environment
• “Components of Bit Error Rate Analysis App” on page 23-13
• “Interaction Between Bit Error Rate Analysis App Components” on page 23-14

Components of Bit Error Rate Analysis App

The app consists of these three main components: an upper pane, a lower pane, and a separate BER
Figure window.

• The upper pane of the app is a data set viewer. The data set viewer lists sets of BER data from the
current app session along with high level settings and options for showing the data. By default,
this data set viewer is empty.

Sets of BER data, generated during the active Bit Error Rate Analysis app session or imported
into the session, appear in the data viewer. This figure shows the simulation0 BER data set
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loaded in the data viewer pane.

• The lower pane of the app has tabs labeled Theoretical and Monte Carlo. The tabs correspond
to the different methods you can use to generate BER data with the app.

Note For direct comparisons between theoretical results and simulation results generated when
using the Bit Error Rate Analysis app, be sure that your MATLAB function or Simulink model
simulation run from the Monte Carlo tab exactly matches the system defined by the parameters
in the Theoretical tab.

For more information, see the “Compute Theoretical BERs Using Bit Error Analysis App” on page
23-15, “Run MATLAB Simulations in Monte Carlo Tab” on page 23-19, and “Run Simulink
Simulations in Monte Carlo Tab” on page 23-33 sections.

• A separate BER Figure window displays the BER data sets that have Plot selected in the data
viewer. The BER Figure window does not open until the Bit Error Rate Analysis app has at least
one data set to display.

Interaction Between Bit Error Rate Analysis App Components

The components of the app act as one integrated tool.

• If you select a data set in the data viewer, the app reconfigures the tabs to reflect the parameters
associated with that data set and highlights the corresponding data in the BER Figure window.
This feature is useful if the data viewer displays multiple data sets and if you want to recall the
meaning and origin of each data set.

• If you select data plotted in the BER Figure window, the app reflects the parameters associated
with that data in the app panes and highlights the corresponding data set in the data viewer.

Note You cannot click a data point while the app is generating Monte Carlo simulation results.
Before selecting data for more information, you must wait until the app generates all of the data
points.

• If you configure the Theoretical tab in a way that is already reflected in an existing data set, the
app highlights that data set in the data viewer. This feature prevents the app from duplicating its
computations and entries in the data viewer but still enables the app to show results that you
requested.

• If you close the BER Figure window, you can reopen the figure window by selecting BER Figure
from the Window menu in the app.

• If you select options in the data viewer that affect the BER plot, the BER Figure window
automatically reflects your selections. Such options relate to data set names, confidence intervals,
curve fitting, and the presence or absence of specific data sets in the BER plot.

Note

• If you want to observe the addition of theoretical data to a plot with Monte Carlo simulation data
displayed but do not yet have any data sets in the Bit Error Rate Analysis app, you can follow
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the workflow described in the “Use Theoretical Tab in Bit Error Rate Analysis App” on page 23-
16 section.

• If you save the BER Figure window using the File menu, the resulting file contains the contents of
the window, but not the Bit Error Rate Analysis app data that led to the plot. To save an entire
Bit Error Rate Analysis app session, see the “Save Bit Error Rate Analysis app Session” on page
23-43 section.

Compute Theoretical BERs Using Bit Error Analysis App
• “Section Overview” on page 23-15
• “Use Theoretical Tab in Bit Error Rate Analysis App” on page 23-16
• “Available Sets of Theoretical BER Data” on page 23-18

Section Overview

You can use the Bit Error Rate Analysis app to generate and analyze theoretical BER data.
Theoretical data can be useful for comparison with your simulation results. However, closed-form
BER expressions exist for only certain kinds of communications systems. For more information, see
“Analytical Expressions and Notations Used in BER Analysis” on page 23-45.

To access app capabilities related to theoretical BER data, follow these steps.

1 Open the Bit Error Rate Analysis app, and select the Theoretical tab.
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2 Set the parameters to reflect the communications system performance that you want to analyze.
3 Click Plot.

For an example that shows how to generate and analyze theoretical BER data using the Bit Error
Rate Analysis app, see the “Use Theoretical Tab in Bit Error Rate Analysis App” on page 23-16
section.

For information about the combinations of parameters available on the Theoretical tab and the
underlying functions that perform BER computations, see the “Available Sets of Theoretical BER
Data” on page 23-18 section.

Use Theoretical Tab in Bit Error Rate Analysis App

This example shows how to use the app to generate and plot theoretical BER data. In particular, the
example compares the performance of different modulation orders for QAM in a communications
system that includes an AWGN channel.

Run Theoretical BER Example

1 Open the Bit Error Rate Analysis app, and select the Theoretical tab.
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2 Set these parameters to the values specified in this table.

Parameter Value
Eb / N0 range 0:18 (default)
Channel type AWGN (default)
Modulation type QAM
Modulation order 4

3 Click Plot. The app creates an entry in the data viewer and plots the data in the BER Figure
window. Although the specified Eb/N0 range is 0:18, the plot includes only BER values that exceed
10-8.

4 Change the Modulation order parameter to 16, and click Plot. The app creates another entry in
the data viewer and plots the new data in the same BER Figure window (not pictured).

5 Change the Modulation order parameter to 64, and click Plot. The app creates another entry in
the data viewer and plots the new data in the same BER Figure window.
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6 Click one of the curves to view the modulation order for that curve. The app responds to this
action by adjusting the parameters in the Theoretical tab to reflect the values that correspond
to that curve.

7 Remove the curve corresponding to 64-QAM from the plot (but not from the data viewer), by
clearing Plot for the last entry in the data viewer. To restore the curve for 64-QAM to the plot, in
the data viewer, select Plot for that curve.

Available Sets of Theoretical BER Data

The Bit Error Rate Analysis app can generate a large set of theoretical BERs. Parameters in the
Theoretical tab enable you to configure the channel type, modulation type and order, error detection
and correction channel coding, and synchronization error used when the app computes the
theoretical BER. The app adjusts the combination of selectable parameter values based on your
choices so that the configuration is always valid or uses a dialog box to inform you of valid parameter
values.

The app computes the theoretical BER for these modulation types, assuming Gray ordered binary
transmission data. The app uses these BER functions to perform underlying computations and limits
the modulation order to practical limits.
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• berawgn — For AWGN channel systems with no coding and perfect synchronization
• berfading — For fading channel systems with no coding and perfect synchronization
• bercoding — For systems with channel coding
• bersync — For systems with BPSK modulation, no coding, and imperfect synchronization
• berconfint — For error probability estimate and confidence interval of Monte Carlo simulation
• berfit — For fitting curves to nonsmooth empirical BER data

To compute the BER for higher modulation orders than permitted in the app, use the BER functions.
For more information about specific combinations of parameters, see the reference pages for the BER
functions listed in the Bit Error Rate Calculation and Estimation function group of the “Test and
Measurement” category.

Run MATLAB Simulations in Monte Carlo Tab
• “Section Overview” on page 23-19
• “Use MATLAB Function with Bit Error Rate Analysis App” on page 23-19
• “Assign Function Stopping Criteria” on page 23-22
• “Plot Confidence Intervals” on page 23-23
• “Curve Fit BER Points” on page 23-24

Section Overview

Using the Monte Carlo tab with the Simulation environment parameter set to MATLAB, you can
use the Bit Error Rate Analysis app in conjunction with your own MATLAB communications system
simulation functions to generate and analyze BER data. The app calls the simulation specified by the
Function name parameter for each specified Eb/N0 value, collects the BER data from the simulation,
and creates a plot. The app also enables you to adjust the Eb/N0 range and the stopping criteria for
the simulation.

To make your own simulation functions compatible with the app, see the “Prepare MATLAB Function
for Use in Bit Error Rate Analysis App” example on the Bit Error Rate Analysis app reference page.

Use MATLAB Function with Bit Error Rate Analysis App

This example shows how the Bit Error Rate Analysis app can run the viterbisim MATLAB
simulation.

To run this example, follow these steps.

1 Open the Bit Error Rate Analysis app, and select the Monte Carlo tab.
2 Set these parameters to the specified values shown in this table.

Parameter Value
Eb / N0 range 0:5
Simulation environment MATLAB (default)
Function name viterbisim (default)
Number of Errors 100 (default)
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Parameter Value
Number of bits 1e8 (default)

3 Click Run. The app runs the simulation function once for each specified Eb/N0 value and gathers
BER data.

Note While the Bit Error Rate Analysis app runs the configured simulation, it cannot process
certain other tasks, including plotting data from the other tabs of the user interface. However,
you can stop the simulation by clicking Stop in the Monte Carlo Simulation dialog box.

After computing the BER for each of the specified Eb/N0 values, the app creates a listing in the
data viewer.
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The app also plots the data in the BER Figure window.

4 Adjust the Eb/N0 range parameter to [5 5.2 5.3] and the Number of bits parameter to 1e5.
Click Run to produce a new set of results.

The app runs the simulation function using the new Eb/N0 values and computes new BER data.
The app then creates another listing in the data viewer.

The app also plots the new data set in the BER Figure window, adjusting the horizontal axis to
accommodate the new Eb/N0 values.
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The BER values for the 5 dB Eb/N0 setting differ between the two sets of data because the
number of bits processed by the two simulations was different. If you want the computed BER to
converge to a stable value, set the number of bits high enough to ensure that at least 100 bit
errors occur. For more information about the criteria used by the Bit Error Rate Analysis app
to terminate simulations, see the “Assign Function Stopping Criteria” on page 23-22 section.

Assign Function Stopping Criteria

When you create a MATLAB simulation function for use with the Bit Error Rate Analysis app,
control the simulation run duration by setting the target number of errors and maximum number of
bits. The simulation stops the current Eb/N0 when either limit is reached. For more information about
this requirement, see the “Requirements for Using MATLAB Functions with Bit Error Rate Analysis
App” on page 23-25 section.

After you create your function, set the target number of errors and maximum number of bits on the
Monte Carlo tab of the app.
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Typically, a Number of errors parameter value of at least 100 produces an accurate error rate. The
Number of bits value prevents the simulation from running too long. Depending on the Eb/N0 value
and other aspects of the communications system modeled (such as modulation characteristics and
channel conditions), reaching 100 bit errors might not be realistic. However, if fewer than 100 errors
occur because the Number of bits parameter value is too small, the returned error rate might be
misleading. You can use confidence intervals to gauge the accuracy of the error rates that your
simulation produces. As you increase the confidence level, the accuracy of the computed error rate
decreases.

As an example, follow the procedure described in the “Use MATLAB Function with Bit Error Rate
Analysis App” on page 23-19 section and set the Confidence Level parameter value to 95 for each of
the two data sets. The confidence intervals for the second data set are larger than those for the first
data set because the BER values associated with the second data set are based on only a small
number of observed errors.

Note As long as your function is set up to detect and react to the Stop button in the Bit Error Rate
Analysis app, you can use the button to prematurely stop a series of simulations. For more
information, see “Assign Function Stopping Criteria” on page 23-22.

Plot Confidence Intervals

After you run a simulation with the Bit Error Rate Analysis app, the resulting data set in the data
viewer has an active menu in the Confidence Level column. By default the Confidence Level value
is off, meaning the simulation data in the BER Figure window does not show confidence intervals.

To show confidence intervals in the BER Figure window, set Confidence Level to 90%, 95%, or 99%.

The plot in the BER Figure window automatically responds the Confidence Level value change. This
figure shows a sample plot.
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For an example that plots confidence intervals for a Simulink simulation, see the “Use Simulink
Model with Bit Error Rate Analysis App” on page 23-34 section.

To find confidence intervals for levels not listed in the Confidence Level menu, use the berconfint
function.

Curve Fit BER Points

After you run a simulation with the Bit Error Rate Analysis app, the BER Figure window plots
individual BER data points. To fit a curve to a data set that contains at least four points, select Fit for
that data in the data viewer.

The plot in the BER Figure window automatically responds to this selection. This plot shows a curve
fit to a set of BER results.
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For greater flexibility in the process of fitting a curve to BER data, use the berfit function.

Requirements for Using MATLAB Functions with Bit Error Rate Analysis
App
When you create a MATLAB function for use with the Bit Error Rate Analysis app, ensure the
function interacts properly with the user interface. This section describes the inputs, outputs, and
basic operation of a function that is compatible with the app.

Input Arguments

The Bit Error Rate Analysis app evaluates your entries in fields of the user interface and passes
data to the function as these input arguments (in sequential order).

1 One value from the Eb/N0 range vector each time the Bit Error Rate Analysis app runs the
simulation function

2 Number of errors value
3 Number of bits value

Output Arguments

Your simulation function must compute and return these output arguments (in sequential order). The
Bit Error Rate Analysis app uses these output arguments when reporting and plotting results.

1 Bit error rate of the simulation
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2 Number of bits processed when computing the BER

Simulation Function Operation

Your simulation function must perform these tasks:

• Simulate the communications system for the Eb/N0 value specified in the first input argument.
• Stop simulating when the number of errors or number of processed bits equals or exceeds the

corresponding threshold specified in the second or third input argument, respectively.
• Detect whether you click Stop in the Bit Error Rate Analysis app to stop the simulation in that

case.

Template for Simulation Function

Use this template when adapting your code to work with the Bit Error Rate Analysis app. You can
open the template in an editor by entering edit bertooltemplate at the MATLAB command
prompt. If you develop a simulation function without using the template, be sure your function
satisfies the requirements described in the “Requirements for Using MATLAB Functions with Bit
Error Rate Analysis App” on page 23-25 section.

Note To use this template, you must insert your own simulation code in the places marked INSERT
YOUR CODE HERE. For a complete example based on this template, see the “Prepare MATLAB
Function for Use in Bit Error Rate Analysis App” example on the Bit Error Rate Analysis app
reference page.

function [ber,numBits] = bertooltemplateTemp(EbNo,maxNumErrs,maxNumBits,varargin)
%BERTOOLTEMPLATE Template for a BERTool (Bit Error Rate Analysis app) simulation function.
%   This file is a template for a BERTool-compatible simulation function.
%   To use the template, insert your own code in the places marked "INSERT
%   YOUR CODE HERE" and save the result as a file on your MATLAB path. Then
%   use the Monte Carlo pane of BERTool to execute the script.
%
%   [BER, NUMBITS] = YOURFUNCTION(EBNO, MAXNUMERRS, MAXNUMBITS) simulates
%   the error rate performance of a communications system. EBNO is a vector
%   of Eb/No values, MAXNUMERRS is the maximum number of errors to collect
%   before stopping the simulation, and MAXNUMBITS is the maximum number of 
%   bits to run before stopping the simulation. BER is the computed bit error 
%   rate, and NUMBITS is the actual number of bits run. Simulation can be 
%   interrupted only after an Eb/No point is simulated.
%
%   [BER, NUMBITS] = YOURFUNCTION(EBNO, MAXNUMERRS, MAXNUMBITS, BERTOOL)
%   also provides BERTOOL, which is the handle for the BERTool app and can
%   be used to check the app status to interrupt the simulation of an Eb/No
%   point.
%
%   For more information about this template and an example that uses it,
%   see the Communications Toolbox documentation.
%
%   See also BERTOOL and VITERBISIM.

% Copyright 2020 The MathWorks, Inc.

% Initialize variables related to exit criteria.
totErr  = 0; % Number of errors observed
numBits = 0; % Number of bits processed

% --- Set up the simulation parameters. ---
% --- INSERT YOUR CODE HERE.

% Simulate until either the number of errors exceeds maxNumErrs
% or the number of bits processed exceeds maxNumBits.
while((totErr < maxNumErrs) && (numBits < maxNumBits))

    % Check if the user clicked the Stop button of BERTool.
    if isBERToolSimulationStopped(varargin{:})
      break
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    end
  
    % --- Proceed with the simulation.
    % --- Be sure to update totErr and numBits.
    % --- INSERT YOUR CODE HERE.

end % End of loop

% Compute the BER.
ber = totErr/numBits;

About Template for Simulation Function

The simulation function template either satisfies the requirements listed in the “Requirements for
Using MATLAB Functions with Bit Error Rate Analysis App” on page 23-25 section or indicates where
you need to insert code. In particular, the template:

• Has appropriate input and output arguments
• Includes a placeholder for code that simulates a system for the given Eb/N0 value
• Uses a loop structure to stop simulating when either the number of errors exceeds maxNumErrs

or the number of bits exceeds maxNumBits, whichever occurs first

Note Although the while statement of the loop describes the exit criteria, your own code
inserted into the section marked Proceed with simulation must compute the number of
errors and the number of bits. If you do not perform these computations in your own code,
clicking Stop in the Monte Carlo Simulation dialog box is the only way to terminate the loop.

• Detects when the user clicks Stop in the Monte Carlo Simulation dialog box in each iteration of
the loop

Use Simulation Function Template

Follow these steps to update the simulation function template with your own simulation code.

1 Place the code for setup tasks in the template section marked Set up parameters. For
example, initialize variables such as those containing the modulation alphabet size, filter
coefficients, a convolutional coding trellis, or the states of a convolutional interleaver.

2 Place the code for these core simulation tasks in the template section marked Proceed with
simulation. Determine the core simulation tasks, assuming that all setup work has already
been performed. For example, core simulation tasks include filtering, error-control coding,
modulation and demodulation, and channel modeling.

3 Also in the template section marked Proceed with simulation, include code that updates the
values of the totErr and numBits variables. The totErr value represents the number of errors
observed so far. The numBits value represents the number of bits processed so far. The
computations to update these variables depend on how your core simulation tasks work.

Note Updating the numbers of errors and bits is important for ensuring that the loop
terminates.

4 Omit from your simulation code any setup code that initializes EbNo, maxNumErrs, or
maxNumBits variables, because the app passes these quantities to the function as input
arguments after evaluating the data entered on the Monte Carlo tab.

5 Adjust your code or the code of the template as necessary to use consistent variable names and
meanings. For example, if your original code uses a variable called ebn0 and the function
declaration (first line) for the template uses the variable name EbNo, you must change one of the
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names so that they match. As another example, if your original code uses SNR instead of Eb/N0
values, you must convert values appropriately.

Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis
App
Use the Bit Error Rate Analysis app to compute the BER as a function of Eb/N0. The app analyzes
performance with either Monte Carlo simulations of MATLAB® functions and Simulink® models or
theoretical closed-form expressions for selected types of communications systems. The code in the
mpsksim.m function provides an M-PSK simulation that you can run from the Monte Carlo tab of the
app.

Open the Bit Error Rate Analysis app from the Apps tab or by running the bertool function in the
MATLAB® command window.
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On the Monte Carlo tab, set the Eb/N0 range parameter to 1:1:5 and the Function name
parameter to mpsksim.
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Open the mpsksim function for editing, set M=2, and save the changed file.

Run the mpsksim.m function as configured by clicking Run on the Monte Carlo tab in the app.

After the app simulates the set of Eb/N0 points, update the name of the BER data set results by
selecting simulation0 in the BER Data Set field and typing M=2 to rename the set of results. The
legend on the BER figure updates the label to M=2.

23 Measurements

23-30



Update the value for M in the mpsksim function, repeating this process for M = 4, 8, and 16. For
example, these figures of the Bit Error Rate Analysis app and BER Figure window show results for
varying M values.
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Parallel SNR Sweep Using Bit Error Rate Analysis App

The default configuration for the Monte Carlo processing of the Bit Error Rate Analysis app
automatically uses parallel pool processing to process individual Eb/N0 points when you have the
Parallel Computing Toolbox™ software but for the processing of your simulation code:

• Any parfor function loops in your simulation code execute as standard for loops.
• Any parfeval (Parallel Computing Toolbox) function calls in your simulation code execute

serially.
• Any spmd (Parallel Computing Toolbox) statement calls in your simulation code execute serially.

23 Measurements

23-32



Run Simulink Simulations in Monte Carlo Tab
• “Section Overview” on page 23-33
• “Use Simulink Model with Bit Error Rate Analysis App” on page 23-34
• “Assign Model Stopping Criteria” on page 23-37

Section Overview

You can use the Bit Error Rate Analysis app in conjunction with Simulink models to generate and
analyze BER data. The Simulink model simulates the performance of the communications system that
you want to study, while the Bit Error Rate Analysis app manages a series of simulations using the
model and collects the BER data.

Note To use Simulink models within the Bit Error Rate Analysis app, you must have the Simulink
software.

To access the capabilities of the Bit Error Rate Analysis app related to Simulink models, open the
Monte Carlo tab, and then set the Simulation environment parameter to Simulink. If using
parallel processing, the output must be saved to a workspace variable so that the parallel running
engine can collect the results. For example, save the output of the Error Rate Calculation block to a
workspace variable by using a Signal To Workspace block configured to save the output to the name
specified for the BER variable name.
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For details about confidence intervals and curve fitting for simulation data, see the “Plot Confidence
Intervals” on page 23-23 and “Curve Fit BER Points” on page 23-24 sections, respectively.

Use Simulink Model with Bit Error Rate Analysis App

This example shows how the Bit Error Rate Analysis app can manage a series of simulations of a
Simulink model and how you can vary the plot. This figure shows the commgraycode model.

To run this example, follow these steps.

1 Open the Bit Error Rate Analysis app. On the Monte Carlo tab, enter the Simulink model
name and a BER variable name. The default value for the Model name parameter is
commgraycode. the default value for the BER variable name parameter is grayBER.

2 Click Run.

The Bit Error Rate Analysis app loads the model into memory. The model initializes several
variables in the MATLAB workspace. The app runs the simulation model once for each Eb/N0
value, gathers the BER results, and creates a listing for the BER results in the data viewer.

The Bit Error Rate Analysis app plots the data in the BER Figure window.
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3 To fit a curve to the series of points in the BER Figure window, select Fit for the simulation0
data in the data viewer.

The Bit Error Rate Analysis app plots the curve.
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4 To indicate a 99% confidence interval around each point in the simulation data, set Confidence
Level to 99% in the data viewer.

The Bit Error Rate Analysis app displays error bars to represent the confidence intervals.
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For another example that uses the Bit Error Rate Analysis app to manage a series of Simulink
simulations, see the “Prepare Simulink Model for Use with Bit Error Rate Analysis App” example on
the Bit Error Rate Analysis app reference page.

Assign Model Stopping Criteria

When you create a Simulink model for use with the Bit Error Rate Analysis app, you must set it up
so that the simulation ends when it either detects a target number of errors or processes a maximum
number of bits, whichever occurs first. For more information about this requirement, see the
“Requirements for Using Simulink Models with Bit Error Rate Analysis App” on page 23-38 section.

After creating your Simulink model, set the target number of errors and the maximum number of bits
on the Monte Carlo tab of the Bit Error Rate Analysis app.

Typically, a Number of errors parameter value of at least 100 produces an accurate error rate. The
Number of bits value prevents the simulation from running too long, especially at large Eb/N0
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values. However, if the Number of bits value is so small that the simulation collects very few errors,
the error rate might not be accurate. You can use confidence intervals to gauge the accuracy of the
error rates that your simulation produces. Larger confidence intervals result in less accurate
computed error rates.

You can also click Stop in the Monte Carlo Simulation dialog box to stop a series of simulations
prematurely.

Requirements for Using Simulink Models with Bit Error Rate Analysis
App
When you create a Simulink model for use with the Bit Error Rate Analysis app, ensure the model
interacts properly with the user interface. This section describes the inputs, outputs, and basic
operation of a model that is compatible with the app.

Input Variables

• The channel block must use the EbNo variable rather than a hard-coded value for Eb/N0. For
example, to model an AWGN channel, use the AWGN Channel block with the Mode parameter set
to Signal to noise ratio (Eb/No) and the Eb/No (dB) parameter set to EbNo.

• The simulation must stop either when the error count reaches the value of the maxNumErrs
variable or when the number of processed bits reaches the value of the maxNumBits variable,
whichever occurs first. You can configure the Error Rate Calculation block in your model to use
these criteria to stop the simulation.

Output Variables

• The simulation must send the final error rate data to the MATLAB workspace as a variable whose
name you enter in the BER variable name parameter in the Bit Error Rate Analysis app. The
output error statistics variable must be a three-element vector that lists the BER, the number of
bit errors, and the number of processed bits.

• The three-element vector format for the output error statistics is supported by the Error Rate
Calculation block.

Simulation Model Operation

• To avoid using an undefined variable name in blocks of the Simulink model, initialize these
variables in the MATLAB workspace by using the preload callback function of the model or by
assigning them at the MATLAB command prompt.

EbNo = 0;
maxNumErrs = 100;
maxNumBits = 1e8;

Tip Using the preload function callback of the model to initialize the runtime variables enables to
you reopen the model in a future MATLAB session with runtime variables preconfigured to run in
the app.

The Bit Error Rate Analysis app provides the actual values based on values in the Monte Carlo
tab, so the initial values in the model or workspace are not important.

• The app assumes the Eb/N0 is used in the channel modeling. If your model uses the AWGN
Channel block, and the Mode parameter is not set to Signal to noise ratio (Eb/No), adapt
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the block to use the Eb/N0 mode instead. For more information, see the AWGN Channel block
reference page.

• To compute the error rate, use the Error Rate Calculation block with these parameter settings:
select Stop simulation, set Target number of errors to maxNumErrs, and set Maximum
number of symbols to maxNumBits.

• If your model computes an SER instead of a BER, use the Integer to Bit Converter block to convert
symbols to bits.

• To send data from the Error Rate Calculation block to the MATLAB workspace, set the Output
data parameter to Port, attach a To Workspace block to the Error Rate Calculation block, and set
the Limit data points to last parameter of the To Workspaceblock to 1. The Variable name
parameter in the To Workspace block must match the value you enter in the BER variable name
parameter of the Bit Error Rate Analysis app.

Tip More than one To Workspace block exists. Select the To Workspace block from the DSP
System Toolbox / Sinks sublibrary.

• Frame-based simulations often run faster than sample-based simulations for the same number of
bits processed. With a frame-based simulation, because the simulation processes a full frame of
data each frame, the number of errors or number of processed bits might exceed the values you
enter in the Bit Error Rate Analysis app.

• If your model uses a callback function to initialize variables in the MATLAB workspace upon
loading the model, before you click Run in the Bit Error Rate Analysis app, make sure that one
of these conditions is met:

• The model is in memory (whether in a window or not), and the variables are intact.
• The model is not currently in memory. In this case, the Bit Error Rate Analysis app loads the

model into memory and runs the callback functions.
• If you clear or overwrite the variables set in the model, clear the model from memory by calling

the bdclose function at the MATLAB command prompt.

bdclose all

When you click Run in the Monte Carlo tab, the app reloads the model.

Manage BER Data
• “Managing Data in Data Viewer” on page 23-39
• “Export Bit Error Rate Analysis app Data Set” on page 23-40
• “Save Bit Error Rate Analysis app Session” on page 23-43
• “Import Bit Error Rate Analysis app Data Set” on page 23-43
• “Open Previous Bit Error Rate Analysis app Session” on page 23-44

Managing Data in Data Viewer

The data viewer gives you flexibility to rename and delete data sets and to reorder columns in the
data viewer.

• To rename a data set in the data viewer, double-click its name in the BER Data Set column and
type a new name.
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• To delete a data set from the data viewer, select the data set, then select Edit > Delete.

Note If the data set originated from the Theoretical tab, the Bit Error Rate Analysis app
deletes the data without asking for confirmation. You cannot undo this operation.

Export Bit Error Rate Analysis app Data Set

The Bit Error Rate Analysis app enables you to export individual data sets to the MATLAB
workspace or to MAT-files. Exporting data enables you to process the data outside the Bit Error Rate
Analysis app. For example, to create customized plots using data from the Bit Error Rate Analysis
app, export the app data set to the MATLAB workspace and use any of the plotting commands in
MATLAB. To reimport a structure later, see the “Import Bit Error Rate Analysis app Data Set” on page
23-43 section.

To export an individual data set, follow these steps.

1 In the data viewer, select the data set you want to export.
2 Select File > Export Data. Set Export to to indicate the format and destination of the data.

• Workspace arrays — Export the selected data set to a pair of arrays in the MATLAB
workspace. Use this option if you want to access the data in the MATLAB workspace (outside
the app) and if you do not need to import the data into the Bit Error Rate Analysis app later.

Under Variable names, set Eb/N0 and BER parameters to specify the variable names for the
Eb/N0 values and BER values, respectively.

If you want the Bit Error Rate Analysis app to use your chosen variable names even if
variables by those names already exist in the workspace, select Overwrite variables.
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• Workspace structure — Export the selected data set to a structure in the MATLAB
workspace. If you export data using this option, you can import the data structure into the Bit
Error Rate Analysis app later.

Set the Structure name parameter to specify a workspace structure name.

If you want the Bit Error Rate Analysis app to use your chosen variable name even if a
variable with that name already exist in the workspace, select Overwrite variables.

• MAT-file — Export the selected data set to a structure in a MAT-file. If you export data using
this option, you can import a MAT-file data structure into the Bit Error Rate Analysis app
later.

Set the Structure name in file parameter to specify a MAT-file name. The structure name in
the file will also use this name.

3 Click OK. If you set Export to to MAT-file, the Bit Error Rate Analysis app prompts you for
the path to the MAT-file that you want to create.
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Examine an Exported Structure

This section describes the contents of the structure that the Bit Error Rate Analysis app exports to
the workspace or to a MAT-file. This table describes the fields of the exported data structure. When
you want to manipulate exported data, the fields that are most relevant are paramsEvaled and
data.

Field Description
params The parameter values in the Bit Error Rate

Analysis app, some of which might be invisible
and hence irrelevant for computations

paramsEvaled The parameter values evaluated and used by the
Bit Error Rate Analysis app when computing
the data set

data The Eb/N0, BER, and number of bits processed
dataView Information about the appearance in the data

viewer, which is used by the Bit Error Rate
Analysis app when reimporting the data

cellEditabilities Indication whether the data viewer has an active
Confidence Level or Fit entry, which is used by
the Bit Error Rate Analysis app when
reimporting the data

Parameter Fields

The params and paramsEvaled fields are similar to each other, except that params describes the
exact state of the user interface, whereas paramsEvaled indicates the values that are actually used
for computations. For example, in a theoretical system with an AWGN channel, params records but
paramsEvaled omits a diversity order parameter. The diversity order is not used in the computations
because it is relevant for only systems with Rayleigh channels. As another example, if you type
[0:3]+1 in the user interface as the range of Eb/N0 values, params indicates [0:3]+1, whereas
paramsEvaled indicates 1 2 3 4.

The length and exact contents of paramsEvaled depend on the data set because only relevant
information appears. If the meaning of the contents of paramsEvaled is not clear upon inspection,
one way to learn more is to reimport the data set into the Bit Error Rate Analysis app and inspect
the parameter values that appear in the user interface.

Data Field

If your exported workspace variable is called ber0, the field ber0.data is a cell array that contains
the numerical results in these vectors:

• ber0.data{1} lists the Eb/N0 values.
• ber0.data{2} lists the BER values corresponding to each of the Eb/N0 values.
• ber0.data{3} indicates, for simulation results, how many bits the Bit Error Rate Analysis app

processed when computing each of the corresponding BER values.
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Save Bit Error Rate Analysis app Session

The Bit Error Rate Analysis app enables you to save an entire session. This feature is useful if your
session contains multiple data sets that you want to return to in a later session. To reimport a saved
session, see the “Open Previous Bit Error Rate Analysis app Session” on page 23-44 section.

To save an entire Bit Error Rate Analysis app session, follow these steps.

1 Select File > Save Session.
2 When the Bit Error Rate Analysis app prompts you, enter the path to the file that you want to

create.

The Bit Error Rate Analysis app saves the data in a MAT file or a binary file that records all data
sets currently in the data viewer along with the user interface parameters associated with the data
sets.

Note If your Bit Error Rate Analysis app session requires particular workspace variables, save
those separately in a MAT-file using the save command in MATLAB.

Import Bit Error Rate Analysis app Data Set

The Bit Error Rate Analysis app enables you to reimport individual data sets that you previously
exported to a structure. For more information about exporting data sets from the Bit Error Rate
Analysis app, see the “Export Bit Error Rate Analysis app Data Set” on page 23-40 section.

To import an individual data set that you previously exported from the Bit Error Rate Analysis app
to a structure, follow these steps.

1 Select File > Import Data.

2 Set the Import from parameter to either Workspace structure or MAT-file. If you select
Workspace structure, type the name of the workspace variable in the Structure name
parameter.

3 Click OK. If you set Import from to MAT-file, the Bit Error Rate Analysis app prompts you
to select the file that contains the structure you want to import.

After you dismiss the Data Import dialog box (and the file selection dialog box, in the case of a MAT-
file), the data viewer shows the newly imported data set and the BER Figure window the
corresponding plot.
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Open Previous Bit Error Rate Analysis app Session

The Bit Error Rate Analysis app enables you to open previous saved sessions. For more information
about exporting data sets from the Bit Error Rate Analysis app, see the “Save Bit Error Rate
Analysis app Session” on page 23-43 section.

To replace the data sets in the data viewer with data sets from a previous Bit Error Rate Analysis
app session, follow these steps.

1 Select File > Open Session.

Note If the Bit Error Rate Analysis app already contains data sets, your are asked whether
you want to save the current session. If you answer no and continue with the loading process, the
Bit Error Rate Analysis app discards the current session upon opening a new session from the
file.

2 When the Bit Error Rate Analysis app prompts you, enter the path to the file you want to open.
It must be a file that you previously created using the Save Session option in the Bit Error
Rate Analysis app.

After the Bit Error Rate Analysis app reads the session file, the data viewer shows the data sets
from the file.

If the Bit Error Rate Analysis app session requires particular workspace variables that you saved
separately in a MAT-file, you can retrieve them by using the load function at the MATLAB command
prompt. For example, to load the Bit Error Rate Analysis app session named
ber_analysis_filename.mat enter this command.

load ber_analysis_filename.mat

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Bit Error Rate Analysis Techniques” on page 23-2
• “Analytical Expressions and Notations Used in BER Analysis” on page 23-45
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Analytical Expressions and Notations Used in BER Analysis
This topic covers the analytical expressions and notations for the theoretical analysis used in the BER
functions (berawgn, bercoding, berconfint, berfadingberfit, bersync), Bit Error Rate
Analysis app, and “Bit Error Rate Analysis Techniques” on page 23-2 topic.

Common Notation
This table defines the notations used in the analytical expressions in this topic.

Description Notation
Size of modulation constellation M
Number of bits per symbol k = log2M

Energy per bit-to-noise power-spectral-density
ratio

Eb
N0

Energy per symbol-to-noise power-spectral-
density ratio

Es
N0

= k
Eb
N0

Bit error rate (BER) Pb

Symbol error rate (SER) Ps

Real part Re ⋅
Floor, largest integer smaller than the value
contained in braces

⋅

This table describes the terms used for mathematical expressions in this topic.

Function Mathematical Expression
Q function

Q(x) = 1
2π∫x

∞
exp(− t2/2)dt

Marcum Q function
Q(a, b) = ∫

b

∞
texp − t2 + a2

2 I0(at)dt

Modified Bessel function of the first kind of order
ν Iν(z) = ∑

k = 0

∞ z/2 υ + 2k

k!Γ(ν + k + 1)

where

Γ(x) = ∫
0

∞
e−ttx− 1dt

is the gamma function.
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Function Mathematical Expression
Confluent hypergeometric function

F1 1(a, c; x) = ∑
k = 0

∞ (a)k
(c)k

xk

k!

where the Pochhammer symbol, (λ)k, is defined
as (λ)0 = 1, (λ)k = λ(λ + 1)(λ + 2)⋯(λ + k− 1).

This table defines the acronyms used in this topic.

Acronym Definition
M-PSK M-ary phase-shift keying
DE-M-PSK Differentially encoded M-ary phase-shift keying
BPSK Binary phase-shift keying
DE-BPSK Differentially encoded binary phase-shift keying
QPSK Quaternary phase-shift keying
DE-QPSK Differentially encoded quadrature phase-shift

keying
OQPSK Offset quadrature phase-shift keying
DE-OQPSK Differentially encoded offset quadrature phase-

shift keying
M-DPSK M-ary differential phase-shift keying
M-PAM M-ary pulse amplitude modulation
M-QAM M-ary quadrature amplitude modulation
M-FSK M-ary frequency-shift keying
MSK Minimum shift keying
M-CPFSK M-ary continuous-phase frequency-shift keying

Analytical Expressions Used in berawgn Function and Bit Error Rate
Analysis App
• “M-PSK” on page 23-47
• “DE-M-PSK” on page 23-47
• “OQPSK” on page 23-48
• “DE-OQPSK” on page 23-48
• “M-DPSK” on page 23-48
• “M-PAM” on page 23-48
• “M-QAM” on page 23-49
• “Orthogonal M-FSK with Coherent Detection” on page 23-49
• “Nonorthogonal 2-FSK with Coherent Detection” on page 23-50
• “Orthogonal M-FSK with Noncoherent Detection” on page 23-50
• “Nonorthogonal 2-FSK with Noncoherent Detection” on page 23-51
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• “Precoded MSK with Coherent Detection” on page 23-51
• “Differentially Encoded MSK with Coherent Detection” on page 23-51
• “MSK with Noncoherent Detection (Optimum Block-by-Block)” on page 23-51
• “CPFSK Coherent Detection (Optimum Block-by-Block)” on page 23-51

These sections cover the main analytical expressions used in the berawgn function and Bit Error
Rate Analysis app.

M-PSK

From equation 8.22 in [2],

Ps = 1
π ∫

0

(M − 1)π/M
exp −

kEb
N0

sin2 π/M
sin2θ

dθ

This expression is similar, but not strictly equal, to the exact BER (from [4] and equation 8.29 from
[2]):

Pb = 1
k ∑

i = 1

M/2
(wi′)Pi

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Pi = 1
2π ∫

0

π(1− (2i− 1)/M)
exp −

kEb
N0

sin2 (2i− 1)π/M
sin2θ

dθ

− 1
2π ∫

0

π(1− (2i + 1)/M)
exp −

kEb
N0

sin2 (2i + 1)π/M
sin2θ

dθ

For M-PSK with M = 2, specifically BPSK, this equation 5.2-57 from [1] applies:

Ps = Pb = Q
2Eb
N0

For M-PSK with M = 4, specifically QPSK, these equations 5.2-59 and 5.2-62 from [1] apply:

Ps = 2Q
2Eb
N0

1− 1
2Q

2Eb
N0

Pb = Q
2Eb
N0

DE-M-PSK

For DE-M-PSK with M = 2, specifically DE-BPSK, this equation 8.36 from [2] applies:

Ps = Pb = 2Q
2Eb
N0

− 2Q2 2Eb
N0

For DE-M-PSK with M = 4, specifically DE-QPSK, this equation 8.38 from [2] applies:
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Ps = 4Q
2Eb
N0

− 8Q2 2Eb
N0

+ 8Q3 2Eb
N0

− 4Q4 2Eb
N0

From equation 5 in [3],

Pb = 2Q
2Eb
N0

1− Q
2Eb
N0

OQPSK

For OQPSK, use the same BER and SER computations as for QPSK in [2].

DE-OQPSK

For OQPSK, use the same BER and SER computations as for DE-QPSK in [3].

M-DPSK

For M-DPSK, this equation 8.84 from [2] applies:

Ps = sin(π/M)
2π ∫

−π/2

π/2 exp −(kEb/N0)(1− cos(π/M)cosθ)
1− cos(π/M)cosθ dθ

This expression is similar, but not strictly equal, to the exact BER (from [4]):

Pb = 1
k ∑

i = 1

M/2
(wi′)Ai

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Ai = F 2i + 1 π
M − F 2i− 1 π

M

F(ψ) = − sinψ
4π ∫

−π/2

π/2 exp −kEb/N0(1− cosψcost)
1− cosψcost dt

For M-DPSK with M = 2, this equation 8.85 from [2] applies:

Pb = 1
2exp −

Eb
N0

M-PAM

From equations 8.3 and 8.7 in [2] and equation 5.2-46 in [1],

Ps = 2 M − 1
M Q 6

M2− 1
kEb
N0

From [5],
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Pb = 2
Mlog2M ×

∑
k = 1

log2M
∑

i = 0

(1− 2−k)M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 Q (2i + 1)

6log2M
M2− 1

Eb
N0

M-QAM

For square M-QAM, k = log2M is even, so equation 8.10 from [2] and equations 5.2-78 and 5.2-79
from [1] apply:

Ps = 4 M − 1
M Q 3

M − 1
kEb
N0

− 4 M − 1
M

2
Q2 3

M − 1
kEb
N0

From [5],

Pb = 2
Mlog2 M

× ∑
k = 1

log2 M
∑

i = 0

(1− 2−k) M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 Q (2i + 1)

6log2M
2(M − 1)

Eb
N0

For rectangular (non-square) M-QAM, k = log2M is odd, M = I × J, I = 2
k− 1

2 , and J = 2
k + 1

2 . So that,

Ps = 4I J − 2I − 2 J
M

× Q
6log2(I J)

(I2 + J2− 2)
Eb
N0

− 4
M (1 + I J − I − J)Q2 6log2(I J)

(I2 + J2− 2)
Eb
N0

From [5],

Pb = 1
log2(I J) ∑k = 1

log2I
PI(k) + ∑

l = 1

log2 J
P J(l)

where

PI(k) = 2
I ∑

i = 0

(1− 2−k)I − 1
(− 1)

i2k− 1
I 2k− 1− i2k− 1

I + 1
2 Q (2i + 1)

6log2(I J)
I2 + J2− 2

Eb
N0

and

P J(k) = 2
J ∑

j = 0

(1− 2−l) J − 1
(− 1)

j2l− 1
J 2l− 1− j2l− 1

J + 1
2 Q (2 j + 1)

6log2(I J)
I2 + J2− 2

Eb
N0

Orthogonal M-FSK with Coherent Detection

From equation 8.40 in [2] and equation 5.2-21 in [1],
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Ps = 1− ∫
−∞

∞
Q −q−

2kEb
N0

M − 1 1
2πexp −q2

2 dq

Pb = 2k− 1

2k− 1
Ps

Nonorthogonal 2-FSK with Coherent Detection

For M = 2, equation 5.2-21 in [1] and equation 8.44 in [2] apply:

Ps = Pb = Q
Eb(1− Re ρ )

N0

ρ is the complex correlation coefficient, such that:

ρ = 1
2Eb∫0

Tb
s1(t)s2*(t)dt

where s1(t) and s2(t) are complex lowpass signals, and

Eb = 1
2∫

0

Tb
s1(t) 2dt = 1

2∫
0

Tb
s2(t) 2dt

For example, with

s1(t) =
2Eb
Tb

e j2πf1t,  s2(t) =
2Eb
Tb

e j2πf2t

then

ρ = 1
2Eb∫0

Tb 2Eb
Tb

e j2πf1t 2Eb
Tb

e− j2πf2tdt = 1
Tb∫0

Tb
e j2π(f1− f2)tdt

=
sin(πΔfTb)

πΔfTb
e jπΔf t

where Δf = f1− f2.

From equation 8.44 in [2],

    Re ρ = Re
sin(πΔfTb)

πΔfTb
e jπΔf t =

sin(πΔfTb)
πΔfTb

cos(πΔfTb) =
sin(2πΔfTb)

2πΔfTb

Pb = Q
Eb(1− sin(2πΔfTb)/(2πΔfTb))

N0

where h = ΔfTb.

Orthogonal M-FSK with Noncoherent Detection

From equation 5.4-46 in [1] and equation 8.66 in [2],
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Ps = ∑
m = 1

M − 1
(− 1)m + 1 M − 1

m
1

m + 1exp − m
m + 1

kEb
N0

Pb = 1
2

M
M − 1Ps

Nonorthogonal 2-FSK with Noncoherent Detection

For M = 2, this equation 5.4-53 from [1] and this equation 8.69 from [2] apply:

Ps = Pb = Q( a, b)− 1
2exp − a + b

2 I0( ab)

where

a =
Eb

2N0
(1− 1− ρ 2),  b =

Eb
2N0

(1 + 1− ρ 2) 

Precoded MSK with Coherent Detection

Use the same BER and SER computations as for BPSK.

Differentially Encoded MSK with Coherent Detection

Use the same BER and SER computations as for DE-BPSK.

MSK with Noncoherent Detection (Optimum Block-by-Block)

The upper bound on error rate from equations 10.166 and 10.164 in [6]) is

Ps = Pb

≤ 1
2 1− Q b1, a1 + Q a1, b1 + 1

4 1− Q b4, a4 + Q a4, b4 + 1
2e−

Eb
N0

where

a1 =
Eb
N0

1− 3− 4/π2

4 , b1 =
Eb
N0

1 + 3− 4/π2

4

a4 =
Eb
N0

1− 1− 4/π2 , b4 =
Eb
N0

1 + 1− 4/π2

CPFSK Coherent Detection (Optimum Block-by-Block)

The lower bound on error rate (from equation 5.3-17 in [1]) is

Ps > KδminQ
Eb
N0

δmin
2

The upper bound on error rate is

δmin
2 > min

1 ≤ i ≤ M − 1
2i 1− sinc(2ih)

where h is the modulation index, and Kδmin is the number of paths with the minimum distance.
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Pb ≅
Ps
k

Analytical Expressions Used in berfading Function and Bit Error Rate
Analysis App
• “Notation” on page 23-52
• “M-PSK with MRC” on page 23-53
• “DE-M-PSK with MRC” on page 23-54
• “M-PAM with MRC” on page 23-54
• “M-QAM with MRC” on page 23-54
• “M-DPSK with Postdetection EGC” on page 23-55
• “Orthogonal 2-FSK, Coherent Detection with MRC” on page 23-55
• “Nonorthogonal 2-FSK, Coherent Detection with MRC” on page 23-56
• “Orthogonal M-FSK, Noncoherent Detection with EGC” on page 23-56
• “Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity” on page 23-57

This section covers the main analytical expressions used in the berfading function and the Bit
Error Rate Analysis app.

Notation

This table describes the additional notations used in analytical expressions in this section.

Description Notation
Power of the fading amplitude r Ω = E r2 , where E ⋅  denotes statistical

expectation
Number of diversity branches L
Signal to Noise Ratio (SNR) per symbol per
branch γl = Ωl

Es
N0

/L = Ωl
kEb
N0

/L

For identically-distributed diversity branches,

γ = Ω
kEb
N0

/L
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Description Notation
Moment generating functions for each diversity
branch

For Rayleigh fading channels:

Mγl s = 1
1− sγl

For Rician fading channels:

Mγl s = 1 + K
1 + K − sγl

e
Ksγl

(1 + K)− sγl

K is the ratio of the energy in the specular
component to the energy in the diffuse
component (linear scale).

For identically-distributed diversity branches,
Mγl s = Mγ s  for all l.

This table defines the additional acronyms used in this section.

Acronym Definition
MRC Maximal-ratio combining
EGC Equal-gain combining

M-PSK with MRC

From equation 9.15 in [2],

Ps = 1
π ∫

0

(M − 1)π/M

∏
l = 1

L
Mγl −

sin2(π/M)
sin2θ

dθ

From [4] and [2],

Pb = 1
k ∑

i = 1

M/2
(wi′)Pi

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Pi = 1
2π ∫

0

π(1− (2i− 1)/M)

∏
l = 1

L
Mγl −

1
sin2θ

sin2 (2i− 1)π
M dθ

− 1
2π ∫

0

π(1− (2i + 1)/M)

∏
l = 1

L
Mγl −

1
sin2θ

sin2 (2i + 1)π
M dθ

For the special case of Rayleigh fading with M = 2 (from equations C-18 and C-21 and Table C-1 in
[6]),

Pb = 1
2 1− μ ∑

i = 0

L− 1 2i
i

1− μ2

4
i
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where

μ = γ
γ + 1

If L = 1, then:

Pb = 1
2 1− γ

γ + 1

DE-M-PSK with MRC

For M = 2 (from equations 8.37 and 9.8-9.11 in [2]),

Ps = Pb = 2
π ∫

0

π/2

∏
l = 1

L
Mγl −

1
sin2θ

dθ− 2
π ∫

0

π/4

∏
l = 1

L
Mγl −

1
sin2θ

dθ

M-PAM with MRC

From equation 9.19 in [2],

Ps = 2(M − 1)
Mπ ∫

0

π/2

∏
l = 1

L
Mγl −

3/(M2− 1)
sin2θ

dθ

From [5] and [2],

Pb = 2
πMlog2M

× ∑
k = 1

log2M
  ∑

i = 0

(1− 2−k)M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2i + 1)23/(M2− 1)
sin2θ

dθ

M-QAM with MRC

For square M-QAM, k = log2M is even (equation 9.21 in [2]),

Ps = 4
π 1− 1

M ∫0
π/2

∏
l = 1

L
Mγl −

3/(2(M − 1))
sin2θ

dθ

− 4
π 1− 1

M
2∫

0

π/4

∏
l = 1

L
Mγl −

3/(2(M − 1))
sin2θ

dθ

From [5] and [2]:

Pb = 2
π Mlog2 M

× ∑
k = 1

log2 M
  ∑

i = 0

(1− 2−k) M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2i + 1)23/(2(M − 1))
sin2θ

dθ
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For rectangular (nonsquare) M-QAM, k = log2M is odd, M = I × J, I = 2
k− 1

2 , J = 2
k + 1

2 ,

γl = Ωllog2(I J)
Eb
N0

,

Ps = 4I J − 2I − 2 J
Mπ ∫

0

π/2

∏
l = 1

L
Mγl −

3/(I2 + J2− 2)
sin2θ

dθ

− 4
Mπ (1 + I J − I − J)∫

0

π/4

∏
l = 1

L
Mγl −

3/(I2 + J2− 2)
sin2θ

dθ

From [5] and [2],

Pb = 1
log2(I J) ∑k = 1

log2I
PI(k) + ∑

l = 1

log2 J
P J(l)

PI(k) = 2
Iπ ∑

i = 0

(1− 2−k)I − 1
(− 1)

i2k− 1
I 2k− 1− i2k− 1

I + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2i + 1)23/(I2 + J2− 2)
sin2θ

dθ

P J(k) = 2
Jπ ∑

j = 0

(1− 2−l) J − 1
(− 1)

j2l− 1
J 2l− 1− j2l− 1

J + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2 j + 1)23/(I2 + J2− 2)
sin2θ

dθ

M-DPSK with Postdetection EGC

From equation 8.165 in [2],

Ps = sin(π/M)
2π ∫

−π/2

π/2
1

1− cos(π/M)cosθ ∏
l = 1

L
Mγl − 1− cos(π/M)cosθ dθ

From [4] and [2],

Pb = 1
k ∑

i = 1

M/2
(wi′)Ai

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Ai = F 2i + 1 π
M − F 2i− 1 π

M

F(ψ) = − sinψ
4π ∫

−π/2

π/2
1

1− cosψcost ∏l = 1

L
Mγl − 1− cosψcost dt

For the special case of Rayleigh fading with M = 2 and L = 1 (equation 8.173 from [2]),

Pb = 1
2(1 + γ)

Orthogonal 2-FSK, Coherent Detection with MRC

From equation 9.11 in [2],
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Ps = Pb = 1
π ∫

0

π/2

∏
l = 1

L
Mγl −

1/2
sin2θ

dθ

For the special case of Rayleigh fading (equations 14.4-15 and 14.4-21 in [1]),

Ps = Pb = 1
2L 1− γ

2 + γ
L
∑

k = 0

L− 1 L− 1 + k
k

1
2k 1 + γ

2 + γ
k

Nonorthogonal 2-FSK, Coherent Detection with MRC

From equations 9.11 and 8.44 in [2],

Ps = Pb = 1
π ∫

0

π/2

∏
l = 1

L
Mγl −

(1− Re ρ )/2
sin2θ

dθ

For the special case of Rayleigh fading with L = 1 (equations 20 in [8] and 8.130 in [2]),

Ps = Pb = 1
2 1− γ(1− Re[ρ])

2 + γ(1− Re[ρ])

Orthogonal M-FSK, Noncoherent Detection with EGC

For Rayleigh fading, from equation 14.4-47 in [1],

Ps = 1− ∫
0

∞
1

1 + γ L L− 1 !
UL− 1e−

U
1 + γ 1− e−U ∑

k = 0

L− 1 Uk

k!

M − 1
dU

Pb = 1
2

M
M − 1Ps

For Rician fading from equation 41 in [8],

Ps = ∑
r = 1

M − 1 (− 1)r + 1e−LKγr /(1 + γr)

r(1 + γr) + 1 L
M − 1

r ∑
n = 0

r(L− 1)
βnr

Γ(L + n)
Γ(L)

1 + γr
r + 1 + rγr

n
F1 1 L + n, L;

LKγr /(1 + γr)
r(1 + γr) + 1

Pb = 1
2

M
M − 1Ps

where

γr = 1
1 + K γ

βnr = ∑
i = n− (L− 1)

n βi(r − 1)
(n− i)! I[0, (r − 1)(L− 1)](i)

β00 = β0r = 1
βn1 = 1/n!

β1r = r

and I[a, b](i) = 1 if a ≤ i ≤ b and 0 otherwise.
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Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity

From equation 8.163 in [2],

Ps = Pb = 1
4π ∫

−π

π
1− ς2

1 + 2ςsinθ + ς2Mγ −
1
4(1 + 1− ρ2)(1 + 2ςsinθ + ς2) dθ

where

ς = 1− 1− ρ2

1 + 1− ρ2

Analytical Expressions Used in bercoding Function and Bit Error Rate
Analysis App
This section covers the main analytical expressions used in the bercoding function and the Bit
Error Rate Analysis app.

• “Common Notation” on page 23-57
• “Block Coding” on page 23-57
• “Convolutional Coding” on page 23-59

Common Notation

This table describes the additional notations used in analytical expressions in this section.

Description Notation
Energy-per-information bit-to-noise power-
spectral-density ratio γb =

Eb
N0

Message length K
Code length N
Code rate Rc = K

N

Block Coding

This section describes the specific notation for block coding expressions, where dmin is the minimum
distance of the code.

Soft Decision

For BPSK, QPSK, OQPSK, 2-PAM, 4-QAM, and precoded MSK, equation 8.1-52 in [1]) applies,

Pb ≤
1
2(2K − 1)Q 2γbRcdmin

For DE-BPSK, DE-QPSK, DE-OQPSK, and DE-MSK,

Pb ≤
1
2(2K − 1) 2Q 2γbRcdmin 1− Q 2γbRcdmin
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For BFSK coherent detection, equations 8.1-50 and 8.1-58 in [1] apply,

Pb ≤
1
2(2K − 1)Q γbRcdmin

For BFSK noncoherent square-law detection, equations 8.1-65 and 8.1-64 in [1] apply,

Pb ≤
1
2

2K − 1
22dmin− 1exp −1

2γbRcdmin ∑
i = 0

dmin− 1 1
2γbRcdmin

i 1
i! ∑

r = 0

dmin− 1− i 2dmin− 1
r

For DPSK,

Pb ≤
1
2

2K − 1
22dmin− 1exp −γbRcdmin ∑

i = 0

dmin− 1
γbRcdmin

i 1
i! ∑

r = 0

dmin− 1− i 2dmin− 1
r

Hard Decision

For general linear block code, equations 4.3 and 4.4 in [9], and 12.136 in [6] apply,

Pb ≤
1
N ∑

m = t + 1

N
(m + t)

N
m

pm 1− p N −m

t = 1
2 dmin− 1

For Hamming code, equations 4.11 and 4.12 in [9] and 6.72 and 6.73 in [7] apply

Pb ≈
1
N ∑

m = 2

N
m

N
m

pm 1− p N −m = p− p(1− p)N − 1

For rate (24,12) extended Golay code, equations 4.17 in [9] and 12.139 in [6] apply:

Pb ≤
1

24 ∑m = 4

24
βm

24
m

pm 1− p 24−m

where βm is the average number of channel symbol errors that remain in corrected N-tuple format
when the channel caused m symbol errors (see table 4.2 in [9]).

For Reed-Solomon code with N = Q− 1 = 2q− 1,

Pb ≈
2q− 1

2q− 1
1
N ∑

m = t + 1

N
m

N
m

Ps
m(1− Ps)N −m

For FSK, equations 4.25 and 4.27 in [9], 8.1-115 and 8.1-116 in [1], 8.7 and 8.8 in [7], and 12.142 and
12.143 in [6] apply,

Pb ≈
1
q

1
N ∑

m = t + 1

N
m

N
m

Ps
m(1− Ps)N −m

otherwise, if log2Q/log2M = q/k = h, where h is an integer (equation 1 in [10]) applies,

Ps = 1− (1− s)h
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where s is the SER in an uncoded AWGN channel.

For example, for BPSK, M = 2 and Ps = 1− (1− s)q, otherwise Ps is given by table 1 and equation 2 in
[10].

Convolutional Coding

This section describes the specific notation for convolutional coding expressions, where df ree is the
free distance of the code, and ad is the number of paths of distance d from the all-zero path that
merges with the all-zero path for the first time.

Soft Decision

From equations 8.2-26, 8.2-24, and 8.2-25 in [1] and 13.28 and 13.27 in [6] apply,

Pb < ∑
d = df ree

∞
adf (d)P2(d)

The transfer function is given by

T(D, N) = ∑
d = df ree

∞
adDdNf (d)

dT(D, N)
dN N = 1

= ∑
d = df ree

∞
adf (d)Dd

where f (d) is the exponent of N as a function of d.

This equation gives the results for BPSK, QPSK, OQPSK, 2-PAM, 4-QAM, precoded MSK, DE-BPSK,
DE-QPSK, DE-OQPSK, DE-MSK, DPSK, and BFSK:

P2(d) = Pb
Eb
N0

= γbRcd

where Pb is the BER in the corresponding uncoded AWGN channel. For example, for BPSK (equation
8.2-20 in [1]),

P2(d) = Q 2γbRcd

Hard Decision

From equations 8.2-33, 8.2-28, and 8.2-29 in [1] and 13.28, 13.24, and 13.25 in [6] apply,

Pb < ∑
d = df ree

∞
adf (d)P2(d)

When d is odd,

P2(d) = ∑
k = (d + 1)/2

d d
k

pk(1− p)d− k

and when d is even,
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P2(d) = ∑
k = d/2 + 1

d d
k

pk(1− p)d− k + 1
2

d
d/2

pd/2(1− p)d/2

where p is the bit error rate (BER) in an uncoded AWGN channel.

Analytical Expressions Used in bersync Function and Bit Error Rate
Analysis App
• “Timing Synchronization Error” on page 23-60
• “Timing Synchronization Error” on page 23-60

This section covers the main analytical expressions used in the bersync function and the Bit Error
Rate Analysis app.

Timing Synchronization Error

To compute the BER for a communications system with a timing synchronization error, the bersync
function uses this formula from [13]:

1
4πσ∫−∞

∞
exp(− ξ2

2σ2 )∫2R(1− 2 ξ )
∞

exp(− x2

2 )dxdξ + 1
2 2π∫2R

∞
exp(− x2

2 )dx

where σ is the timing error, and R is the linear Eb/N0 value.

Timing Synchronization Error

To compute the BER for a communications system with a carrier synchronization error, the bersync
function uses this formula from [13]:

1
πσ∫0 ∞exp(− ϕ2

2σ2 )∫2Rcosϕ
∞

exp(− y2

2 )dydϕ

where σ is the phase error R is the linear Eb/N0 value.

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Bit Error Rate Analysis Techniques” on page 23-2
• “Use Bit Error Rate Analysis App” on page 23-12
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Error Vector Magnitude (EVM)
Error Vector Magnitude (EVM) is a measurement of modulator or demodulator performance in the
presence of impairments. Essentially, EVM is the vector difference at a given time between the ideal
(transmitted) signal and the measured (received) signal. If used correctly, these measurements can
help in identifying sources of signal degradation, such as: phase noise, I-Q imbalance, amplitude non-
linearity and filter distortion

These types of measurements are useful for determining system performance in communications
applications. For example, determining if an EDGE system conforms to the 3GPP radio transmission
standards requires accurate RMS, EVM, Peak EVM, and 95th percentile for the EVM measurements.

Users can create the EVM object in two ways: using a default object or by defining parameter-value
pairs. As defined by the 3GPP standard, the unit of measure for RMS, Maximum, and Percentile EVM
measurements is a percentile (%). For more information, see the EVM Measurement or comm.EVM
help page.

Measuring Modulator Accuracy
• “Overview” on page 23-61
• “Structure” on page 23-62
• “References” on page 23-64

Overview

The Communications Toolbox provides two blocks you can use for measuring modulator accuracy:
EVM Measurement and MER Measurement.

This example tests an EDGE transmitter for system design impairments using EVM measurements. In
this example, the EVM Measurements block compares an ideal reference signal to a measured signal,
and then computes RMS EVM, maximum EVM, and percentile EVM values. According to the EDGE
standard [1], the error vector magnitude of the received signal, calculated relative to the transmitted
waveform, should not exceed the following values:

EDGE Standard Measurement Specifications [2]

Measurement Mobile Station Base Transceiver Station
 Normal Extreme Normal Extreme
RMS 9% 10% 7% 8%
Peak EVM 30% 30% 22% 22%
95th Percentile EVM 15% 15% 11% 11%

This example uses this model.
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You can open this model by typing doc_evm at the MATLAB command line.

Structure

The model essentially contains three parts:

• Transmitter
• Receiver impairments
• EVM calculation

The following sections of the tutorial contain descriptions for each part of the model.

Transmitter

The following blocks comprise the transmitter:

• Random Integer Generator
• M-PSK Modulator Baseband
• Phase/Frequency Offset
• Upsample
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• Discrete FIR Filter
• I/Q Imbalance

The Random Integer Generator block simulates random data generation. The EDGE standard
specifies that the transmitter performs measurements during the useful part of the burst – excluding
tail bits – over at least 200 bursts. In this mode, the transmitter produces 435 symbols per burst (9
additional symbols account for filter delays). The Phase Offset block provides continuous 3π/8 phase
rotation to the signal. For synchronization purposes, the Upsample block oversamples the signal by a
factor of 4.

The Discrete FIR Filter block provides a GMSK pulse linearization, the main component in a Laurent
decomposition of the GMSK modulation [3]. A helper function computes the filter coefficients and
uses a direct-form FIR digital filter to create the pulse shaping effect. The filter normalization
provides unity gain at the main tap.

The I/Q Imbalance block simulates transmitter impairments. This block adds rotation to the signal,
simulating a defect in the transmitter under test. The I/Q amplitude imbalance is 0.5 dB, and I/Q
phase imbalance is 1°.

Receiver Impairments

In this model, the Receiver Thermal Noise block represents receiver impairments. This model
assumes 290 K of thermal noise, representing imperfections of the hardware under test.

EVM Calculation

The EVM calculation relies upon the following blocks:

• Discrete FIR Filter
• Selector
• EVM Measurement
• Display

The EVM measurement block computes the vector difference between an ideal reference signal and
an impaired signal. The output of the FIR filter provides the Reference input for the EVM block. The
output of the Noise Temperature block provides the impaired signal at the Input port of the EVM
block.

While the block has different normalization options available, the EDGE standard requires
normalizing by the Average reference signal power. For illustration purposes in this example,
the EVM block outputs RMS, maximum, and percentile measurement values.

Experimenting with the Model

1 Run the model by clicking the play button in the Simulink model window.
2 Examine the output of the EVM block and compare the measurements to the limits in the EDGE

Standard Measurement Specifications table.

In this example, the EVM Measurement block computes the following:

• Worst case RMS EVM per burst: 9.77%
• Peak EVM: 18.95%
• 95th Percentile EVM:14.76%
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As a result, this simulated EDGE transmitter passes the EVM test for a Mobile Station under
extreme conditions.

3 Double-click the I/Q Imbalance block.
4 Enter 2 into I/Q Imbalance (dB) and click OK.
5 Click the Play button in the Simulink model window.
6 Examine the output of the EVM block. Then, compare the measurements to the limits in the

EDGE Standard Measurement Specifications table.

In this example, the EVM Measurement block computes the following results:

• Worst case RMS EVM per burst: 15.15%
• Peak EVM: 29.73%
• 95th Percentile EVM: 22.55%.

These EVM values are clearly unacceptable according to the EDGE standard. You can experiment
with the other I/Q imbalance values, examine the impact on calculations, and compare them to
the values provided in the table.

References

[1] 3GPP TS 45.004, “Radio Access Networks; Modulation,” Release 7, v7.2.0, 2008-02.

[2] 3GPP TS 45.005, “Radio Access Network; Radio transmission and reception,” Release 8, v8.1.0,
2008-05.

[3] Laurent, Pierre. “Exact and approximate construction of digital phase modulation by
superposition of amplitude modulated pulses (AMP).” IEEE Transactions on Communications.
Vol. COM-34, #2, Feb. 1986, pp. 150-160.
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Modulation Error Ratio (MER)
Communications Toolbox can perform Modulation Error Ratio (MER) measurements. MER is a
measure of the signal-to-noise ratio (SNR) in a digital modulation applications. These types of
measurements are useful for determining system performance in communications applications. For
example, determining if an EDGE system conforms to the 3GPP radio transmission standards requires
accurate RMS, EVM, Peak EVM, and 95th percentile for the EVM measurements.

As defined by the DVB standard, the unit of measure for MER is decibels (dB). For consistency, the
unit of measure for Minimum MER and Percentile MER measurements is also in decibels. For more
information, see the comm.MER help page.
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Adjacent Channel Power Ratio (ACPR)
Adjacent channel power ratio (ACPR) calculations (also known as adjacent channel leakage ratio
(ACLR)), characterize spectral regrowth in a communications system component, such as a modulator
or an analog front end. Amplifier nonlinearity causes spectral regrowth. ACPR calculations determine
the likelihood that a given system causes interference with an adjacent channel.

Many transmission standards, such as IS-95, CDMA, WCDMA, 802.11, and Bluetooth, contain a
definition for ACPR measurements. Most standards define ACPR measurements as the ratio of the
average power in the main channel and any adjacent channels. The offset frequencies and
measurement bandwidths (BWs) you use when obtaining measurements depends on which specific
industry standard you are using. For instance, measurements for CDMA amplifiers involve two offsets
(from the carrier frequency) of 885 kHz and 1.98 MHz, and a measurement BW of 30 KHz.

For more information, see the comm.ACPR help page.

Obtain ACPR Measurements
Communications Toolbox contains the comm.ACPR System object. In this tutorial, you obtain ACPR
measurements using a WCDMA communications signal, according to the 3GPP™ TS 125.104
standard.

This example uses baseband WCDMA sample signals at the input and output of a nonlinear amplifier.
The WCDMASignal.mat file contains sample data for use with the tutorial. This file divides the data
into 25 signal snapshots of 7e3 samples each and stores them in the columns of data matrices,
dataBeforeAmplifier and dataAfterAmplifier.

The WCDMA specification requires that you obtain all measurements using a 3.84 MHz sampling
frequency.

Create comm.ACPR System Object and Set Up Measurements

1 Define the sample rate, load the WCDMA file, and get the data by entering the following at the
MATLAB command line:

% System sampling frequency, 3.84 MHz chip rate, 8 samples per chip
SampleRate = 3.84e6*8;
load WCDMASignal.mat
% Use the first signal snapshot
txSignalBeforeAmplifier = dataBeforeAmplifier(:,1);
txSignalAfterAmplifier = dataAfterAmplifier(:,1);

2 Create the comm.ACPR System object and specify the sampling frequency.

hACPR = comm.ACPR('SampleRate',SampleRate)

The System object presents the following information:

               NormalizedFrequency: false            
                        SampleRate: 30720000         
              MainChannelFrequency: 0                
          MainMeasurementBandwidth: 50000            
             AdjacentChannelOffset: [-100000 100000] 
      AdjacentMeasurementBandwidth: 50000            
           MeasurementFilterSource: 'None'           
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                SpectralEstimation: 'Auto'           
                         FFTLength: 'Next power of 2'
                           MaxHold: false            
                        PowerUnits: 'dBm'            
        MainChannelPowerOutputPort: false            
    AdjacentChannelPowerOutputPort: false     

3 Specify the main channel center frequency and measurement bandwidth.

Specify the main channel center frequency using the MainChannelFrequency property. Then,
specify the main channel measurement bandwidth using the MainMeasurementBandwidth
property.

For the baseband data you are using, the main channel center frequency is at 0 Hz. The WCDMA
standard specifies that you obtain main channel power using a 3.84-MHz measurement
bandwidth. Specify these by typing the following.

hACPR.MainChannelFrequency = 0;
hACPR.MainMeasurementBandwidth = 3.84e6;

4 Specify adjacent channel offsets and measurement bandwidths.

The WCDMA standard specifies ACPR limits for four adjacent channels, located at 5, -5, 10, -10
MHz away from the main channel center frequency. In all cases, you obtain adjacent channel
power using a 3.84-MHz bandwidth. Specify the adjacent channel offsets and measurement
bandwidths using the AdjacentChannelOffset and AdjacentMeasurementBandwidth
properties.

hACPR.AdjacentChannelOffset = [-10 -5 5 10]*1e6;
hACPR.AdjacentMeasurementBandwidth = 3.84e6;

Notice that if the measurement bandwidths for all the adjacent channels are equal, you specify a
scalar value. If measurement bandwidths are different, you specify a vector of measurement
bandwidths with a length equal to the length of the offset vector.

5 Set the MainChannelPowerOutputPort and AdjacentChannelPowerOutputPort properties
to true by entering the following at the MATLAB command line:

hACPR.MainChannelPowerOutputPort = true
hACPR.AdjacentChannelPowerOutputPort = true

6 Create a comm.ACPR System object to measure the amplifier output.

hACPRoutput = clone(hACPR);

Obtain the ACPR Measurements

You obtain ACPR measurements by calling the step method of comm.ACPR. You can also obtain the
power measurements for the main and adjacent channels. The PowerUnits property specifies the
unit of measure. The property value defaults to dBm (power ratio referenced to one milliwatt (mW)).

1 Obtain the ACPR measurements at the amplifier input:
[ACPR mainChannelPower adjChannelPower] = hACPR(txSignalBeforeAmplifier);

The comm.ACPR System object produces the following output measurement data:

ACPR =

  -68.6668  -54.9002  -55.0653  -68.4604
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mainChannelPower =

   29.5190

adjChannelPower =

  -39.1477  -25.3812  -25.5463  -38.9414
2 Obtain the ACPR measurements at the amplifier output:

[ACPR mainChannelPower adjChannelPower] = hACPRoutput(txSignalAfterAmplifier)

The comm.ACPR System object produces the following input measurement data:

ACPR =

  -42.1625  -27.0912  -26.8785  -42.4915

mainChannelPower =

   40.6725

adjChannelPower =

   -1.4899   13.5813   13.7941   -1.8190

Notice the increase in ACPR values at the output of the amplifier. This increase reflects distortion
due to amplifier nonlinearity. The WCDMA standard specifies that ACPR values be below -45 dB
at +/- 5 MHz offsets, and below -50 dB at +/- 10 MHz offsets. In this example, the signal at the
amplifier input meets the specifications while the signal at the amplifier output does not.

Specifying a Measurement Filter

The WCDMA standard specifies that you obtain ACPR measurements using a root-raised-cosine filter.
It also states that you measure both the main channel power and adjacent channel powers using a
matched root-raised-cosine (RRC) filter with rolloff factor 0.22. You specify the measurement filter
using the MeasurementFilter property. This property value defaults to an all-pass filter with unity
gain.

The filter must be an FIR filter, and its response must center at 0 Hz. The ACPR object automatically
shifts and applies the filter at each of the specified main and adjacent channel bands. (The power
measurement still falls within the bands specified by the MainMeasurementBandwidth, and
AdjacentMeasurementBandwidth properties.)

The WCDMASignal.mat file contains data that was obtained using a 96 tap filter with a rolloff factor
of 0.22.

1 Create the filter (using rcosdesign, from the Signal Processing Toolbox software) and obtain
measurements by entering the following at the MATLAB command line:

% Scale for 0 dB passband gain
measFilt = rcosdesign(0.22,16,8)/sqrt(8); 

2 Set the filter you created in the previous step as the measurement filter for the ACPR object.
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release(hACPR);
hACPR.MeasurementFilterSource = 'Property';
hACPR.MeasurementFilter = measFilt;

3 Implement the same filter at the amplifier output by cloning the comm.ACPR System object.

hACPRoutput = clone(hACPR)
4 Obtain the ACPR power measurements at the amplifier input.

ACPR = hACPR(txSignalBeforeAmplifier)

The comm.ACPR System object produces the following measurement data:

ACPR =
  -71.4648  -55.5514  -55.9476  -71.3909

5 Obtain the ACPR power measurements at the amplifier output.

ACPRoutput = hACPRoutput(txSignalAfterAmplifier)

The comm.ACPR System object produces the following measurement data:

ACPR =
   -42.2364  -27.2242  -27.0748  -42.5810

Control the Power Spectral Estimator

By default, the ACPR object measures power uses a Welch power spectral estimator with a Hamming
window and zero percent overlap. The object uses a rectangle approximation of the integral for the
power spectral density estimates in the measurement bandwidth of interest. If you set
SpectralEstimatorOption to 'User defined' several properties become available, providing you control
of the resolution, variance, and dynamic range of the spectral estimates.

1 Enable the SegmentLength, OverlapPercentage, and WindowOption properties by entering the
following at the MATLAB command line:

release(hACPRoutput)
hACPRoutput.SpectralEstimation = 'Specify window parameters'

This change allows you to customize the spectral estimates for obtaining power measurements.
For example, you can set the spectral estimator segment length to 1024 and increase the overlap
percentage to 50%, reducing the consequent variance increase. You can also choose a window
with larger side lobe attenuation (compared to the default Hamming window).

2 Create a spectral estimator with a 'Chebyshev' window and a side lobe attenuation of 200 dB.

hACPRoutput.SegmentLength = 1024;
hACPRoutput.OverlapPercentage = 50;
% Choosing a Chebyshev window enables a SidelobeAtten property
% you can use to set the side lobe attenuation of the window.
hACPRoutput.Window = 'Chebyshev';
hACPRoutput.SidelobeAttenuation = 200;

3 Run the object to obtain the ACPR power measurements at the amplifier output.

ACPRoutput = hACPRoutput(txSignalAfterAmplifier)

The ACPR object produces the following measurement data:

ACPR =
  -44.9399  -30.7136  -30.7670  -44.4450
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Measure Power Using the Max-Hold Option.

Some communications standards specify using max-hold spectrum power measurements when
computing ACPR values. Such calculations compare the current power spectral density vector
estimation to the previous max-hold accumulated power spectral density vector estimation. When
obtaining max-hold measurements, the object obtains the power spectral density vector estimation
using the current input data. It obtains the previous max-hold accumulated power spectral density
vector from the previous call to the object. The object uses the maximum values at each frequency
bin for calculating average power measurements. A call to the reset method clears the max-hold
spectrum.

1 Accumulate max-hold spectra for 25 amplifier output data snapshots and get ACPR
measurements by typing the following at the MATLAB command line:

for idx = 1:24
    hACPRoutput(dataAfterAmplifier(:,idx));
end
ACPRoutput = hACPRoutput(dataAfterAmplifier(:,25))

The ACPR object produces the following output data:

ACPR =

  -43.1123  -26.6964  -27.0009  -42.4803

Plotting the Signal Spectrum

Use the MATLAB software to plot the power spectral density of the WCDMA signals at the input and
output of the nonlinear amplifier. The plot allows you to visualize the spectral regrowth effects
intrinsic to amplifier nonlinearity. Notice how the measurements reflect the spectral regrowth. (Note:
the following code is just for visualizing signal spectra; it has nothing to do with obtaining the ACPR
measurements).
win = hamming(1024);
[PSD1,F] = pwelch(txSignalBeforeAmplifier,win,50,1024,SampleRate,'centered');
[PSD2,F] = pwelch(txSignalAfterAmplifier,win,50,1024,SampleRate,'centered');
plot(F,10*log10(PSD1))
hold on
grid on
plot(F,10*log10(PSD2),'g')
legend('Amplifier input', 'Amplifier output')
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Complementary Cumulative Distribution Function CCDF
Using the comm.CCDF System object you can measure the probability that the instantaneous power of
a signal is above its specified level average power.
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Selected Bibliography for Measurements
List of references for further reading about measurements used in analysis of communications
systems bit error rate performance.
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More About
• “Analytical Expressions and Notations Used in BER Analysis” on page 23-45
• “Bit Error Rate Analysis Techniques” on page 23-2
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Filtering Section

• “Filtering” on page 24-2
• “Group Delay” on page 24-4
• “Pulse Shaping Using a Raised Cosine Filter” on page 24-6
• “Design Raised Cosine Filters Using MATLAB Functions” on page 24-10
• “Filter Using Simulink Raised Cosine Filter Blocks” on page 24-12
• “Design Raised Cosine Filters in Simulink” on page 24-16
• “Reduce ISI Using Raised Cosine Filtering” on page 24-21
• “Find Delay for Encoded and Filtered Signal” on page 24-25
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Filtering
In this section...
“Filter Features” on page 24-2
“Selected Bibliography Filtering” on page 24-3

The Communications Toolbox software includes several functions, objects, and blocks that can help
you design and use filters. Other filtering capabilities are in the Signal Processing Toolbox and the
DSP System Toolbox. The sections of this chapter are as follows:

For an example involving raised cosine filters, type showdemo rcosdemo.

Filter Features
Without propagation delays, both Hilbert filters and raised cosine filters are noncausal. This means
that the current output depends on the system's future input. In order to design only realizable
filters, the hilbiir function delays the input signal before producing an output. This delay, known as
the filter's group delay, is the time between the filter's initial response and its peak response. The
group delay is defined as

− d
dωθ(ω)

where θ represents the phase of the filter and ω represents the frequency in radians per second. This
delay is set so that the impulse response before time zero is negligible and can safely be ignored by
the function.

For example, the Hilbert filter whose impulse is shown below uses a group delay of one second. In the
figure, the impulse response near time 0 is small and the large impulse response values occur near
time 1.

Filtering tasks that blocks in the Communications Toolbox support include:

• “Filter Using Simulink Raised Cosine Filter Blocks” on page 24-12. Raised cosine filters are very
commonly used for pulse shaping and matched filtering. The following block diagram illustrates a
typical use of raised cosine filters.
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• Shaping a signal using ideal rectangular pulses.
• Implementing an integrate-and-dump operation or a windowed integrator. An integrate-and-dump

operation is often used in a receiver model when the system's transmitter uses an ideal
rectangular-pulse model. Integrate-and-dump can also be used in fiber optics and in spread-
spectrum communication systems such as CDMA (code division multiple access) applications.

Additional filtering capabilities exist in the Filter Designs and Multirate Filters libraries of the DSP
System Toolbox product.

For more background information about filters and pulse shaping, see the works listed in the
“Selected Bibliography Filtering” on page 24-3.
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Group Delay
The raised cosine filter blocks in the commfilt2 library implement realizable filters by delaying the
peak response. This delay, known as the filter’s group delay, is the length of time between the filter's
initial response and its peak response. The filter blocks in this library have a Filter span in symbols
parameter, which is twice the group delay in symbols.

For example, the square-root raised cosine filter whose impulse response shown in the following
figure uses a Filter span in symbols parameter of 8 in the filter block. In the figure, the initial
impulse response is small and the peak impulse response occurs at the fourth symbol.

Implications of Delay for Simulations
A filter block’s group delay has implications for other parts of your model. For example, suppose you
compare the symbol streams marked Symbols In and Symbols Out in the schematics shown on the
“Filtering” on page 24-2 page by plotting or computing an error rate. Use one of these methods to
make sure you are comparing symbols that truly correspond to each other:

• Use the Delay block to delay the Symbols In signal, thus aligning it with the Symbols Out signal.
Set the Delay parameter equal to the filter’s group delay (or the sum of both values, if your model
uses a pair of square root raised cosine filter blocks). The following figure illustrates this usage.

24 Filtering Section

24-4



• Use the Find Delay block to find the delay between the two signals and add that delay using the
Delay block.

• When using the Error Rate Calculation block to compare the two signals, increase the Receive
delay parameter by the group delay value (or the sum of both values, if your model uses a pair of
square-root raised cosine filter blocks). The Receive delay parameter might include other delays
as well, depending on the contents of your model.

For more information about how to manage delays in a model, see “Delays” on page 10-6.
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Pulse Shaping Using a Raised Cosine Filter
Filter a 16-QAM signal using a pair of square root raised cosine matched filters. Plot the eye diagram
and scatter plot of the signal. After passing the signal through an AWGN channel, calculate the
number of bit errors.

Set the simulation parameters.

M = 16; % Modulation order
k = log2(M); % Bits/symbol
n = 20000; % Transmitted bits
nSamp = 4; % Samples per symbol
EbNo = 10; % Eb/No (dB)

Set the filter parameters.

span = 10; % Filter span in symbols
rolloff = 0.25; % Rolloff factor

Create the raised cosine transmit and receive filters using the previously defined parameters.

txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',rolloff, ...
    'FilterSpanInSymbols',span,'OutputSamplesPerSymbol',nSamp);

rxfilter = comm.RaisedCosineReceiveFilter('RolloffFactor',rolloff, ...
    'FilterSpanInSymbols',span,'InputSamplesPerSymbol',nSamp, ...
    'DecimationFactor',nSamp);

Plot the impulse response of hTxFilter.

fvtool(txfilter,'impulse')
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Calculate the delay through the matched filters. The group delay is half of the filter span through one
filter and is, therefore, equal to the filter span for both filters. Multiply by the number of bits per
symbol to get the delay in bits.

filtDelay = k*span;

Create an error rate counter System object. Set the ReceiveDelay property to account for the delay
through the matched filters.

errorRate = comm.ErrorRate('ReceiveDelay',filtDelay);

Generate binary data.

x = randi([0 1],n,1);

Modulate the data.

modSig = qammod(x,M,'InputType','bit');

Filter the modulated signal.

txSig = txfilter(modSig);

Plot the eye diagram of the first 1000 samples.

eyediagram(txSig(1:1000),nSamp)
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Calculate the signal-to-noise ratio (SNR) in dB given EbNo. Pass the transmitted signal through the
AWGN channel using the awgn function.

SNR = EbNo + 10*log10(k) - 10*log10(nSamp);
noisySig = awgn(txSig,SNR,'measured');

Filter the noisy signal and display its scatter plot.

rxSig = rxfilter(noisySig);
scatterplot(rxSig)
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Demodulate the filtered signal and calculate the error statistics. The delay through the filters is
accounted for by the ReceiveDelay property in errorRate .

z = qamdemod(rxSig,M,'OutputType','bit');

errStat = errorRate(x,z);
fprintf('\nBER = %5.2e\nBit Errors = %d\nBits Transmitted = %d\n',...
    errStat)

BER = 1.85e-03
Bit Errors = 37
Bits Transmitted = 19960
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Design Raised Cosine Filters Using MATLAB Functions
In this section...
“Section Overview” on page 24-10
“Example Designing a Square-Root Raised Cosine Filter” on page 24-10

Section Overview
The rcosdesign function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter
• FIR square-root raised cosine filter

The function returns the FIR coefficients as output.

Example Designing a Square-Root Raised Cosine Filter
For example, the command below designs a square-root raised cosine FIR filter with a rolloff of 0.25,
a filter span of 6 symbols, and an oversampling factor of 2.

sps = 2;
num = rcosdesign(0.25, 6, sps)

num =
  Columns 1 through 7
   -0.0265    0.0462    0.0375   -0.1205   -0.0454    0.4399    0.7558
  Columns 8 through 13
    0.4399   -0.0454   -0.1205    0.0375    0.0462   -0.0265

Here, the vector num contains the coefficients of the filter, in ascending order of powers of z-1.

You can use the upfirdn function to filter data with a raised cosine filter generated by rcosdesign.
The following code illustrates this usage:

d = 2*randi([0 1], 100, 1)-1;
f = upfirdn(d, num, sps);
eyediagram(f(7:200),sps)
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The eye diagram shows an imperfect eye because num characterizes a square-root filter.
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Filter Using Simulink Raised Cosine Filter Blocks
The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks are designed for raised
cosine filtering. Each block can apply a square-root raised cosine filter or a normal raised cosine filter
to a signal. You can vary the rolloff factor and span of the filter.

The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks are tailored for use at the
transmitter and receiver, respectively. The transmit filter outputs an upsampled (interpolated) signal,
while the receive filter expects its input signal to be upsampled. The receive filter lets you choose
whether to have the block downsample (decimate) the filtered signal before sending it to the output
port.

Both raised cosine filter blocks introduce a propagation delay, as described in “Group Delay” on page
24-4.

Combining Two Square-Root Raised Cosine Filters
This model shows how to split the filtering equally between the transmitter's filter and the receiver's
filter by using a pair of square root raised cosine filters.

The use of two matched square root raised cosine filters is equivalent to a single normal raised cosine
filter. To see this illustrated, type doc_rrcfiltercompare at the MATLAB command line to open
the model.

The filters share the same span and use the same number samples per symbol but the filters on the
upper path have a square root shape while the filter on the lower path has the normal shape.
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Run the model and observe the eye and constellation diagrams. The performance is nearly identical
for the two methods. Note that the limited impulse response of practical square root raised cosine
filters causes a slight difference between the response of two cascaded square root raised cosine
filters and the response of one raised cosine filter.
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Design Raised Cosine Filters in Simulink
This example illustrates a typical setup in which a transmitter uses a square root raised cosine filter
to perform pulse shaping and the corresponding receiver uses a square root raised cosine filter as a
matched filter. The example plots an eye diagram from the filtered received signal.

To open the model, enter doc_rcfilters at the MATLAB command line. The following is a summary
of the block parameters used in the model:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm Sources library:

• M-ary number is set to 16.
• Sample time is set to 1/100.
• Frame-based outputs is selected.
• Samples per frame is set to 100.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital Baseband sublibrary of
Modulation:

• Normalization method is set to Peak Power.
• Peak power is set to 1.

• Raised Cosine Transmit Filter, in the Comm Filters library:
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• Filter span in symbols is set to 8.
• Rolloff factor is set to 0.2

• AWGN Channel, in the Channels library:

• Mode is set to Signal to noise ratio (SNR).
• SNR is set to 40.
• Input signal power is set to 0.0694. The power gain of a square-root raised cosine transmit
filter is

 Design Raised Cosine Filters in Simulink
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1
N
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, where N represents the upsampling factor of the filter. The input signal power of filter is
0.5556. Because the Peak power of the 16-QAM Rectangular modulator is set to 1 watt, it
translates to an average power of 0.5556. Therefore, the output signal power of filter is

0.5556
8 = 0.0694

.
• Raised Cosine Receive Filter, in the Comm Filters library:

• Filter span in symbols is set to 8.
• Rolloff factor is set to 0.2.

• Eye Diagram Scope, in the Comm Sinks library:

• Symbols per trace is set to 2.
• Traces to display is set to 100.

Running the simulation produces the following eye diagram. The eye diagram has two widely opened
“eyes” that indicate appropriate instants at which to sample the filtered signal before demodulating.
This illustrates the absence of intersymbol interference at the sampling instants of the received
waveform.
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The large signal-to-noise ratio in this example produces an eye diagram with large eye openings. If
you decrease the SNR parameter in the AWGN Channel block, the eyes in the diagram will close
more.
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Reduce ISI Using Raised Cosine Filtering
Employ raised cosine filtering to reduce inter-symbol interference (ISI) that results from a nonlinear
amplifier.

Initialize a simulation variable for modulation order.

M = 16; % Modulation order

Create square root raised cosine filter objects.

txfilter = comm.RaisedCosineTransmitFilter;
rxfilter = comm.RaisedCosineReceiveFilter;

Create a memoryless nonlinearity System object to introduce nonlinear behavior to the modulated
signal. Using name-value pairs, set the Method property to Saleh model to emulate a high power
amplifier.

hpa = comm.MemorylessNonlinearity('Method','Saleh model', ...
    'InputScaling',-10,'OutputScaling',0);

Generate random integers and apply 16-QAM modulation.

x = randi([0 M-1],1000,1);
modSig = qammod(x,M,'UnitAveragePower',true);

Plot the eye diagram of the modulated signal. At time 0, there are three distinct "eyes" for 16-QAM
modulation.

eyediagram(modSig,2)
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Amplify the modulated signal using hpa.

txSigNoFilt = hpa(modSig);

Plot the eye diagram of the amplified signal without RRC filtering. At time 0, there are multiple eyes.
This is a result of inter-symbol interference from the nonlinear amplifier.

eyediagram(txSigNoFilt,2)
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Filter the modulated signal using the RRC transmit filter.

filteredSig = txfilter(modSig);

Release hpa and amplify the filtered signal. The release function is needed because the input signal
dimensions change due to filter interpolation.

release(hpa)
txSig = hpa(filteredSig);

Filter txSig using the RRC matched receive filter.

rxSig = rxfilter(txSig);

Plot the eye diagram of the signal after the application of the receive filter. There are once again
three distinct eyes as the matched RRC filters mitigate ISI.

eyediagram(rxSig,2)
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Find Delay for Encoded and Filtered Signal
Determine the delay for a convolutionally encoded and filtered link. Use the delay to accurately
determine the number of bit errors.

Create a QPSK modulator and demodulator pair. Specify the objects to operate on bits.

qpskmod = comm.QPSKModulator('BitInput',true);
qpskdemod = comm.QPSKDemodulator('BitOutput',true);

Create a raised cosine transmit and receive filter pair.

txfilt = comm.RaisedCosineTransmitFilter;
rxfilt = comm.RaisedCosineReceiveFilter;

Create a convolutional encoder and Viterbi decoder pair.

convEnc = comm.ConvolutionalEncoder;
vitDec = comm.ViterbiDecoder('InputFormat','Hard');

Generate random binary data. Convolutionally encode the data.

txData = randi([0 1],1000,1);
encData = convEnc(txData);

Modulate the encoded data. Pass the modulated data through the raised cosine transmit filter.

modSig = qpskmod(encData);
txSig = txfilt(modSig);

Pass the filtered signal through an AWGN channel.

rxSig = awgn(txSig,20,'measured');

Filter and then demodulate the received signal.

filtSig = rxfilt(rxSig);
demodSig = qpskdemod(filtSig);

Decode the demodulated data.

rxData = vitDec(demodSig);

Find the delay between the transmitted and received binary data by using the finddelay function.

td = finddelay(txData,rxData)

td = 44

Confirm that the computed delay matches the expected delay, which is equal to the sum of the group
delay of the matched filters and the traceback depth of the Viterbi decoder.

tdexpected = (txfilt.FilterSpanInSymbols + rxfilt.FilterSpanInSymbols)/2 + ...
    vitDec.TracebackDepth;
isequal(td,tdexpected)

ans = logical
   1
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Calculate the number of bit errors by discarding the last td bits from the transmitted sequence and
discarding the first td bits from the received sequence.

numErrors = biterr(txData(1:end-td),rxData(td+1:end))

numErrors = 0
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Visual Analysis

• “View Constellation of Modulator Block” on page 25-2
• “Plot Signal Constellations” on page 25-6
• “Eye Diagram Analysis” on page 25-10
• “Scatter Plots and Constellation Diagrams” on page 25-21
• “Channel Visualization” on page 25-27
• “Visualize RF Impairments” on page 25-32
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View Constellation of Modulator Block
This example shows how to visualize constellations by clicking the View Constellation button on the
mask of linear modulator block. These linear modulator blocks provide the capability to visualize a
signal constellation from the block mask.

• BPSK Modulator Baseband
• QPSK Modulator Baseband
• M-PSK Modulator Baseband
• M-PAM Modulator Baseband
• Rectangular QAM Modulator Baseband
• General QAM Modulator Baseband

For these linear modulator blocks, clicking View Constellation on the block mask plots the signal
constellation using the applied block settings. Use the cm_view_modulator_constellation model
to create constellation figures by clicking View Constellation. This model uses the Rectangular QAM
Modulator Baseband block with the modulation order set to the workspace variable M. The value for M
is specified in the PreLoadFcn callback function. To view the callback, select MODELING, SETUP,
Model Settings, and then Model Properties. In the Model Properties window, select Callbacks, and
then PreLoadFcn.

Modulator Configuration and Signal Constellation

When you click View Constellation on the modulator block mask, the constellation diagram opens in
a MATLAB® figure window. The title of the plot indicates the values of significant parameters.
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This constellation plot figure shows the default signal constellation for the Rectangular QAM
Modulator Baseband block:

• 16-QAM modulation scheme
• Gray constellation mapping
• 0-degree phase offset
• Minimum distance of 2 between two constellation points
• Double precision data type signal
• Integer symbol representation

From the block mask, set the Input type parameter to Bit, and the Constellation ordering
parameter to Binary. To view the constellation for the updated configuration, click Apply before
clicking View Constellation. The updated plot indicates binary constellation mapping and displays
the bit representation for the symbols.
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Since the modulation order setting of the Rectangular QAM Modulator Baseband block is M, the value
can be updated by using the variable M defined in the MATLAB workspace. Set M = 32 in the MATLAB
workspace. The modulation order setting updates the model workspace in Simulink®. Click View
Constellation to show the 32-QAM constellation.
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To capture a figure for future use, save the figure before closing the model. When you close the
Simulink model, all of the constellation figures closes as well.

See Also
Blocks
BPSK Modulator Baseband | QPSK Modulator Baseband | M-PSK Modulator Baseband | M-PAM
Modulator Baseband | Rectangular QAM Modulator Baseband | General QAM Modulator Baseband

Related Examples
• “Plot Signal Constellations” on page 25-6
• “Eye Diagram Analysis” on page 25-10
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Plot Signal Constellations
In this section...
“Create 16-PSK Constellation Diagram” on page 25-6
“Create 32-QAM Constellation Diagram” on page 25-7
“Create 8-QAM Gray Coded Constellation Diagram” on page 25-7
“Plot a Triangular Constellation for QAM” on page 25-8

Create 16-PSK Constellation Diagram
This example shows how to plot a PSK constellation having 16 points.

Set the parameters for 16-PSK modulation with no phase offset and binary symbol mapping.

M = 16;             % Modulation alphabet size
phOffset = 0;       % Phase offset
symMap = 'binary';  % Symbol mapping (either 'binary' or 'gray')

Construct the modulator object.

pskModulator = comm.PSKModulator(M,phOffset,'SymbolMapping',symMap);

Plot the constellation.

constellation(pskModulator)
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Create 32-QAM Constellation Diagram
This example shows how to plot a QAM constellation having 32 points.

Use the qammod function to generate the 32-QAM symbols with binary symbol ordering.

M = 32;
data = 0:M-1;
sym = qammod(data,M,'bin');

Plot the constellation. Label the order of the constellation symbols.

scatterplot(sym,1,0,'b*');
for k = 1:M
    text(real(sym(k))-0.4,imag(sym(k))+0.4,num2str(data(k)));
end
axis([-6 6 -6 6])

Create 8-QAM Gray Coded Constellation Diagram
Use the qammod function to generate the 8-QAM symbols with Gray symbol ordering. Note that Gray
coding is the default symbol mapping for the qammod function.
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M = 8;
data = 0:M-1;
sym = qammod(data,M);

Plot the constellation. Label the order of the constellation symbols.

scatterplot(sym,1,0,'r*');
grid on
for k = 1:M
    text(real(sym(k))-0.4,imag(sym(k))+0.4,num2str(data(k)));
end
axis([-4 4 -2 2])

Plot a Triangular Constellation for QAM
This example shows how to plot a customized QAM reference constellation.

Describe the constellation.

inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2];
inphase = [inphase; -inphase];
inphase = inphase(:);
quadr = [quadr; -quadr];
quadr = quadr(:);
refConst = inphase + 1i*quadr;
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Construct a constellation diagram System object using name-value pairs to specify the title, the axes
limits, the reference marker type, and the reference marker color.

constDiagram = comm.ConstellationDiagram('Title','Customized Constellation for QAM', ...
    'XLimits',[-3 3],'YLimits',[-3 3], ...
    'ReferenceConstellation',refConst, ...
    'ReferenceMarker','*','ReferenceColor',[0 1 0]);

Plot the customized constellation.

constDiagram(refConst)

See Also
“View Constellation of Modulator Block” on page 25-2
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Eye Diagram Analysis
In digital communications, an eye diagram provides a visual indication of how noise might impact
system performance.

Use the Eye Diagram Scope block to examine the eye diagram of signals.

You can obtain the following measurements on an eye diagram:

• Amplitude Measurements

• Eye Amplitude
• Eye Crossing Amplitude
• Eye Crossing Percentage
• Eye Height
• Eye Level
• Eye SNR
• Quality Factor
• Vertical Eye Opening

• Time Measurements

• Deterministic Jitter
• Eye Crossing Time
• Eye Delay
• Eye Fall Time
• Eye Rise Time
• Eye Width
• Horizontal Eye Opening
• Peak-to-Peak Jitter
• Random Jitter
• RMS Jitter
• Total Jitter

Measurements assume that the eye diagram object has valid data. A valid eye diagram has two
distinct eye crossing points and two distinct eye levels.

The deterministic jitter, horizontal eye opening, quality factor, random jitter, and vertical eye opening
measurements utilize a dual-Dirac algorithm. Jitter is the deviation of a signal’s timing event from its
intended (ideal) occurrence in time [1]. Jitter can be represented with a dual-Dirac model. A dual-
Dirac model assumes that the jitter has two components: deterministic jitter (DJ) and random jitter
(RJ). The DJ PDF comprises two delta functions, one at μL and one at μR. The RJ PDF is assumed to be
Gaussian with zero mean and variance σ.

The Total Jitter (TJ) PDF is the convolution of these two PDFs, which is composed of two Gaussian
curves with variance σ and mean values μL and μR.
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The dual-Dirac model is described in [5] in more detail. The amplitude of the two Dirac functions may
not be the same. In such a case, the analyze method estimates these amplitudes, ρL and ρR.

Amplitude Measurements
You can use the vertical histogram to obtain a variety of amplitude measurements. For complex
signals, measurements are done on both in-phase and the quadrature components, unless otherwise
specified.

Note For amplitude measurements, at least one bin per vertical histogram must reach 10 hits before
the measurement is taken, ensuring higher accuracy.

Eye Amplitude (EyeAmplitude)

Eye Amplitude, measured in Amplitude Units (AU), is defined as the distance between two
neighboring eye levels. For an NRZ signal, there are only two levels: the high level (level 1 in figure)
and the low level (level 0 in figure). The eye amplitude is the difference of these two values.
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Eye Crossing Amplitude (EyeCrossingLevel)

Eye crossing amplitudes are the amplitude levels at which the eye crossings occur, measured in
Amplitude Units (AU). The analyze method calculates this value using the mean value of the vertical
histogram at the crossing times [3].
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The next figure shows the vertical histogram at the first eye crossing time.

Eye Crossing Percentage (EyeOpeningVer)

Eye Crossing Percentage is the location of the eye crossing levels as a percentage of the eye
amplitude.

Eye Height (EyeHeight)

Eye Height, measured in Amplitude Units (AU), is defined as the 3σ distance between two
neighboring eye levels.

For an NRZ signal, there are only two levels: the high level (level 1 in figure) and the low level (level
0 in figure). The eye height is the difference of the two 3σ points. The 3σ point is defined as the point
that is three standard deviations away from the mean value of a PDF.
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Eye Level (EyeLevel)

Eye Level is the amplitude level used to represent data bits, measured in Amplitude Units (AU).

For an ideal NRZ signal, there are two eye levels: +A and –A. The analyze method calculates eye
levels by estimating the mean value of the vertical histogram in a window around the EyeDelay, which
is also the 50% point between eye crossing times [3]. The width of this window is determined by the
EyeLevelBoundary property of the eye measurement setup object.

The analyze method calculates the mean value of all the vertical histograms within the eye level
boundaries. The mean vertical histograms show two distinct PDFs, one for each eye level.

Eye SNR (EyeSNR)

Eye signal-to-noise ratio is defined as the ratio of the eye amplitude to the sum of the standard
deviations of the two eye levels. It can be expressed as:

SNR = 
L1− L0
σ1 + σ0
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where L1 and L0 represent eye level 1 and 0, respectively, and σ1 and σ2 are the standard deviation of
eye level 1 and 0, respectively.

For an NRZ signal, eye level 1 corresponds to the high level, and the eye level 0 corresponds to low
level.

Quality Factor (QualityFactor)

The analyze method calculates Quality Factor the same way as the eye SNR. However, instead of
using the mean and standard deviation values of the vertical histogram for L1 and σ1, the analyze
method uses the mean and standard deviation values estimated using the dual-Dirac method. For
more detail, see dual-Dirac section in [2].

Vertical Eye Opening (EyeOpeningVer)

Vertical Eye Opening is defined as the vertical distance between two points on the vertical histogram
at EyeDelay that corresponds to the BER value defined by the BERThreshold property of the eye
measurement setup object. The analyze method calculates this measurement taking into account the
random and deterministic components using a dual-Dirac model [5] (see the Dual Dirac Section). A
typical BER value for the eye opening measurements is 10-12, which approximately corresponds to the
7σ point assuming a Gaussian distribution.

Time Measurements
You can use the horizontal histogram of an eye diagram to obtain a variety of timing measurements.

Note For time measurements, at least one bin per horizontal histogram must reach 10 hits before
the measurement is taken.

Deterministic Jitter (JitterDeterministic)

Deterministic Jitter is the deterministic component of the jitter. You calculate it using the tail mean
value, which is estimated using the dual-Dirac method as follows [5]:

DJ = μL — μR

where μL and μR are the mean values returned by the dual-Dirac algorithm.

Eye Crossing Time (EyeCrossingTime)

Eye crossing times are calculated as the mean of the horizontal histogram for each crossing point,
around the reference amplitude level. This value is measured in seconds. The mean value of all the
horizontal PDFs is calculated in a region defined by the CrossingBandWith property of the eye
measurement setup object.

The region is from -Atotal* BW to +Atotal* BW, where Atotal is the total amplitude range of the eye
diagram (i.e., A total = A max — Amin) and BW is the crossing band width.
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Because this example assumes two symbols per trace, the average PDF in this region indicate there
are two crossing points.

Note When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval, the time
measurement wraps to the end of the eye diagram, i.e., the measurement wraps by 2*Ts seconds
(where Ts is the symbol time). For a complex signal case, the analyze method issues a warning if the
crossing time measurement of the in-phase branch wraps while that of the quadrature branch does
not (or vice versa).

To avoid the time-wrapping or a warning, add a half-symbol duration delay to the current value in the
MeasurementDelay property of the eye diagram object. This additional delay repositions the eye in
the approximate center of the scope.
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Eye Delay (EyeDelay)

Eye Delay is the distance from the midpoint of the eye to the time origin, measured in seconds. The
analyze method calculates this distance using the crossing time. For a symmetric signal, EyeDelay is
also the best sampling point.

Eye Fall Time (EyeFallTime)

Eye Fall Time is the mean time between the high and low threshold values defined by the
AmplitudeThreshold property of the eye measurement setup object. The fall time is calculated from
10% to 90% of the eye amplitude.
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Eye Rise Time (EyeRiseTime)

Eye Rise Time is the mean time between the low and high threshold values defined by the
AmplitudeThreshold property of the eye measurement setup object. The rise time is calculated from
10% to 90% of the eye amplitude.

Eye Width (EyeWidth)

Eye Width is the horizontal distance between two points that are three standard deviations (3σ ) from
the mean eye crossing times, towards the center of the eye. The value for Eye Width measurements is
seconds.
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Horizontal Eye Opening (EyeOpeningHor)

Horizontal Eye Opening is the horizontal distance between two points on the horizontal histogram
that correspond to the BER value defined by the BERThreshold property of the eye measurement
setup object. The measurement is take at the amplitude value defined by the ReferenceAmplitude
property of the eye measurement setup object. It is calculated taking into account the random and
deterministic components using a dual-Dirac model [5] (see the Dual Dirac Section).

A typical BER value for the eye opening measurements is 10-12, which approximately corresponds to
the 7σ point assuming a Gaussian distribution.

Peak-to-Peak Jitter (JitterP2P)

Peak-To-Peak Jitter is the difference between the extreme data points of the histogram.

Random Jitter (JitterRandom)

Random Jitter is defined as the Gaussian unbounded component of the jitter. The analyze method
calculates it using the tail standard deviation estimated using the dual-Dirac method as follows [5]:

RJ = (QL + QR) * σ

where

QL = 2 * erfc−1 2 * BER
ρL

and

QR = 2 * erfc−1 2 * BER
ρR
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BER is the bit error ratio at which the random jitter is calculated. It is defined with the BERThreshold
property of the eye measurement setup object.

RMS Jitter (JitterRMS)

RMS Jitter is the standard deviation of the jitter calculated from the horizontal histogram.

Total Jitter (JitterTotal)

Total Jitter is the sum of the random jitter and the deterministic jitter [5].
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Scatter Plots and Constellation Diagrams
A scatter plot or constellation diagram is used to visualize the constellation of a digitally modulated
signal.

To produce a scatter plot from a signal, use the scatterplot function or use the
comm.ConstellationDiagram System object. A scatter plot or constellation diagram can be useful
when comparing system performance to a published standard, such as 3GPP or DVB.

You create the comm.ConstellationDiagram object with a default object or by defining name-
value pairs.

View Signals Using Constellation Diagrams
This example shows how to use constellation diagrams to view QPSK transmitted and received
signals which are pulse shaped with a raised cosine filter.

Create a QPSK modulator.

qpsk = comm.QPSKModulator;

Create a raised cosine transmit filter with samples per symbol, sps, equal to 16.

sps = 16;
txfilter = comm.RaisedCosineTransmitFilter('Shape','Normal', ...
    'RolloffFactor',0.22, ...
    'FilterSpanInSymbols',20, ...
    'OutputSamplesPerSymbol',sps);

Generate data symbols, apply QPSK modulation, and pass the modulated data through the raised
cosine transmit filter.

data = randi([0 3],200,1);
modData = qpsk(data);
txSig = txfilter(modData);

You can display the constellation diagram of the transmitted signal using scatterplot. Since the
signal is oversampled at the filter output, you need to decimate by the number of samples per symbol
so that the scatter plot does not show the transition path between constellation points. If the signal
had a timing offset, you could provide that as an input parameter to display the signal constellation
with the timing offset corrected.

scatterplot(txSig,sps)
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Alternately, you can use comm.ConstellationDiagram, specifying the number of samples per
symbol, and if needed the timing offset. Also, using comm.ConstellationDiagram the reference
constellation can be shown.

Create a constellation diagram and set the SamplesPerSymbol property to the oversampling factor
of the signal. Specify the constellation diagram so that it only displays the last 100 samples. This
hides the zero values output by the RRC filter for the first FilterSpanInSymbols samples.

constDiagram = comm.ConstellationDiagram('SamplesPerSymbol',sps, ...
    'SymbolsToDisplaySource','Property','SymbolsToDisplay',100);

Display the constellation diagram of the transmitted signal.

constDiagram(txSig)
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To match the signal to its reference constellation, normalize the filter by setting its gain to the square
root of the OutputSamplesPerSymbol property. This was previously specified as sps. The filter gain
is nontunable so the object must be released prior to changing this value.

release(txfilter)
txfilter.Gain = sqrt(sps);

Pass the modulated signal through the normalized filter.

txSig = txfilter(modData);

Display the constellation diagram of the normalized signal. The data points and reference
constellation nearly overlap.

constDiagram(txSig)
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To view the transmitted signal more clearly, hide the reference constellation by setting the
ShowReferenceConstellation property to false.

constDiagram.ShowReferenceConstellation = false;

Create a noisy signal by passing txSig through an AWGN channel.

rxSig = awgn(txSig,20,'measured');

Show the reference constellation and plot the received signal constellation.

constDiagram.ShowReferenceConstellation = true;
constDiagram(rxSig)
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You can also use scatterplot to view this noisy signal but there is no built in option to add the
reference constellation using scatterplot.

scatterplot(rxSig,sps)
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See Also
“View Constellation of Modulator Block” on page 25-2
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Channel Visualization
Communications Toolbox software provides a plotting function that helps you visualize the
characteristics of a fading channel using a GUI. See Fading Channels on page 22-8 for a description
of fading channels, objects, and blocks.

Select the desired visualization setting to plot the Impulse Response on page 25-27, Frequency
Response on page 25-29, or Doppler Spectrum on page 25-30 of the channel.

Impulse Response
The Impulse Response plot displays the path gains, the channel filter coefficients, and the
interpolated path gains of the channel. The path gains shown in magenta occur at time instances that
correspond to the specified path delays. These might not be aligned with the input sampling time. The
channel filter coefficients shown in yellow are used to model the channel. They are interpolated from
the actual path gains and are aligned with the input sampling time. When the path gains align with
the sampling time, they overlap the filter coefficients. Sinc interpolation is used to generate the blue
points that appear between the channel filter coefficients. These points are used solely for display
purposes and not used in subsequent channel filtering. For a flat fading channel (one path), the sinc
interpolation points are not displayed. For all impulse response plots, the frame and sample numbers
appear in the upper left corner of the display. The Impulse Response plot shares the same toolbar and
menus as the System object it was based on, dsp.ArrayPlot.

The figure shows the impulse response of a channel in which the path gains align with the sample
time. The path gains and channel filter coefficients overlap.

The next plot shows when the specified path gains are not aligned with the sample rate. Observe that
the path gains and the channel filter coefficients do not overlap and that the filter coefficients are
equally distributed.
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The impulse response for a frequency-flat channel is shown next. Because the channel is represented
by a single coefficient, no interpolation is done, and the interpolated path gains do not appear.

Note

• The displayed and specified path gain locations can differ by as much as 5% of the input sample
time.
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• For MIMO, when the antenna selection property is set to any value other than Off and the
specified transmit-receive pair is not selected for the current frame transmission, nothing will be
displayed. Antenna selection is not applicable for SISO.

• The visualization display speed is controlled by the combination of the samples to display property
and the Playback > Reduce Updates to Improve Performance menu item. Reducing the
percentage of samples to display and enabling reduced updates speeds up the rendering of the
impulse response.

• After the Impulse Response plots are manually closed, the channel model executes at its normal
speed.

• Code generation is available only when the visualization property is set to Off.

Frequency Response
The Frequency Response plot displays the channel spectrum by taking a discrete Fourier transform of
the channel filter coefficients. For the MIMO case, this transform is performed for the specified
transmit-receive antenna pair. The Frequency Response plot shares the same toolbar and menus as
the System object it was based on, dsp.SpectrumAnalyzer. The default settings use a rectangular
window. The window length is set based on the channel model configuration. Use the View >
Spectrum Settings menu to change property values from their default settings.

The frequency response plot for a frequency-selective channel is shown.

Note

• The visualization display speed is controlled by the combination of the samples to display property
and the Playback > Reduce Plot Rate to Improve Performance menu item. Reducing the
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percentage of samples to display and enabling reduced updates speeds up the rendering of the
frequency response.

• After the Frequency Response plots are manually closed, the channel model executes at its normal
speed.

• Code generation is available only when the visualization property is set to Off.

Doppler Spectrum
The Doppler Spectrum plot displays both the theoretical Doppler spectrum and the empirically
determined data points. The theoretical data is displayed as a yellow line for nonstatic channels and
as a yellow point for static channels. The empirical data is shown in blue. When the internal buffer is
completely filled with filtered Gaussian samples, the empirical plot is updated. The empirical plot is
the running mean of the spectrum calculated from each full buffer. For nonstatic channels, the
number of input samples needed before the next update is displayed in the upper-left corner. The
samples needed is a function of the sample rate and the maximum Doppler shift. The Doppler
Spectrum plot shares the same toolbar and menus as the System object it was based on,
dsp.ArrayPlot.

For static channels, the text Reset fading channel for next update is displayed.
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Note

• After the Doppler Spectrum plots are manually closed, the channel model executes at its normal
speed.

• Code generation is available only when the visualization property is Off.

See Also
Blocks
MIMO Fading Channel | SISO Fading Channel

Objects
comm.MIMOChannel
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Visualize RF Impairments
Apply various RF impairments to a QAM signal. Observe the effects by using constellation diagrams,
time-varying error vector magnitude (EVM) plots, and spectrum plots. Estimate the equivalent signal-
to-noise ratio (SNR).

Initialization

Set the sample rate, modulation order, and SNR. Calculate the reference constellation points.

fs = 1000;
M = 16;
snrdB = 30;
refConst = qammod(0:M-1,M,'UnitAveragePower',true);

Create constellation diagram and time scope objects to visualize the impairment effects.

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);
timeScope = timescope('YLimits',[0 40],'SampleRate',fs,'TimeSpanSource','property','TimeSpan',1, ...
    'ShowGrid',true,'YLabel','EVM (%)');

White Noise

Generate a 16-QAM signal, and pass it through an AWGN channel. Plot its constellation.

data = randi([0 M-1],1000,1);
modSig = qammod(data,M,'UnitAveragePower',true);
noisySig = awgn(modSig,snrdB);

constDiagram(noisySig)
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Estimate the EVM of the noisy signal from the reference constellation points.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...
    'ReferenceConstellation',refConst, ...
    'Normalization','Average constellation power');

rmsEVM = evm(noisySig)

rmsEVM = 3.1768

The modulation error rate (MER) closely corresponds to the SNR. Create an MER object, and
estimate the SNR.

mer = comm.MER('ReferenceSignalSource','Estimated from reference constellation', ...
    'ReferenceConstellation',refConst);
snrEst = mer(noisySig)

 Visualize RF Impairments

25-33



snrEst = 30.1071

The estimate is quite close to the specified SNR of 30 dB.

Amplifier Distortion

Create an amplifier using the memoryless nonlinearity object.

amp = comm.MemorylessNonlinearity('IIP3',38,'AMPMConversion',0);

Pass the modulated signal through the nonlinear amplifier and plot its constellation diagram.

txSig = amp(modSig);
constDiagram(txSig)
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The corner points of the constellation have moved toward the origin due to amplifier gain
compression.

Introduce a small AM/PM conversion, and display the received signal constellation.

amp.AMPMConversion = 1;
txSig = amp(modSig);
constDiagram(txSig)

The constellation has rotated due to the AM/PM conversion. To compute the time-varying EVM,
release the EVM object and set the AveragingDimensions property to 2. To estimate the EVM
against an input signal, omit the ReferenceSignalSource property definition. This method
produces more accurate results.
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evm = comm.EVM('AveragingDimensions',2);
evmTime = evm(modSig,txSig);

Plot the time-varying EVM of the distorted signal.

timeScope(evmTime)

Compute the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 35.5919

Compute the MER.

mer = comm.MER;
snrEst = mer(modSig,txSig)

snrEst = 8.1392

The SNR (≈8 dB) is reduced from its initial value (∞) due to amplifier distortion.

Specify input power levels ranging from 0 to 40 dBm. Convert those levels to their linear equivalent
in W. Initialize the output power vector.

powerIn = 0:40;
pin = 10.^((powerIn-30)/10);
powerOut = zeros(length(powerIn),1);
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Measure the amplifier output power for the range of input power levels.

for k = 1:length(powerIn)
    data = randi([0 15],1000,1);
    txSig = qammod(data,16,'UnitAveragePower',true)*sqrt(pin(k));
    ampSig = amp(txSig);
    powerOut(k) = 10*log10(var(ampSig))+30;
end

Plot the power output versus power input curve.

figure
plot(powerIn,powerOut,powerIn,powerIn,'--')
legend('Amplifier Output','Ideal Output','location','se')
xlabel('Power In (dBm)')
ylabel('Power Out (dBm)')
grid

The output power levels off at 30 dBm. The amplifier exhibits nonlinear behavior for input power
levels greater than 25 dBm.

I/Q Imbalance

Apply an amplitude and phase imbalance to the modulated signal using the iqimbal function.

ampImb = 3;
phImb = 10;
rxSig = iqimbal(modSig,ampImb,phImb);
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Plot the received constellation.

constDiagram(rxSig)

The magnitude and phase of the constellation has changed as a result of the I/Q imbalance.

Calculate and plot the time-varying EVM.

evmTime = evm(modSig,rxSig);
timeScope(evmTime)
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The EVM exhibits a behavior that is similar to that experienced with a nonlinear amplifier though the
variance is smaller.

Create a 100 Hz sine wave having a 1000 Hz sample rate.

sinewave = dsp.SineWave('Frequency',100,'SampleRate',1000, ...
    'SamplesPerFrame',1e4,'ComplexOutput',true);

x = sinewave();

Apply the same 3 dB and 10 degree I/Q imbalance.

ampImb = 3;
phImb = 10;
y = iqimbal(x,ampImb,phImb);

Plot the spectrum of the imbalanced signal.

spectrum = dsp.SpectrumAnalyzer('SampleRate',1000,'PowerUnits','dBW');

spectrum(y)
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The I/Q imbalance introduces a second tone at -100 Hz, which is the inverse of the input tone.

Phase Noise

Apply phase noise to the transmitted signal. Plot the resulting constellation diagram.

pnoise = comm.PhaseNoise('Level',-50,'FrequencyOffset',20,'SampleRate',fs);
pnoiseSig = pnoise(modSig);
constDiagram(pnoiseSig)
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The phase noise introduces a rotational jitter.

Compute and plot the EVM of the received signal.

evmTime = evm(modSig,pnoiseSig);
timeScope(evmTime)
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Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 6.1989

Filter Effects

Specify the samples per symbol parameter. Create a pair of raised cosine matched filters.

sps = 4;
txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.2,'FilterSpanInSymbols',8, ...
    'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));

rxfilter = comm.RaisedCosineReceiveFilter('RolloffFactor',0.2,'FilterSpanInSymbols',8, ...
    'InputSamplesPerSymbol',sps,'Gain',1/sqrt(sps), ...
    'DecimationFactor',sps);

Determine the delay through the matched filters.

fltDelay = 0.5*(txfilter.FilterSpanInSymbols + rxfilter.FilterSpanInSymbols);

Pass the modulated signal through the matched filters.

filtSig = txfilter(modSig);
rxSig = rxfilter(filtSig);

To account for the delay through the filters, discard the first fltDelay samples.
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rxSig = rxSig(fltDelay+1:end);

To accommodate the change in the number of received signal samples, create new constellation
diagram and time scope objects.

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);
timeScope = timescope('YLimits',[0 40],'SampleRate',fs,'TimeSpanSource','property','TimeSpan',1, ...
    'ShowGrid',true,'YLabel','EVM (%)');

Estimate EVM. Plot the received signal constellation diagram and the time-varying EVM.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...
    'ReferenceConstellation',refConst, ...
    'Normalization','Average constellation power','AveragingDimensions',2);
evmTime = evm(rxSig);
constDiagram(rxSig)
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timeScope(evmTime)

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 2.7199

Determine the equivalent SNR.

mer = comm.MER;
snrEst = mer(modSig(1:end-fltDelay),rxSig)

snrEst = 31.4603

Combined Effects

Combine the effects of the filters, nonlinear amplifier, AWGN, and phase noise. Display the
constellation and EVM diagrams.

Create EVM, time scope and constellation diagram objects.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...
    'ReferenceConstellation',refConst, ...
    'Normalization','Average constellation power','AveragingDimensions',2);
timeScope = timescope('YLimits',[0 40],'SampleRate',fs,'TimeSpanSource','property','TimeSpan',1, ...
    'ShowGrid',true,'YLabel','EVM (%)');
constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);
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Specify the nonlinear amplifier and phase noise objects.

amp = comm.MemorylessNonlinearity('IIP3',45,'AMPMConversion',0);
pnoise = comm.PhaseNoise('Level',-55,'FrequencyOffset',20,'SampleRate',fs);

Filter and then amplify the modulated signal.

txfiltOut = txfilter(modSig);
txSig = amp(txfiltOut);

Add phase noise. Pass the impaired signal through the AWGN channel. Plot the constellation diagram.

rxSig = awgn(txSig,snrdB);
iqImbalSig = iqimbal(rxSig,ampImb,phImb);
pnoiseSig = pnoise(iqImbalSig);
rxfiltOut = rxfilter(pnoiseSig);
constDiagram(rxfiltOut)
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Calculate the time-varying EVM. Plot the result.

evmTime = evm(rxfiltOut);
timeScope(evmTime)

25 Visual Analysis

25-46



Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 19.4992

Estimate the SNR.

mer = comm.MER('ReferenceSignalSource','Estimated from reference constellation', ...
    'ReferenceConstellation',refConst);
snrEst = mer(rxfiltOut)

snrEst = 14.1996

This value is approximately 6 dB worse than the specified value of 30 dB, which means that the
effects of the other impairments are significant and will degrade the bit error rate performance.

See Also
Fading Channels on page 22-8 | “Impact of RF Effects on Communication System Performance” on
page 8-32
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C Code Generation

• “Generate C Code from MATLAB Code” on page 26-2
• “Generate C Code from Simulink Model” on page 26-9
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Generate C Code from MATLAB Code
MATLAB Coder generates highly optimized ANSI C and C++ code from functions and System objects
in Communications Toolbox . You can deploy this code in a wide variety of applications. The workflow
described in this topic uses DSP System Toolbox features but the same workflow applies for
Communications Toolbox.

This example generates C code from the “Construct a Sinusoidal Signal Using High Energy FFT
Coefficients” example and builds an executable from the generated code.

Here is the MATLAB code for this example:
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...  
'PhaseOffset',10,'SampleRate',44100,'Frequency',1000);
ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW','ConjugateSymmetricInput',true);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    FFTCoeff = ft(Input);
    FFTCoeffMagSq = abs(FFTCoeff).^2;
    
    EnergyFreqDomain = (1/L)*sum(FFTCoeffMagSq);
    [FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),1,'descend');
    
    CumFFTCoeffs = cumsum(FFTCoeffSorted);
    EnergyPercent = (CumFFTCoeffs/EnergyFreqDomain)*100;
    Vec = find(EnergyPercent > 99.99);
    FFTCoeffsModified = zeros(L,1);
    FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
    ReconstrSignal = ift(FFTCoeffsModified);
end
max(abs(Input-ReconstrSignal))
plot(Input,'*');
hold on;
plot(ReconstrSignal,'o');
hold off;

You can run the generated executable inside the MATLAB environment. In addition, you can package
and relocate the code to another development environment that does not have MATLAB installed. You
can generate code using the MATLAB Coder app or the codegen function. This example shows you
the workflow using the codegen function. For more information on the app workflow, see “Generate
C Code by Using the MATLAB Coder App” (MATLAB Coder).

Set Up the Compiler
The first step is to set up a supported C compiler. MATLAB Coder automatically locates and uses a
supported installed compiler. You can change the default compiler using mex -setup. For more
details, see “Change Default Compiler”. For a current list of supported compilers, see Supported and
Compatible Compilers.

Break Out the Computational Part of the Algorithm into a MATLAB
Function
To generate C code, the entry point must be a function. You do not have to generate code for the
entire MATLAB application. If you have specific portions that are computationally intensive, generate
code from these portions in order to speed up your algorithm. The harness or the driver that calls this
MATLAB function does not need to generate code. The harness runs in MATLAB and can contain
visualization and other verification tools that are not actually part of the system under test. For
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example, in the “Construct a Sinusoidal Signal Using High Energy FFT Coefficients” example, the
plot functions plot the input signal and the reconstructed signal. plot is not supported for code
generation and must stay in the harness. To generate code from the harness that contains the
visualization tools, rewrite the harness as a function and declare the visualization functions as
extrinsic functions using coder.extrinsic. To run the generated code that contains the extrinsic
functions, you must have MATLAB installed on your machine.

The MATLAB code in the for loop that reconstructs the original signal using high-energy FFT
coefficients is the computationally intensive portion of this algorithm. Speed up the for loop by
moving this computational part into a function of its own,
GenerateSignalWithHighEnergyFFTCoeffs.m.
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input);
end
max(abs(Input-ReconstrSignal))
figure(1);
plot(Input)
hold on;
plot(ReconstrSignal,'*')
hold off

function [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input)

ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW','ConjugateSymmetricInput',true);

FFTCoeff = ft(Input);
FFTCoeffMagSq = abs(FFTCoeff).^2;
L = size(Input,1);
EnergyF = (1/L)*sum(FFTCoeffMagSq);
[FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),1,'descend');

CumFFTCoeffs = cumsum(FFTCoeffSorted);
EnergyPercent = (CumFFTCoeffs/EnergyF)*100;
Vec = find(EnergyPercent > 99.99);
FFTCoeffsModified = zeros(L,1);
FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
numCoeff = Vec(1);
ReconstrSignal = ift(FFTCoeffsModified);
end

Make Code Suitable for Code Generation
Before you generate code, you must prepare your MATLAB code for code generation.

Check Issues at Design Time

The first step is to eliminate unsupported constructs and check for any code generation issues. For a
list of Communications Toolbox features supported by MATLAB Coder, see Functions and System
Objects Supported for C Code Generation. For a list of supported language constructs, see “MATLAB
Language Features Supported for C/C++ Code Generation” (MATLAB Coder).

The code analyzer detects coding issues at design time as you enter the code. To enable the code
analyzer, you must add the %#codegen pragma to your MATLAB file.
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The code generation readiness tool screens MATLAB code for features that are not supported for
code generation. One of the ways to access this tool is by right-clicking on the MATLAB file in its
current folder. Running the code generation tool on
GenerateSignalWithHighEnergyFFTCoeffs.m finds no issues.

Check Issues at Code Generation Time

Before you generate C code, ensure that the MATLAB code successfully generates a MEX function.
The codegen command used to generate the MEX function detects any errors that prevent the code
for being suitable for code generation.

Run codegen on GenerateSignalWithHighEnergyFFTCoeffs.m function.

codegen -args {Input} GenerateSignalWithHighEnergyFFTCoeffs 

The following message appears in the MATLAB command prompt:
??? The left-hand side has been constrained to be non-complex, but the right-hand side 
is complex. To correct this problem, make the right-hand side real using the function 
REAL, or change the initial assignment to the left-hand side variable to be a complex 
value using the COMPLEX function.

Error in ==> GenerateSignalWithHighEnergy Line: 24 Column: 1
Code generation failed: View Error Report
Error using codegen
 
 

This message is referring to the variable FFTCoeffsModified. The coder is expecting this variable
to be initialized as a complex variable. To resolve this issue, initialize the FFTCoeffsModified
variable as complex.

FFTCoeffsModified = zeros(L,1)+0i;

Rerun the codegen function and you can see that a MEX file is generated successfully in the current
folder with a .mex extension.
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codegen -args {Input} GenerateSignalWithHighEnergyFFTCoeffs 

Check Issues at Run Time

Run the generated MEX function to see if there are any run-time issues reported. To do so, replace
[ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input);

with
[ReconstrSignalMex,numCoeffMex] = GenerateSignalWithHighEnergyFFTCoeffs_mex(Input);

inside the harness.

The harness now looks like:
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignalMex,numCoeffMex] = GenerateSignalWithHighEnergyFFTCoeffs_mex(Input,L);
end
max(abs(Input-ReconstrSignalMex))
figure(1);
plot(Input)
hold on;
plot(ReconstrSignalMex,'*')
hold off

The code runs successfully, indicating that there are no run-time errors.

Compare the MEX Function with the Simulation
Notice that the harness runs much faster with the MEX function compared to the regular function.
The reason for generating the MEX function is not only to detect code generation and run-time
issues, but also to speed up specific parts of your algorithm. For an example, see “Signal Processing
Algorithm Acceleration in MATLAB”.

You must also check that the numeric output results from the MEX and the regular function match.
Compare the reconstructed signal generated by the
GenerateSignalWithHighEnergyFFTCoeffs.m function and its MEX counterpart
GenerateSignalWithHighEnergyFFTCoeffs_mex.

max(abs(ReconstrSignal-ReconstrSignalMex))

ans =

     2.2204e-16

The results match very closely, confirming that the code generation is successful.

Generate a Standalone Executable
If your goal is to run the generated code inside the MATLAB environment, your build target can just
be a MEX function. If deployment of code to another application is the goal, then generate a
standalone executable from the entire application. To do so, the harness must be a function that calls
the subfunction GenerateSignalWithHighEnergyFFTCoeffs. Rewrite the harness as a function.
function reconstructSignalTestbench()
L = 1020;
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Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input,L);
end

Log all 1000 frames of the input and reconstructed signal and the number of FFT coefficients used to
reconstruct each frame of the signal. Write all this data to a binary file named data.bin using the
dsp.BinaryFileWriter System object. This example logs the number of coefficients, which are
scalar values, as the first element of each frame of the input signal and the reconstructed signal. The
data to be written has a frame size of M = L + 1 and has a format that looks like this figure.

N is the number of FFT coefficients that represent 99.99% of the signal energy of the current input
frame. The meta data of the binary file specifies this information. Release the binary file writer and
close the binary file at the end.

The updated harness function, reconstructSignalTestbench, is shown here:
function reconstructSignalTestbench()
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
header = struct('FirstElemInBothCols','Number of Coefficients',...
    'FirstColumn','Input','SecondColumn','ReconstructedSignal');
bfw = dsp.BinaryFileWriter('data.bin','HeaderStructure',header);
numIter = 1000;

M = L+1;
ReSignalAll = zeros(M*numIter,1);
InputAll = zeros(M*numIter,1);
rng(1);

for Iter = 1 : numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignal,numCoeffs] = GenerateSignalWithHighEnergyFFTCoeffs(Input);
    InputAll(((Iter-1)*M)+1:Iter*M) = [numCoeffs;Input];
    ReSignalAll(((Iter-1)*M)+1:Iter*M) = [numCoeffs;ReconstrSignal];
end

bfw([InputAll ReSignalAll]);   
release(bfw);

The next step in generating a C executable is to create a coder.config object for an executable and
provide a main.c function to this object.

cfg =  coder.config('exe');
cfg.CustomSource = 'reconstructSignalTestbench_Main.c';

Here is how the reconstructSignalTestbench_Main.c function looks for this example.
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/*
** reconstructSignalTestbench_main.c
*
* Copyright 2017 The MathWorks, Inc.
*/
#include <stdio.h>
#include <stdlib.h>

#include "reconstructSignalTestbench_initialize.h"
#include "reconstructSignalTestbench.h"
#include "reconstructSignalTestbench_terminate.h"

int main()
{
    reconstructSignalTestbench_initialize();
    reconstructSignalTestbench();    
    reconstructSignalTestbench_terminate();
    
    return 0;
}

For additional details on creating the main function, see “Generating Standalone C/C++ Executables
from MATLAB Code” (MATLAB Coder).

Set the CustomInclude property of the configuration object to specify the location of the main file.
In this example, the location is the current folder.

cfg.CustomInclude = ['"',pwd,'"'];

Generate the C executable by running the following command in the MATLAB command prompt:
codegen -config cfg -report reconstructSignalTestbench

MATLAB Coder compiles and links the main function with the C code that it generates from the
reconstructSignalTestbench.m.

If you are using Windows, you can see that reconstructSignalTestbench.exe is generated in
the current folder. If you are using Linux, the generated executable does not have the .exe
extension.

Read and Verify the Binary File Data
Running the executable creates a binary file, data.bin, in the current directory and writes the input,
reconstructed signal, and the number of FFT coefficients used to reconstruct the signal.

!reconstructSignalTestbench

You can read this data from the binary file using the dsp.BinaryFileReader object. To verify that
the data is written correctly, read data from the binary file in MATLAB and compare the output with
variables InputAll and ReSignalAll.

The header prototype must have a structure similar to the header structure written to the file. Read
the data as two channels.
M = 1021;
numIter = 1000;
headerPro = struct('FirstElemInBothCols','Number of Coefficients',...
    'FirstColumn','Input','SecondColumn','ReconstructedSignal');
bfr = dsp.BinaryFileReader('data.bin','HeaderStructure',...
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headerPro,'SamplesPerFrame',M*numIter,'NumChannels',2);
Data = bfr();

Compare the first channel with InputAll and the second channel with ReSignalAll.

isequal(InputAll,Data(:,1))

ans =

  logical

   1

isequal(ReSignalAll,Data(:,2))

ans =

  logical

   1

The results match exactly, indicating a successful write operation.

Relocate Code to Another Development Environment
Once you generate code from your MATLAB algorithm, you can relocate the code to another
development environment, such as a system or an integrated development environment (IDE) that
does not include MATLAB. You can package the files into a compressed file using the packNGo
function at the command line or the Package option in the MATLAB Coder app. For an example that
illustrates both the workflows, see “Package Code for Other Development Environments” (MATLAB
Coder). For more information on the packNGo option, see packNGo in “RTW.BuildInfo Methods”
(MATLAB Coder). You can relocate and unpack the compressed zip file using a standard zip utility.
For an example on how to package the executable generated in this example, see “Relocate Code
Generated from MATLAB Code to Another Development Environment”.

See Also
Functions
codegen

More About
• “Relocate Code Generated from MATLAB Code to Another Development Environment”
• “Generate C Code from Simulink Model”
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Code Generation Workflow” (MATLAB Coder)

External Websites
• Supported and Compatible Compilers
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Generate C Code from Simulink Model
Simulink Coder generates standalone C and C++ code from Simulink models for deployment in a
wide variety of applications. The workflow described in this topic uses DSP System Toolbox features
but the same workflow applies for Communications Toolbox. For a list of Communications Toolbox
features supported by Simulink Coder, see Blocks Supported for C Code Generation.

This example generates C code from the ex_codegen_dsp model and builds an executable from the
generated code. You can run the executable inside the MATLAB environment. In addition, you can
package and relocate the code to another development environment that does not have the MATLAB
and Simulink products installed.

Open the Model
The ex_codegen_dsp model implements a simple adaptive filter to remove noise from a signal while
simultaneously identifying a filter that characterizes the noise frequency content. To open this model,
enter the following command in MATLAB command prompt:

open_system('ex_codegen_dsp')

You can alternatively create the model using the DSP System template. For more information, see
“Configure the Simulink Environment for Signal Processing Models”.
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Configure Model for Code Generation
Prepare the model for code generation by specifying code generation settings in the Configuration
Parameters dialog box. Choose the appropriate solver and code generation target, and check the
model configuration for execution efficiency. For more details on each of these steps, see “Generate C
Code for a Model” (Simulink Coder).

Simulate the Model
Simulate the model. The Time Scope shows the input and filtered signal characteristics.

The Array Plot shows the last 32 filter weights for which the LMS filter has effectively adapted and
filtered out the noise from the signal.
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These coefficients can also be accessed using the following command:

filter_wts(:,:,1201)

Generate Code from the Model
Before you generate code from the model, you must first ensure that you have write permission in
your current folder.

To generate code, you must make the following changes:

1 In the Modeling tab of the model toolstrip, click Model Settings. The Configuration
Parameters dialog opens. Navigate to the Code Generation tab, select the Generate code
only parameter, and click Apply.

2 In the Apps gallery, click Simulink Coder. The C Code tab appears. Click the Generate Code

icon ( ).

After the model finishes generating code, the Code Generation Report appears, allowing you to
inspect the generated code. Note that the build process creates a new subfolder called
ex_codegen_dsp_grt_rtw in your current MATLAB working folder. This subfolder contains all the
files created by the code generation process, including those that contain the generated C source
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code. For more information on viewing the generated code, see “Generate C Code for a Model”
(Simulink Coder).

Build and Run the Generated Code
Set Up the C/C++ Compiler

To build an executable, you must set up a supported C compiler. For a list of compilers supported in
the current release, see Supported and Compatible Compilers.

To set up your compiler, run the following command in the MATLAB command prompt:

mex –setup

Build the Generated Code

After your compiler is setup, you can build and run the compiled code. The ex_codegen_dsp model is
currently configured to generate code only. To build the generated code, you must first make the
following changes:

1 In the Modeling tab of the model toolstrip, click Model Settings. The Configuration
Parameters dialog opens. Navigate to the Code Generation tab, clear the Generate code only
parameter, and click Apply.

2
In the C Code tab of the model toolstrip, click the Build icon ( ).

The code generator builds the executable and generates the Code Generation Report. The code
generator places the executable in the working folder. On Windows, the executable is
ex_codegen_dsp.exe. On Linux, the executable is ex_codegen_dsp.

Run the Generated Code

To run the generated code, enter the following command in the MATLAB command prompt:

!ex_codegen_dsp

Running the generated code creates a MAT-file that contains the same variables as those generated
by simulating the model. The variables in the MAT-file are named with a prefix of rt_. After you run
the generated code, you can load the variables from the MAT-file by typing the following command at
the MATLAB prompt:

load ex_codegen_dsp.mat

You can now compare the variables from the generated code with the variables from the model
simulation. To access the last set of coefficients from the generated code, enter the following in the
MATLAB prompt:

rt_filter_wts(:,:,1201)

Note that the coefficients in filter_wts(:,:,1201) and rt_filter_wts(:,:,1201) match.

For more details on building and running the executable, see “Generate C Code for a Model”
(Simulink Coder).
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Relocate Code to Another Development Environment

Once you generate code from your Simulink model, you can relocate the code to another development
environment using the pack-and-go utility. Use this utility when the development environment does
not have the MATLAB and Simulink products.

The pack-and-go utility uses the tools for customizing the build process after code generation and a
packNGo function to find and package files for building an executable image. The files are packaged
in a compressed file that you can relocate and unpack using a standard zip utility.

You can package the code by either using the user interface or by using the command-line interface.
The command-line interface provides more control over the details of code packaging. For more
information on each of these methods, see “Relocate Code to Another Development Environment”
(Simulink Coder).

For an example on how to package the C code and executable generated from this example, see
“Relocate Code Generated from a Simulink Model to Another Development Environment”.

See Also

More About
• “Generate C Code for a Model” (Simulink Coder)
• “Relocate Code Generated from a Simulink Model to Another Development Environment”
• “Relocate Code to Another Development Environment” (Simulink Coder)
• “Generate C Code from MATLAB Code”
• “How To Run a Generated Executable Outside MATLAB”

External Websites
• Supported and Compatible Compilers
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HDL Code Generation

• “Find Blocks That Support HDL Code Generation” on page 27-2
• “Wireless Communications Design for FPGAs and ASICs” on page 27-4
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Find Blocks That Support HDL Code Generation

Blocks
In the Simulink library browser, you can find libraries of blocks supported for HDL code generation in
the HDL Coder, Communications Toolbox HDL Support, DSP System Toolbox HDL Support
block libraries, and others.

To create a library of HDL-supported blocks from all your installed products, enter hdllib at the
MATLAB command line. This command requires an HDL Coder™ license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.
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You can also use Communications Toolbox blocks with blocks from Wireless HDL Toolbox. Wireless
HDL Toolbox provides sample-based algorithms in Simulink for the design and implementation of 5G
NR, LTE, and other wireless communications subsystems on FPGAs and ASICs.

System Objects
To find System objects supported for HDL code generation, see Predefined System Objects (HDL
Coder).
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Wireless Communications Design for FPGAs and ASICs
In this section...
“From Mathematical Algorithm to Hardware Implementation” on page 27-4
“HDL-Optimized Blocks” on page 27-6
“Reference Applications” on page 27-6
“Generate HDL Code and Prototype on FPGA” on page 27-7

Deploying algorithmic models to FPGA hardware makes it possible to do over-the-air testing and
verification. However, designing wireless communications systems for hardware requires design
tradeoffs between hardware resources and throughput. You can speed up hardware design and
deployment by using HDL-optimized blocks that have hardware-suitable interfaces and architectures,
reference applications that implement portions of the LTE and 5G NR physical layer, and automatic
HDL code generation. You can also use hardware support packages to assist with deploying and
verifying your design on real hardware.

MathWorks® HDL products, such as Wireless HDL Toolbox, allow you to start with a mathematical
model, such as MATLAB code from LTE Toolbox™ or 5G Toolbox™, and design a hardware
implementation of that algorithm that is suitable for FPGAs and ASICs.

From Mathematical Algorithm to Hardware Implementation
Wireless communications design often starts with algorithm development and testing using MATLAB
functions. MATLAB code, which usually operates on matrices of floating-point data, is good for
developing mathematical algorithms, manipulating large data sets, and visualizing data.

Hardware engineers typically receive a mathematical specification from an algorithm team, and
reimplement the algorithm for hardware. Hardware designs require tradeoffs of resource usage for
clock speed and overall throughput. Usually this tradeoff means operating on streaming data, and
using some logic to control the storage and flow of data. Hardware engineers usually work in
hardware description languages (HDLs), like VHDL and Verilog, that provide cycle-based modeling
and parallelism.

To bridge this gap between mathematical algorithm and hardware implementation, use the MATLAB
algorithm model as a starting point for hardware implementation. Make incremental changes to the
design to make it suitable for hardware, and progress towards a Simulink model that you can use to
automatically generate HDL code by using HDL Coder.

This diagram shows the design progression from mathematical algorithm in MATLAB, to hardware-
compatible implementation in Simulink, and then the generated VHDL code.
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While both MATLAB and Simulink support automatic generation of HDL code, you must construct
your design with hardware requirements in mind, and Simulink is better-suited for cycle-based
modeling for hardware. It can represent parallel data paths and streaming data with control signals
to manage the timing of the data stream. To aid in fixed-point type choices, it clearly visualizes data
type propagation in the design. It also allows for easy pipelining of mathematical operations to
improve maximum clock frequency in hardware.

While you create your hardware-ready design, use the MATLAB algorithm as a "golden reference" to
verify that each version of the design still meets the mathematical requirements. The workflow shown
in the diagram uses MATLAB and Simulink as collaboration and communication tools between the
algorithm and hardware design teams.

For instance, when designing for LTE or 5G wireless standards, you can use LTE Toolbox and 5G
Toolbox functions to create a golden reference in MATLAB. Then transition to Simulink and create a
hardware-compatible implementation by using library blocks from Wireless HDL Toolbox and blocks
from Communications Toolbox and DSP System Toolbox that support HDL code generation. You can
reuse test and data generation infrastructure from MATLAB by importing data from MATLAB to your
Simulink model and returning the output of the model to MATLAB to verify it against the "golden
reference".
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HDL-Optimized Blocks
Library blocks from Wireless HDL Toolbox implement encoders, decoders, modulators, demodulators,
and sequence generators for use in an LTE, 5G, or general wireless communications system. These
blocks use a standard streaming data interface for hardware. This interface makes it easy to connect
parts of the algorithm together, and includes control signals that manage the flow of data and mark
frame boundaries. These blocks support automatic HDL code generation with HDL Coder. You can
also use blocks from Communications Toolbox and DSP System Toolbox that support HDL code
generation.

The blocks provide hardware-suitable architectures that optimize resource use, such as including
adder and multiplier pipelining to fit well into FPGA DSP slices. They also support automatic and
configurable fixed-point data types. Using predefined blocks also allows you to try different
parameter configurations without changing the rest of the design.

For lists of blocks that support HDL code generation, see Wireless HDL Toolbox Block List (HDL Code
Generation), Communications Toolbox Block List (HDL Code Generation), and DSP System Toolbox
Block List (HDL Code Generation).

Reference Applications
Wireless HDL Toolbox provides reference applications that contain hardware-ready implementations
of large parts of the LTE and 5G NR physical layer. These designs are verified against the "golden
reference" functions provided by LTE Toolbox and 5G Toolbox. They have also been tested on FPGA
boards to confirm that they encode and decode over-the-air waveforms and use a reasonable amount
of hardware resources. They are designed to be modular, scalable, and extensible so you can insert
additional physical channels. The receiver design was tested using waveforms captured off-the-air.

The suite of reference applications includes:

• LTE and 5G NR primary and secondary synchronization signal (PSS/SSS) generation and detection
• LTE downlink shared control channel detector and master information block (MIB) generation and

recovery
• LTE first system information block (SIB1) decoder
• Hardware-software interface models for MIB and SIB1 bit parsing and channel estimation data

indexing
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• LTE waveform generation for multiple-antenna transmission
• Support for FDD and TDD for LTE transmitter and receiver applications

These reference applications can be used as-is to deliver packet information to your unique
application and to generate synthesizable VHDL or Verilog with HDL Coder. They also serve as
examples to illustrate recommended practices for implementing communications algorithms on FPGA
or ASIC hardware.

Generate HDL Code and Prototype on FPGA
Wireless HDL Toolbox provides blocks that support HDL code generation. To generate HDL code from
designs that use these blocks, you must have an HDL Coder license. HDL Coder produces device-
independent code with signal names that correspond to the Simulink model. HDL Coder also provides
a tool to drive the FPGA synthesis and targeting process, and enables you to generate scripts and test
benches for use with third-party HDL simulators.

To assist with the setup and targeting of programmable logic on a prototype board, and to verify your
wireless communications system design on hardware, download a hardware support package such as
Communications Toolbox Support Package for Xilinx® Zynq®-Based Radio.

See Also

External Websites
• Wireless HDL Toolbox
• HDL Coder
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Simulation Acceleration Using GPUs
In this section...
“GPU-Based System objects” on page 28-2
“General Guidelines for Using GPUs” on page 28-2
“Transmit and decode using BPSK modulation and turbo coding” on page 28-3
“Process Multiple Data Frames Using a GPU” on page 28-4
“Process Multiple Data Frames Using NumFrames Property” on page 28-4
“gpuArray and Regular MATLAB Numerical Arrays” on page 28-5
“Pass gpuArray as an Input” on page 28-5
“System Block Support for GPU System Objects” on page 28-5

GPU-Based System objects
GPU-based System objects look and behave much like the other System objects in the
Communications Toolbox product. The important difference is that the algorithm is executed on a
Graphics Processing Unit (GPU) rather than on a CPU. Using the GPU can accelerate your simulation.

System objects for the Communications Toolbox product are located in the comm package and are
constructed as:

H = comm.<object name>

For example, a Viterbi Decoder System object is constructed as:

H = comm.ViterbiDecoder

In cases where a corresponding GPU-based implementation of a System object exists, they are
located in the comm.gpu package and constructed as:

H = comm.gpu.<object name>

For example, a GPU-based Viterbi Decoder System object is constructed as:

H = comm.gpu.ViterbiDecoder

To see a list of available GPU-based implementations enter help comm at the MATLAB command line
and click GPU Implementations.

General Guidelines for Using GPUs
Graphics Processing Units (GPUs) excel at processing large quantities of data and performing
computations with high compute intensity. Processing large quantities of data is one way to maximize
the throughput of your GPU in a simulation. The amount of the data that the GPU processes at any
one time depends on the size of the data passed to the input of a GPU System object. Therefore, one
way to maximize this data size is by processing multiple frames of data.

You can use a single GPU System object to process multiple data frames simultaneously or in parallel.
This differs from the way many of the standard, or non-GPU, System objects are implemented. For
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GPU System objects, the number of frames the objects process in a single call to the object function is
either implied by one of the object properties or explicitly stated using the NumFrames property on
the objects.

Transmit and decode using BPSK modulation and turbo coding
This example shows how to transmit turbo-encoded blocks of data over a BPSK-modulated AWGN
channel. Then, it shows how to decode using an iterative turbo decoder and display errors.

Define a noise variable, establish a frame length of 256, and use the random stream property so that
the results are repeatable.

noiseVar = 4; frmLen = 256;
s = RandStream('mt19937ar', 'Seed', 11);
intrlvrIndices = randperm(s, frmLen);

Create a Turbo Encoder System object. The trellis structure for the constituent convolutional code is
poly2trellis(4, [13 15 17], 13). The InterleaverIndices property specifies the mapping the object
uses to permute the input bits at the encoder as a column vector of integers.

turboEnc = comm.TurboEncoder('TrellisStructure', poly2trellis(4, ...
      [13 15 17], 13), 'InterleaverIndices', intrlvrIndices);

Create a BPSK Modulator System object.

bpsk = comm.BPSKModulator;

Create an AWGN Channel System object.

channel = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance', ...
      noiseVar);

Create a GPU-Based Turbo Decoder System object. The trellis structure for the constituent
convolutional code is poly2trellis(4, [13 15 17], 13). The InterleaverIndicies property specifies
the mapping the object uses to permute the input bits at the encoder as a column vector of integers.

turboDec = comm.gpu.TurboDecoder('TrellisStructure', poly2trellis(4, ...
      [13 15 17], 13), 'InterleaverIndices', intrlvrIndices, ...
      'NumIterations', 4);

Create an Error Rate System object.

errorRate = comm.ErrorRate;

Run the simulation.

for frmIdx = 1:8
 data = randi(s, [0 1], frmLen, 1);
 encodedData = turboEnc(data);
 modSignal = bpsk(encodedData);
 receivedSignal = channel(modSignal); 

Convert the received signal to log-likelihood ratios for decoding.

receivedBits  = turboDec(-2/(noiseVar/2))*real(receivedSignal));

Compare original the data to the received data and then calculate the error rate results.
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errorStats = errorRate(data,receivedBits);
end
fprintf('Error rate = %f\nNumber of errors = %d\nTotal bits = %d\n', ...
errorStats(1), errorStats(2), errorStats(3))

Process Multiple Data Frames Using a GPU
This example shows how to simultaneously process two data frames using an LDPC Decoder System
object. The ParityCheckMatrix property determines the frame size. The number of frames that the
object processes is determined by the frame size and the input data vector length.

numframes = 2;
 
ldpcEnc = comm.LDPCEncoder;
ldpcGPUDec = comm.gpu.LDPCDecoder;
ldpcDec = comm.LDPCDecoder;
 
 
msg = randi([0 1], 32400,2);
 
for ii=1:numframes,
    encout(:,ii) = ldpcEnc(msg(:,ii));
end
 
%single ended to bipolar (for LLRs)
encout = 1-2*encout;
 
%Decode on the CPU
for ii=1:numframes;
    cout(:,ii) = ldpcDec(encout(:,ii));
end
 
%Multiframe decode on the GPU
gout = ldpcGPUDec(encout(:));
 
%check equality
isequal(gout,cout(:))

Process Multiple Data Frames Using NumFrames Property
This example shows how to process multiple data frames using the NumFrames property of the GPU-
based Viterbi Decoder System object. For a Viterbi Decoder, the frame size of your system cannot be
inferred from an object property. Therefore, the NumFrames property defines the number of frames
present in the input data.
numframes = 10;
 
convEncoder = comm.ConvolutionalEncoder('TerminationMethod', 'Terminated');
vitDecoder = comm.ViterbiDecoder('TerminationMethod', 'Terminated');
 
%Create a GPU Viterbi Decoder, using NumFrames property.
vitGPUDecoder = comm.gpu.ViterbiDecoder('TerminationMethod', 'Terminated', ...
                               'NumFrames', numframes );
 
msg = randi([0 1], 200, numframes);
 
for ii=1:numframes,
    convEncOut(:,ii) = 1-2*convEncoder(msg(:,ii));
end
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%Decode on the CPU
for ii=1:numframes;
    cVitOut(:,ii) = vitDecoder(convEncOut(:,ii));
end
 
%Decode on the GPU
gVitOut = vitGPUDecoder(convEncOut(:));
 
isequal(gVitOut,cVitOut(:))

gpuArray and Regular MATLAB Numerical Arrays
A GPU-based System object accepts typical MATLAB arrays or objects created using the gpuArray
class. A GPU-based System object supports input signals with double- or single-precision data types.
The output signal inherits its data type from the input signal.

• If the input signal is a MATLAB array, the System object handles data transfer between the CPU
and the GPU. The output signal is a MATLAB array.

• If the input signal is a gpuArray, the data remains on the GPU. The output signal is a gpuArray.
When the object is given a gpuArray, calculations take place entirely on the GPU, and no data
transfer occurs. Passing gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” (Parallel Computing
Toolbox).

Passing MATLAB arrays to a GPU System object requires transferring the initial data from a CPU to
the GPU. Then, the GPU System object performs calculations and transfers the output data back to
the CPU. This process introduces latency. When data in the form of a gpuArray is passed to a GPU
System object, the object does not incur the latency from data transfer. Therefore, a GPU System
object runs faster when you supply a gpuArray as the input.

In general, you should try to minimize the amount of data transfer between the CPU and the GPU in
your simulation.

Pass gpuArray as an Input
This example shows how to pass a gpuArray to the input of the PSK modulator, reducing latency.

pskGPUModulator = comm.gpu.PSKModulator;
x = randi([0 7], 1000, 1, 'single');
gx = gpuArray(x);
 
o = pskGPUModulator(x);
class(o)
 
release(pskGPUModulator); %allow input types to change
 
go = pskGPUModulator(gx);
class(go)

System Block Support for GPU System Objects
• “GPU System Objects Supported in System Block” on page 28-6
• “System Block Limitations for GPU System Objects” on page 28-6
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GPU System Objects Supported in System Block

• comm.gpu.AWGNChannel
• comm.gpu.BlockDeinterleaver
• comm.gpu.BlockInterleaver
• comm.gpu.ConvolutionalDeinterleaver
• comm.gpu.ConvolutionalEncoder
• comm.gpu.ConvolutionalInterleaver
• comm.gpu.PSKDemodulator
• comm.gpu.PSKModulator
• comm.gpu.TurboDecoder
• comm.gpu.ViterbiDecoder

System Block Limitations for GPU System Objects

The GPU System objects must be simulated using Interpreted Execution. You must select this
option explicitly on the block mask; the default value is Code generation.

See Also

More About
• “GPU Capabilities and Performance” (Parallel Computing Toolbox)
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Wireless Waveform Generator App

• “Use Wireless Waveform Generator App” on page 29-2
• “Generate Wireless Waveform in Simulink Using App-Generated Block” on page 29-7
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Use Wireless Waveform Generator App
The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting modulated waveforms.

Start the app. On the Apps tab in the MATLAB toolstrip, under Signal Processing and

Communications, click the app icon . You can also start the app by entering
wirelessWaveformGenerator at the MATLAB command prompt.

These are the typical workflows when using the Wireless Waveform Generator app.

• Generate a waveform.

• Select the desired waveform type from the options available in the Waveform Type section.
Adjust the configuration parameters in the Waveform pane. For more information, see
“Waveform Type” on page 29-3.

• Select Impairments in the Generation section to open the Impairments pane. Adjust the
configuration parameters in the Impairments pane. For more information, see “Add
Impairments” on page 29-3.

• To perform signal generation, click Generate. After generation, the waveform is displayed. You
can adjust the waveform, filtering, and impairment configurations and then regenerate the
waveform.

• The default visualization plots vary based on the waveform type selected. Additional
“Visualization Options” on page 29-4 can be opened by selecting them from Visualize in the
Generation section.
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• After generating a waveform you can export it by selecting the desired options from Export in the
Export section. For more information, see “Export Waveform” on page 29-4.

• You can save the current session, open a previously saved session, or open a new session by
selecting the desired option in the File section. For more information, see “Waveform Generator
Session” on page 29-5.

Waveform Type
To generate the various available waveforms, the Wireless Waveform Generator app uses
Communications Toolbox features. The supported waveform types include:

• OFDM — The app uses the comm.OFDMModulator System object to generate this type of
waveform.

• QAM — The app uses the qammod function to generate this type of waveform.
• PSK — The app uses the pskmod function to generate this type of waveform.
• Sinewave — The app uses the dsp.SineWave System object to generate this type of waveform.
• 5G — If you have the 5G Toolbox, you can also generate 5G NR waveforms using features in the

“5G Toolbox”. For more information, see the 5G Waveform Generator app reference page.
• LTE — If you have the LTE Toolbox you can also generate LTE modulated waveforms using

features in the “LTE Toolbox”. For more information, see the LTE Waveform Generator app
reference page.

• WLAN — If you have the WLAN Toolbox™ you can also generate 802.11™ modulated waveforms
using features in the “WLAN Toolbox”. For more information, see the WLAN Waveform
Generator app reference page.

• Bluetooth — You can download and install the Communications Toolbox Library for the Bluetooth
Protocol add-on to generate waveforms using features described in “Bluetooth”.

By default, generated waveforms have no filtering applied. To apply filtering to the waveform, select
the desired filter option from the Filtering parameter on the Waveform pane. The available filter
options vary based on the waveform type you select.

Add Impairments
You can add these impairments to the waveform that you generate.

• AWGN — The app uses the awgn function to impair the waveform.
• Phase offset — The app impairs the waveform by applying the specified phase offset as y = xejφ,

where φ is the phase offset in radians.
• Frequency offset — The app uses the comm.PhaseFrequencyOffset System object to impair the

waveform.
• Phase noise — The app uses the comm.PhaseNoise System object to impair the waveform.
• DC offset — The app impairs the waveform by applying the specified DC offset as y = x + dcOff,

where dcOff is the complex DC offset in Volts.
• IQ imbalance — The app uses the iqimbal function to impair the waveform.
• Memoryless cubic nonlinearity — The app uses the comm.MemorylessNonlinearity System

object to impair the waveform.

 Use Wireless Waveform Generator App

29-3

https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol
https://www.mathworks.com/matlabcentral/fileexchange/70469-communications-toolbox-library-for-the-bluetooth-protocol


Visualization Options
You can use these plot types to visualize waveforms that you generate.

• Spectrum Analyzer — The app plots the waveform in the frequency domain.
• OFDM Grid — For OFDM waveforms, the app plots the resource allocation of data and control

channels.
• Time scope — The app plots the inphase and quadrature (IQ) waveform samples in the time

domain.
• Constellation diagram — The app plots the constellation points of the modulation symbols.

Export Waveform
You can export the waveform to a runnable MATLAB script or Simulink block., to your workspace, or
to a signal file.

• Use the exported script to generate your waveform without the app from the command line.
• Use the exported block as a waveform source in a Simulink model. For more information, see

Waveform From Wireless Waveform Generator App.
• Waveforms exported to the workspace are saved as a structure containing these fields:

• type — This field is a character vector indicating the waveform type.
• config — This field is a structure or object containing fields that specify the configured

waveform type.
• Fs — This field is the signal sample rate in Hertz.
• waveform — The field is the complex waveform samples output as an NS-by-1 column vector or

an NS-by-NT matrix. NS is the number of time-domain samples, and NT is the number of
transmit antennas.

• Waveforms exported to a signal file can be saved as a .mat or .bb file.

• MAT-files are binary MATLAB files that store workspace variables. For more information, see
“MAT-File Versions”.

• The app uses the comm.BasebandFileWriter System object to save .bb files.

Transmit Using Lab Test Instrument
Generate a waveform that you can transmit using a connected lab test instrument. The Wireless
Waveform Generator app can transmit using instruments supported by the rfsiggen function.
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Use of the transmit feature in the Wireless Waveform Generator app requires “Instrument Control
Toolbox”.

Waveform Generator Session
You can save the current session, open a previously saved session, or open a new session by selecting
the desired option in the FILE section. When you save a waveform generator session, the session
configuration is saved as a .mat file. For more information, see “MAT-File Versions”.

See Also
Apps
Wireless Waveform Generator

Blocks
Waveform From Wireless Waveform Generator App
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Related Examples
• “Generate Wireless Waveform in Simulink Using App-Generated Block” on page 29-7
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Generate Wireless Waveform in Simulink Using App-Generated
Block

This example shows how to configure and use the block that is generated using the Export to
Simulink capability that is available in the Wireless Waveform Generator app.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting waveforms. You can export the waveform to your workspace or to a .mat or .bb file.
You can also export the waveform generation parameters to a runnable MATLAB® script or a
Simulink® block. You can use the exported Simulink block to reproduce your waveform in Simulink.
This example shows how to use the Export to Simulink capability of the app and how to configure
the exported block to generate waveforms in Simulink.

Although this example focuses on exporting an OFDM waveform, the same process applies for all of
the supported waveform types.

Export Wireless Waveform Configuration to Simulink

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the left-most pane
of the app, adjust any configuration parameters for the selected waveform. Then export the
configuration by clicking Export in the app toolstrip and selecting Export to Simulink.
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The Export to Simulink option creates a Simulink block, which outputs the selected waveform when
you run the Simulink model. The block is exported to a new model if no open models exist.

modelName = 'WWGExport2SimulinkBlock';
open_system(modelName);

The Form output after final data value by block parameter specifies the output after all of the
specified signal samples are generated. The value options for this parameter are Cyclic
repetition and Setting to zero. The Cyclic repetition option repeats the signal from the
beginning after it reaches the last sample in the signal. The Setting to zero option generates
zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
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The Waveform sample rate (Fs) and Waveform length block parameters are derived from the
waveform configuration that is available in the Initialization tab of the Mask Editor dialog box. For
further information about the block parameters, see Waveform From Wireless Waveform Generator
App. This figure shows the parameters of the exported block.

close_system(modelName);

Connect a Spectrum Analyzer block to the exported block.

modelName = 'WWGExport2SimulinkModel';
open_system(modelName);

Simulate the model to visualize the waveform using the current configuration.

sim(modelName);
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The Spectrum Analyzer block inherits the Waveform sample rate (Fs) parameter, which is 64 MHz.

close_system(modelName);

Modify Wireless Waveform Configuration

When you run the Simulink model, the exported block outputs the waveform generated in the
Initialization tab of the Mask Editor dialog box for the block. The MATLAB code that initializes the
waveform in this tab corresponds to the configuration that you selected in the Wireless Waveform
Generator app before exporting the block. To modify the configuration of the waveform, choose one
of these options:

• Open the Wireless Waveform Generator app, select the configuration of your choice, and export
a new block. This option provides interaction with an app interface instead of MATLAB code,
parameter range validation during the parameterization process, and visualization of the
waveform before running the Simulink model.

• Update the configuration parameters that are available in the Initialization tab of the Mask
Editor dialog box of the exported block. This option requires modifying the MATLAB code
available in this tab so that the parameter range validation occurs only when you apply the
changes. This option does not provide visualization of the waveform before running the Simulink
model. Modifying the waveform parameters using this option is not recommended if you are not
familiar with the MATLAB code that generates the selected waveform.

29 Wireless Waveform Generator App

29-10



If you choose to modify the configuration by using the Initialization tab, you can open it by clicking
the exported block, pressing Ctrl+M to open the Mask Editor dialog, and clicking the Initialization
tab.

Use the MATLAB code that is available in the Initialization tab to update the parameters of your
choice. For example, set the subcarrier spacing, scs, to 1,500,000 Hz.
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Click OK to apply the changes and close the Mask Editor dialog box. Simulate the model to visualize
the updated waveform.

modelName = 'WWGExport2SimulinkModelSCSModified';
sim(modelName);
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The Spectrum Analyzer block now shows a sample rate of 96 MHz, which is 1.5 times the previous
sample rate, as expected.

Share Wireless Waveform Configuration with Other Blocks in the Model

To access read-only block parameters and waveform configuration parameters, use the UserData
common block property, which is a structure with these fields.

• WaveformConfig: Waveform configuration
• WaveformLength: Waveform length
• Fs: Waveform sample rate

You can access the user data of the exported block by using the get_param function.

get_param([gcs '/OFDM Waveform Generator'],'UserData')

ans = 

  struct with fields:

    WaveformConfig: [1x1 comm.OFDMModulator]
    WaveformLength: 8000
                Fs: 96000000
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Store the structure available in the user data in a base workspace variable by using the InitFcn in
the callback. The InitFcn callback is executed during a model update and simulation. To use this
callback, click the MODELING tab, then click the Model Settings dropdown, and click the Model
Properties option. In the Callbacks pane, select the InitFcn callback. Assign the user data to a
new base workspace variable (for example, cfg).

The parameters that are available in the user data of the exported block are updated every time you
apply configuration changes in the Initialization tab.

To demodulate the OFDM waveform, add an OFDM Demodulator block to the model. Connect an
AWGN Channel block between the OFDM Waveform Generator and OFDM Demodulator blocks to add
white Gaussian noise to the input signal. Also add a Constellation Diagram block to plot the
demodulated symbols.

modelName = 'WWGExport2SimulinkModelWithDemod';
open_system(modelName);

The parameters that are required to configure the OFDM Demodulator block must match the
parameters that are used to configure the exported block, (otherwise, demodulation fails). To access
the configuration parameters of the exported block, use the variable cfg. This figure shows the
parameters of the OFDM Demodulator block.
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Because the OFDM Demodulator block requires the entire OFDM waveform for demodulation, set the
Samples per frame parameter in the exported block to cfg.WaveformLength. Simulate the model.

sim(modelName);
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After demodulating the OFDM waveform by using the OFDM Demodulator block, the Constellation
Diagram block displays the resulting QAM symbols.

Generate Multicarrier Waveforms

For multicarrier generation, the sampling rates for all of the waveforms must be the same. To shift
the waveforms to a carrier offset and aggregate them, you can use the Multiband Combiner block.

modelName = 'WWGExport2SimulinkMulticarrier';
open_system(modelName);
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To shift the waveforms in frequency, you might have to increase the sampling rates. The Multiband
Combiner block provides the option to oversample the input waveforms before shifting and combining
them. This figure shows the parameters of the Multiband Combiner block.
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Simulate the model to visualize the waveforms that are centered at -80, 20, and 100 MHz.

sim(modelName);
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See Also
Apps
Wireless Waveform Generator

Blocks
Waveform From Wireless Waveform Generator App

More About
• “Use Wireless Waveform Generator App” on page 29-2
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RF Propagation

• “Troubleshooting Site Viewer” on page 30-2
• “Access Basemaps and Terrain in Site Viewer” on page 30-3
• “Access TIREM Software” on page 30-5
• “Choose a Propagation Model” on page 30-6
• “Ray Tracing for Wireless Communications” on page 30-12
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Troubleshooting Site Viewer

In this section...
“Internet Connection Failure” on page 30-2
“Graphics Environment” on page 30-2

Internet Connection Failure
When you create a Site Viewer, a check is made to make sure that you have an internet connection to
retrieve the default basemap and terrain data.

If Site Viewer cannot connect to the Internet the following warning messages are displayed:

• Warning: Unable to access the Internet, showing Dark Water instead of Satellites. See Access
Basemaps and Terrain in Site Viewer.

• Warning: Unable to access terrain data. See Access Basemaps and Terrain in Site Viewer.

If Site Viewer cannot connect to the Internet, then terrain data is not used and the Dark Water
basemap is selected.

Graphics Environment
Site Viewer can fail to open because of two reasons:

• In MATLAB, OpenGL® is set to software graphics. An error message is displayed in the command
window, notifying you to upgrade the graphics hardware driver or select hardware graphics using
OpenGL.

For more information, see opengl, and “Resolving Low-Level Graphics Issues”.
• When starting Site Viewer, JavaScript® for WebGL™ support fails. An error message is displayed

in the command window, notifying you to update the graphics hardware driver.

For more information, see “Resolving Low-Level Graphics Issues”

See Also
Functions
opengl

Objects
siteviewer

More About
• “Access Basemaps and Terrain in Site Viewer” on page 30-3
• “System Requirements for Graphics”
• “Resolving Low-Level Graphics Issues”
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Access Basemaps and Terrain in Site Viewer

In this section...
“Access and Download Basemaps” on page 30-3
“Access Terrain” on page 30-3

Access and Download Basemaps
To download MATLAB basemaps:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-Ons.
2 In the Add-On Explorer, scroll to the MathWorks Features section, and click show all to find

the basemap packages. You can also search for the basemap add-ons by name (listed in the
following table) or click Features in Filter by Type.

3 Select the basemap data packages. For more information about basemaps, see geobubble.

Basemap Name Basemap Data Package Name
'bluegreen' MATLAB Basemap Data - bluegreen
'grayland' MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain' MATLAB Basemap Data - grayterrain
'landcover' MATLAB Basemap Data - landcover

In addition, Site Viewer also supports external basemaps that you can select from the basemap
picker. The following options are available:

• Satellite
• Topographic
• Streets
• Streets-Light
• Streets-Dark
• OpenStreetMap

You need an active internet connection for all Site viewer basemaps except Dark Water. Use
addCustomBasemap to access basemaps from user-specified URLs.

Note If basemap does not render correctly in Site Viewer (for example only the ocean is visible),
check if the basemap server supports CORS (cross-origin resource sharing). Site Viewer does not
support basemaps that do not support CORS.

Access Terrain
To access terrain data for Site Viewer, you need an active internet connection. Use
addCustomTerrain to access terrain data from DTED-files without an active internet connection.
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See Also
Objects
siteviewer

More About
• “Troubleshooting Site Viewer” on page 30-2
• “System Requirements for Graphics”
• “Resolving Low-Level Graphics Issues”
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Access TIREM Software
The Terrain Integrated Rough Earth Model™ (TIREM™) is a propagation model for computing the
path loss for irregular terrain and seawater scenarios. TIREM is developed, trademarked, and
licensed by Alion Science. To use TIREM, you need to acquire it from Alion Science.

TIREM is designed to calculate the reference basic median propagation loss (path loss) based on the
terrain profile along the great circle path between two antennas, for example, using digital terrain
elevation data (DTED). You can use TIREM model to calculate the point-to-point path loss between
sites over irregular terrain. The model combines physics with empirical data to provide path loss
estimates. The TIREM propagation model can predict path loss at frequencies between 1 MHz and 1
THz.

Use tiremSetup to enable TIREM access from within MATLAB. The TIREM library folder contains
the tirem3 shared library. The full library name is platform-dependent:

Platform Shared Library Name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib

See Also
Functions
tiremSetup

Objects
TIREM

Related Examples
• “Planning Radar Network Coverage over Terrain” (Antenna Toolbox)
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Choose a Propagation Model

Introduction
Propagation models allow you to predict the propagation and attenuation of radio signals as the
signals travel through the environment. You can simulate different models by using the
propagationModel function. Additionally, you can determine the range and path loss of radio
signals in these simulated models by using the range and pathloss functions.

The following sections describe various propagation and ray tracing models. The tables in each
section list the models that are supported by the propagationModel function and compare, for each
model, the supported frequency ranges, model combinations, and limitations.

Atmospheric
Atmospheric propagation models predict path loss between sites as a function of distance. These
models assume line-of-sight (LOS) conditions and disregard the curvature of the Earth, terrain, and
other obstacles.

Model Description Frequency Combinations Limitations
freespace
(FreeSpace)

Ideal propagation
model with clear
line of sight
between
transmitter and
receiver

No enforced range Can be combined
with rain, fog, and
gas

Assumes line of
sight

rain (Rain) Propagation of a
radio wave signal
and its path loss in
rain. For more
information, see
[3].

1 GHz to 1000 GHz Can be combined
with any other
propagation model

Assumes line of
sight

gas (Gas) Propagation of
radio wave signal
and its path loss
due to oxygen and
water vapor. For
more information,
see [5].

1GHz to 1000 GHz Can be combined
with any other
propagation model

Assumes line of
sight

fog (Fog) Propagation of the
radio wave signal
and its path loss in
cloud and fog. For
more information,
see [2].

10GHz to 1000
GHz

Can be combined
with any other
propagation model

Assumes line of
sight
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Empirical
Like atmospheric propagation models, empirical models predict path loss as a function of distance.
Unlike atmospheric models, the close-in empirical model supports non-line-of-sight (NLOS)
conditions.

Model Description Frequency Combinations Limitations
close-in (CloseIn) Propagation of

signals in urban
macro cell
scenarios. For
more information,
see [1].

No enforced range Can be combined
with rain, fog, and
gas

—

Terrain
Terrain propagation models assume that propagation occurs between two points over a slice of
terrain. Use these models to calculate the point-to-point path loss between sites over irregular
terrain, including buildings.

Terrain models calculate path loss from free-space loss, terrain and obstacle diffraction, ground
reflection, atmospheric refraction, and tropospheric scatter. They provide path loss estimates by
combining physics with empirical data.

Model Description Frequency Combinations Limitations
longley-rice
(LongleyRice)

Also known as
Irregular Terrain
Model (ITM). For
more information,
see [4].

20 MHz to 20 GHz Can be combined
with rain, fog, and
gas

Antenna height
minimum is 0.5 m
and maximum is
3000 m

tirem (TIREM) Terrain Integrated
Rough Earth
Model

1 MHz to 1000
GHz

Can be combined
with rain, fog, and
gas

• Requires access
to external
TIREM library

• Antenna height
maximum is
30000 m

Ray Tracing
Ray tracing models, represented by RayTracing objects, compute propagation paths using 3-D
environment geometry [7][8]. They determine the path loss and phase shift of each ray using
electromagnetic analysis, including tracing the horizontal and vertical polarizations of a signal
through the propagation path. The path loss includes free-space loss and reflection losses. For each
reflection, the model calculates losses on the horizontal and vertical polarizations by using the
Fresnel equation, the incident angle, and the relative permittivity and conductivity of the surface
material [5][6] at the specified frequency.

While the other supported models compute single propagation paths, ray tracing models compute
multiple propagation paths.
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These models support both 3-D outdoor and indoor environments.

Ray Tracing
Method

Description Frequency Combinations Limitations

shooting and
bouncing rays
(SBR)

• Supports
calculation of
approximate
propagation
paths for up to
ten path
reflections. The
locations of
receiver sites
calculated by
the SBR
method are not
exact. The
accuracy of the
calculated
propagation
paths decreases
as the length of
the paths
increases.

• Computational
complexity
increases
linearly with
the number of
reflections. As a
result, the SBR
method is
generally faster
than the image
method.

100 MHz to 100
GHz

Can be combined
with rain, fog, and
gas

Does not include
effects from
diffraction,
refraction, and
scattering

image • Supports up to
two path
reflections and
calculates exact
propagation
paths.

• Computational
complexity
increases
exponentially
with the
number of
reflections.

100 MHz to 100
GHz

Can be combined
with rain, fog, and
gas

Does not include
effects from
diffraction,
refraction, and
scattering
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SBR Method

This figure illustrates the SBR method for calculating propagation paths from a transmitter, Tx, to a
receiver, Rx.

The SBR method launches many rays from a geodesic sphere centered at Tx. The geodesic sphere
enables the model to launch rays that are approximately uniformly spaced.

Then, the method traces every ray from Tx and can model different types of interactions between the
rays and surrounding objects, such as reflections, diffractions, refractions, and scattering. Note that
the implementation considers only reflections.

• When a ray hits a flat surface, shown as R, the ray reflects based on the law of reflection.
• When a ray hits an edge, shown as D, the ray spawns many diffracted rays based on the law of
diffraction [9][10]. Each diffracted ray has the same angle with the diffracting edge as the incident
ray. The diffraction point then becomes a new launching point and the SBR method traces the
diffracted rays in the same way as the rays launched from Tx. A continuum of diffracted rays form
a cone around the diffracting edge, which is commonly known as a Keller cone [10]. The current
implementation of the SBR method does not consider edge diffractions.

For each launched ray, the method surrounds Rx with a sphere, called a reception sphere, with a
radius that is proportional to the angular separation of the launched rays and the distance the ray
travels. If the ray intersects the sphere, then the model considers the ray a valid path from Tx to Rx.

Image Method

This figure illustrates the image method for calculating the propagation path of a single reflection ray
for the same transmitter and receiver as the SBR method. The image method locates the image of Tx
with respect to a planar reflection surface, Tx'. Then, the method connects Tx' and Rx with a line
segment. If the line segment intersects the planar reflection surface, shown as R in the figure, then a
valid path from Tx to Rx exists. The method determines paths with multiple reflections by recursively
extending these steps.
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• “Ray Tracing for Wireless Communications” on page 30-12
• “Visualize Antenna Coverage Map and Communication Links” on page 2-12
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 2-21
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Ray Tracing for Wireless Communications

Introduction
Wireless communication systems use radio waves to transmit signals. Propagation modeling enables
you to estimate the strength of signals based on system parameters such as frequency, antenna
height, terrain properties, and building properties.

Theoretical and empirical models estimate path loss based on range, and are valid for only those
environments that resemble the modeling environment. As a result, they usually do not provide
accurate temporal or spatial information. Unlike these models, ray tracing models are specific to the
3-D environment, and are therefore appropriate for scenarios such as urban environments.

For propagation modeling, a ray is an individual radio signal that [1]:

• Travels in a straight line through a homogeneous medium.
• Obeys the laws of reflection, refraction, and diffraction.
• Carries energy. Propagation models treat rays like tubes, where the energy density on the cross

section becomes smaller as the ray interacts with the environment.

For a given 3-D environment, ray tracing models use numeric simulations to:

• Predict the paths of rays from transmitters to receivers. The models can find many rays from a
transmitter to a receiver. The models derive the angle of departure, angle of arrival, and time of
arrival from the paths.

• Estimate the path loss and phase change for each ray. Total path loss is the sum of interaction
losses, free space loss, and, optionally, atmospheric loss.

A ray interacts with the environment in several ways [1].

Interaction Description
Line-of-sight (LOS) The ray travels directly from the transmitter to

the receiver.
Reflection The ray reflects off a surface according to the law

of reflection.
Refraction (transmission) The ray refracts as it moves into a new medium,

according to the law of refraction.
Diffraction The ray diffracts off a surface according to the

law of diffraction. One ray can spawn many
diffracted rays.

Scattering The ray interacts with a rough surface such as
the ocean or a building facade.

Use these functions to create ray tracing models, predict propagation paths, and calculate path losses
and phase shifts.

• propagationModel — Create a ray tracing model as a RayTracing object. Specify options such
as the ray tracing method, the maximum number of reflections, and surface materials. You can use
ray tracing models as input when conducing RF analysis, such as when generating coverage maps
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by using the coverage function or when calculating total received power by using the
sigstrength function.

• raytrace — Display propagation paths (rays) on a map or return propagation paths as comm.Ray
objects. Each object represents the full path from the transmitter to the receiver, and contains
information such as the path loss, phase shift, and types of surface interactions.

• raypl — Calculate the path loss and phase shift for a propagation path based on surface
materials and antenna polarization types.

For examples that show ray tracing in indoor and urban environments, see “Indoor MIMO-OFDM
Communication Link Using Ray Tracing” on page 8-9 and “Urban Link and Coverage Analysis Using
Ray Tracing” on page 2-21, respectively.

Ray Tracing Methods
The ray tracing model used by the propagationModel and raytrace functions finds LOS and non-
line-of-sight (NLOS) paths.

• The model finds LOS paths by shooting a ray from the transmitter toward the receiver. If the ray
does not interact with a surface before reaching the receiver, then an LOS path exists.

• The model finds NLOS paths by using either the shooting and bouncing rays (SBR) method [2] or
the image method. You can specify the method by using the propagationModel function.

Choose a method based on the types of interactions you want to model, the computation speed, and
the accuracy.

Method Interaction Types Computation Speed Computation
Accuracy

SBR Includes effects from
reflection and does not
include effects from
diffraction, refraction,
or scattering.

Supports calculation of
approximate
propagation paths for
up to ten path
reflections.

Computational
complexity increases
linearly with the
number of reflections.
As a result, the SBR
method is generally
faster than the image
method.

The locations of
receiver sites calculated
by the SBR method are
not exact. The accuracy
of the calculated
propagation paths
decreases as the length
of the paths increases.

Image Includes effects from
reflection and does not
include effects from
diffraction, refraction,
or scattering.

Supports up to two path
reflections.

Computational
complexity increases
exponentially with the
number of reflections.

Calculates exact
propagation paths.

SBR Method

This figure illustrates the SBR method for calculating propagation paths from a transmitter, Tx, to a
receiver, Rx.
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The SBR method launches many rays from a geodesic sphere centered at Tx. The geodesic sphere
enables the model to launch rays that are approximately uniformly spaced.

Then, the method traces every ray from Tx and can model different types of interactions between the
rays and surrounding objects, such as reflections, diffractions, refractions, and scattering. Note that
the implementation considers only reflections.

• When a ray hits a flat surface, shown as R, the ray reflects based on the law of reflection.
• When a ray hits an edge, shown as D, the ray spawns many diffracted rays based on the law of
diffraction [3][4]. Each diffracted ray has the same angle with the diffracting edge as the incident
ray. The diffraction point then becomes a new launching point and the SBR method traces the
diffracted rays in the same way as the rays launched from Tx. A continuum of diffracted rays form
a cone around the diffracting edge, which is commonly known as a Keller cone [4]. The current
implementation of the SBR method does not consider diffraction.

For each launched ray, the method surrounds Rx with a sphere, called a reception sphere, with a
radius that is proportional to the angular separation of the launched rays and the distance the ray
travels. If the ray intersects the sphere, then the model considers the ray a valid path from Tx to Rx.

Image Method

This figure illustrates the image method for calculating the propagation path of a single reflection ray
for the same transmitter and receiver as the SBR method. The image method locates the image of Tx
with respect to a planar reflection surface, Tx'. Then, the method connects Tx' and Rx with a line
segment. If the line segment intersects the planar reflection surface, shown as R in the figure, then a
valid path from Tx to Rx exists. The method determines paths with multiple reflections by recursively
extending these steps.
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Propagation Loss
The ray tracing model used by the propagationModel, raytrace, and raypl functions calculates
reflection losses by tracking the horizontal and vertical polarizations of signals through the
propagation path. Total power loss is the sum of free space loss, and reflection loss.

Effect of Surface Materials

When a ray interacts with a surface, the surface material impacts the reflection losses.

The ray tracing model incorporates building and surface materials into the propagation loss
calculations by using the complex relative permittivity of the surface, εr. The ITU-R P.2040-1 [5] and
ITU-R P.527 [6] recommendations include methods, equations, and values used to calculate εr for a
range of frequencies.

The equations for εr are:

εr = εr′ + jεr′′

εr′′ = σ
2πε0f ,

where:

• εr' is the real relative permittivity.
• σ is the conductivity in S/m.
• ε0 is the permittivity of free space (electric constant).
• f is the frequency in Hz.

For building materials, the ray tracing model calculates εr' and σ as:

εr′ = af b
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σ = cf d,

where a, b, c, and d are constants determined by the surface material. For readability, the table
shows the frequency range in GHz.

Material Class Real Part of Relative
Permittivity

Conductivity (S/m) Frequency
Range (GHz)

a b c d
Vacuum (~ air) 1 0 0 0 [0.001, 100]
Concrete 5.31 0 0.0326 0.8095 [1, 100]
Brick 3.75 0 0.038 0 [1, 10]
Plasterboard 2.94 0 0.0116 0.7076 [1, 100]
Wood 1.99 0 0.0047 1.0718 [0.001, 100]
Glass 6.27 0 0.0043 1.1925 [0.1, 100]
Ceiling board 1.50 0 0.0005 1.1634 [1, 100]
Chipboard 2.58 0 0.0217 0.78 [1, 100]
Floorboard 3.66 0 0.0044 1.3515 [50, 100]
Metal 1 0 107 0 [1, 100]
Very dry ground 3 0 0.00015 2.52 [1, 10] only(a)

Medium dry
ground

15 – 0.1 0.035 1.63 [1, 10] only(a)

Wet ground 30 – 0.4 0.15 1.30 [1, 10] only(a)

Note (a): For the three ground types (very dry, medium dry, and wet), the noted frequency limits
cannot be exceeded.

For earth surfaces such as water, sea water, dry or wet ice, dry or wet soil, and vegetation, the ray
tracing model calculates εr using the methods and equations presented in ITU-R P.527 [6].

Reflection Loss

The ray tracing model computes reflection loss by using the reflection matrix computations described
in IEEE document 802.11-09/0334r8 [7].

This image shows a reflection path from a transmitter site Tx to a receiver site Rx.
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For a first order signal reflection, the equation for reflection path loss, PLR, is:

PLR = JVrx′Href1 JVtx,

where:

• JVrx and JVtx are 2-by-1 polarization vectors for the receiver and transmitter, specified as Jones
vectors.

• Href1 is a reflection matrix.

The equation for the reflection matrix Href1 is:

Href1 =
cos(Ψrx) sin(Ψrx)
−sin(Ψrx) cos(Ψrx)

×
R⊥(α) 0

0 R∥(α)
×

cos(Ψtx) sin(Ψtx)
−sin(Ψtx) cos(Ψtx)

,

where:

• The third and first terms are geometric coupling matrices. The third term recalculates the
polarization vector from the basis of the transmitter coordinates to the basis of the incident plane.
The first term recalculates the polarization vector from the basis of the incident plane to the basis
of the receiver coordinates. Ψrx and Ψtx are the angles between the vertical electromagnetic field
vector Eθ and a normal to the incident plane, n, at the receiver and transmitter, respectively.

• The second term is a polarization matrix, where R∥ and R⟂ are the reflection coefficients for the
horizontal and vertical polarizations, respectively.

The model accounts for the geometric coupling between horizontal and vertical polarizations only
when both the transmitter and receiver antennas are polarized.

 Ray Tracing for Wireless Communications

30-17



Ray tracing models calculate R∥ and R⟂ by using the Fresnel equation:

R∥(α) =
cos(α)− εr − sin2(α)
cos(α) + εr − sin2(α)

R⊥(α) =
cos(α)− (εr − sin2(α))/εr2

cos(α) + (εr − sin2(α))/εr2
,

where:

• α is the incident angle of the propagation vector.
• εr is the complex relative permittivity of the material.

The model computes higher order reflections by using an additional geometric coupling matrix and
polarization matrix for each reflection.
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See Also
Functions
propagationModel | raytrace | raypl | buildingMaterialPermittivity |
earthSurfacePermittivity

Objects
RayTracing | comm.Ray

Related Examples
• “Indoor MIMO-OFDM Communication Link Using Ray Tracing” on page 8-9
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 2-21
• “Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning”

(WLAN Toolbox)
• “CDL Channel Model Customization with Ray Tracing” (5G Toolbox)
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Guidance for Discouraged Features

• “Source blocks output frames of contiguous time samples but do not use frame attribute”
on page 31-2

• “AGC object and block have simplified interfaces, better dynamic range, and faster convergence
times” on page 31-3
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Source blocks output frames of contiguous time samples but
do not use frame attribute

Source blocks output frames of contiguous time samples but do not use the frame attribute. Frame
processing is still supported. Starting in R2020a:

• The Bernoulli Binary Generator and Random Integer Generator blocks now enable you to use the
Upgrade Advisor. Use the Upgrade Advisor to update existing models that include the Bernoulli
Binary Generator or Random Integer Generator block. You can update to the block version
introduced in R2015b or keep the block version available in releases before to R2015b.

• Simulink no longer enables you to use versions of the Poisson Integer Generator, Barker Code
Generator, Gold Sequence Generator, Hadamard Code Generator, Kasami Sequence Generator,
OVSF Code Generator, PN Sequence Generator, or Walsh Code Generator blocks available in
releases before to R2015b. Existing models automatically update to load the block version
introduced in R2015b. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

Compatibility Considerations
The behavior of the random number generator for the Bernoulli Binary Generator and Poisson Integer
Generator block has changed. The statistics have been improved.

For the Bernoulli Binary Generator, Poisson Integer Generator, and the Random Integer Generator
blocks, the following changes were made:

• Removed Frame-based outputs and Interpret vector parameters as 1–D parameters. Blocks
always output a sample-based 2-D vector.

• Introduced Source of initial seed parameter.

To use the default MATLAB random number generator, leave the Source of initial seed
parameter set to Auto. To set an initial seed, set Source of initial seed to Parameter and then
set the Initial seed value.

• Behavior of the random number generator is changed. The statistics are improved.

For the Poisson Integer Generator block, the Lambda parameter is now Poisson parameter
(lambda). For the Random Integer Generator block, the M-ary number parameter is now Set size.

The Frame-based outputs parameter was removed for these blocks:

• Barker Code Generator
• Gold Sequence Generator
• Hadamard Code Generator
• Kasami Sequence Generator
• OVSF Code Generator
• PN Sequence Generator
• Walsh Code Generator

They always output sample-based 2-D vectors. These blocks can be upgraded using the Upgrade
Advisor.
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AGC object and block have simplified interfaces, better
dynamic range, and faster convergence times

The AGC System object and block are improved to incorporate a simplified interface, tolerate a
significantly larger input signal power range, and converge more quickly.

Compatibility Considerations
The algorithm and some properties changed in release R2015b. The properties and behavior of the
previous releases can be accessed by setting the hidden LegacyMode property to true. By default,
LegacyMode is false. The properties associated with the two legacy mode states are summarized.

Property LegacyMode = true LegacyMode = false
AdaptationStepSize  X
ReferenceLevel  X
AveragingLength  X
MaximumGain X X
DetectorMethod X  
LoopMethod X  
UpdatePeriod X  
StepSize X  
GainOutputPort X  

Note For Simulink models in which the output gain port is enabled, the legacy mode is automatically
enabled. This is required because the port is not available from the updated AGC block.
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